高等代数【北大版】(13)

合集下载

高等代数——课程介绍

高等代数——课程介绍

《高等代数》是北京大学数学科学学院(由数学、概率统计、科学与工程计算、信息科学、金融数学五个系组成)本科一年级的三门最重要的基础课之一,为期一学年,教学时间30周,复习、考试4周,总共10学分(每学期5学分)。

每年学生约260人(包括本院学生、元培班学生和重修的学生),分成两个大班,由两个主讲教师依照同样的教学计划(包括进度、内容、习题和作业的的安排)同步授课(每周4学时),同时配备有四位助教上习题课(每周2学时)和批改作业。

主讲教师负责安排习题课内容以及指导助教的工作。

每学期期中、期末考试各一次,采用统一的考题和统一的评分标准。

考试分数为百分制。

期末总成绩为期中成绩的40%加上期末成绩的60%再减去学生未交作业的次数。

课程目前采用的教材是蓝以中编著的《高等代数简明教程》(上、下册)(北京大学出版社2002年出版,北京大学数学教学系列丛书,该书为普通高等教育“十五”国家级规划教材及2002年北京市教育精品教材重点项目)。

主要教学参考书是北大几何与代数教研室代数小组编《高等代数》(高等教育出版社,1991年,第二版,曾获国家优秀教材一等奖);丘维声编著的《高等代数》(上、下册)(高等教育出版社1996年出版,国家“九五”重点教材)。

本课程的内容包括:线性方程组,矩阵,行列式,双线性型与二次型,线性空间,线性变换,具有度量的线性空间(欧氏空间、酉空间、四维时空空间、辛空间),Jordan标准形,有理整数环,一元和多元多项式环,多线性代数(张量积、张量、外代数)的初步理论等。

本课程不仅注重讲授代数学的基本知识,更强调对于学生的“三个基本训练”和“一个初步训练”,即、代数学基本思想的训练、代数学基本方法的训练、线性代数基本计算的训练以及综合运用分析、几何、代数方法处理问题的初步训练。

高等代数【北大版】课件

高等代数【北大版】课件
线性规划问题
线性方程组是求解线性规划问题的常用工具 。
物理问题建模
在物理问题中,线性方程组可以用来描述各 种现象,如振动、波动等。
投入产出分析
通过线性方程组分析经济系统中各部门之间 的相互关系。
控制系统分析
在控制系统分析中,线性方程组用于描述系 统的动态行为。
PART 03
向量与矩阵
REPORTING
高等代数【北大版】 课件
REPORTING
• 绪论 • 线性方程组 • 向量与矩阵 • 多项式 • 特征值与特征向量 • 二次型与矩阵的相似对角化
目录
PART 01
绪论
REPORTING
高等代数的应用
在数学其他分支的应用
高等代数是数学的基础学科,为其他分支提供了理论基础,如几 何学、分析学等。
PART 04
多项式
REPORTING
一元多项式的定义与运算
总结词
一元多项式的定义、运算性质和运算方法。
详细描述
一元多项式是由整数系数和变量组成的数学对象,具有加法、减法、乘法和除法等运算性质和运算方法。一元多 项式可以表示为$a_0 + a_1x + a_2x^2 + ldots + a_nx^n$的形式,其中$a_0, a_1, ldots, a_n$是整数,$x$是 变量。
矩阵的相似对角化
总结词
矩阵的相似对角化是将矩阵转换为对角矩阵 的过程,有助于简化矩阵运算和分析。
详细描述
矩阵的相似对角化是通过一系列的线性变换 ,将一个矩阵转换为对角矩阵。对角矩阵是 一种特殊的矩阵,其非主对角线上的元素都 为零,主对角线上的元素为特征值。通过相 似对角化,可以简化矩阵运算,并更好地理 解矩阵的性质和特征。

