精品解析:【全国市级联考】浙江省杭州市2019-2020学年高三上学期期末物理试题(解析版)
浙江省杭州市2019-2020学年第一学期高三年级期末教学质量检测(一模)数学试题附答案

杭州市2019-2020学年度高三期末教学质量统一检测卷试题数 学一、选择题1. 设集合{}|2A x x =>,()(){}|130B x x x =--<,则A B =I ( )A. {}|1x x >B. {}|23x x <<C. {}|13x x <<D. {}|2,1x x x >< 2. 双曲线2214x y -=的离心率等于( ) A. 52 B. 5 C. 32 D. 33. 已知非零向量a r ,b r ,则“0a b ⋅>r r ”是“向量a r ,b r 为锐角”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件4. 若实数x ,y 满足不等式组010x y x x y +≥⎧⎪≥⎨⎪-≥⎩,则( )A. 1y ≥B. 2x ≥C. 20x y +≥D. 210x y -+≥ 5. 设正实数x ,y 满足()y x y x e e e⋅=,则当x y +取得最小值时,x =( ) A. 1 B. 2 C. 3 D. 46. 已知随机变量ξ的取值为()0,1,2i i =.若()105P ξ==,()1E ξ=,则( ) A. ()()1P D ξξ=< B. ()()1P D ξξ== C. ()()1P D ξξ=>D. ()()115P D ξξ== 7. 下列不可能...是函数()()()22a x x x a Z f x -=+∈的图象的是( ) A. B. C. D .8. 若函数()y f x =,()y g x =定义域为R ,且都不恒为零,则( )A. 若()()y f g x =为周期函数,则()y g x =为周期函数B. 若()()y f g x =为偶函数,则()y g x =为偶函数C. 若()y f x =,()y g x =均为单调递增函数,则()()y f x g x =⋅为单调递增函数D. 若()y f x =,()y g x =均为奇函数,则()()y f g x =为奇函数 9. 已知椭圆()222210x y a b a b+=>>的左右焦点分别为1F ,2F ,抛物线()220y px p =>的焦点为2F ,设两曲线的一个交点为P ,若221216PF F F P ⋅=u u u u r u u u u r ,则椭圆的离心率为( ) A. 12 B. 22 C. 34 D. 3210. 已知非常数列{}n a 满足()*12n n n a a a n N αβαβ+++=∈+,若0αβ+≠,则( ) A. 存在α,β,对任意1a ,2a ,都有{}n a 为等比数列B. 存在α,β,对任意1a ,2a ,都有{}n a 为等差数列C. 存在1a ,2a ,对任意α,β,都有{}n a 为等差数列D. 存在1a ,2a ,对任意α,β,都有{}n a 为等比数列二、填空题11. 设复数z 满足()12i z i +⋅=(i 为虚数单位),则z =______,z =______.12. 已知二项式()60a x a x ⎛⎫+> ⎪⎝⎭的展开式中含2x 的项的系数为15,则a =______,展开式中各项系数和等于______.13. 在ABC ∆中,BAC ∠的平分线与BC 边交于点D ,sin 2sin C B =,则BD CD=______;若1AD AC ==,则BC =______. 14. 已知函数()210cos 0x x f x x x π⎧-≤=⎨>⎩,则()()2019f f =______;若关于x 的方程()0f x a +=在(),0-∞内有唯一实根,则实数a 的取值范围是______.15. 杭州亚运会启动志愿者招募工作,甲、乙等5人报名参加了A 、B 、C 三个项目的志愿者工作,因工。
2019-2020学年浙江省杭州市高三(上)期末数学试卷

2019-2020学年浙江省杭州市高三(上)期末数学试卷一、选择题:每小题4分,共40分1.(4分)设集合A ={x |x >2},B ={x |(x ﹣1)(x ﹣3)<0},则A ∩B =( ) A .{x |x >1} B .{x |2<x <3} C .{x |1<x <3} D .{x |x >2或x <1}2.(4分)双曲线x 24−y 2=1的离心率等于( )A .√52B .√5C .√32D .√33.(4分)已知非零向量a →,b →,则“a →•b →>0”是“向量a →,b →夹角为锐角”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件4.(4分)若实数x ,y 满足不等式组{x +y ≥0x ≥1x −y ≥0,则( )A .y ≥1B .x ≥2C .x +2y ≥0D .2x ﹣y +1≥05.(4分)设正实数x ,y 满足e x •e y =(e x )y ,则当x +y 取得最小值时,x =( ) A .1B .2C .3D .46.(4分)已知随机变量ξ的取值为i (i =0,1,2).若P(ξ=0)=15,E (ξ)=1,则( ) A .P (ξ=1)<D (ξ) B .P (ξ=1)=D (ξ) C .P (ξ=1)>D (ξ)D .P(ξ=1)=15D(ξ)7.(4分)下列不可能是函数f (x )=x a (2x +2﹣x )(a ∈Z )的图象的是( )A .B .C .D .8.(4分)若函数y =f (x ),y =g (x )定义域为R ,且都不恒为零,则( )A .若y =f (g (x ))为周期函数,则y =g (x )为周期函数B .若y =f (g (x ))为偶函数,则y =g (x )为偶函数C .若y =f (x ),y =g (x )均为单调递增函数,则y =f (x )•g (x )为单调递增函数D .若y =f (x ),y =g (x )均为奇函数,则y =f (g (x ))为奇函数 9.(4分)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左右焦点分别为F 1,F 2,抛物线y 2=2px (p>0)的焦点为F 2.设两曲线的一个交点为P ,若PF 2→⋅F 1F 2→=16p 2,则椭圆的离心率为( ) A .12B .√22C .√34 D .√3210.(4分)已知非常数数列{a n }满足a n+2=αa n+1+βa n α+β(n ∈N *,α,β为非零常数).若α+β≠0,则( )A .存在α,β,对任意a 1,a 2,都有数列{a n }为等比数列B .存在α,β,对任意a 1,a 2,都有数列{a n }为等差数列C .存在a 1,a 2,对任意α,β,都有数列{a n }为等差数列D .存在a 1,a 2,对任意α,β,都有数列{a n }为等比数列 二、填空题:单空题每题4分,多空题每题6分,共36分11.(6分)设复数z 满足(1+i )•z =2i (i 为虚数单位),则z = ,|z |= . 12.(6分)已知二项式(x +ax)6(a >0)的展开式中含x 2的项的系数为15,则a = ,展开式中各项系数和等于 .13.(6分)在△ABC 中,∠BAC 的平分线与BC 边交于点D ,sin C =2sin B ,则BD CD= ;若AD =AC =1,则BC = .14.(6分)已知函数f(x)={1−x 2(x ≤0)cosπx(x >0),则f [f (2019)]= ;若关于x 的方程f(x +a )=0在(﹣∞,0)内有唯一实根,则实数a 的取值范围是 .15.(4分)杭州亚运会启动志愿者招募工作,甲、乙等5人报名参加了A ,B ,C 三个项目的志愿者工作,因工作需要,每个项目仅需1名志愿者.若甲不能参加A ,B 项目,乙不能参加B ,C 项目,那么共有 种不同的选拔志愿者的方案.(用数字作答) 16.(4分)已知函数f (x )=x 3﹣9x ,g (x )=3x 2+a (a ∈R ).若方程f (x )=g (x )有三个不同的实数解x 1,x 2,x 3,且它们可以构成等差数列,则a = .17.(4分)在平面凸四边形ABCD 中,AB =2,点M ,N 分别是边AD ,BC 的中点,且MN =32,若MN →⋅(AD →−BC →)=32,则AB →⋅CD →= .三、解答题:5小题,共74分18.(14分)已知函数f(x)=sin 2x −cos 2(x +π3)(x ∈R ). (1)求f (x )的最小正周期;(2)求f (x )在区间[−π3,π4]上的值域. 19.(15分)已知函数f (x )=x 2+k |x ﹣1|﹣2. (1)当k =1时,求函数f (x )的单调递增区间. (2)若k ≤﹣2,试判断方程f (x )=﹣1的根的个数.20.(15分)如图,在△ABC 中,∠BAC =2π3,AD →=3DB →,P 为CD 上一点,且满足AP →=mAC →+12AB →,若△ABC 的面积为2√3.(1)求m 的值; (2)求|AP →|的最小值.21.(15分)设公差不为0的等差数列{a n }的前n 项和为S n ,等比数列{b n }的前n 项和为T n ,若a 2是a 1与a 4的等比中项,a 6=12,a 1b 1=a 2b 2=1. (1)求a n ,S n 与T n ;(2)若c n =√S n ⋅T n ,求证:c 1+c 2+⋯+c n <n(n+2)2. 22.(15分)设函数f (x )=e x +ax ,a ∈R . (1)若f (x )有两个零点,求a 的取值范围;(2)若对任意x ∈[0,+∞)均有2f (x )+3≥x 2+a 2,求a 的取值范围.2019-2020学年浙江省杭州市高三(上)期末数学试卷参考答案与试题解析一、选择题:每小题4分,共40分1.(4分)设集合A ={x |x >2},B ={x |(x ﹣1)(x ﹣3)<0},则A ∩B =( ) A .{x |x >1}B .{x |2<x <3}C .{x |1<x <3}D .{x |x >2或x <1}【解答】解:集合A ={x |x >2},B ={x |(x ﹣1)(x ﹣3)<0}={x |1<x <3}, 则A ∩B ={x |2<x <3}. 故选:B . 2.(4分)双曲线x 24−y 2=1的离心率等于( )A .√52B .√5C .√32D .√3【解答】解:由双曲线x 24−y 2=1可得a 2=4,b 2=1,∴a =2,c =√a 2+b 2=√5. ∴双曲线的离心率e =c a =√52. 故选:A .3.(4分)已知非零向量a →,b →,则“a →•b →>0”是“向量a →,b →夹角为锐角”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件【解答】解:a →与 b →都是非零向量,则“向量a →与 b →夹角为锐角”⇒“a →⋅b →>0”,反之不成立,可能同向共线.因此“a →⋅b →>0”是“向量a →与 b →夹角为锐角”的必要不充分条件. 故选:B .4.(4分)若实数x ,y 满足不等式组{x +y ≥0x ≥1x −y ≥0,则( )A .y ≥1B .x ≥2C .x +2y ≥0D .2x ﹣y +1≥0【解答】解:作出不等式组{x +y ≥0x ≥1x −y ≥0对应的平面区域如图:;由图可得A,B均不成立;对于C:因为直线x+2y=0过平面区域,红线所表,故函数值有正有负,不成立.故只有答案D成立.故选:D.5.