平衡二叉树的生成过程
数据结构平衡二叉树的操作演示

平衡二叉树操作的演示1.需求分析本程序是利用平衡二叉树,实现动态查找表的基本功能:创建表,查找、插入、删除。
具体功能:(1)初始,平衡二叉树为空树,操作界面给出创建、查找、插入、删除、合并、分裂六种操作供选择。
每种操作均提示输入关键字。
每次插入或删除一个结点后,更新平衡二叉树的显示。
(2)平衡二叉树的显示采用凹入表现形式。
(3)合并两棵平衡二叉树。
(4)把一棵二叉树分裂为两棵平衡二叉树,使得在一棵树中的所有关键字都小于或等于x,另一棵树中的任一关键字都大于x。
如下图:2.概要设计平衡二叉树是在构造二叉排序树的过程中,每当插入一个新结点时,首先检查是否因插入新结点而破坏了二叉排序树的平衡性,若是则找出其中的最小不平衡子树,在保持二叉排序树特性的前提下,调整最小不平衡子树中各结点之间的链接关系,进行相应的旋转,使之成为新的平衡子树。
具体步骤:(1)每当插入一个新结点,从该结点开始向上计算各结点的平衡因子,即计算该结点的祖先结点的平衡因子,若该结点的祖先结点的平衡因子的绝对值不超过1,则平衡二叉树没有失去平衡,继续插入结点;(2)若插入结点的某祖先结点的平衡因子的绝对值大于1,则找出其中最小不平衡子树的根结点;(3)判断新插入的结点与最小不平衡子树的根结点个关系,确定是那种类型的调整;(4)如果是LL型或RR型,只需应用扁担原理旋转一次,在旋转过程中,如果出现冲突,应用旋转优先原则调整冲突;如果是LR型或RL型,则需应用扁担原理旋转两次,第一次最小不平衡子树的根结点先不动,调整插入结点所在子树,第二次再调整最小不平衡子树,在旋转过程中,如果出现冲突,应用旋转优先原则调整冲突;(5)计算调整后的平衡二叉树中各结点的平衡因子,检验是否因为旋转而破坏其他结点的平衡因子,以及调整后平衡二叉树中是否存在平衡因子大于1的结点。
流程图3.详细设计二叉树类型定义:typedef int Status;typedef int ElemType;typedef struct BSTNode{ElemType data;int bf;struct BSTNode *lchild ,*rchild;} BSTNode,* BSTree;Status SearchBST(BSTree T,ElemType e)//查找void R_Rotate(BSTree &p)//右旋void L_Rotate(BSTree &p)//左旋void LeftBalance(BSTree &T)//插入平衡调整void RightBalance(BSTree &T)//插入平衡调整Status InsertAVL(BSTree &T,ElemType e,int &taller)//插入void DELeftBalance(BSTree &T)//删除平衡调整void DERightBalance(BSTree &T)//删除平衡调整Status Delete(BSTree &T,int &shorter)//删除操作Status DeleteAVL(BSTree &T,ElemType e,int &shorter)//删除操作void merge(BSTree &T1,BSTree &T2)//合并操作void splitBSTree(BSTree T,ElemType e,BSTree &T1,BSTree &T2)//分裂操作void PrintBSTree(BSTree &T,int lev)//凹入表显示附录源代码:#include<stdio.h>#include<stdlib.h>//#define TRUE 1//#define FALSE 0//#define OK 1//#define ERROR 0#define LH +1#define EH 0#define RH -1//二叉类型树的类型定义typedef int Status;typedef int ElemType;typedef struct BSTNode{ElemType data;int bf;//结点的平衡因子struct BSTNode *lchild ,*rchild;//左、右孩子指针} BSTNode,* BSTree;/*查找算法*/Status SearchBST(BSTree T,ElemType e){if(!T){return 0; //查找失败}else if(e == T->data ){return 1; //查找成功}else if (e < T->data){return SearchBST(T->lchild,e);}else{return SearchBST(T->rchild,e);}}//右旋void R_Rotate(BSTree &p){BSTree lc; //处理之前的左子树根结点lc = p->lchild; //lc指向的*p的左子树根结点p->lchild = lc->rchild; //lc的右子树挂接为*P的左子树lc->rchild = p;p = lc; //p指向新的根结点}//左旋void L_Rotate(BSTree &p){BSTree rc;rc = p->rchild; //rc指向的*p的右子树根结点p->rchild = rc->lchild; //rc的左子树挂接为*p的右子树rc->lchild = p;p = rc; //p指向新的根结点}//对以指针T所指结点为根结点的二叉树作左平衡旋转处理,//本算法结束时指针T指向新的根结点void LeftBalance(BSTree &T){BSTree lc,rd;lc=T->lchild;//lc指向*T的左子树根结点switch(lc->bf){ //检查*T的左子树的平衡度,并做相应的平衡处理case LH: //新结点插入在*T的左孩子的左子树,要做单右旋处理T->bf = lc->bf=EH;R_Rotate(T);break;case RH: //新结点插入在*T的左孩子的右子树上,做双旋处理rd=lc->rchild; //rd指向*T的左孩子的右子树根switch(rd->bf){ //修改*T及其左孩子的平衡因子case LH: T->bf=RH; lc->bf=EH;break;case EH: T->bf=lc->bf=EH;break;case RH: T->bf=EH; lc->bf=LH;break;}rd->bf=EH;L_Rotate(T->lchild); //对*T的左子树作左旋平衡处理R_Rotate(T); //对*T作右旋平衡处理}}//右平衡旋转处理void RightBalance(BSTree &T){BSTree rc,ld;rc=T->rchild;switch(rc->bf){case RH:T->bf= rc->bf=EH;L_Rotate(T);break;case LH:ld=rc->lchild;switch(ld->bf){case LH: T->bf=RH; rc->bf=EH;break;case EH: T->bf=rc->bf=EH;break;case RH: T->bf = EH; rc->bf=LH;break;}ld->bf=EH;R_Rotate(T->rchild);L_Rotate(T);}}//插入结点Status InsertAVL(BSTree &T,ElemType e,int &taller){//taller反应T长高与否if(!T){//插入新结点,树长高,置taller为trueT= (BSTree) malloc (sizeof(BSTNode));T->data = e;T->lchild = T->rchild = NULL;T->bf = EH;taller = 1;}else{if(e == T->data){taller = 0;return 0;}if(e < T->data){if(!InsertAVL(T->lchild,e,taller))//未插入return 0;if(taller)//已插入到*T的左子树中且左子树长高switch(T->bf){//检查*T的平衡度,作相应的平衡处理case LH:LeftBalance(T);taller = 0;break;case EH:T->bf = LH;taller = 1;break;case RH:T->bf = EH;taller = 0;break;}}else{if (!InsertAVL(T->rchild,e,taller)){return 0;}if(taller)//插入到*T的右子树且右子树增高switch(T->bf){//检查*T的平衡度case LH:T->bf = EH;taller = 0;break;case EH:T->bf = RH;taller = 1;break;case RH:RightBalance(T);taller = 0;break;}}}return 1;}void DELeftBalance(BSTree &T){//删除平衡调整BSTree lc,rd;lc=T->lchild;switch(lc->bf){case LH:T->bf = EH;//lc->bf= EH;R_Rotate(T);break;case EH:T->bf = EH;lc->bf= EH;R_Rotate(T);break;case RH:rd=lc->rchild;switch(rd->bf){case LH: T->bf=RH; lc->bf=EH;break;case EH: T->bf=lc->bf=EH;break;case RH: T->bf=EH; lc->bf=LH;break;}rd->bf=EH;L_Rotate(T->lchild);R_Rotate(T);}}void DERightBalance(BSTree &T) //删除平衡调整{BSTree rc,ld;rc=T->rchild;switch(rc->bf){case RH:T->bf= EH;//rc->bf= EH;L_Rotate(T);break;case EH:T->bf= EH;//rc->bf= EH;L_Rotate(T);break;case LH:ld=rc->lchild;switch(ld->bf){case LH: T->bf=RH; rc->bf=EH;break;case EH: T->bf=rc->bf=EH;break;case RH: T->bf = EH; rc->bf=LH;break;}ld->bf=EH;R_Rotate(T->rchild);L_Rotate(T);}}void SDelete(BSTree &T,BSTree &q,BSTree &s,int &shorter){if(s->rchild){SDelete(T,s,s->rchild,shorter);if(shorter)switch(s->bf){case EH:s->bf = LH;shorter = 0;break;case RH:s->bf = EH;shorter = 1;break;case LH:DELeftBalance(s);shorter = 0;break;}return;}T->data = s->data;if(q != T)q->rchild = s->lchild;elseq->lchild = s->lchild;shorter = 1;}//删除结点Status Delete(BSTree &T,int &shorter){ BSTree q;if(!T->rchild){q = T;T = T->lchild;free(q);shorter = 1;}else if(!T->lchild){q = T;T= T->rchild;free(q);shorter = 1;}else{SDelete(T,T,T->lchild,shorter);if(shorter)switch(T->bf){case EH:T->bf = RH;shorter = 0;break;case LH:T->bf = EH;shorter = 1;break;case