(完整版)高等代数(北大版第三版)习题答案II

(完整版)高等代数(北大版第三版)习题答案II

证 1)作变换 ,即



因为 是正定矩阵,所以 是负定二次型。
2) 为正定矩阵,故 对应的 阶矩阵也是正定矩阵,由1)知
或 ,
从而





由于 是正定的,因此它的 级顺序主子式 ,从而 的秩为 。
即证 。
3.设

其中 是 的一次齐次式,证明: 的正惯性指数 ,负惯性指数 。
证 设 ,
的正惯性指数为 ,秩为 ,则存在非退化线性替换

使得

下面证明 。采用反证法。设 ,考虑线性方程组

该方程组含 个方程,小于未知量的个数 ,故它必有非零解 ,于是

上式要成立,必有
, ,
这就是说,对于 这组非零数,有
, ,
这与线性替换 的系数矩阵非退化的条件矛盾。所以

同理可证负惯性指数 ,即证。
4.设
是一对称矩阵,且 ,证明:存在 使 ,其中 表示一个级数与 相同的矩阵。
证 只要令 ,则 ,
注意到
, ,
则有

即证。
5.设 是反对称矩阵,证明: 合同于矩阵

设 的秩为 ,作非退化线性替换 将原二次型化为标准型

其中 为1或-1。由已知,必存在两个向量 使
和 ,
故标准型中的系数 不可能全为1,也不可能全为-1。不妨设有 个1, 个-1,
且 ,即

这时 与 存在三种可能:
, ,
下面仅讨论 的情形,其他类似可证。
令 , , ,
则由 可求得非零向量 使

即证。
证 采用归纳法。当 时, 合同于 ,结论成立。下面设 为非零反对称矩阵。

高等代数北大版线性空间

高等代数北大版线性空间

引 入 我们懂得,在数域P上旳n维线性空间V中取定一组基后,
V中每一种向量 有唯一拟定旳坐标 (a1,a2 , ,an ), 向量旳
坐标是P上旳n元数组,所以属于Pn.
这么一来,取定了V旳一组基 1, 2 , , n , 对于V中每一种 向量 ,令 在这组基下旳坐标 (a1,a2 , ,an ) 与 相应,就 得到V到Pn旳一种单射 : V P n , (a1,a2 , ,an )
2)证明:复数域C看成R上旳线性空间与W同构,
并写出一种同构映射.
2023/12/29§6.8 线性空间旳
及线性有关性,而且同构映射把子空间映成子空间.
2023/12/29§6.8 线性空间旳
3、两个同构映射旳乘积还是同构映射.
证:设 :V V , :V V 为线性空间旳同构
映射,则乘积 是 V到V 旳1-1相应. 任取 , V , k P, 有
第六章 线性空间
§1 集合·映射
§5 线性子空间
§2 线性空间旳定义 §6 子空间旳交与和
与简朴性质
§7 子空间旳直和
§3 维数·基与坐标
§8 线性空间旳同构
§4 基变换与坐标变换 小结与习题
2023/12/29
§6.8 线性空间旳同构
一、同构映射旳定义 二、同构旳有关结论
2023/12/29§6.8 线性空间旳
中分别取 k 0与k 1, 即得
0 0,
2)这是同构映射定义中条件ii)与iii)结合旳成果.
3)因为由 k11 k22 krr 0 可得 k1 (1 ) k2 (2 ) kr (r ) 0
反过来,由 k1 (1 ) k2 (2 ) kr (r ) 0 可得 (k11 k22 krr ) 0.

高等代数北大版习题参考答案

高等代数北大版习题参考答案

第九章 欧氏空间1.设()ij a =A 是一个n 阶正定矩阵,而),,,(21n x x x =α, ),,,(21n y y y =β,在n R 中定义内积βαβα'A =),(,1) 证明在这个定义之下, n R 成一欧氏空间;2) 求单位向量)0,,0,1(1 =ε, )0,,1,0(2 =ε, … , )1,,0,0( =n ε,的度量矩阵;3) 具体写出这个空间中的柯西—布湿柯夫斯基不等式。

解 1)易见βαβα'A =),(是n R 上的一个二元实函数,且(1) ),()(),(αβαβαββαβαβα='A ='A '=''A ='A =,(2) ),()()(),(αβαββαβαk k k k ='A ='A =,(3) ),(),()(),(γβγαγβγαγβαγβα+='A '+'A ='A +=+,(4) ∑='A =ji j i ij y x a ,),(αααα,由于A 是正定矩阵,因此∑ji j i ij y x a ,是正定而次型,从而0),(≥αα,且仅当0=α时有0),(=αα。

2)设单位向量)0,,0,1(1 =ε, )0,,1,0(2 =ε, … , )1,,0,0( =n ε,的度量矩阵为)(ij b B =,则)0,1,,0(),()( i j i ij b ==εε⎪⎪⎪⎪⎪⎭⎫ ⎝⎛nn n n n n a a a a a aa a a212222211211)(010j ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛ =ij a ,),,2,1,(n j i =, 因此有B A =。

4) 由定义,知∑=ji ji ij y x a ,),(βα,α==β==故柯西—布湿柯夫斯基不等式为2.在4R 中,求βα,之间><βα,(内积按通常定义),设:1) )2,3,1,2(=α, )1,2,2,1(-=β,2) )3,2,2,1(=α, )1,5,1,3(-=β,3) )2,1,1,1(=α, )0,1,2,3(-=β。