(4分)设正实数x,y满足e x•e y=(e x)y,则当x+y取得最小值时,x=()A.1B.2C.3D.4【解答】解:∵正实数x,y满足e x•e y=(e x)y,∴x+y=xy,又∵x+y≥2√xy,∴xy≥2√xy,∴xy≥4,∴x+y≥4,当且仅当x=y=2时取等号,∴当x+y取得最小值时,x=2.故选:B.6.(4分)已知随机变量ξ的取值为i(i=0,1,2).若P(ξ=0)=15,E(ξ)=1,则()A.P(ξ=1)<D(ξ)B.P(ξ=1)=D(ξ)C.P(ξ=1)>D(ξ)D.P(ξ=1)=15D(ξ)【解答】解:∵随机变量ξ的取值为i(i=0,1,2).P(ξ=0)=15,E(ξ)=1,∴P(ξ=1)+2P(ξ=2)=1,P(ξ=1)+P(ξ=2)=4 5,∴P(ξ=1)=35,P(ξ=2)=15,∴D(ξ)=(0−1)2×15+(1−1)2×35+(2−1)2×15=25.∴P(ξ=1)>D(ξ).故选:C.7.(4分)下列不可能是函数f(x)=x a(2x+2﹣x)(a∈Z)的图象的是()A.B.C.D.【解答】解:根据题意,函数f(x)=x a(2x+2﹣x)(a∈Z),当a=0,f(x)=(e x+e﹣x),(x≠0)其定义域为{x|x≠0},f(x)为偶函数,不经过原点且在第一象限为增函数,A选项符合;当a为正整数时,f(x)=x a(e x+e﹣x),其定义域为R,图象经过原点,没有选项符合;当a为负整数时,f(x)=x a(e x+e﹣x),其定义域为{x|x≠0},其导数f′(x)=ax a﹣1(e x+e﹣x)+x a(e x﹣e﹣x),当x>0时,f′(x)=x a﹣1[a(e x+e﹣x)+x(e x﹣e﹣x)]=x a﹣1[(a+x)e x+(a﹣x)e﹣x],则f′(x)先负后正,故f(x)不经过原点且在第一象限先减后增,BD符合;故选:C.8.(4分)若函数y=f(x),y=g(x)定义域为R,且都不恒为零,则()A.若y=f(g(x))为周期函数,则y=g(x)为周期函数B.若y=f(g(x))为偶函数,则y=g(x)为偶函数C.若y=f(x),y=g(x)均为单调递增函数,则y=f(x)•g(x)为单调递增函数D.若y=f(x),y=g(x)均为奇函数,则y=f(g(x))为奇函数【解答】解:令f(x)=sin x,g(x)=2x,函数sin2x是周期函数,但y=g(x)不是周期函数,故A错误;令f(x)=x2+1,g(x)=2x,则f(g(x))=4x2+1为偶函数,但y=g(x)不是偶函数,故B错误;令f(x)=x,g(x)=x3,y=f(x),y=g(x)均为R上的单调递增函数,但y=f(x)•g (x )=x 4在R 上不单调,故C 错误;由y =f (x ),y =g (x )均为奇函数,则f (﹣x )=﹣f (x ),g (﹣x )=﹣g (x ),且两函数定义域均关于原点对称,则f (g (﹣x ))=f (﹣g (x ))=﹣f (g (x )),且定义域关于原点对称,函数y =f (g (x ))为奇函数,故D 正确. 故选:D . 9.(4分)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左右焦点分别为F 1,F 2,抛物线y 2=2px (p>0)的焦点为F 2.设两曲线的一个交点为P ,若PF 2→⋅F 1F 2→=16p 2,则椭圆的离心率为( ) A .12B .√22C .√34D .√32【解答】解:设P (x 0,y 0),PF 2→=(c −x 0,−y 0),F 1F 2→=(2c ,0). ∵PF 2→⋅F 1F 2→=16p 2,则2c (c ﹣x 0)=16p 2⋯①, ∵抛物线y 2=2px (p >0)的焦点为F 2.∴p =2c …②, 由①②可得x 0=2c3,由椭圆、抛物线焦半径公式可得a ﹣ex 0=x 0+p2.整理可得:a ﹣e ⋅2c 3=5c3⇒2e 2+5e ﹣3=0. 解得e =12(负值舍). 故选:A .10.(4分)已知非常数数列{a n }满足a n+2=αa n+1+βa n α+β(n ∈N *,α,β为非零常数).若α+β≠0,则( )A.存在α,β,对任意a1,a2,都有数列{a n}为等比数列B.存在α,β,对任意a1,a2,都有数列{a n}为等差数列C.存在a1,a2,对任意α,β,都有数列{a n}为等差数列D.存在a1,a2,对任意α,β,都有数列{a n}为等比数列【解答】解:由题意,得a n+2=αa n+1+βa nα+β=αα+βa n+1+βα+βa n.令t=αα+β,则βα+β=1﹣t,∵α,β为非零常数且α+β≠0,∴t,1﹣t均为非零常数,∴常数t≠0,且t≠1.故a n+2=ta n+1+(1﹣t)a n.两边同时减去a n+1,可得a n+2﹣a n+1=ta n+1﹣a n+1+(1﹣t)a n=(t﹣1)(a n+1﹣a n).∵常数t≠0,且t≠1.∴t﹣1≠﹣1,且t﹣1≠0.∴a n+1﹣a n=(t﹣1)(a n﹣a n﹣1)=(t﹣1)2(a n﹣1﹣a n﹣2)=…=(t﹣1)n﹣1(a2﹣a1).∵数列{a n}是非常数数列,∴a2﹣a1≠0,则当t﹣1=1,即t=2,即αα+β=2,即α+2β=0时,a n+1﹣a n=a n﹣a n﹣1=a n﹣1﹣a n﹣2=…=a2﹣a1.此时数列{a n}很明显是一个等差数列.∴存在α,β,只要满足α,β为非零,且α+2β=0时,对任意a1,a2,都有数列{a n}为等差数列.故选:B.二、填空题:单空题每题4分,多空题每题6分,共36分11.(6分)设复数z满足(1+i)•z=2i(i为虚数单位),则z=1+i,|z|=√2.【解答】解:由(1+i)•z=2i,得z=2i1+i=2i(1−i)(1+i)(1−i)=1+i,∴|z|=√2.故答案为:1+i;√2.12.(6分)已知二项式(x +ax)6(a >0)的展开式中含x 2的项的系数为15,则a = 1 ,展开式中各项系数和等于 64 .【解答】解:二项式(x +a x)6(a >0)的展开式的通项公式为 T r +1=C 62•a r •x6﹣2r,令6﹣2r=2 求得r =2,故展开式中含x 2的项的系数为C 62•a 2=15,则a =1.再令x =1,可得展开式中各项系数和等于(1+1)6=64, 故答案为:1;64.13.(6分)在△ABC 中,∠BAC 的平分线与BC 边交于点D ,sin C =2sin B ,则BD CD= 2 ;若AD =AC =1,则BC =3√22. 【解答】解:①如图所示,△ABC 中,∠BAC 的平分线与BC 边交于点D ,sin C =2sin B , 所以c =2b , 所以BD CD=AB AC=c b=2;②由AD =AC =1,所以AB =2AC =2,设DC =x ,则BD =2x ,由余弦定理得cos ∠BAD =AB 2+AD 2−CD 22AC⋅AD =4+1−4x 22×2×1=5−4x 24,cos ∠CAD =AC 2+AD 2−CD 22AC⋅AD=1+1−x 22×1×1=2−x 22, 又∠BAD =∠CAD , 所以5−4x 24=2−x 22,解得x =√22;所以BC =3x =3√22. 故答案为:2,3√22.14.(6分)已知函数f(x)={1−x 2(x ≤0)cosπx(x >0),则f [f (2019)]= 0 ;若关于x 的方程f (x +a )=0在(﹣∞,0)内有唯一实根,则实数a 的取值范围是 [﹣1,12] .【解答】解:∵函数f(x)={1−x 2(x ≤0)cosπx(x >0),∴f (2019)=cos2019π=cos π=﹣1, f [f (2019)]=f (﹣1)=1﹣(﹣1)2=0. 作出函数f(x)={1−x 2(x ≤0)cosπx(x >0)的图象,如下图:设f (x )与x 轴从左到右的两个交点分别为A (﹣1,0),B (12,0),f (x +a )与f (x )的图象是平移关系,∵关于x 的方程f (x +a )=0在(﹣∞,0)内有唯一实根, ∴结合图形,得实数a 的取值范围是(﹣1,12].故答案为:0,(﹣1,12].15.(4分)杭州亚运会启动志愿者招募工作,甲、乙等5人报名参加了A ,B ,C 三个项目的志愿者工作,因工作需要,每个项目仅需1名志愿者.若甲不能参加A ,B 项目,乙不能参加B ,C 项目,那么共有 21 种不同的选拔志愿者的方案.(用数字作答) 【解答】解:若甲,乙都参加,则甲只能参加C 项目,乙只能参见A 项目,B 项目有3种方法,若甲参加,乙不参加,则甲只能参加C 项目,A ,B 项目,有A 32=6种方法, 若甲参加,乙不参加,则乙只能参加A 项目,B ,C 项目,有A 32=6种方法, 若甲不参加,乙不参加,有A 33=6种方法, 根据分类计数原理,共有3+6+6+6=21种. 故答案为:21.16.(4分)已知函数f (x )=x 3﹣9x ,g (x )=3x 2+a (a ∈R ).若方程f (x )=g (x )有三个不同的实数解x 1,x 2,x 3,且它们可以构成等差数列,则a = ﹣11 .【解答】解:方程f (x )=g (x )即为x 3﹣3x 2﹣9x =a ,依题意,函数h (x )=x 3﹣3x 2﹣9x 与常函数y =a 由三个不同的实数根x 1,x 2,x 3,不妨设x 1<x 2<x 3,由x 1,x 2,x 3构成等差数列可知,函数h (x )关于(x 2,h (x 2))中心对称,而三次函数的对称中心点就是二阶导函数的零点,且h ′(x )=3x 2﹣6x ﹣9,h ''(x )=6x ﹣6,令h ''(x )=6x ﹣6=0,解得x =1,即x 2=1,故函数h (x )的对称中心即为(1,﹣11),则a =﹣11.故答案为:﹣11.17.(4分)在平面凸四边形ABCD 中,AB =2,点M ,N 分别是边AD ,BC 的中点,且MN =32,若MN →⋅(AD →−BC →)=32,则AB →⋅CD →= ﹣2 . 【解答】解:取BD 的中点O ,连接OM ,ON ,可得MN →=MO →+ON →=12(AB →+DC →),平方可得MN →2=14(AB →2+DC →2+2AB →⋅DC →)=14(4+DC →2+2AB →⋅DC →)=94, 即有AB →⋅DC →=52−12DC →2,MN →⋅(AD →−BC →)=32,即有12(AB →+DC →)•(AB →+BD →−BC →) =12(AB →+DC →)•(AB →+CD →)=12(AB →2−CD →2)=12(4−CD →2)=32, 解得CD →2=1,所以AB →⋅CD →=12DC →2−52=12−52=−2, 故答案为:﹣2.三、解答题:5小题,共74分18.(14分)已知函数f(x)=sin 2x −cos 2(x +π3)(x ∈R ).(1)求f (x )的最小正周期;(2)求f (x )在区间[−π3,π4]上的值域.【解答】解:(1)函数f(x)=sin 2x −cos 2(x +π3)=sin 2x −(12cosx −√32sinx)2=14sin 2x −14cos 2x +√32sin x cos x =√34sin2x −14cos2x =12sin (2x −π6),∴f (x )的最小正周期为2π2=π. (2)在区间[−π3,π4]上,2x −π6∈[−5π6,π3],故当2x −π6=−π2时,函数f (x )取得最小值为−12, 当2x −π6=π3时,函数f (x )取得最大值为√34, 故f (x )的值域为[−12,√34]. 