电梯系统设计

合集下载

plc电梯控制系统设计例题

plc电梯控制系统设计例题

plc电梯控制系统设计例题本文将介绍一些PLC电梯控制系统的设计例题,帮助读者了解电梯控制系统的基本结构和原理,并掌握PLC编程技术和设计方法。

例题一:单层电梯控制系统设计设计一个单层电梯控制系统,实现电梯在不同楼层之间的运行和门的开关控制。

解决方案:该控制系统可以采用PLC作为控制器,搭配步进电机驱动电梯运行。

主要包括PLC控制器、上下行按钮、开关门按钮、步进电机、楼层显示器等组成。

PLC程序设计如下:1. 系统初始化,包括设定楼层总数、电梯初始位置、门的状态等。

2. 按钮输入检测,判断是否有楼层按钮被按下,如果有则确定运行方向。

3. 运行控制,根据电梯当前位置和目标位置确定运行方向和步数,控制步进电机驱动电梯运行。

4. 开关门控制,根据开关门按钮的输入信号控制电梯门的打开和关闭。

5. 楼层显示控制,根据电梯当前位置和楼层按钮的输入信号控制楼层显示器显示当前位置。

例题二:多层电梯控制系统设计设计一个多层电梯控制系统,实现多部电梯在多层之间的运行和门的开关控制。

解决方案:该控制系统需要考虑多部电梯之间的协调和优化,可以采用PLC 作为控制器,搭配变频器驱动电梯运行。

主要包括PLC控制器、上下行按钮、开关门按钮、变频器、电机、楼层显示器、调度算法等组成。

PLC程序设计如下:1. 系统初始化,包括设定楼层数、电梯数量、电梯初始位置、门的状态等。

2. 调度算法,根据乘客的呼叫和电梯的位置确定电梯的调度和运行方向。

3. 运行控制,根据电梯当前位置和目标位置确定运行方向和速度,控制变频器驱动电机运行。

4. 开关门控制,根据开关门按钮的输入信号控制电梯门的打开和关闭。

5. 楼层显示控制,根据电梯当前位置和乘客的呼叫信号控制楼层显示器显示当前位置。

以上是两个PLC电梯控制系统设计例题,希望能对读者有所帮助。

在实际应用中,需要根据具体情况进行调整和优化,提高电梯运行的效率和安全性。

基于plc的电梯控制系统设计

基于plc的电梯控制系统设计

基于plc的电梯控制系统设计1. 介绍电梯作为现代城市中不可或缺的交通工具,其安全性和效率对于城市的正常运转至关重要。

为了实现电梯的安全和高效运行,基于PLC(可编程逻辑控制器)的电梯控制系统应运而生。

本文将深入研究基于PLC 的电梯控制系统设计,并探讨其在实际应用中的优势和挑战。

2. 电梯工作原理在深入研究基于PLC的电梯控制系统设计之前,我们需要了解电梯的工作原理。

一般而言,电梯由机房、轿厢、轿厅、对讲系统、门机等组成。

当乘客按下轿厅或轿内按钮时,信号将传递给PLC进行处理,并通过门机控制开关门。

3. 基于PLC的电梯控制系统设计3.1 PLC在电梯控制中的优势基于PLC实现电梯控制具有许多优势。

首先,PLC具有高度可编程性和灵活性,可以根据不同需求进行程序开发和修改。

其次,PLC可以实现多任务处理,并能够处理多个输入和输出信号,提高电梯的运行效率和安全性。

此外,PLC还具有可靠性高、抗干扰能力强等特点,能够保证电梯的正常运行。

3.2 基于PLC的电梯控制系统设计要点在设计基于PLC的电梯控制系统时,需要考虑以下要点。

首先是安全性,包括轿厢超载保护、轿厅门和轿内门安全保护等。

其次是效率,包括调度算法设计、门机控制优化等。

还需要考虑可靠性和可扩展性,以适应未来可能的升级和扩展需求。

4. 基于PLC的电梯调度算法4.1 传统调度算法传统调度算法主要基于电梯内外按钮信号来实现调度决策。

常见的算法有先来先服务(FCFS)、最短寻找时间(SSTF)等。

这些算法简单易实现,但在高峰时段可能导致某些楼层长时间等待。

4.2 基于PLC的改进调度算法基于PLC的改进调度算法可以更好地优化电梯运行效率。

例如,在高峰时段可以实现优先服务特定楼层的功能,以减少等待时间。

此外,基于PLC的电梯调度算法还可以根据电梯负载情况进行智能调度,以避免超载和提高电梯的运行效率。

5. 基于PLC的门机控制优化门机控制是电梯运行过程中关键的一环。

3.电梯系统设计

3.电梯系统设计

电梯系统设计伴随着我国经济的飞速发展,全国各地高层民用建筑拔地而起,而电梯作为高层建筑的重要组成部分之一,在人民的生活中发挥着难以替代的作用,已经成为了城市居民重要的通行工具。