RH:DERightBalance(T);shorter = 0;break;}}return 1;}Status DeleteAVL(BSTree &T,ElemType e,int &shorter){ int sign = 0;if (!T){return sign;}else{if(e == T->data){sign = Delete(T,shorter);return sign;}else if(e < T->data){sign = DeleteAVL(T->lchild,e,shorter);if(shorter)switch(T->bf){case EH:T->bf = RH;shorter = 0;break;case LH:T->bf = EH;shorter = 1;break;case RH:DERightBalance(T);shorter = 0;break;}return sign;}else{sign = DeleteAVL(T->rchild,e,shorter);if(shorter)switch(T->bf){case EH:T->bf = LH;shorter = 0;break;case RH:T->bf = EH;break;case LH:DELeftBalance(T);shorter = 0;break;}return sign;}}}//合并void merge(BSTree &T1,BSTree &T2){int taller = 0;if(!T2)return;merge(T1,T2->lchild);InsertAVL(T1,T2->data,taller);merge(T1,T2->rchild);}//分裂void split(BSTree T,ElemType e,BSTree &T1,BSTree &T2){ int taller = 0;if(!T)return;split(T->lchild,e,T1,T2);if(T->data > e)InsertAVL(T2,T->data,taller);elseInsertAVL(T1,T->data,taller);split(T->rchild,e,T1,T2);}//分裂void splitBSTree(BSTree T,ElemType e,BSTree &T1,BSTree &T2){ BSTree t1 = NULL,t2 = NULL;split(T,e,t1,t2);T1 = t1;T2 = t2;return;}//构建void CreatBSTree(BSTree &T){int num,i,e,taller = 0;printf("输入结点个数:");scanf("%d",&num);printf("请顺序输入结点值\n");for(i = 0 ;i < num;i++){printf("第%d个结点的值",i+1);scanf("%d",&e);InsertAVL(T,e,taller) ;}printf("构建成功,输入任意字符返回\n");getchar();getchar();}//凹入表形式显示方法void PrintBSTree(BSTree &T,int lev){int i;if(T->rchild)PrintBSTree(T->rchild,lev+1);for(i = 0;i < lev;i++)printf(" ");printf("%d\n",T->data);if(T->lchild)PrintBSTree(T->lchild,lev+1);void Start(BSTree &T1,BSTree &T2){int cho,taller,e,k;taller = 0;k = 0;while(1){system("cls");printf(" 平衡二叉树操作的演示 \n\n");printf("********************************\n");printf(" 平衡二叉树显示区 \n");printf("T1树\n");if(!T1 )printf("\n 当前为空树\n");else{PrintBSTree(T1,1);}printf("T2树\n");if(!T2 )printf("\n 当前为空树\n");elsePrintBSTree(T2,1);printf("\n********************************************************************* *********\n");printf("T1操作:1.创建 2.插入 3.查找 4.删除 10.分裂\n");printf("T2操作:5.创建 6.插入 7.查找 8.删除 11.分裂\n");printf(" 9.合并 T1,T2 0.退出\n");printf("*********************************************************************** *******\n");printf("输入你要进行的操作:");scanf("%d",&cho);switch(cho){case 1:CreatBSTree(T1);break;case 2:printf("请输入要插入关键字的值");scanf("%d",&e);InsertAVL(T1,e,taller) ;break;case 3:printf("请输入要查找关键字的值");scanf("%d",&e);if(SearchBST(T1,e))printf("查找成功!\n");elseprintf("查找失败!\n");printf("按任意键返回87"); getchar();getchar();break;case 4:printf("请输入要删除关键字的值"); scanf("%d",&e);if(DeleteAVL(T1,e,k))printf("删除成功!\n");elseprintf("删除失败!