19.(15分)已知函数f (x )=x 2+k |x ﹣1|﹣2.(1)当k =1时,求函数f (x )的单调递增区间.(2)若k ≤﹣2,试判断方程f (x )=﹣1的根的个数.【解答】解:(1)k =1时,f (x )=x 2+|x ﹣1|﹣2={x 2+x −3,x ≥1x 2−x −1,x <1, 当x ≥1时,f (x )=(x +12)2−134,此时函数在[1,+∞)上单调递增;当x <1时,f (x )=(x −12)2−54,此时函数在(12,1)上单调递增, 综上函数f (x )的单调递增区间是(12,+∞); (2)当x ≥1时,则x 2+k (x ﹣1)﹣2=﹣1,即(x ﹣1)(x +1+k )=0,即x =﹣1﹣k ,或x =1;当x <1时,则x 2﹣k (x ﹣1)﹣2=﹣1,即(x ﹣1)(x +1﹣k )=0,即x =k ﹣1, 故当k <﹣2,﹣1﹣k >1,k ﹣1<1,则方程有3个不等实数根;当k =﹣2时,﹣1﹣k =1,k ﹣1=﹣3,则方程有2个不等实数根.20.(15分)如图,在△ABC 中,∠BAC =2π3,AD →=3DB →,P 为CD 上一点,且满足AP →=mAC →+12AB →,若△ABC 的面积为2√3.(1)求m 的值;(2)求|AP →|的最小值.【解答】解:(1)设|AB →|=c ,|AC →|=b ,所以S △ABC =12bc sin 23π=2√3,解得bc =8, 由AP →=m AC →+12AB →=m AC →+23AD →,且C ,P ,D 三点共线, 所以m +23=1,解得m =13;(2)由(1)可知AP →=13AC →+12AB →,所以|AP →|2=(13AC →+12AB →)2=b 29+c 24+13AC →⋅AB → 因为AC →⋅AB →=bc cos2π3=−4, 所以|AP →|2=b 29+c 24−43≥2•bc 6−43=43, 故|AP →|≥2√33,当且仅当b =2√3,c =4√33时取得等号,综上|AP →|的最小值为2√33. 21.(15分)设公差不为0的等差数列{a n }的前n 项和为S n ,等比数列{b n }的前n 项和为T n ,若a 2是a 1与a 4的等比中项,a 6=12,a 1b 1=a 2b 2=1.(1)求a n ,S n 与T n ;(2)若c n =√S n ⋅T n ,求证:c 1+c 2+⋯+c n <n(n+2)2. 【解答】(1)解:由题意得,a 22=a 1a 4,即(a 1+d)2=a 1(a 1+3d),得a 1=d (d ≠0), 由a 6=12,得a 1=d =2.∴a n =a 1+(n ﹣1)d =2+2(n ﹣1)=2n ,S n =2n +n(n−1)2×2=n(n +1), 由a 1b 1=a 2b 2=1,得b 1=12,b 2=14,∴T n=1−(12)n;(2)证明:∵c n=√S n⋅T n=√n(n+1)⋅[1−(12)n],由0<1−(12)n<1恒成立,∴c n<√k(k+1)<√k(k+1)+14=k+12,∴c1+c2+…+c n<(32+n+12)⋅n2=(n+2)n2.22.(15分)设函数f(x)=e x+ax,a∈R.(1)若f(x)有两个零点,求a的取值范围;(2)若对任意x∈[0,+∞)均有2f(x)+3≥x2+a2,求a的取值范围.【解答】解:(1)f′(x)=e x+a,①当a≥0时,f′(x)>0,则f(x)在R上单调递增,不满足题意;②当a<0时,令f′(x)=0,解得x=ln(﹣a),则f(x)在(﹣∞,ln(﹣a))上单调递减,在(ln(﹣a),+∞)上单调递增,要使f(x)有两个零点,只需f(ln(﹣a))<0,解得a<﹣e;(2)令g(x)=2f(x)+3﹣x2﹣a2=2e x﹣(x﹣a)2+3,x≥0,则g′(x)=2(e x﹣x+a),又令h(x)=2(e x﹣x+a),则h′(x)=2(e x﹣1)≥0,所以h(x)在[0,+∞)上单调递增,且h(0)=2(a+1),①当a≥﹣1时,g′(x)≥0恒成立,即函数g(x)在[0,+∞)上单调递增,从而必须满足g(0)=5﹣a2≥0,解得−√5≤a≤√5,又因为a≥﹣1,所以﹣1≤a≤√5;②当a<﹣1时,则存在x0>0,使h(x0)=0且x∈(0,x0)时,h(x)<0,即g′(x)<0,即g(x)单调递减,x∈(x0,+∞)时,h(x)>0,即g′(x)>0,即g(x)单调递增,所以g(x)最小值为g(x0)=2e x0−(x0−a)2+3≥0,又h(x0)=2(e x0−x0+a)=0,从而2e x0−(e x0)2+3≥0,解得0<x0≤ln3,由e x0=x0﹣a,则a=x0−e x0,令M(x)=x﹣e x,0<x≤ln3,则M′(x)=1﹣e x<0,所以M(x)在(0,ln3上单调递减,则M(x)≥M(ln3)=ln3﹣3,又M(x)<M(0)=﹣1,故ln3﹣3≤a<﹣1,综上,ln3﹣3≤a≤√5.。
2019-2020年高三上学期联考物理试题(12月份) 含解析

2019-2020年高三上学期联考物理试题(12月份)含解析一、选择题(本大题共5小题,每小题6分,共30分.在每小题给出的四个选项中,只有一项符合题目要求)1.(6分)(xx秋•萧山区期末)一物体做匀变速直线运动,速度图象如图所示,则在前4s内(设向右为正方向)()2.(6分)(xx秋•重庆月考)如图1蹦极是一项非常刺激的户外活动,跳跃者站在约40米以上高度的位置,用橡皮绳固定住后跳下,落地前弹起,反复弹起落下,重复多次直到静止.某人做蹦极运动,所受绳子拉力F的大小随时间t变化的情况如图2所示,重力加速度为g.据图可知,此人在蹦极过程中最大加速度约为()3.(6分)(xx秋•重庆月考)科学家预测未来的几年内我国也有能力发射探月航天器.设探月航天器在接近月球表面的轨道上飞行,其运动视为匀速圆周运动.已知月球质量为M,月球半径为R,月球表面重力加速度为g,引力常量为G,不考虑航天器质量的变化以及月球自4.(6分)(xx秋•市南区校级期末)某电场的电场线分布如图所示,以下说法正确的是()5.(6分)(xx秋•重庆月考)如图所示,在质量为M的小车上用细线悬挂一小球,小球的质量为m0,小车以恒定的速度v沿光滑的水平地面运动,与位于正对面的质量为m的静止木块发生碰撞,碰撞的时间短,在此碰撞进行的过程中,下列说法正确的是()二、非选择题(本大题共5小题,共68分)6.(12分)(xx•广东模拟)在“验证机械能守恒定律”的实验中,打点计时器接在电压为U、频率为f的交流电源上,从实验打出的几条纸带中选出一条理想纸带,如图所示,选取纸带上打出的连续5个点A、B、C、D、E,测出A点与起始点O的距离为s0,点A、C间的距离为s1,点C、E间的距离为s2,已知重锤的质量为m,当地的重力加速度为g,则(1)从起点O开始到打下C点的过程中,重锤重力势能的减少量为△E P=mg(s0+s1),重锤动能的增加量为△E k=.(2)根据题设条件,还可利用重锤下落求出当地的重力加速度g=,经过计算可知,测量值比当地重力加速度的真实值要小,其主要原因是:纸带与限位孔之间摩擦力作用.7.(7分)(xx秋•重庆月考)为验证动量守恒,采用如图装置,实验步骤如下:Ⅰ、调整斜槽末端水平,并与竖直墙壁保持适当距离.Ⅱ、在竖直墙上找到球在末端圆心的等高点O.Ⅲ、从斜面上某一高度释放小球m1,落在墙上B点.Ⅳ、把小球m2置于斜槽末端,m1从同一高度释放,碰撞后m1、m2分别落在C、A点.(1)下列说法正确的AA、小球m1和m2必须大小相等,且m1>m2B、为减小实验误差,斜槽必须光滑.C、实验中必须测量斜槽末端到竖直墙的水平距离D、实验中必须测量小球做平抛运动的时间(2)若用天平测出小球质量分别为m1、m2,测量OA、OB、OC高度依次为h1、h2、h3,则动量守恒最简表达式=+.8.(15分)(xx秋•重庆月考)如图所示,质量m=1kg的物块在水平拉力F的作用下由静止开始沿粗糙的水平面向右运动,已知F=4N,物体运动1m时速度达到V=2m/s,此时撤去F.求:(1)物体和水平面间的动摩擦因数μ.(2)撤去F后2s内物体运动的距离S.9.(16分)(xx秋•重庆月考)如图,空间存在一水平向右的匀强电场,场强大小为E,现用一根长为l的绝缘细线悬挂一质量为m的带电小球放入其中,当小球静止时,悬线与竖直方向夹角为θ.问:(1)小球所带电性和电荷量;(2)若将细线突然剪断,求小球运动的加速度大小;(3)若不剪断细线,在不改变电场强度E的大小的情况下,突然将电场的方向变为竖直向上,求小球运动过程中小球最大速度.联立解得:直向上,小球运动过程中小球最大速度是10.(18分)(xx秋•重庆月考)如图所示,整个装置竖直固定放置.质量m1=2千克的物体1从傾角37°的光滑斜面AB顶端A处静止滑下,到达动摩擦因数为0.2的水平面BC时(BC长米)与原来静止在C点的质量m2=1千克的物体2发生碰撞,碰撞无能量损失.然后物体2沿光滑的半圆形轨道恰能到达最高点D,圆的半径R=0.4米,最后物体2开始平抛运动.物体1和2均为质点,g取10m/s2,sin37°=0.6,cos37°=0.8.(1)求物体2平抛运动的初速度并计算证明物体2落在AB还是落在BC上;(2)若物体1与物体2不发生第二次碰撞,则物体1最后静止位置与C点的距离;(3)求斜面AB的高度h和物体1第一次从A滑到斜面底端B点用去的时间.三、选做题(第10题和第11题各12分,考生从中选做一题,若两题都做,则按第10题计分,其中选择题仅有一个正确选项,请将正确选项的标号填入答题卡上对应的位置)【选修3-3】12.(6分)(xx秋•重庆月考)鱼从压强为Po的水底A处吐出一体积为V o的气泡,当气泡上升到压强为P1的水中B处,其体积V1为多少?(设气泡内气体为理想气体且在上升过程中不漏气,气泡内温度保持不变.)【选修3-4】13.(xx秋•重庆月考)德国的一个研究小组制造出了一种对可见光具有负折射率的奇异材料.普通材料遵循光的折射定律,其折射率始终为正值,而这种奇异材料的折射率却为负值.当14.(xx秋•重庆月考)一频率为f的机械波从A点传播到B点,已知A、B间距离为S,某一时刻A、B均在平衡位置且只有一个波峰.则该列波速的最大值为?。
浙江省杭州市2020届高三上学期期末教学质量检测(一模)数学试题及答案

D.x x 2或x 1
2. 双曲线 x2 y2 1 的离心率等于( ) 4
A. 5 2
B. 5
C. 3 2
D. 3
3. 已知非零向量 a , b ,则“ a b 0 ”是“向量 a , b 夹角为锐角”的( )
A.充分不必要条件
B.必要不充分条件
C.充分必要条件
D.既不充分也不必要条件
C.存在 a1 , a2 ,对任意 , ,都有数列 an 为等差数列
D.存在 a1 , a2 ,对任意 , ,都有数列 an 为等比数列
二、填空题:单空题每题 4 分,多空题每题 6 分,共 36 分
11. 设复数 z 满足 1 i z 2i (i 为虚数单位),则 z
B.若 y f g x 为偶函数,则 y g x 为偶函数
C.若 y f x , y g x 均为单调递增函数,则 y f x g x 为单调递增函数
D.若 y f x , y g x 均为奇函数,则 y f g x 为奇函数
故 AP 2 3 ,当且仅当 b 2 3,c 4 3 时取得等号.
3
3
综上, AP 的最小值为 2 3 . 3
…………8 分
21.(1)由题意得: a22 a1 a4 ,即 d 2 a1d ,又 d 0 ,
故 d a1 ,
由 a6 12 ,得 a1 2, d 2 ,
,z
.
12.