因此,电梯系统的设计也就有了更高的要求。

电梯系统的设计要根据高层建筑的特点、性质、规模等,综合考虑其安全、节能条件,合理设计选择其供配电系统及供配电平面。

其电气设计的主要内容有:电梯系统的供配电设计,照明设计,消防报警设计以及接地、等电位联结设计等。

考虑到电梯系统在整个高层建筑中的特殊性,故将电梯系统的设计独立于其他供配电、照明、消防、防雷接地设计,而对其做一个单独的设计。

1.供配电设计1.1负荷等级的确定以及电梯型号的选择根据GB50052-2009《供配电系统设计规范》规定,19层及19层以上建筑为1类建筑,一类高层建筑应按照一级负荷要求供电。

本设计中,该商住楼为地上35层地下一层,属于一类高层,故其电梯系统为一级负荷。

在本工程中为保障一级负荷的供电,采用双市电作为双电源,直接接入电梯机房的末端配电箱,自动切换。

此外,虽然本设计中的客梯与消防电梯均为一级负荷,但根据GB50045-2005《高层民用建根据电梯上升速度设计要求,即电梯应能在1分钟内从建筑的最底层上升至建筑的最高层,故在本设计中,电梯的最低上升速度应为:V=t h =6098=1.64m/s 考虑到表10中的梯速/载重比与电源容量的关系以及潜在的电梯人流量,故选择上升速度为1.75m/s ,电源容量为40kVA 的电梯作为客梯;选用上升速度为2.5m/s ,电源容量为40kVA 的电梯作为消防电梯。

1.2电梯计算电流在本章节中已确定电梯系统采用三相供电方式,故电梯的计算电流计算方法采用简化公式,再次给出电梯计算电流算法:js I =e x d∑P K K消防电梯计算电流的计算参数如下:K d =1.0,K x =1.0,cos ϕ=0.8,n=1台。

故消防电梯计算电流为:js I =8.066.020⨯=38A 客梯计算电流的计算参数如下:K d =0.80,K x =0.20,cos ϕ=0.60,n=3台。

电梯系统设计原理

电梯系统设计原理

电梯系统设计原理一、曳引系统曳引系统是电梯的核心部分,主要负责产生和传递动力,驱动电梯上下运动。

它由曳引机、曳引钢丝绳、导向轮和反绳轮等组成。

曳引机是电梯的主要动力源,通过旋转来驱动曳引钢丝绳,使电梯上下运动。

二、导向系统导向系统主要作用是限制轿厢和对重的活动自由度,使轿厢和对重只能沿着导轨上下运动。

它由导轨、导靴和导轨架等组成。

导靴安装在轿厢和对重的底部,与导轨配合,保证电梯运行的平稳和安全。

三、轿厢系统轿厢系统是电梯的主要承载部件,用于运送乘客或货物。

它由轿厢架、轿厢体、轿底、轿门、层门等组成。

轿厢架是轿厢的支撑结构,轿厢体是乘客或货物的承载部分,轿底和轿门则提供进出轿厢的通道。

四、门系统门系统主要用于封闭轿厢进出口,保障乘客安全。

它由轿门、层门、开关门机构和门锁等组成。

门系统需具备自动关闭和手动开启功能,并需配备门锁,确保只有在电梯停止时才能打开门。

五、重量平衡系统重量平衡系统主要作用是平衡轿厢和电梯的重量,降低能耗和提高电梯的运行稳定性。

它由对重、补偿绳和补偿装置等组成。

对重用于平衡轿厢的重量,补偿绳则用于补偿钢丝绳的重量变化。

六、安全保护系统安全保护系统是电梯的重要部分,用于保障乘客的安全。

它由限速器、安全钳、缓冲器、超载保护装置和门保护装置等组成。

限速器和安全钳用于在电梯超速时紧急制停电梯,缓冲器用于减小冲击力,超载保护装置用于防止电梯超载运行,门保护装置则用于防止门夹人等意外事件。

七、电力拖动系统电力拖动系统是电梯的动力源,负责为电梯提供动力。

它由电动机、减速器和电磁制动器等组成。

电动机通过减速器驱动曳引轮转动,产生驱动力。

电磁制动器则用于在需要时停止电动机的转动。

电力拖动系统需具备调速和稳速功能,以保证电梯运行的平稳和舒适。

智能电梯系统的设计与实现

智能电梯系统的设计与实现

智能电梯系统的设计与实现随着人们生活水平的不断提高,对于生活品质的要求也越来越高。

在现代的大都市中,许多高层建筑成为了人们生活和办公的首选,而电梯则成为了我们最常接触到的交通工具之一。

如果电梯的设计和使用不当,则不仅会影响人们的出行效率,还可能会危及乘客的安全。

为了追求更加安全、高效和方便的电梯出行体验,智能电梯系统应运而生。

本文将介绍智能电梯系统的设计和实现。

一、智能电梯系统的优势智能电梯系统可以帮助我们节省时间和提高电梯的效率,一些智能控制技术可以根据不同的时间、人流和需求进行更加智能的调度,降低了电梯等待和运行时间,提高了电梯的效率,节约了时间。