\n");printf("按任意键返回");getchar();getchar();break;case 5:CreatBSTree(T2);break;case 6:printf("请输入要插入关键字的值"); scanf("%d",&e);InsertAVL(T2,e,taller) ;break;case 7:printf("请输入要查找关键字的值"); scanf("%d",&e);if(SearchBST(T2,e))printf("查找成功!\n");elseprintf("查找失败!\n");printf("按任意键返回");getchar();getchar();break;case 8:printf("请输入要删除关键字的值"); scanf("%d",&e);if(DeleteAVL(T2,e,k))printf("删除成功!\n");elseprintf("删除失败!\n");printf("按任意键返回");getchar();getchar();break;case 9:merge(T1,T2);T2 = NULL;printf("合并成功,按任意键返回"); getchar();getchar();break;case 10:printf("请输入要中间值字的值"); scanf("%d",&e);splitBSTree(T1,e,T1,T2) ;printf("分裂成功,按任意键返回"); getchar();getchar();break;case 11:printf("请输入要中间值字的值"); scanf("%d",&e);splitBSTree(T2,e,T1,T2) ;printf("分裂成功,按任意键返回"); getchar();getchar();break;case 0:system("cls");exit(0);}}}main(){BSTree T1 = NULL;BSTree T2 = NULL;Start(T1,T2);}。
平衡二叉树构造过程

平衡二叉树构造过程
平衡二叉树的构造过程主要分为以下几个步骤:
1.定义平衡二叉树的结构:平衡二叉树的结构类似于普通二叉树,每
个节点的左子树和右子树的深度差不超过1。
2.插入节点:当往平衡二叉树中插入一个节点时,需要先通过二叉搜
索树的方式找到新节点的插入位置。
然后,通过旋转操作将树重新平衡。
旋转分为左旋和右旋两种操作。
3.左旋:当一个节点的右子树深度大于左子树深度时,需要进行左旋
操作。
左旋操作是将该节点的右子树进行旋转,使其成为该节点的父节点,该节点成为该节点的右子树的左子树。
4.右旋:当一个节点的左子树深度大于右子树深度时,需要进行右旋
操作。
右旋操作是将该节点的左子树进行旋转,使其成为该节点的父节点,该节点成为该节点的左子树的右子树。
5.删除节点:当从平衡二叉树中删除一个节点时,需要通过旋转操作
将树重新平衡,避免树退化成非平衡二叉树,导致性能下降。
6.重新计算节点深度:平衡二叉树的关键是保证每个节点的左子树和
右子树深度差不超过1,因此在进行节点插入和删除操作后,需要重新计
算每个节点的深度,并检查是否满足平衡二叉树的结构。
通过以上步骤,可以构造一个平衡二叉树。
在应用中,平衡二叉树常
用于高效的查找和排序操作。
平衡二叉树10.3.2

11
28
96 98
25
(1) LL型调整 型调整 p A 1 2
调整方法: 调整方法: 单向右旋平衡,即将 的左孩子 单向右旋平衡,即将A的左孩子 B 向右上旋转代替 成为根结点, 向右上旋转代替A成为根结点 成为根结点, 结点向右下旋转成为B的右 将A结点向右下旋转成为 的右 结点向右下旋转成为 子树的根结点, 子树的根结点,而B的原右子树 的原右子树 则作为A结点的左子树 结点的左子树. 则作为 结点的左子树. h d e B
1 38 -1 24 88
0 -1 -2
0
11
28 1
96
0
-1 0
25
0
98
1,平衡二叉树插入结点的调整方法
若向平衡二叉树中插入一个新结点后破坏了平衡二叉树的平衡性, 若向平衡二叉树中插入一个新结点后破坏了平衡二叉树的平衡性, 首先从根结点到该新插入结点的路径之逆向根结点方向找第一个失去平 衡的结点, 衡的结点,然后以该失衡结点和它相邻的刚查找过的两个结点构成调整 子树(最小不平衡子树 即调整子树是指以离插入结点最近,且平衡因子 最小不平衡子树), 子树 最小不平衡子树 ,即调整子树是指以离插入结点最近 且平衡因子 绝对值大于1的结点为根结点的子树 使之成为新的平衡子树. 的结点为根结点的子树,使之成为新的平衡子树 绝对值大于 的结点为根结点的子树 使之成为新的平衡子树. 38 24 88 -2
(2)RR型调整 型调整 p A -1 -2
调整方法: 调整方法: 单向左旋平衡:即将 的右孩子 的右孩子B向 单向左旋平衡:即将A的右孩子 向 左上旋转代替A成为根结点 成为根结点, 左上旋转代替 成为根结点,将A结 结 点向左下旋转成为B的左子树的根 点向左下旋转成为 的左子树的根 结点, 的原左子树则作为A结点 结点,而B的原左子树则作为 结点 的原左子树则作为 的右子树. 的右子树. B
数据结构与算法系列研究五——树、二叉树、三叉树、平衡排序二叉树AVL

数据结构与算法系列研究五——树、⼆叉树、三叉树、平衡排序⼆叉树AVL树、⼆叉树、三叉树、平衡排序⼆叉树AVL⼀、树的定义树是计算机算法最重要的⾮线性结构。
树中每个数据元素⾄多有⼀个直接前驱,但可以有多个直接后继。
树是⼀种以分⽀关系定义的层次结构。
a.树是n(≥0)结点组成的有限集合。
{N.沃恩}(树是n(n≥1)个结点组成的有限集合。
{D.E.Knuth})在任意⼀棵⾮空树中:⑴有且仅有⼀个没有前驱的结点----根(root)。
⑵当n>1时,其余结点有且仅有⼀个直接前驱。
⑶所有结点都可以有0个或多个后继。
b. 树是n(n≥0)个结点组成的有限集合。
在任意⼀棵⾮空树中:⑴有⼀个特定的称为根(root)的结点。
⑵当n>1时,其余结点分为m(m≥0)个互不相交的⼦集T1,T2,…,Tm。
每个集合本⾝⼜是⼀棵树,并且称为根的⼦树(subtree)树的固有特性---递归性。
即⾮空树是由若⼲棵⼦树组成,⽽⼦树⼜可以由若⼲棵更⼩的⼦树组成。