已知二项式
x
a x
6
a
0
的展开式中含
x2
的项的系数为
15,则
a
2019-2020浙江省杭州市高三(上)期末试卷答案解析

2019-2020浙江省杭州市高三(上)期末数学考试试卷答案解析一、选择题(每题4分,共40分)1.设集合A={x|x>2},B={x|(x﹣1)(x﹣3)<0},则A∩B=()A.{x|x>1}B.{x|2<x<3}C.{x|1<x<3}D.{x|x>2或x<1}【解答】解:集合A={x|x>2},B={x|(x﹣1)(x﹣3)<0}={x|1<x<3},则A∩B={x|2<x<3}.故选:B.2.双曲线的离心率等于()A.B.C.D.【解答】解:由双曲线=1可得a2=4,b2=1,∴a=2,c==.∴双曲线的离心率e==.故选:A.3.已知非零向量,,则“•>0”是“向量,夹角为锐角”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【解答】解:与都是非零向量,则“向量与夹角为锐角”⇒“”,反之不成立,可能同向共线.因此“”是“向量与夹角为锐角”的必要不充分条件.故选:B.4.若实数x,y满足不等式组,则()A.y≥1B.x≥2C.x+2y≥0D.2x﹣y+1≥0【解答】解:作出不等式组对应的平面区域如图:;由图可得A,B均不成立;对于C:因为直线x+2y=0过平面区域,红线所表,故函数值有正有负,不成立.故只有答案D成立.故选:D.5.设正实数x,y满足e x•e y=(e x)y,则当x+y取得最小值时,x=()A.1B.2C.3D.4【解答】解:∵正实数x,y满足e x•e y=(e x)y,∴x+y=xy,又∵,∴,∴xy≥4,∴x+y≥4,当且仅当x=y=2时取等号,∴当x+y取得最小值时,x=2.故选:B.6.已知随机变量ξ的取值为i(i=0,1,2).若,E(ξ)=1,则()A.P(ξ=1)<D(ξ)B.P(ξ=1)=D(ξ)C.P(ξ=1)>D(ξ)D.【解答】解:∵随机变量ξ的取值为i(i=0,1,2).,E(ξ)=1,∴P(ξ=1)+2P(ξ=2)=1,P(ξ=1)+P(ξ=2)=,∴P(ξ=1)=,P(ξ=2)=,∴D(ξ)=+=.∴P(ξ=1)>D(ξ).故选:C.7.下列不可能是函数f(x)=x a(2x+2﹣x)(a∈Z)的图象的是()A.B.C.D.【解答】解:根据题意,函数f(x)=x a(2x+2﹣x)(a∈Z),当a=0,f(x)=(e x+e﹣x),(x≠0)其定义域为{x|x≠0},f(x)为偶函数,不经过原点且在第一象限为增函数,A选项符合;当a为正整数时,f(x)=x a(e x+e﹣x),其定义域为R,图象经过原点,没有选项符合;当a为负整数时,f(x)=x a(e x+e﹣x),其定义域为{x|x≠0},其导数f′(x)=ax a﹣1(e x+e﹣x)+x a(e x﹣e﹣x),当x>0时,f′(x)=x a﹣1[a(e x+e﹣x)+x(e x﹣e﹣x)]=x a﹣1[(a+x)e x+(a﹣x)e﹣x],则f′(x)先负后正,故f(x)不经过原点且在第一象限先减后增,BD符合;故选:C.8.若函数y=f(x),y=g(x)定义域为R,且都不恒为零,则()A.若y=f(g(x))为周期函数,则y=g(x)为周期函数B.若y=f(g(x))为偶函数,则y=g(x)为偶函数C.若y=f(x),y=g(x)均为单调递增函数,则y=f(x)•g(x)为单调递增函数D.若y=f(x),y=g(x)均为奇函数,则y=f(g(x))为奇函数【解答】解:令f(x)=sin x,g(x)=2x,函数sin2x是周期函数,但y=g(x)不是周期函数,故A错误;令f(x)=x2+1,g(x)=2x,则f(g(x))=4x2+1为偶函数,但y=g(x)不是偶函数,故B错误;令f(x)=x,g(x)=x3,y=f(x),y=g(x)均为R上的单调递增函数,但y=f(x)•g(x)=x4在R上不单调,故C错误;由y=f(x),y=g(x)均为奇函数,则f(﹣x)=﹣f(x),g(﹣x)=﹣g(x),且两函数定义域均关于原点对称,则f(g(﹣x))=f(﹣g(x))=﹣f(g(x)),且定义域关于原点对称,函数y=f(g(x))为奇函数,故D正确.故选:D.9.已知椭圆(a>b>0)的左右焦点分别为F1,F2,抛物线y2=2px(p>0)的焦点为F2.设两曲线的一个交点为P,若,则椭圆的离心率为()A.B.C.D.【解答】解:设P(x0,y0),,.∵,则2c(c﹣x0)=…①,∵抛物线y2=2px(p>0)的焦点为F2.∴p=2c…②,由①②可得x0=,由椭圆、抛物线焦半径公式可得a﹣ex0=x.整理可得:a﹣e=⇒2e2+5e﹣3=0.解得e=(负值舍).故选:A.10.已知非常数数列{a n}满足(n∈N*,α,β为非零常数).若α+β≠0,则()A.存在α,β,对任意a1,a2,都有数列{a n}为等比数列B.存在α,β,对任意a1,a2,都有数列{a n}为等差数列C.存在a1,a2,对任意α,β,都有数列{a n}为等差数列D.存在a1,a2,对任意α,β,都有数列{a n}为等比数列【解答】解:由题意,得=a n+1+a n.令t=,则=1﹣t,∵α,β为非零常数且α+β≠0,∴t,1﹣t均为非零常数,∴常数t≠0,且t≠1.故a n+2=ta n+1+(1﹣t)a n.两边同时减去a n+1,可得a n+2﹣a n+1=ta n+1﹣a n+1+(1﹣t)a n=(t﹣1)(a n+1﹣a n).∵常数t≠0,且t≠1.∴t﹣1≠﹣1,且t﹣1≠0.∴a n+1﹣a n=(t﹣1)(a n﹣a n﹣1)=(t﹣1)2(a n﹣1﹣a n﹣2)=…=(t﹣1)n﹣1(a2﹣a1).∵数列{a n}是非常数数列,∴a2﹣a1≠0,则当t﹣1=1,即t=2,即=2,即α+2β=0时,a n+1﹣a n=a n﹣a n﹣1=a n﹣1﹣a n﹣2=…=a2﹣a1.此时数列{a n}很明显是一个等差数列.∴存在α,β,只要满足α,β为非零,且α+2β=0时,对任意a1,a2,都有数列{a n}为等差数列.故选:B.二.填空题(共36分)11.设复数z满足(1+i)•z=2i(i为虚数单位),则z=1+i,|z|=.【解答】解:由(1+i)•z=2i,得z=,∴|z|=.故答案为:1+i;.12.已知二项式的展开式中含x2的项的系数为15,则a=1,展开式中各项系数和等于64.【解答】解:二项式的展开式的通项公式为T r+1=•a r•x6﹣2r,令6﹣2r=2 求得r=2,故展开式中含x2的项的系数为•a2=15,则a=1.再令x=1,可得展开式中各项系数和等于(1+1)6=64,故答案为:1;64.13.在△ABC中,∠BAC的平分线与BC边交于点D,sin C=2sin B,则=2;若AD =AC=1,则BC=.【解答】解:①如图所示,△ABC中,∠BAC的平分线与BC边交于点D,sin C=2sin B,所以c=2b,所以===2;②由AD=AC=1,所以AB=2AC=2,设DC=x,则BD=2x,由余弦定理得cos∠BAD===,cos∠CAD===,又∠BAD=∠CAD,所以=,解得x=;所以BC=3x=.故答案为:2,.14.已知函数,则f[f(2019)]=0;若关于x的方程f(x+a)=0在(﹣∞,0)内有唯一实根,则实数a的取值范围是[﹣1,].【解答】解:∵函数,∴f(2019)=cos2019π=cosπ=﹣1,f[f(2019)]=f(﹣1)=1﹣(﹣1)2=0.作出函数的图象,如下图:设f(x)与x轴从左到右的两个交点分别为A(﹣1,0),B(,0),f(x+a)与f(x)的图象是平移关系,∵关于x的方程f(x+a)=0在(﹣∞,0)内有唯一实根,∴结合图形,得实数a的取值范围是(﹣1,].故答案为:0,(﹣1,].15.杭州亚运会启动志愿者招募工作,甲、乙等5人报名参加了A,B,C三个项目的志愿者工作,因工作需要,每个项目仅需1名志愿者.若甲不能参加A,B项目,乙不能参加B,C项目,那么共有21种不同的选拔志愿者的方案.(用数字作答)【解答】解:若甲,乙都参加,则甲只能参加C项目,乙只能参见A项目,B项目有3种方法,若甲参加,乙不参加,则甲只能参加C项目,A,B项目,有A32=6种方法,若甲参加,乙不参加,则乙只能参加A项目,B,C项目,有A32=6种方法,若甲不参加,乙不参加,有A33=6种方法,根据分类计数原理,共有3+6+6+6=21种.故答案为:21.16.已知函数f(x)=x3﹣9x,g(x)=3x2+a(a∈R).若方程f(x)=g(x)有三个不同的实数解x1,x2,x3,且它们可以构成等差数列,则a=﹣11.【解答】解:方程f(x)=g(x)即为x3﹣3x2﹣9x=a,依题意,函数h(x)=x3﹣3x2﹣9x与常函数y=a由三个不同的实数根x1,x2,x3,不妨设x1<x2<x3,由x1,x2,x3构成等差数列可知,函数h(x)关于(x2,h(x2))中心对称,而三次函数的对称中心点就是二阶导函数的零点,且h′(x)=3x2﹣6x﹣9,h''(x)=6x﹣6,令h''(x)=6x﹣6=0,解得x=1,即x2=1,故函数h(x)的对称中心即为(1,﹣11),则a=﹣11.故答案为:﹣11.17.在平面凸四边形ABCD中,AB=2,点M,N分别是边AD,BC的中点,且,若,则=﹣2.【解答】解:取BD的中点O,连接OM,ON,可得,平方可得==,即有,,即有•()=()•()=()=(4﹣)=,解得,所以==,故答案为:﹣2.三、解答题(5题,共74分)18.已知函数(x∈R).(1)求f(x)的最小正周期;(2)求f(x)在区间上的值域.【解答】解:(1)函数=sin2x﹣=sin2x﹣cos2x+sin x cos x=sin2x﹣cos2x=sin(2x﹣),∴f(x)的最小正周期为=π.(2)在区间上,2x﹣∈[﹣,],故当2x﹣=﹣时,函数f(x)取得最小值为﹣,当2x﹣=时,函数f(x)取得最大值为,故f(x)的值域为[﹣,].19.已知函数f(x)=x2+k|x﹣1|﹣2.(1)当k=1时,求函数f(x)的单调递增区间.(2)若k≤﹣2,试判断方程f(x)=﹣1的根的个数.【解答】解:(1)k=1时,f(x)=x2+|x﹣1|﹣2=,当x≥1时,f(x)=(x+)2﹣,此时函数在[1,+∞)上单调递增;当x<1时,f(x)=(x﹣)2﹣,此时函数在(,1)上单调递增,综上函数f(x)的单调递增区间是(,+∞);(2)当x≥1时,则x2+k(x﹣1)﹣2=﹣1,即(x﹣1)(x+1+k)=0,即x=﹣1﹣k,或x=1;当x<1时,则x2﹣k(x﹣1)﹣2=﹣1,即(x﹣1)(x+1﹣k)=0,即x=k﹣1,故当k<﹣2,﹣1﹣k>1,k﹣1<1,则方程有3个不等实数根;当k=﹣2时,﹣1﹣k=1,k﹣1=﹣3,则方程有2个不等实数根.20.如图,在△ABC中,,,P为CD上一点,且满足,若△ABC的面积为.(1)求m的值;(2)求的最小值.【解答】解:(1)设||=c,||=b,所以S△ABC=bc sin=2,解得bc=8,由=m+=m+,且C,P,D三点共线,所以m+=1,解得m=;(2)由(1)可知,所以||2=()2=因为=bc cos=﹣4,所以||2=≥2•﹣=,故||≥,当且仅当b=2,c=时取得等号,综上||的最小值为.21.设公差不为0的等差数列{a n}的前n项和为S n,等比数列{b n}的前n项和为T n,若a2是a1与a4的等比中项,a6=12,a1b1=a2b2=1.(1)求a n,S n与T n;(2)若,求证:.【解答】(1)解:由题意得,,即,得a1=d(d ≠0),由a6=12,得a1=d=2.∴a n=a1+(n﹣1)d=2+2(n﹣1)=2n,,由a1b1=a2b2=1,得,,∴;(2)证明:∵,由0<<1恒成立,∴c n<<=,∴c1+c2+…+c n<.22.设函数f(x)=e x+ax,a∈R.(1)若f(x)有两个零点,求a的取值范围;(2)若对任意x∈[0,+∞)均有2f(x)+3≥x2+a2,求a的取值范围.【解答】解:(1)f′(x)=e x+a,①当a≥0时,f′(x)>0,则f(x)在R上单调递增,不满足题意;②当a<0时,令f′(x)=0,解得x=ln(﹣a),则f(x)在(﹣∞,ln(﹣a))上单调递减,在(ln(﹣a),+∞)上单调递增,要使f(x)有两个零点,只需f(ln(﹣a))<0,解得a<﹣e;(2)令g(x)=2f(x)+3﹣x2﹣a2=2e x﹣(x﹣a)2+3,x≥0,则g′(x)=2(e x﹣x+a),又令h(x)=2(e x﹣x+a),则h′(x)=2(e x﹣1)≥0,所以h(x)在[0,+∞)上单调递增,且h(0)=2(a+1),①当a≥﹣1时,g′(x)≥0恒成立,即函数g(x)在[0,+∞)上单调递增,从而必须满足g(0)=5﹣a2≥0,解得﹣≤a≤,又因为a≥﹣1,所以﹣1≤a≤;②当a<﹣1时,则存在x0>0,使h(x0)=0且x∈(0,x0)时,h(x)<0,即g′(x)<0,即g(x)单调递减,x∈(x0,+∞)时,h(x)>0,即g′(x)>0,即g(x)单调递增,所以g(x)最小值为g(x0)=≥0,又h(x0)=2()=0,从而≥0,解得0<x0≤ln3,由=x0﹣a,则a=x0﹣,令M(x)=x﹣e x,0<x≤ln3,则M′(x)=1﹣e x<0,所以M(x)在(0,ln3上单调递减,则M(x)≥M(ln3)=ln3﹣3,又M(x)<M(0)=﹣1,故ln3﹣3≤a<﹣1,综上,ln3﹣3≤a≤.。