高等代数[北大版]第1章习题参考答案解析

高等代数[北大版]第1章习题参考答案解析

WORD 格式可编辑第一章 多项式0时,代入2)可得q2pm1. 用 g(x)除 f (x), 求商q(x)与余式r(x):1) f (x) x 3 3x * 22x 1, g(x) 3x 2x 2) f(x) x 4 2x5,g(x) x 211)由带余除法,可得q(x)亍討(X)26 x92同理可得q(x) x x 1, r(x) 5x 7。

1) 2 x mx 1| x 3px q , 2)2 ..4 2x mx 1 | x px q 。

解 1) 由假设, 所得余式为 0, 即(p 所以当 p 1 2 m 时有x 2 mxq m 0m(2 p m 2) 0 2) m, p,q 适合什么条件时,有 2. 1 |xq 1 p2,于是当m 21 m2 )x (q m) 0,pxm 0时,代入(2)可得综上所诉,当时,皆有x 2mx 1|x 4 px 2 q 。

1) f(x)2x 5 5x 3 8x, g(x) x3 ; 2) f (x) x 3 x 2x, g(x) x 12i 。

1)q(x) 2x 4 6x 3 1 13x 239x 109r(x) 327q(x ))x 22ix(52i)or(x) 9 8i求g(x)除f (x)的商q(x)与余式:解 2) 把f (x)表示成x X o 的方幕和,即表成3.4.C o C|(X X o ) C 2(X X o )2... C n (X X 。

)" L 的形式:51) f (X ) X , X o 1 ; 2)f (X ) x 4 2X 2 3,X o 2 ;3) 43f (X ) X 2ix (1i)x 23X 7 i,X o i o解 1)由综合除法,可得 f(x)1 5(X 1) 10(x21) 10(x 1)3 5(X 1)4 (X 1)5 ; 2) 由综合除法,可得 X 42X 2 3 11 24(X 2) 22(X 2)2 8(X2)3 (X 2)4 ;3) 由综合除法,可得X 42ix 3(1 i)x 2 3X (7i)(7 5i) 5(X i) ( 1 i)(x i)2 2i(x i)3 (X i)4。

高等代数 北大 课件

高等代数 北大 课件

拉普拉斯定理与因式分解
总结词
拉普拉斯定理的表述、应用和因式分解的方法。
详细描述
拉普拉斯定理是行列式计算中的重要定理,它提供了计算行列式的一种有效方法。因式分解是将多项式分解为若 干个因子的过程,是解决代数问题的重要手段之一。
CHAPTER 04
矩阵的分解与二次型
矩阵的分解
01
02
03
矩阵的三角分解
矩阵的乘法
矩阵的乘法满足结合律和分配律,但不一定满足 交换律。
பைடு நூலகம்
矩阵的逆与行列式
矩阵的逆
对于一个非奇异矩阵,存在一个逆矩阵,使得原矩阵 与逆矩阵相乘等于单位矩阵。
行列式的定义
行列式是一个由矩阵元素构成的数学量,可以用于描 述矩阵的某些性质。
行列式的性质
行列式具有一些重要的性质,如交换律、结合律、分 配律等。
将一个矩阵分解为一个下 三角矩阵和一个上三角矩 阵之积。
矩阵的QR分解
将一个矩阵分解为一个正 交矩阵和一个上三角矩阵 之积。
矩阵的奇异值分解
将一个矩阵分解为若干个 奇异值和若干个奇异向量 的组合。
二次型及其标准型
二次型的定义
一个多项式函数,可以表示为$f(x_1, x_2, ..., x_n) = sum_{i=1}^{n} sum_{ j=1}^{n} a_{ij} x_i x_j$,其中 $a_{ij}$是常数。
VS
二次型的标准型
通过线性变换,将一个二次型转化为其标 准形式,即一个平方项之和减去另一个平 方项之和。
正定二次型与正定矩阵
正定二次型的定义
对于一个二次型,如果对于所有 的非零向量$x$,都有$f(x) > 0$ ,则称该二次型为正定二次型。