树的基本操作1、InitTree(&T) 初始化2、DestroyTree(&T) 撤消树3、CreatTree(&T,F) 按F的定义⽣成树4、ClearTree(&T) 清除5、TreeEmpty(T) 判树空6、TreeDepth(T) 求树的深度7、Root(T) 返回根结点8、Parent(T,x) 返回结点 x 的双亲9、Child(T,x,i) 返回结点 x 的第i 个孩⼦10、InsertChild(&T,&p,i,x) 把 x 插⼊到 P的第i棵⼦树处11、DeleteChild(&T,&p,i) 删除结点P的第i棵⼦树12、traverse(T) 遍历树的结点:包含⼀个数据元素及若⼲指向⼦树的分⽀。
●结点的度: 结点拥有⼦树的数⽬●叶结点: 度为零的结点●分枝结点: 度⾮零的结点●树的度: 树中各结点度的最⼤值●孩⼦: 树中某个结点的⼦树的根●双亲: 结点的直接前驱●兄弟: 同⼀双亲的孩⼦互称兄弟●祖先: 从根结点到某结点j 路径上的所有结点(不包括指定结点)。
平衡二叉树

#define RH -1 //右高
//平衡二叉树的类型
struct AVLNode
{
int data;
int bf; //bf结点的平衡因子,只能够取0,-1,1,为左子树的深度减去右子树的深度
struct AVLNode *lchild,*rchild; //左、右孩子指针
{
AVLNode *rc,*rd;
rc=T->rchild;
switch(rc->bf)
{
case RH:
T->bf=rc->bf=EH;
L_Rotate(T);
break;
case LH:
rd=rc->lchild;
switch(rd->bf)
{
case RH:
T->bf=LH;
rc->bf=EH;
};
2.右旋操作:
void R_Rotate(AVLNode *&p)//LL型算法
{
AVLNode *lc=p->lchild; // lc指向p的左子树根结点
p->lchild=lc->rchild; // lc的右子树挂接为p(之前跟节点)的左子树
lc->rchild=p;
p=lc; // p指向新的根结点
插入和删除:
插入删除是互为镜像的操作。我们可以采用前面对二叉排序树的删除操作来进行。然后,在删除掉结点后,再对平衡树进行平衡化处理。删除之所以删除操作需要的平衡化可能比插入时次数多,就是因为平衡化不会增加子树的高度,但是可能会减少子树的高度,在有有可能使树增高的插入操作中,一次平衡化能抵消掉增高;在有可能使树减低的删除操作中,平衡化可能会带来祖先节点的不平衡。AVL树体现了一种平衡的美感,两种旋转是互为镜像的,插入删除是互为镜像的操作,没理由会有那么大的差别。实际上,平衡化可以统一的这样来操作:
二叉树的建立方法总结

⼆叉树的建⽴⽅法总结之前已经介绍了⼆叉树的四种遍历(如果不熟悉),下⾯介绍⼀些⼆叉树的建⽴⽅式。
⾸先需要明确的是,由于⼆叉树的定义是递归的,所以⽤递归的思想建⽴⼆叉树是很⾃然的想法。
1. 交互式问答⽅式这种⽅式是最直接的⽅式,就是先询问⽤户根节点是谁,然后每次都询问⽤户某个节点的左孩⼦是谁,右孩⼦是谁。
代码如下(其中字符'#'代表空节点):#include <cstdio>#include <cstdlib>using namespace std;typedef struct BTNode *Position;typedef Position BTree;struct BTNode{char data;Position lChild, rChild;};BTree CreateBTree(BTree bt, bool isRoot){char ch;if (isRoot)printf("Root: ");fflush(stdin); /* 清空缓存区 */scanf("%c", &ch);fflush(stdin);if (ch != '#'){isRoot = false;bt = new BTNode;bt->data = ch;bt->lChild = NULL;bt->rChild = NULL;printf("%c's left child is: ", bt->data);bt->lChild = CreateBTree(bt->lChild, isRoot);printf("%c's right child is: ", bt->data);bt->rChild = CreateBTree(bt->rChild, isRoot);}return bt;}int main(){BTree bt;bt = CreateBTree(bt, true);LevelOrderTraversal(bt); /* 层序遍历 */return0;}2. 根据先序序列例如输⼊序列ABDH##I##E##CF#J##G##(#表⽰空),则会建⽴如下图所⽰的⼆叉树思路和第⼀种⽅式很相似,只是代码实现细节有⼀点区别,这⾥给出创建函数BTree CreateBTree(){BTree bt = NULL;char ch;scanf("%c", &ch);if (ch != '#'){bt = new BTNode;bt->data = ch;bt->lChild = CreateBTree();bt->rChild = CreateBTree();}return bt;}3. 根据中序序列和后序序列和⽅式⼆不同的是,这⾥的序列不会给出空节点的表⽰,所以如果只给出先序序列,中序序列,后序序列中的⼀种,不能唯⼀确定⼀棵⼆叉树。
数据结构:第9章 查找2-二叉树和平衡二叉树

return(NULL); else
{if(t->data==x) return(t);
if(x<(t->data) return(search(t->lchild,x));
else return(search(t->lchild,x)); } }
——这种既查找又插入的过程称为动态查找。 二叉排序树既有类似于折半查找的特性,又采用了链表存储, 它是动态查找表的一种适宜表示。
注:若数据元素的输入顺序不同,则得到的二叉排序树形态 也不同!