浙江省杭州市19-20学年高三上学期期末数学试卷 (有解析)

浙江省杭州市19-20学年高三上学期期末数学试卷一、选择题(本大题共10小题,共40.0分)1.已知集合A={1,2,3},B={x|−1<x<3,x∈Z},则A∩B等于()A. {1}B. {1,2}C. {0,1,2,3,}D. {1,2,3}2.双曲线x22−y2=−1的离心率为()A. √33B. √62C. √3D. 323.“a⃗⋅b⃗ ≥0”是“a⃗与b⃗ 的夹角为锐角”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件4.已知实数x,y满足{y≥0 x−y≥1x+2y≤4 , 则该不等式组所表示的平面区域的面积为().A. 12B. 32C. 2D. 35.已知正实数x,y满足(x−1)(y+1)=4,则x+y的最小值为______ .A. 1B. 1C. 1D. 16.随机变量ξ的取值为0,1,2,若P(ξ=0)=15,期望E(ξ)=1,则方差D(ξ)=()A. 15B. 25C. √55D. 2√557.已知函数f(x)=13ax3+12ax2+x(a∈R),下列选项中不可能是函数f(x)图象的是()A. B.C. D.8. 已知函数f(x)={2x ,x <0x −a,x ≥0,以下说法正确的是( )A. ∀a ∈R ,函数f(x)在定义域上单调递增B. ∀a ∈R ,函数f(x)存在零点C. ∃a ∈R ,函数f(x)有最大值D. ∃a ∈R ,函数f(x)没有最小值9. 已知抛物线y 2=2px(p >0)与椭圆x 2a 2+y 2b 2=1(a >b >0)有相同的焦点F ,点A 是两曲线的一个公共点,且AF ⊥x 轴,则椭圆的离心率为( )A. √3−1B. √2−1C. √5−12 D. 2√2−1210. 已知在数列{a n }中,a 1=2,a 2=5,且a n+2=a n+1+a n ,则a 5=( )A. 13B. 15C. 17D. 19二、填空题(本大题共7小题,共36.0分)11. 已知复数z =(1+i)(1−i)(i 是虚数单位),则|z|= ______ .12. 已知在(1−2x)n 的展开式中,各项的二项式系数之和是64,则(1+2x)n (1−2x 2)的展开式中,x 4项的系数是__________.13. 已知△ABC 中,∠ABC =45°,AB =√2,BC =3,则sin∠BAC = ______ . 14. 已知函数f (x )={log 2x,x >03x ,x ≤0,且关于x 的方程f (x )+x −a =0有且只有一个实根,则实数a 的取值范围是___________.15. 有11名跳水运动员,其中10米跳台跳水运动员4人,3米跳板跳水运动员5人,还有甲、乙两人两个项目都可参加.现从中选取8人组成跳水队(两个项目各4人),则不同的安排方法共有________种.16. 关于x 的方程x 3−3x 2−a =0有3个不同的实数解,则a 的取值范围是______ . 17. 在△ABC 中,AC =4,M 为AC 的中点,BM =3,则BC ⃗⃗⃗⃗⃗ ⋅BA ⃗⃗⃗⃗⃗ = ______ . 三、解答题(本大题共5小题,共74.0分) 18. 已知函数,其中0<α<π2,且f (0)=√3−1.(Ⅰ)求α的值;(Ⅱ)求f (x )的最小正周期和单调递减区间.19. 已知定义在R 上的函数f(x)满足f(x +2)=f(x),当x ∈[0,2]时,f(x)=(12)|x−m |.(1)求实数m 的值;(2)设g(x)=log 2x ,求证:方程f(x)=g(x)只有一个实数解.20. 在△ABC 中,D 、E 分别为BC 、AC 边上的中点,G 为BE 上一点,且GB =2GE ,设AB ⃗⃗⃗⃗⃗ =a ⃗ ,AC ⃗⃗⃗⃗⃗ =b ⃗ ,试用a⃗ ,b ⃗ 表示AD ⃗⃗⃗⃗⃗⃗ ,AG ⃗⃗⃗⃗⃗ .21. 设{a n }是一个公差为d (d ≠0)的等差数列,它的前10项和S 10=110,且a 22=a 1a 4.(1)证明:a1=d;(2)求公差d的值和数列{a n}的通项公式.22.设函数f(x)=e x+ax,a∈R.(1)若f(x)有两个零点,求实数a的取值范围;(2)若对任意的x∈[0,+∞)均有2f(x)+3≥x2+a2,求实数a的取值范围.-------- 答案与解析 --------1.答案:B解析:解:集合A={1,2,3},B={x|−1<x<3,x∈Z}={0,1,2},则A∩B={1,2}.故选:B.化简集合B,根据交集的定义写出A∩B.本题考查了交集的定义与运算问题,是基础题.2.答案:C解析:解:双曲线x22−y2=−1可得y2−x22=1,∴a2=1,b2=2.∴离心率e=ca =√c2a2=√1+b2a2=√3.故选:C.由双曲线x22−y2=−1可得y2−x22=1,可得a2=1,b2=2.利用离心率e=√1+b2a2即可得出.本题考查了双曲线的标准方程及其性质,属于基础题.3.答案:B解析:解:a⃗与b⃗ 的夹角为锐角⇒a⃗⋅b⃗ ≥0,反之不成立,夹角可能为0.∴“a⃗⋅b⃗ ≥0”是“a⃗与b⃗ 的夹角为锐角”的必要不充分条件.故选:B.a⃗与b⃗ 的夹角为锐角⇒a⃗⋅b⃗ ≥0,反之不成立,夹角可能为0.即可判断出结论.本题考查了向量的夹角、数量积运算性质、简易逻辑,考查了推理能力与计算能力,属于基础题.4.答案:B解析:本题考查二元一次不等式组表示平面区域,作出不等式组对应的平面区域,根据对应图形的面积公式即可得到结果.解:作出不等式组对应的平面区域如图:则B(1,0),C(4,0),A(2,1),因此不等式组所表示的平面区域的面积为12×(4−1)×1=32.故选B.5.答案:C解析:解:正实数x,y满足(x−1)(y+1)=4,化为y=5−xx−1>0,解得1<x<5.∴x+y=x+5−xx−1=x−1+4x−1≥2√(x−1)⋅4x−1=4,当且仅当x=3(y=1)时取等号.∴x+y的最小值为4.故答案为:4.正实数x,y满足(x−1)(y+1)=4,可化为y=5−xx−1>0,解得x的取值范围.再利用基本不等式即可得出.本题考查了基本不等式的性质、一元二次不等式的解法,属于基础题.6.答案:B解析:本题考查随机变量的期望与方差的计算,属于较易题.先利用期望E(ξ)=1求出P(ξ=1),P(ξ=2),然后利用方差公式求解即可.解:设P(ξ=1)=m,P(ξ=2)=45−m,因为E(ξ)=1×m+2×(45−m)=1,所以m=35,D(ξ)=15×(0−1)2+35×(1−1)2+15×(2−1)2=25.故选B.7.答案:D解析:本题考查利用导数研究函数的单调性及函数图象,属于基础题.求出函数f(x)的导数,通过讨论a的范围,判断函数的单调性,从而求出答案即可.解:因为f(x)=13ax3+12ax2+x(a∈R),f′(x)=ax2+ax+1,Δ=a2−4a,当0<a<4时,f′(x)=0无实数根,f′(x)>0,f(x)递增,故A可能;当a>4或a<0时,f′(x)=0有2个实数根,当a<0时,f(x)先递减再递增再递减,当a>4时,f(x)先递增再递减再递增,故B、C可能,故选D.8.答案:D解析:解:对于A,当a=1时,f(0)=−1<12=f(−1),函数f(x)在定义域上不是单调递增函数,故A错误;对于B,当a<0时,在区间[0,+∞)上,f(x)=x−a>0恒成立,在区间(−∞,0)上,f(x)=2x>0恒成立,所以函数f(x)在定义域内不存在零点,故B错误;对于C,当x≥0时,f(x)=x−a,无论a取何值,函数无最大值,故C错误;对于D,∃a=1∈R,使得函数f(x)的值域为(0,+∞),没有最小值,故D正确.故选:D.A,当a=1时,易求f(0)=−1<12=f(−1),可判断A的正误;B,当a<0时,利用指数函数与二次函数的性质可知f(x)>0恒成立,从而可判断B的正误;C,当x≥0时,f(x)=x−a,无论a取何值,函数无最大值,据此可判断C的正误;D,∃a=1∈R,使得函数f(x)的值域为(0,+∞),没有最小值,可判断D的正误.本题考查命题的真假判断与应用,考查分段函数的单调性质、最值应用,属于中档题.9.答案:B解析:解:如图所示,∵AF⊥x轴,∴p2=c,把x=p2代入抛物线方程可得:y2=2p⋅p2,解得y=p.∴A(p2,p),即A(c,2c).代入椭圆的方程可得:c2a2+4c2b2=1,又b2=a2−c2,∴c2a2+4c2a2−c2=1,化为e4−6e2+1=0,0<e<1.解得e2=3−2√2,∴e=√2−1.故选:B.如图所示,由AF⊥x轴,可得p2=c,分别代入椭圆与抛物线标准方程可得:A(p2,p),即A(c,2c).代入椭圆的方程可得:c2a2+4c2b2=1,又b2=a2−c2,利用离心率计算公式即可得出.本题考查了椭圆与抛物线的标准方程及其性质、一元二次方程的解法,考查了推理能力与计算能力,属于中档题.10.答案:D解析:本题考查数列的递推式的运用,考查运算能力,属于基础题.由a1=2,a2=5,且a n+2=a n+1+a n,分别求得a3,a4,a5.解:在数列{a n}中,a1=2,a2=5,且a n+2=a n+1+a n,可得a3=a1+a2=2+5=7,a4=a3+a2=7+5=12,a5=a4+a3=12+7=19,故选:D.11.答案:2解析:解:∵z=(1+i)(1−i)=1−i2=2,∴|z|=2.故答案为:2.直接利用复数代数形式的乘法运算化简,然后求|z|.本题考查复数代数形式的乘法运算,是基础的计算题.12.答案:120解析:2n=64,所以n=6.T r+1=C6r(2x)r=C6r2r⋅x r,令r=4,则T5=C6424⋅x4=240x4,令r=2,则T3=C6222x2=60x2,x4项为240x4×1−60x2×2x2=120x4,故x4项的系数为120.13.答案:3√1010解析:解:∵∠ABC=45°,AB=√2,BC=3,∴由余弦定理可得:AC2=AB2+BC2−2AB⋅BC⋅cos∠ABC=2+9−2×√2×3×sin45°=5,可得AC=√5,∴由正弦定理可得:sin∠BAC=BC⋅sin∠ABCAC =√5=3√1010.