高等代数教案(北大版)高等代数试题以及解答

高等代数教案(北大版)高等代数试题以及解答

高等代数教案(北大版)-高等代数试题以及解答一、线性方程组1. 定义线性方程组,并说明线性方程组的解的概念。

2. 线性方程组的求解方法:高斯消元法、克莱姆法则。

3. 线性方程组的解的性质:唯一性、存在性。

4. 线性方程组在实际应用中的例子。

二、矩阵及其运算1. 定义矩阵,说明矩阵的元素、矩阵的行和列。

2. 矩阵的运算:加法、减法、数乘、矩阵乘法。

3. 矩阵的转置、共轭、伴随矩阵。

4. 矩阵的行列式、行列式的性质和计算方法。

三、线性空间与线性变换1. 定义线性空间,说明线性空间的基、维数。

2. 线性变换的定义,线性变换的矩阵表示。

3. 线性变换的性质:线性、单调性、可逆性。

4. 线性变换的应用:线性映射、线性变换在几何上的意义。

四、特征值与特征向量1. 特征值、特征向量的定义。

2. 矩阵的特征多项式、特征值和特征向量的计算方法。

3. 特征值和特征向量的性质:特征值的重数、特征向量的线性无关性。

4. 对称矩阵的特征值和特征向量。

五、二次型1. 二次型的定义,二次型的标准形。

2. 二次型的矩阵表示,矩阵的合同。

3. 二次型的性质:正定、负定、不定。

4. 二次型的判定方法,二次型的最小值和最大值。

六、向量空间与线性映射1. 向量空间的概念,包括基、维数和维度。

2. 线性映射的定义,线性映射的性质,如线性、单调性和可逆性。

3. 线性映射的表示方法,包括矩阵表示和坐标表示。

4. 线性映射的应用,如线性变换、线性映射在几何上的意义。

七、特征值和特征向量的应用1. 特征值和特征向量的计算方法,包括特征多项式和特征方程。

2. 特征值和特征向量的性质,如重数和线性无关性。

3. 对称矩阵的特征值和特征向量的性质和计算。

4. 特征值和特征向量在实际问题中的应用,如振动系统、量子力学等。

八、二次型的定义和标准形1. 二次型的定义,包括二次型的标准形和矩阵表示。

2. 二次型的矩阵表示,包括矩阵的合同和相似。

3. 二次型的性质,如正定、负定和不定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

0 0
0
1
tt
的矩阵为若当(Jordan)块.
7.8 λ─矩阵介绍
h
8
A唯一决定,称之为矩阵A的若当标准形.
7.8 λ─矩阵介绍
h
6
3、在一个线性变换 的若当标准形中,主对角线 上的元素是 的特征多项式的全部根(重根按多数 计算).
(1、2、3的证明将在第八章给出)
7.8 λ─矩阵介绍
h
7
附:有时也规定形式为
1
0
J(,t)
0 0
0 0
0 0 0
0 0 0
h
5
二、若当(Jordan)标准形
1、设 是复数域C上n维线性空间的一个线性变换,
在V中必存在一组基,使 在这组基下的矩阵是若当
形矩阵,并是除若当块的排列次序外,该若当形由
唯一决定,称之为 的若当标准形. 2、任一n级复矩阵A总与某一若当形矩阵相似,
并且除若当块的排列次序外,该若当形矩阵由矩阵
000,
i0 1i
都是若当块;
而下面的准对角形则是一个若当形矩阵.
1 0 0 0 0 0 J(1,2)
1 1 0 0 0 0
0 0 4 0 0 0 0 i
0 0
00
J(4,1)
00
0 0
0 0
1 0
i 1
0i
J(i,3)
注:一级若当块就是一级矩阵,从而对角矩阵都是
若当形矩阵.
7.8 λ─矩阵介绍
h
2
引入
由§7.5知,n维线性空间V的线性变换在某组基下
的矩阵为对角形 有n个线性无关的特征向量 . 的所有不同特征子空间的维数之和等于n .
可见,并不是任一线性变换都有一组基,使它在这
组基下的矩阵为对角形.
本节介绍,在适当选择基下,一般的线性变换的
矩阵能化简成什么形状.
7.8 λ─矩阵介绍
h
3
一、若当(Jordan)形矩阵
定义:形式为
0
1
J(,t)
0 0
0 0
0 0 0
0 0 0
1 010tt的矩阵称为若当(Jordan)块,其中 为复数;
由若干个若当块组成的准对角矩阵称为若当形矩阵.
7.8 λ─矩阵介绍
h
4
2 0 0
如:
10
2 1
02,
0 0 0 0
1 00
0 1 0
0 0 1
第七章 线性变换
§1 线性变换的定义 §6线性变换的值域与核
§2 线性变换的运算 §7不变子空间
§3 线性变换的矩阵 §8 若当标准形简介
§4 特征值与特征向量 §5 对角矩阵
§9 最小多项式 小结与习题
h
1
§7.8 λ─矩阵介绍
一、若当(Jordan)形矩阵 二、若当(Jordan)标准形
7.8 λ─矩阵介绍
相关文档
最新文档