讨论1:二叉排序树的插入和查找操作 例:输入待查找的关键字序列=(45,24,53,45,12,24,90)
二叉排序树的建立 对于已给定一待排序的数据序列,通常采用逐步插入结点的方 法来构造二叉排序树,即只要反复调用二叉排序树的插入算法 即可,算法描述为: BiTree *Creat (int n) //建立含有n个结点的二叉排序树 { BiTree *BST= NULL;
for ( int i=1; i<=n; i++) { scanf(“%d”,&x); //输入关键字序列
– 法2:令*s代替*p
将S的左子树成为S的双亲Q的右子树,用S取代p 。 若C无右子树,用C取代p。
例:请从下面的二叉排序树中删除结点P。
F P
法1:
F
P
C
PR
C
PR
CL Q
CL QL
Q SL
S PR
QL S
SL
法2:
F
PS
C
PR
CL Q
QL SL S SL
平衡二叉树详解

平衡⼆叉树详解平衡⼆叉树详解简介平衡⼆叉树(Balanced Binary Tree)具有以下性质:它是⼀棵空树或它的左右两个⼦树的⾼度差的绝对值不超过1,并且左右两个⼦树都是⼀棵平衡⼆叉树。
平衡⼆叉树的常⽤实现⽅法有红⿊树、AVL、替罪⽺树、Treap、伸展树等。
其中最为经典当属AVL树,我们总计⽽⾔就是:平衡⼆叉树是⼀种⼆叉排序树,其中每⼀个结点的左⼦树和右⼦树的⾼度差⾄多等于1。
性值AVL树具有下列性质的⼆叉树(注意,空树也属于⼀种平衡⼆叉树):l 它必须是⼀颗⼆叉查找树l 它的左⼦树和右⼦树都是平衡⼆叉树,且左⼦树和右⼦树的深度之差的绝对值不超过1。
l 若将⼆叉树节点的平衡因⼦BF定义为该节点的左⼦树的深度减去它的右⼦树的深度,则平衡⼆叉树上所有节点的平衡因⼦只可能为-1,0,1.l 只要⼆叉树上有⼀个节点的平衡因⼦的绝对值⼤于1,那么这颗平衡⼆叉树就失去了平衡。
实现平衡⼆叉树不平衡的情形:把需要重新平衡的结点叫做α,由于任意两个结点最多只有两个⼉⼦,因此⾼度不平衡时,α结点的两颗⼦树的⾼度相差2.容易看出,这种不平衡可能出现在下⾯4中情况中:1.对α的左⼉⼦的左⼦树进⾏⼀次插⼊2.对α的左⼉⼦的右⼦树进⾏⼀次插⼊3.对α的右⼉⼦的左⼦树进⾏⼀次插⼊4.对α的右⼉⼦的右⼦树进⾏⼀次插⼊(1)LR型(2)LL型(3)RR型(4)RL型完整代码#include<stdio.h>#include<stdlib.h>//结点设计typedef struct Node {int key;struct Node *left;struct Node *right;int height;} BTNode;int height(struct Node *N) {if (N == NULL)return0;return N->height;}int max(int a, int b) {return (a > b) ? a : b;}BTNode* newNode(int key) {struct Node* node = (BTNode*)malloc(sizeof(struct Node));node->key = key;node->left = NULL;node->right = NULL;node->height = 1;return(node);}//ll型调整BTNode* ll_rotate(BTNode* y) {BTNode *x = y->left;y->left = x->right;x->right = y;y->height = max(height(y->left), height(y->right)) + 1;x->height = max(height(x->left), height(x->right)) + 1;return x;}//rr型调整BTNode* rr_rotate(BTNode* y) {BTNode *x = y->right;y->right = x->left;x->left = y;y->height = max(height(y->left), height(y->right)) + 1;x->height = max(height(x->left), height(x->right)) + 1;return x;}//判断平衡int getBalance(BTNode* N) {if (N == NULL)return0;return height(N->left) - height(N->right);}//插⼊结点&数据BTNode* insert(BTNode* node, int key) {if (node == NULL)return newNode(key);if (key < node->key)node->left = insert(node->left, key);else if (key > node->key)node->right = insert(node->right, key);elsereturn node;node->height = 1 + max(height(node->left), height(node->right)); int balance = getBalance(node);if (balance > 1 && key < node->left->key) //LL型return ll_rotate(node);if (balance < -1 && key > node->right->key) //RR型return rr_rotate(node);if (balance > 1 && key > node->left->key) { //LR型node->left = rr_rotate(node->left);return ll_rotate(node);}if (balance < -1 && key < node->right->key) { //RL型node->right = ll_rotate(node->right);return rr_rotate(node);return node;}//遍历void preOrder(struct Node *root) { if (root != NULL) {printf("%d ", root->key);preOrder(root->left);preOrder(root->right);}}int main() {BTNode *root = NULL;root = insert(root, 2);root = insert(root, 1);root = insert(root, 0);root = insert(root, 3);root = insert(root, 4);root = insert(root, 4);root = insert(root, 5);root = insert(root, 6);root = insert(root, 9);root = insert(root, 8);root = insert(root, 7);printf("前序遍历:");preOrder(root);return0;}。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二叉排序树变成平衡二叉树对于二叉查找树,尽管查找、插入及删除操作的平均运行时间为O(logn),但是它们的最差运行时间都是O(n),原因在于对树的形状没有限制。