故答案为:3√1010.由已知利用余弦定理可求得AC的值,由正弦定理可求得sin∠BAC的值,从而得解.本题主要考查了正弦定理,余弦定理在解三角形中的应用,属于基础题.14.答案:(1,+∞)解析:本题主要考查方程根的个数的应用,利用方程和函数之间的关系转化为两个图象的交点个数问题是解决本题的关键.利用数形结合的数学思想.解:由f(x)+x−a=0得f(x)=−x+a,∵函数f(x)={log2x,x>0 3x,x≤0,∴作出函数f(x)和y=−x+a的图象:则由图象可知,要使方程f(x)+x−a=0有且只有一个实根,则a>1.故答案为(1,+∞).15.答案:185解析:本题考查排列、组合的应用,涉及分类计数原理的应用,属于中档题.根据题意,设只能参加10米跳台跳水运动员4人组成集合A,则集合A中最少有2人参加、最多4人参加跳水队,据此分3种情况讨论,由加法原理分析可得答案.解:根据题意,设只能参加10米跳台跳水运动员4人组成集合A,则集合A中最少有2人参加、最多4人参加跳水队,分3种情况讨论:①,从集合A中选取4人,参加跳水队,有C44C74=35种情况,②,从集合A中选取3人,参加跳水队,有C43C21C64=120种情况,③,从集合A中选取2人,参加跳水队,有C42C22C54=30种情况,则有35+120+30=185种情况;故答案为185.16.答案:(−4,0)解析:解:由x 3−3x 2−a =0,得x 3−3x 2=a .令f(x)=x 3−3x 2,解x 3−3x 2=0,得x 1=x 2=0,或x 3=3,即函数f(x)有一个零点3,和一个二重零点0.又f′(x)=3x 2−6x =3x(x −2),令f′(x)=0,则x =0或2.列表如下:由表格可以看出:函数f(x)在区间(−∞,0)上单调递增,在区间(0,2)上单调递减,在区间(2,+∞)上单调递增. 在x =0时取得极大值,且f(0)=0;在x =2时取得极小值,且f(2)=−4.综上可画出函数y =f(x)的图象,如下图:要使函数y =f(x)与y =a 由三个不同的交点,则必须满足−4<x <0.此时满足 关于x 的方程x 3−3x 2−a =0有3个不同的实数解.故答案为(−4,0).分析:关于x 的方程x 3−3x 2−a =0有3个不同的实数解⇔函数y =x 3−3x 2与y =a 由三个不同的交点,利用导数先得出函数y =f(x)的单调性并画出图象,进而即可得出答案.把方程的解得问题转化问题函数的交点问题和熟练应用导数得到函数的单调性并画出图象是解题的关键.17.答案:5解析:解:∵M 为AC 的中点,∴BA ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ =2BM⃗⃗⃗⃗⃗⃗ , ∴BA ⃗⃗⃗⃗⃗ 2+BC ⃗⃗⃗⃗⃗ 2+2BA ⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ =4BM ⃗⃗⃗⃗⃗⃗ 2=36,①∵BA ⃗⃗⃗⃗⃗ −BC ⃗⃗⃗⃗⃗ =CA ⃗⃗⃗⃗⃗ ,∴BA ⃗⃗⃗⃗⃗ 2+BC ⃗⃗⃗⃗⃗ 2−2BA ⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ =CA⃗⃗⃗⃗⃗ 2=16,② ①−②得:4BA ⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ =20,∴BA ⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ =5.故答案为:5.由题意可得BA ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ =2BM ⃗⃗⃗⃗⃗⃗ ,BA ⃗⃗⃗⃗⃗ −BC ⃗⃗⃗⃗⃗ =CA⃗⃗⃗⃗⃗ ,对两式平方相减即可得出答案. 本题考查了平面向量线性运算的几何意义,平面向量的数量积运算,属于在中档题. 18.答案:解:(Ⅰ)由已可得,f(0)=√3cos0−2sin 2(0−α)=√3−2sin 2α=√3−1.其中0<α<π2,∴sinα=√22,∴α=π4. (Ⅱ)由(Ⅰ)可得,函数f(x)=√3cos2x −2sin 2(x −α)=√3cos2x −2sin 2(x −π4)=√3cos2x −2⋅1−cos(2x−π2)2=√3cos2x +sin2x −1=2sin(2x +π3)−1, ∴函数f(x)最小正周期为2π2=π.令2kπ+π2≤2x +π3≤2kπ+3π2,求得kπ+π12≤x ≤kπ+7π12, 可得函数的减区间为[kπ+π12,kπ+7π12],k ∈Z .解析:本题主要考查三角恒等变换,正弦函数的周期性和单调性,属于中档题.(Ⅰ)根据函数的解析式以及f(0)=√3−1,求得α的值.(Ⅱ)由(Ⅰ)可得f(x)的解析式,再利用正弦函数的周期性和单调性,得出结论.19.答案:解:(1)由x ∈[0,2]时,f (x +2)=f (x ),令x =0有f (2)=f (0),得|2−m |=|m |,所以m =1.(2)由(1)可知f(x)=(12)|x−1|,x ∈[0,2], 所以当x ∈[0,2]时,f (x )的值域为[12,1],又f (x )是周期为2的周期函数,故f (x )的值域为[12,1],当x >2时,f (x )≤1<g (x ),故此时方程无解;当0<x ≤1时,g (x )≤0<f (x ),此时方程无解;当x =2时,f (x )≠g (x ),不是方程的解;当1<x <2时,记F(x)=f(x)−g(x)=(12)x−1−log 2x ,因为F (x )在x ∈[1,2]上的函数图象连续并单调递减且F(1)⋅F(2)=−12<0,所以函数F (x )在(1,2)内有唯一的零点,即方程f (x )=g (x )在x ∈(1,2)上有唯一的实数解.综上可知,方程f (x )=g (x )有唯一的实数解.解析:本题主要考查复合函数的知识,关键是知道复合函数的特点.(1)令x =0有f (2)=f (0),代入f(x)=(12)|x−1|即可求出m =1. (2)本题利用函数的零点与方程根的关系,把判断方程f (x )=g (x )实数解的个数,转化为求函数F(x)=f(x)−g(x)=(12)x−1−log 2x 的零点个数,由(1)可知f (x )是周期为2的周期函数,再利用函数F (x )的单调性从而确定零点个数,即解的个数.20.答案:解:AD ⃗⃗⃗⃗⃗⃗ =12(AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ )=12a →+12b →. AG ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BG ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +23BE → =AB ⃗⃗⃗⃗⃗ +13(BA ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ ) =23AB →+13(AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ ) =13AB →+13AC → =13a →+13b →.解析:利用平面向量的加减运算及平面向量基本定理表示出向量即可.21.答案:证明:(1)因a 22=a 1a 4 , 而{a n }是等差数列,有a 2=a 1+d ,a 4=a 1+3d ,于是(a 1+d)2=a 1(a 1+3d),即a12+2a1d+d2=a12+3a1d,化简得a1=d;d,得到10a1+45d=110,(2)解:由条件S10=110和S10=10a1+10×92由(1),a1=d,代入上式得55d=110,故d=2,a n=a1+(n−1)d=2n,因此,数列{a n}的通项公式为a n=2n.解析:本题主要考查等差数列的应用,熟悉等差数列和等比数列的性质是解答本题的关键,属于中档题.(1)由已知a22=a1⋅a4,代入等差数列的通项可转化为(a1+d)2=a1⋅(a1+3d),整理可得.d,联立方程可求a1,d及a n(2)结合(1)且有s10=10a1+10×9222.答案:解:(1)f′(x)=e x+a,①当a≥0时,f′(x)>0,则f(x)在R上单调递增,不满足题意;②当a<0时,令f′(x)=0,解得x=ln(−a),当x<ln(−a)时f′(x)<0,当x>ln(−a)时f′(x)>0,则f(x)在(−∞,ln(−a))上单调递减,在(ln(−a),+∞)上单调递增,要使f(x)有两个零点,只需f(ln(−a))<0,解得a<−e;(2)设F(x)=2f(x)+3−x2−a2=2e x−x2+2ax−a2+3,x∈[0,+∞)F′(x)=2e x−2x+2a,F′′(x)=2e x−2,∵F′′(x)≥0,∴F′(x)在上递增,F′(0)=2a+2,当2a+2≥0时,即a≥−1,此时F′(x)≥0,∴F(x)在上递增,∴F(x)min=F(0)=5−a2≥0,解得−1≤a≤√5;当2+2a<0时,即a<−1,F(x)在(0,x0)上递减,在(x0,+∞)上递增,(x0≥0)∴F(x)min=F(x0)=2e x0−2x0+2a=0,即2e x0=2x0−2a,∴F(x0)=2x0−2a−x02+2ax0−a2+3=−x02+2(a+1)x0+(a+3)(a−1)≥0,∴a−1≤x0≤a+3,又a<−1,x0≥0,∴F′(a+3)=2e a+3−2(a+3)+2a≥0,∴e a+3≥3,解得ln3−3≤a<−1,综上所述,ln3−3≤a≤√5,即实数a的取值范围为[ln3−3,√5].解析:本题考查函数导数的综合应用,属于较难题.(1)求出F(x)的导数,对a进行分类讨论,即可得出结论;(2)设F(x)=2f(x)+3−x2−a2=2e x−x2+2ax−a2+3,x∈[0,+∞),求得F′(0)=2a+2,接下来分a≥−1和a<−1两种情况进行讨论,利用导数分别求出F(x)min,再利用F(x)min≥0,综合考虑即可求得实数a的取值范围.。
2019-2020学年人教A版浙江省杭州市高三第一学期期末数学试卷 含解析