平衡二叉树又称为AVL树,它或者是一棵空树,或者是有下列性质的二叉树:它的左子树和右子树都是平衡二叉树,且左右子树的深度之差的绝对值不超过1。
二叉树的的平衡因子BF为:该结点的左子树的深度减去它的右子树的深度,则平衡二叉树的所有结点的平衡因子为只可能是:-1、0和1一棵好的平衡二叉树的特征:(1)保证有n个结点的树的高度为O(logn)(2)容易维护,也就是说,在做数据项的插入或删除操作时,为平衡树所做的一些辅助操作时间开销为O(1)一、平衡二叉树的构造在一棵二叉查找树中插入结点后,调整其为平衡二叉树。
若向平衡二叉树中插入一个新结点后破坏了平衡二叉树的平衡性。
首先要找出插入新结点后失去平衡的最小子树根结点的指针。
然后再调整这个子树中有关结点之间的链接关系,使之成为新的平衡子树。
当失去平衡的最小子树被调整为平衡子树后,原有其他所有不平衡子树无需调整,整个二叉排序树就又成为一棵平衡二叉树1.调整方法(1)插入点位置必须满足二叉查找树的性质,即任意一棵子树的左结点都小于根结点,右结点大于根结点(2)找出插入结点后不平衡的最小二叉树进行调整,如果是整个树不平衡,才进行整个树的调整。
2.调整方式(1)LL型LL型:插入位置为左子树的左结点,进行向右旋转(LL表示的是在做子树的左结点进行插入)由于在A的左孩子B的左子树上插入结点F,使A的平衡因子由1变为2,成为不平衡的最小二叉树根结点。
此时A结点顺时针右旋转,旋转过程中遵循“旋转优先”的规则,A结点替换D结点成为B结点的右子树,D结点成为A结点的左孩子。
(2)RR型RR型:插入位置为右子树的右孩子,进行向左旋转由于在A的右子树C的右子树插入了结点F,A的平衡因子由-1变为-2,成为不平衡的最小二叉树根结点。
此时,A结点逆时针左旋转,遵循“旋转优先”的规则,A结点替换D结点成为C的左子树,D结点成为A的右子树。
(3)LR型LR型:插入位置为左子树的右孩子,要进行两次旋转,先左旋转,再右旋转;第一次最小不平衡子树的根结点先不动,调整插入结点所在的子树,调整后的树变成LL型树,第二次再调整最小不平衡子树(根据LL型的调整规则,调整为平衡二叉树)。
由于在A的左子树B的右子树上插入了结点F,A的平衡因子由1变为了2,成为不平衡的最小二叉树根结点。
第一次旋转A结点不动,先将B的右子树的根结点D向左上旋转提升到B结点的位置,然后再把该D结点向右上旋转提升到A结点的位置。
(4)RL型RL型:插入位置为右子树的左孩子,进行两次调整,先右旋转调整为RR型,再左旋转,从RR型调整到平衡二叉树;处理情况与LR类似。
总结:RR型和LL型插入导致的树失去平衡,只需要做一次旋转调整即可。
而RL型和LR 型插入导致的结点失去平衡,要调整两次。
对于RL/LR的调整策略是:第一次调整,最小不平衡子树的根结点先不动,调整插入结点所在的子树(这个子树是指最小不平衡结点的一颗子树,且这棵子树是插入结点的子树)为RR型或者LL型,第二次再调整最小不平衡子树(调整策略要么是RR型要么是LL型)。
#include<iostream>#include<fstream>#include<malloc.h>using namespace std;#define LH 1//左高#define EH 0//等高#define RH -1//右高struct TreeNode{int m_nValue;int BF;//平衡因子TreeNode *lchild;TreeNode *rchild;};class AVLTree{public:AVLTree(){};~AVLTree(){};void CreateTree(TreeNode *&root,int data);//创建AVLvoid PreTraver(TreeNode *root);//先序遍历void RR_Rotate(TreeNode *&r);//右旋转处理int GetHeight(TreeNode *root);//获得树的高度int GetBF(TreeNode *root);//获得树的平衡因子void LL_Rotate(TreeNode *&r);//左旋转处理void RL_Rotate(TreeNode *&r);//双旋处理,先右旋转,再左旋转void LR_Rotate(TreeNode *&r);//双旋处理,先左旋转,再右旋转void LeftBalance(TreeNode *&T);//左平衡处理void RightBalance(TreeNode *&T);//右平衡处理};int Max(int a,int b){if(a>b)return a;else return b;}int AVLTree::GetHeight(TreeNode *root){int len;if(root==NULL)len=0;else{len=Max(GetHeight(root->lchild),GetHeight(root->rchild))+1;}return len;}int AVLTree::GetBF(TreeNode *root){int bf;//平衡因子bf=GetHeight(root->lchild)-GetHeight(root->rchild);return bf;}void AVLTree::CreateTree(TreeNode *&root,int data){if(root==NULL){root=(TreeNode*)malloc(sizeof(TreeNode));root->m_nValue=data;root->lchild=NULL;root->rchild=NULL;// root->BF=GetBF(root);root->BF=EH;//初始叶子结点的平衡因子为等高}else if(data<root->m_nValue){CreateTree(root->lchild,data);switch(root->BF)//检查root的平衡度{ case LH://原来树root的左子树比右子树高,现在左子树更高LeftBalance(root);//对树进行左平衡处理break; case EH://原来树root的左右子树等高,现在左子树高root->BF=LH;//root的平衡因子由0变为1 break; case RH://原来树root的右子树比左子树高,现在左右子树等高root->BF=EH;}}else if(data>root->m_nValue){CreateTree(root->rchild,data);switch(root->BF) { case LH:root->BF=EH;//原来树root的左子树比右子树高,现在root的左右子树等高break; case EH://原来树root的左右子树等高,现在root的右子树更高root->BF=RH; break; case RH://原来右子树比左子树高,现在root右子树高RightBalance(root);//对树root作右平衡处理}}}void AVLTree::PreTraver(TreeNode *root){if(root){ cout.width(3);cout<<root->m_nValue;}if(root->lchild)PreTraver(root->lchild);if(root->rchild)PreTraver(root->rchild);}void AVLTree::LL_Rotate(TreeNode *&r)//插入位置为右子树右孩子,要进行左旋转{TreeNode *p;p=r->rchild;//p指向r的右孩子结点r->rchild=p->lchild;//r结点左旋转成为p的左子树,p原来的左子树成为r的右子树p->lchild=r;//r成为p的左孩子r=p;}void AVLTree::RR_Rotate(TreeNode *&r)//插入位置为左子树左孩子,进行右旋转{TreeNode *p;p=r->lchild;r->lchild=p->rchild;p->rchild=r;r=p;}void AVLTree::RL_Rotate(TreeNode *&r)//插入位置为右子树左孩子,先进行右旋转,再进行左旋转{TreeNode *p;p=r->rchild;RR_Rotate(p);//最小失衡树的根结点的右子树根结点进行右旋转r->rchild=p;//更新最小失衡树根结点的右孩子LL_Rotate(r);//最小失衡树的根结点进行左旋转}void AVLTree::LR_Rotate(TreeNode *&r)//插入位置为左子树右孩子,先进行左旋转,再进行右旋转{TreeNode *p;p=r->lchild;LL_Rotate(p);//最小失衡树根结点的左子树根结点进行左旋转r->lchild=p;//更新最小失衡树根结点的左孩子RR_Rotate(r);//最小失衡树根结点进行右旋转}void AVLTree::LeftBalance(TreeNode *&T)//左平衡处理{//初始条件:原来平衡的二叉排序树T的左子树比右子树高(T->bf=1) // 又在左子树中插入了结点,并导致左子树更高,破坏了树T的平衡性//操作结果:对不平衡的树T 作左平衡旋转处理,使树T的重心右移实现新的平衡TreeNode *lc,*rd; lc=T->lchild;//lc指向T的左孩子结点switch(lc->BF)//检查T左子树的平衡因子{ case LH://新结点插入在T的左孩子的左子树上,导致左子树的平衡因子为左高,进行右旋转处理T->BF=lc->BF=EH;//旋转后,原根结点和左孩子结点平衡因子都为0 RR_Rotate(T);//右旋转处理break; case RH://新结点插入在T的左孩子的右子树上,导致左子树的平衡因子为右高,进行LR处理rd=lc->rchild; switch(rd->BF) { case LH://新结点插入在T的左孩子的右子树的左子树上T->BF=RH;//旋转后,原根结点的平衡因子为右高lc->BF=EH;//旋转后,原根结点的左孩子结点平衡因子为等高break; case EH://新结点插入到T的左孩子的右孩子(叶子)T->BF=lc->BF=EH;//旋转后,原根和左孩子结点的平衡因子都为等高break; case RH://新结点插入在T的左孩子的右子树的右子树上T->BF=EH;//旋转后,原根结点的平衡因子为等高lc->BF=LH;//旋转后,原根结点的左孩子结点平衡因子为左高} rd->BF=EH;//旋转后的新结点的平衡因子为等高//双旋转处理LL_Rotate(T->lchild);//对T的左子树左旋转处理RR_Rotate(T);//对T 作右旋转处理} }void AVLTree::RightBalance(TreeNode *&T)//右平衡处理{//初始条件:原来平衡二叉排序树T的右子树比左子树高,又在右子树中插入结点,导致右子树更高//操作结果:对不平衡的树T作右平衡旋转处理TreeNode *rc,*ld; rc=T->rchild; switch(rc->BF) { case RH://新结点插入在T的右孩子的右子树上,导致右子平衡因子为右高,进行左旋转处理T->BF=rc->BF=EH;//旋转后,原根结点和右孩子结点的平衡因子均为0 LL_Rotate(T); break; case LH://新结点插入在T的右孩子的左子树上,导致右子树的平衡因子为左高,进行双旋处理ld=rc->lchild; switch(ld->BF) { case RH://新结点插入在T的右孩子的左子树的右子树上T->BF=LH;//旋转后,原根结点的平衡因子为左高rc->BF=EH;//旋转后,原根结点的右孩子结点平衡因子为等高break; case EH://新结点插入到T的右孩子的左孩子(叶子)T->BF=rc->BF=EH;//旋转后,原根和右孩子结点的平衡因子等高break; case LH://新结点插入到T的右孩子的左子树的左子树T->BF=EH;//旋转后,原根结点的平衡因子等高rc->BF=RH;//旋转后,原根结点的右孩子结点的平衡因子为右高}ld->BF=EH;//旋转后的新根结点的平衡因子为等高//双旋转处理RR_Rotate(T->rchild);//对T的右子树作右旋转处理LL_Rotate(T);//对T作左旋转处理} }int main(){const char *file="data.txt";AVLTree AVL=AVLTree();TreeNode *root=NULL;int data;ifstream fin;fin.open(file);if(fin.is_open()){while(1){fin>>data;if(data==-1)break;AVL.CreateTree(root,data);}}AVL.PreTraver(root);cout<<endl<<endl;fin.close();return 1;}。