2019-2020学年高三第一学期期末数学试卷一、选择题1.设集合A={x|x>2},B={x|(x﹣1)(x﹣3)<0},则A∩B=()A.{x|x>1} B.{x|2<x<3} C.{x|1<x<3} D.{x|x>2或x<1} 2.双曲线的离心率等于()A.B.C.D.3.已知非零向量,,则“•>0”是“向量,夹角为锐角”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.若实数x,y满足不等式组,则()A.y≥1 B.x≥2 C.x+2y≥0 D.2x﹣y+1≥0 5.设正实数x,y满足e x•e y=(e x)y,则当x+y取得最小值时,x=()A.1 B.2 C.3 D.46.已知随机变量ξ的取值为i(i=0,1,2).若,E(ξ)=1,则()A.P(ξ=1)<D(ξ)B.P(ξ=1)=D(ξ)C.P(ξ=1)>D(ξ)D.7.下列不可能是函数f(x)=x a(2x+2﹣x)(a∈Z)的图象的是()A.B.C.D.8.若函数y=f(x),y=g(x)定义域为R,且都不恒为零,则()A.若y=f(g(x))为周期函数,则y=g(x)为周期函数B.若y=f(g(x))为偶函数,则y=g(x)为偶函数C.若y=f(x),y=g(x)均为单调递增函数,则y=f(x)•g(x)为单调递增函数D.若y=f(x),y=g(x)均为奇函数,则y=f(g(x))为奇函数9.已知椭圆(a>b>0)的左右焦点分别为F1,F2,抛物线y2=2px(p>0)的焦点为F2.设两曲线的一个交点为P,若,则椭圆的离心率为()A.B.C.D.10.已知非常数数列{a n}满足(n∈N*,α,β为非零常数).若α+β≠0,则()A.存在α,β,对任意a1,a2,都有数列{a n}为等比数列B.存在α,β,对任意a1,a2,都有数列{a n}为等差数列C.存在a1,a2,对任意α,β,都有数列{a n}为等差数列D.存在a1,a2,对任意α,β,都有数列{a n}为等比数列二、填空题11.设复数z满足(1+i)•z=2i(i为虚数单位),则z=,|z|=.12.已知二项式的展开式中含x2的项的系数为15,则a=,展开式中各项系数和等于.13.在△ABC中,∠BAC的平分线与BC边交于点D,sin C=2sin B,则=;若AD =AC=1,则BC=.14.已知函数,则f[f(2019)]=;若关于x的方程f(x+a)=0在(﹣∞,0)内有唯一实根,则实数a的取值范围是.15.杭州亚运会启动志愿者招募工作,甲、乙等5人报名参加了A,B,C三个项目的志愿者工作,因工作需要,每个项目仅需1名志愿者.若甲不能参加A,B项目,乙不能参加B,C项目,那么共有种不同的选拔志愿者的方案.(用数字作答)16.已知函数f(x)=x3﹣9x,g(x)=3x2+a(a∈R).若方程f(x)=g(x)有三个不同的实数解x1,x2,x3,且它们可以构成等差数列,则a=.17.在平面凸四边形ABCD中,AB=2,点M,N分别是边AD,BC的中点,且,若,则=.三、解答题18.已知函数(x∈R).(1)求f(x)的最小正周期;(2)求f(x)在区间上的值域.19.已知函数f(x)=x2+k|x﹣1|﹣2.(1)当k=1时,求函数f(x)的单调递增区间.(2)若k≤﹣2,试判断方程f(x)=﹣1的根的个数.20.如图,在△ABC中,,,P为CD上一点,且满足,若△ABC的面积为.(1)求m的值;(2)求的最小值.21.设公差不为0的等差数列{a n}的前n项和为S n,等比数列{b n}的前n项和为T n,若a2是a1与a4的等比中项,a6=12,a1b1=a2b2=1.(1)求a n,S n与T n;(2)若,求证:.22.设函数f(x)=e x+ax,a∈R.(1)若f(x)有两个零点,求a的取值范围;(2)若对任意x∈[0,+∞)均有2f(x)+3≥x2+a2,求a的取值范围.参考答案一、选择题1.设集合A={x|x>2},B={x|(x﹣1)(x﹣3)<0},则A∩B=()A.{x|x>1} B.{x|2<x<3} C.{x|1<x<3} D.{x|x>2或x<1} 【分析】化简集合B,根据交集的定义写出A∩B.解:集合A={x|x>2},B={x|(x﹣1)(x﹣3)<0}={x|1<x<3},则A∩B={x|2<x<3}.故选:B.2.双曲线的离心率等于()A.B.C.D.【分析】由双曲线=1可得a2=4,b2=1,可得a=2,c=,利用离心率计算公式即可得出.解:由双曲线=1可得a2=4,b2=1,∴a=2,c==.∴双曲线的离心率e==.故选:A.3.已知非零向量,,则“•>0”是“向量,夹角为锐角”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【分析】与都是非零向量,则“向量与夹角为锐角”⇒“”,反之不成立,即可判断出结论.解:与都是非零向量,则“向量与夹角为锐角”⇒“”,反之不成立,可能同向共线.因此“”是“向量与夹角为锐角”的必要不充分条件.故选:B.4.若实数x,y满足不等式组,则()A.y≥1 B.x≥2 C.x+2y≥0 D.2x﹣y+1≥0 【分析】作出不等式组对应的平面区域,结合图象即可求解.解:作出不等式组对应的平面区域如图:;由图可得A,B均不成立;对于C:因为直线x+2y=0过平面区域,红线所表,故函数值有正有负,不成立.故只有答案D成立.故选:D.5.设正实数x,y满足e x•e y=(e x)y,则当x+y取得最小值时,x=()A.1 B.2 C.3 D.4【分析】根据e x•e y=(e x)y,可得x+y=xy,再利用基本不等式可得,从而得到,然后确定当x+y取得最小值时x的值即可.解:∵正实数x,y满足e x•e y=(e x)y,∴x+y=xy,又∵,∴,∴xy≥4,∴x+y≥4,当且仅当x=y=2时取等号,∴当x+y取得最小值时,x=2.故选:B.6.已知随机变量ξ的取值为i(i=0,1,2).若,E(ξ)=1,则()A.P(ξ=1)<D(ξ)B.P(ξ=1)=D(ξ)C.P(ξ=1)>D(ξ)D.【分析】推导出P(ξ=1)+2P(ξ=2)=1,P(ξ=1)+P(ξ=2)=从而P(ξ=1)=,P(ξ=2)=,由此推导出P(ξ=1)>D(ξ).解:∵随机变量ξ的取值为i(i=0,1,2).,E(ξ)=1,∴P(ξ=1)+2P(ξ=2)=1,P(ξ=1)+P(ξ=2)=,∴P(ξ=1)=,P(ξ=2)=,∴D(ξ)=+=.∴P(ξ=1)>D(ξ).故选:C.7.下列不可能是函数f(x)=x a(2x+2﹣x)(a∈Z)的图象的是()A.B.C.D.【分析】根据题意,分a=0、a>0和a<0三种情况讨论,分析函数f(x)的定义域、奇偶性以及单调性,综合即可得答案.解:根据题意,函数f(x)=x a(2x+2﹣x)(a∈Z),当a=0,f(x)=(e x+e﹣x),(x≠0)其定义域为{x|x≠0},f(x)为偶函数,不经过原点且在第一象限为增函数,A选项符合;当a为正整数时,f(x)=x a(e x+e﹣x),其定义域为R,图象经过原点,没有选项符合;当a为负整数时,f(x)=x a(e x+e﹣x),其定义域为{x|x≠0},其导数f′(x)=ax a ﹣1(e x+e﹣x)+x a(e x﹣e﹣x),当x>0时,f′(x)=x a﹣1[a(e x+e﹣x)+x(e x﹣e﹣x)]=x a﹣1[(a+x)e x+(a﹣x)e﹣x],则f′(x)先负后正,故f(x)不经过原点且在第一象限先减后增,BD符合;故选:C.8.若函数y=f(x),y=g(x)定义域为R,且都不恒为零,则()A.若y=f(g(x))为周期函数,则y=g(x)为周期函数B.若y=f(g(x))为偶函数,则y=g(x)为偶函数C.若y=f(x),y=g(x)均为单调递增函数,则y=f(x)•g(x)为单调递增函数D.若y=f(x),y=g(x)均为奇函数,则y=f(g(x))为奇函数【分析】举例说明A,B,C错误;利用函数奇偶性的定义证明D正确.解:令f(x)=sin x,g(x)=2x,函数sin2x是周期函数,但y=g(x)不是周期函数,故A错误;令f(x)=x2+1,g(x)=2x,则f(g(x))=4x2+1为偶函数,但y=g(x)不是偶函数,故B错误;令f(x)=x,g(x)=x3,y=f(x),y=g(x)均为R上的单调递增函数,但y=f (x)•g(x)=x4在R上不单调,故C错误;由y=f(x),y=g(x)均为奇函数,则f(﹣x)=﹣f(x),g(﹣x)=﹣g(x),且两函数定义域均关于原点对称,则f(g(﹣x))=f(﹣g(x))=﹣f(g(x)),且定义域关于原点对称,函数y =f(g(x))为奇函数,故D正确.故选:D.9.已知椭圆(a>b>0)的左右焦点分别为F1,F2,抛物线y2=2px(p>0)的焦点为F2.设两曲线的一个交点为P,若,则椭圆的离心率为()A.B.C.D.【分析】设P(x0,y0),由,p=2c,可得x0=,由椭圆、抛物线焦半径公式可得a﹣ex0=x,整理可得:a﹣e=⇒e=即可.解:设P(x0,y0),,.∵,则2c(c﹣x0)=…①,∵抛物线y2=2px(p>0)的焦点为F2.∴p=2c…②,由①②可得x0=,由椭圆、抛物线焦半径公式可得a﹣ex0=x.整理可得:a﹣e=⇒2e2+5e﹣3=0.解得e=(负值舍).故选:A.10.已知非常数数列{a n}满足(n∈N*,α,β为非零常数).若α+β≠0,则()A.存在α,β,对任意a1,a2,都有数列{a n}为等比数列B.存在α,β,对任意a1,a2,都有数列{a n}为等差数列C.存在a1,a2,对任意α,β,都有数列{a n}为等差数列D.存在a1,a2,对任意α,β,都有数列{a n}为等比数列【分析】本题先将递推式进行变形,然后令t=,根据题意有常数t≠0,且t≠1.将递推式通过换元法简化为a n+2=ta n+1+(1﹣t)a n.两边同时减去a n+1,可得a n+2﹣a n+1=(t ﹣1)(a n+1﹣a n).根据此时逐步递推可得a n+1﹣a n=(t﹣1)(a n﹣a n﹣1)=(t﹣1)2(a n﹣1﹣a n﹣2)=…=(t﹣1)n﹣1(a2﹣a1).根据题意有a2﹣a1≠0,则当t﹣1=1,即t=2,即=2,即α+2β=0时,可得到数列{a n}是一个等差数列.由此可得正确选项.解:由题意,得=a n+1+a n.令t=,则=1﹣t,∵α,β为非零常数且α+β≠0,∴t,1﹣t均为非零常数,∴常数t≠0,且t≠1.故a n+2=ta n+1+(1﹣t)a n.两边同时减去a n+1,可得a n+2﹣a n+1=ta n+1﹣a n+1+(1﹣t)a n=(t﹣1)(a n+1﹣a n).∵常数t≠0,且t≠1.∴t﹣1≠﹣1,且t﹣1≠0.∴a n+1﹣a n=(t﹣1)(a n﹣a n﹣1)=(t﹣1)2(a n﹣1﹣a n﹣2)=…=(t﹣1)n﹣1(a2﹣a1).∵数列{a n}是非常数数列,∴a2﹣a1≠0,则当t﹣1=1,即t=2,即=2,即α+2β=0时,a n+1﹣a n=a n﹣a n﹣1=a n﹣1﹣a n﹣2=…=a2﹣a1.此时数列{a n}很明显是一个等差数列.∴存在α,β,只要满足α,β为非零,且α+2β=0时,对任意a1,a2,都有数列{a n}为等差数列.故选:B.二、填空题:单空题每题4分,多空题每题6分,共36分11.设复数z满足(1+i)•z=2i(i为虚数单位),则z=1+i,|z|=.【分析】把已知等式变形,再由复数代数形式的乘除运算化简,然后利用复数模的计算公式求解.解:由(1+i)•z=2i,得z=,∴|z|=.故答案为:1+i;.12.已知二项式的展开式中含x2的项的系数为15,则a= 1 ,展开式中各项系数和等于64 .【分析】由题意利用二项展开式的通项公式,求出a的值,再令x=1,可得展开式中各项系数和.解:二项式的展开式的通项公式为T r+1=•a r•x6﹣2r,令6﹣2r=2 求得r=2,故展开式中含x2的项的系数为•a2=15,则a=1.再令x=1,可得展开式中各项系数和等于(1+1)6=64,故答案为:1;64.13.在△ABC中,∠BAC的平分线与BC边交于点D,sin C=2sin B,则= 2 ;若AD=AC=1,则BC=.【分析】①根据三角形角平分线定理和正弦定理,即可求出的值;②由余弦定理列出方程,即可求得BD、CD和BC的值.解:①如图所示,△ABC中,∠BAC的平分线与BC边交于点D,sin C=2sin B,所以c=2b,所以===2;②由AD=AC=1,所以AB=2AC=2,设DC=x,则BD=2x,由余弦定理得cos∠BAD===,cos∠CAD===,又∠BAD=∠CAD,所以=,解得x=;所以BC=3x=.故答案为:2,.14.已知函数,则f[f(2019)]=0 ;若关于x的方程f(x+a)=0在(﹣∞,0)内有唯一实根,则实数a的取值范围是[﹣1,] .【分析】推导出f(2019)=cos2019π=cosπ=﹣1,从而f[f(2019)]=f(﹣1)=1﹣(﹣1)2=0.作出函数的图象,结合图形,能求出实数a的取值范围.解:∵函数,∴f(2019)=cos2019π=cosπ=﹣1,f[f(2019)]=f(﹣1)=1﹣(﹣1)2=0.作出函数的图象,如下图:设f(x)与x轴从左到右的两个交点分别为A(﹣1,0),B(,0),f(x+a)与f(x)的图象是平移关系,∵关于x的方程f(x+a)=0在(﹣∞,0)内有唯一实根,∴结合图形,得实数a的取值范围是(﹣1,].故答案为:0,(﹣1,].15.杭州亚运会启动志愿者招募工作,甲、乙等5人报名参加了A,B,C三个项目的志愿者工作,因工作需要,每个项目仅需1名志愿者.若甲不能参加A,B项目,乙不能参加B,C项目,那么共有21 种不同的选拔志愿者的方案.(用数字作答)【分析】由题意可以分为四类,每一类分别求解,再根据分类计数原理可得.解:若甲,乙都参加,则甲只能参加C项目,乙只能参见A项目,B项目有3种方法,若甲参加,乙不参加,则甲只能参加C项目,A,B项目,有A32=6种方法,若甲参加,乙不参加,则乙只能参加A项目,B,C项目,有A32=6种方法,若甲不参加,乙不参加,有A33=6种方法,根据分类计数原理,共有3+6+6+6=21种.故答案为:21.16.已知函数f(x)=x3﹣9x,g(x)=3x2+a(a∈R).若方程f(x)=g(x)有三个不同的实数解x1,x2,x3,且它们可以构成等差数列,则a=﹣11 .【分析】问题等价为函数h(x)=x3﹣3x2﹣9x与常函数y=a由三个不同的实数根,依题意,函数h(x)关于(x2,h(x2))中心对称,而利用三次函数的性质可求得x2=1,进而求得a的值.解:方程f(x)=g(x)即为x3﹣3x2﹣9x=a,依题意,函数h(x)=x3﹣3x2﹣9x与常函数y=a由三个不同的实数根x1,x2,x3,不妨设x1<x2<x3,由x1,x2,x3构成等差数列可知,函数h(x)关于(x2,h(x2))中心对称,而三次函数的对称中心点就是二阶导函数的零点,且h′(x)=3x2﹣6x﹣9,h''(x)=6x﹣6,令h''(x)=6x﹣6=0,解得x=1,即x2=1,故函数h(x)的对称中心即为(1,﹣11),则a=﹣11.故答案为:﹣11.17.在平面凸四边形ABCD中,AB=2,点M,N分别是边AD,BC的中点,且,若,则=﹣2 .【分析】取BD的中点O,连接OM,ON,运用向量的中点表示和数量积的性质,以及加减运算,计算可得所求值.解:取BD的中点O,连接OM,ON,可得,平方可得==,即有,,即有•()=()•()=()=(4﹣)=,解得,所以==,故答案为:﹣2.三、解答题:5小题,共74分18.已知函数(x∈R).(1)求f(x)的最小正周期;(2)求f(x)在区间上的值域.【分析】(1)由题意利用三角恒等变换化简函数的解析式,再根据正弦函数的周期性,得出结论.(2)由题意利用正弦函数的定义域和值域,得出结论.解:(1)函数=sin2x﹣=sin2x ﹣cos2x+sin x cos x=sin2x﹣cos2x=sin(2x﹣),∴f(x)的最小正周期为=π.(2)在区间上,2x﹣∈[﹣,],故当2x﹣=﹣时,函数f(x)取得最小值为﹣,当2x﹣=时,函数f(x)取得最大值为,故f(x)的值域为[﹣,].19.已知函数f(x)=x2+k|x﹣1|﹣2.(1)当k=1时,求函数f(x)的单调递增区间.(2)若k≤﹣2,试判断方程f(x)=﹣1的根的个数.【分析】(1)写出k=1时的函数解析式,分别讨论各段的单调增区间即可得f(x)的单调增区间;(2)解出各段上函数的解析式,再结合k的取值范围得到方程根的个数.解:(1)k=1时,f(x)=x2+|x﹣1|﹣2=,当x≥1时,f(x)=(x+)2﹣,此时函数在[1,+∞)上单调递增;当x<1时,f(x)=(x﹣)2﹣,此时函数在(,1)上单调递增,综上函数f(x)的单调递增区间是(,+∞);(2)当x≥1时,则x2+k(x﹣1)﹣2=﹣1,即(x﹣1)(x+1+k)=0,即x=﹣1﹣k,或x=1;当x<1时,则x2﹣k(x﹣1)﹣2=﹣1,即(x﹣1)(x+1﹣k)=0,即x=k﹣1,故当k<﹣2,﹣1﹣k>1,k﹣1<1,则方程有3个不等实数根;当k=﹣2时,﹣1﹣k=1,k﹣1=﹣3,则方程有2个不等实数根.20.如图,在△ABC中,,,P为CD上一点,且满足,若△ABC的面积为.(1)求m的值;(2)求的最小值.【分析】(1)利用面积可得bc=8,利用,可知C、P、D三点共线,即可求出m的值;(2)由(1)可表示出||,利用机泵不等式可得最小值.解:(1)设||=c,||=b,所以S△ABC=bc sin=2,解得bc=8,由=m+=m+,且C,P,D三点共线,所以m+=1,解得m=;(2)由(1)可知,所以||2=()2=因为=bc cos=﹣4,所以||2=≥2•﹣=,故||≥,当且仅当b=2,c=时取得等号,综上||的最小值为.21.设公差不为0的等差数列{a n}的前n项和为S n,等比数列{b n}的前n项和为T n,若a2是a1与a4的等比中项,a6=12,a1b1=a2b2=1.(1)求a n,S n与T n;(2)若,求证:.【分析】(1)由题意得,,代入等差数列的通项公式即可求得首项与公差,则等差数列的通项公式与前n项和可求;(2)由,结合0<<1恒成立,即可得到c n<<=,结合等差数列的前n项和公式即可证明.【解答】(1)解:由题意得,,即,得a1=d(d ≠0),由a6=12,得a1=d=2.∴a n=a1+(n﹣1)d=2+2(n﹣1)=2n,,由a1b1=a2b2=1,得,,∴;(2)证明:∵,由0<<1恒成立,∴c n<<=,∴c1+c2+…+c n<.22.设函数f(x)=e x+ax,a∈R.(1)若f(x)有两个零点,求a的取值范围;(2)若对任意x∈[0,+∞)均有2f(x)+3≥x2+a2,求a的取值范围.【分析】(1)求出导数,分类讨论a的正负即可;(2)表示出g(x)=2f(x)+3﹣x2﹣a2,求出其导数,构造函数,再利用导数判断出g (x)单调区间,进而求出a的取值范围解:(1)f′(x)=e x+a,①当a≥0时,f′(x)>0,则f(x)在R上单调递增,不满足题意;②当a<0时,令f′(x)=0,解得x=ln(﹣a),则f(x)在(﹣∞,ln(﹣a))上单调递减,在(ln(﹣a),+∞)上单调递增,要使f(x)有两个零点,只需f(ln (﹣a))<0,解得a<﹣e;(2)令g(x)=2f(x)+3﹣x2﹣a2=2e x﹣(x﹣a)2+3,x≥0,则g′(x)=2(e x﹣x+a),又令h(x)=2(e x﹣x+a),则h′(x)=2(e x﹣1)≥0,所以h(x)在[0,+∞)上单调递增,且h(0)=2(a+1),①当a≥﹣1时,g′(x)≥0恒成立,即函数g(x)在[0,+∞)上单调递增,从而必须满足g(0)=5﹣a2≥0,解得﹣≤a≤,又因为a≥﹣1,所以﹣1≤a≤;②当a<﹣1时,则存在x0>0,使h(x0)=0且x∈(0,x0)时,h(x)<0,即g′(x)<0,即g(x)单调递减,x∈(x0,+∞)时,h(x)>0,即g′(x)>0,即g(x)单调递增,所以g(x)最小值为g(x0)=≥0,又h(x0)=2()=0,从而≥0,解得0<x0≤ln3,由=x0﹣a,则a=x0﹣,令M(x)=x﹣e x,0<x≤ln3,则M′(x)=1﹣e x<0,所以M(x)在(0,ln3上单调递减,则M(x)≥M(ln3)=ln3﹣3,又M(x)<M(0)=﹣1,故ln3﹣3≤a<﹣1,综上,ln3﹣3≤a≤.。
2019-2020学年浙江省杭州市高三(上)期末数学试卷

已知函数 ,则 =________;若关于 的方程 = 在 内有唯一实根,则实数 的取值范围是________.
【答案】
,
【考点】
求函数的值
函数的求值
【解析】
推导出 = = = ,从而 = = = .作出函数 的图象,结合图形,能求出实数 的取值范围.
【解答】
∵函数 ,
∴ = = = ,
综上 的最小值为 .
【考点】
平面向量的基本定理
正弦定理
【解析】
(1)利用面积可得 = ,利用 ,可知 、 、 三点共线,即可求出 的值;
(2)由(1)可表示出 ,利用机泵不等式可得最小值.
【解答】
设 = , = ,所以 ,解得 = ,
由 ,且 , , 三点共线,
所以 ,解得 ;
由(1)可知 ,
所以 =
本题先将递推式进行变形,然后令 ,根据题意有常数 ,且 .将递推式通过换元法简化为 = .两边同时减去 ,可得 = .根据此时逐步递推可得 = = =…= .根据题意有 ,则当 = ,即 = ,即 ,即 = 时,可得到数列 是一个等差数列.由此可得正确选项.
【解答】
由题意,得 .
令 ,则 ,
∵ , 为非零常数且 ,
【答案】
【考点】
排列、组合及简单计数问题
【解析】
由题意可以分为四类,每一类分别求解,再根据分类计数原理可得.
【解答】
若甲,乙都参加,则甲只能参加 项目,乙只能参见 项目, 项目有 种方法,
若甲参加,乙不参加,则甲只能参加 项目, , 项目,有 = 种方法,
若甲参加,乙不参加,则乙只能参加 项目, , 项目,有 = 种方法,
∴ , 均为非零常数,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙江省杭州市2018-2019学年高三第一学期物理期末试题
一.选择题
1. 下列用科学家名字表示的物理量单位,属于基本单位的是()
A. 安培
B. 牛顿
C. 焦耳
D. 特斯拉
【答案】A
【解析】物理学中七个基本物理量及单位分别为:长度(m)、质量(kg)、时间(s)、电流强度(A)、热力学温度(k)、物质的量(mol)、发光强度(Cd),故A正确。
2. 下列关于物理学史的说法中正确的是()
A. 伽利略总结出了行星运动的三大定律
B. 牛顿通过实验测出了万有引力常量
C. 库仑最早精确地测定了电子的电量
D. 法拉第最早引入了电场概念
【答案】D
【解析】A项:开普勒总结出了行星运动三大定律,故A错误;
B项:卡文迪许通过扭称实验测出万有引力常量,故B错误;
C项:美国物理学家密立根通过油滴实验比较准确地测定了电子的电荷量,故C错误;
D项:1837年英国物理学家法拉第最早引入了电场的概念,并提出电场线来表示电场,故D正确。
3. 某同学某次使用“滴滴”软件后手机显示如图所示,关于图中信息下列说法正确的是( )
A. 图中“距您0. 5公里”中的0. 5公里指的是位移
B. 图中“预计2分钟到达”中的2分钟指的是时刻
C. 在“预计汽车的到达时间”时,可以将汽车视为质点
D. 可以求得汽车的平均速度为0.25km/min
【答案】C
【解析】A项:图中“距您0. 5公里”中的0. 5公里指的是路程,故A错误;
B项:图中“预计2分钟到达”中的2分钟指的是时间间隔,故B错误;
D项:根据题意可知汽车的路程和所用的时间,所以可求出汽车的平均速率,故D错误。
4. 在学校实验室中,如将真空玻璃管中的羽毛和管外空气中的铁球同时从相同的高度由静止释放,若下落过程中羽毛和铁球均未发生转动,则下列说法正确的逛()
A. 羽毛先落地
B. 铁球先落地
C. 羽毛和铁球同时落地
D. 无法判断哪个先落地
【答案】A
【解析】羽毛在真空中只受重力作用,根据牛顿第二定律F=ma可得:mg=ma1,即a1=g;
铁球在管外空气中受重力、空气阻力的作用,根据牛顿第二定律F=ma可得:mg-f=ma2,即,根据,可知羽毛先落地,故A正确。
5. 如图所示,用弹簧秤水平拉桌面上的物块,下列说法正确的是()
A. 物块一定受到2个力的作用
B. 弹簧秤对手和对物块的力是一对作用力和反作用力
C. 若物块静止,是因为弹簧秤的拉力小于桌面对物块的摩擦力
D. 若物块加速运动,物块拉弹簧秤的力与弹簧秤拉物体的力大小相等
【答案】D
【解析】A项:物块受重力、支持力、弹簧的拉力、摩擦力共4个力作用,故A错误;
B项:作用力与反作用力为甲对乙和乙对甲的作用,故B错误;
C项:根据平衡条件可知,物块静止,是因为弹簧秤对物块的拉力小于桌面对物块的摩擦力,故C错误;
D项:物块拉弹簧秤的力与弹簧秤拉物体的力是一对作用力与反作用力,所以大小相等,与物体的运动状态无关,故D正确。