同时,智能电梯系统还可以根据乘客的需求来调节电梯的运行速度、停留点以及目的地。

这种自由的选择也可以提高电梯使用的舒适性和便利性让乘客可以更好地享受电梯出行的便利与快捷。

二、智能电梯系统的设计与实现1. 智能电梯系统架构设计智能电梯系统架构设计一般包括控制节点、数据节点和应用节点。

控制节点包括电梯控制器、控制器管理器和智能调度器等,数据节点主要包括各种传感器和检测器,以及相关的数据处理和传输设备。

应用节点则是电梯系统的最终使用者,包括电梯乘客和管理系统。

2. 智能电梯系统的工作原理智能电梯系统是通过各种传感器、检测器和控制技术来获取和处理电梯运行过程中的各种信息,这些信息包括电梯位置、乘客数量、运行速度、危险信息等。

智能电梯系统还可以利用这些信息来调整电梯的运行状态,如改变运行速度、调整消耗能源、优化停留点等,以提高电梯的效率和运行质量。

3. 智能电梯系统的功能要求智能电梯系统应该具备以下功能:(1) 优化电梯的调度和运行,降低等待和运行时间;(2) 提高电梯的效率和可靠性,降低运行故障的发生;(3) 提高电梯的舒适性和安全性,为乘客提供更好的出行环境;(4) 实现电梯数据的采集和处理,为电梯管理和运营提供数据支持;(5) 实现电梯的自我控制和自我保护,确保电梯的安全性和稳定性。

电梯的电气控制系统设计与实现

电梯的电气控制系统设计与实现

电梯的电气控制系统设计与实现
首先,电梯的电气控制系统需要具备运行方向控制功能。

电梯可以向上或向下运行,所以需要设计一个控制器来判断电梯当前的运行方向,并根据乘客的指令来使电梯向对应的方向运动。

在设计这个功能时,可以使用PLC(可编程逻辑控制器)或者单片机来实现控制逻辑。

其次,电梯的电气控制系统还需要实现停靠楼层控制功能。

当电梯到达其中一楼层时,需要精确地停下来以便乘客上下电梯。

为了实现精确停靠,可以使用光电传感器来探测电梯与楼层之间的距离,并通过控制电机的启停来实现的电梯的停靠。

另外,电梯的电气控制系统还需要具备安全保护功能。

例如,当电梯超载时,需要停止电梯的运行以避免危险。

此外,当电梯门没有完全关闭时,电梯也不应该运行,否则会造成安全隐患。

因此,需要在电气控制系统中加入相关的安全控制机制,如传感器检测电梯的负载或者门的关闭状态,并在相应的情况下触发相应的动作,例如关闭电梯的运行。

在实现电梯的电气控制系统时,还需要考虑许多其他因素,如紧急停止按钮、故障检测与报警机制等。

同时,还需要确保电气控制系统的可靠性和稳定性,以及检查系统的灵敏度和精确度,以提高电梯的运行效率和安全性。

总结起来,电梯的电气控制系统设计与实现需要考虑运行方向控制、停靠楼层控制、安全保护等功能,同时要考虑紧急停止按钮、故障检测与报警机制等因素,确保系统的可靠性和安全性。

在实际应用中,还需要根据具体的需求和现场情况进行适当的调整和优化。

智慧电梯系统设计与分析设计方案

智慧电梯系统设计与分析设计方案

智慧电梯系统设计与分析设计方案智慧电梯系统是一种基于人工智能和物联网技术的电梯管理系统,通过对电梯进行智能化监控和管理,实现电梯的高效运行和维护。

本文将从系统设计和分析两个方面,对智慧电梯系统进行详细的介绍。

一、系统设计智慧电梯系统主要包括以下几个模块:数据采集模块、数据传输模块、数据处理模块、数据展示模块和控制执行模块。

1. 数据采集模块数据采集模块主要用于采集电梯相关的各种数据,包括电梯的运行状态、故障信息、乘客数量等。

这些数据可以通过传感器或者监控设备来实现采集。

2. 数据传输模块数据传输模块主要负责将采集到的数据传输给数据处理模块进行处理。

可以使用有线或无线的方式进行数据传输,例如使用以太网或者无线局域网进行数据传输。

3. 数据处理模块数据处理模块是智慧电梯系统的核心模块,主要负责对采集到的数据进行处理和分析。

通过分析数据,可以实现对电梯的状态监测、故障诊断等功能。

同时,可以根据数据分析的结果,进行智能调度和优化。

4. 数据展示模块数据展示模块用于将处理后的数据进行展示,提供给用户进行查看和分析。

可以使用图表、报表等方式展示数据,以便用户更直观地了解电梯的运行状态和维护情况。

5. 控制执行模块控制执行模块主要用于控制电梯的运行和维护。

通过与电梯控制系统的集成,可以实现对电梯的远程控制和智能调度。

同时,可以根据数据分析的结果,进行故障预测和维护计划的制定。

二、系统分析智慧电梯系统的设计与分析包括以下几个方面:1. 电梯的智能调度:通过对电梯运行状态和乘客需求进行分析,实现智能调度,提高电梯的运行效率。

可以考虑使用遗传算法、模糊控制等方法,进行电梯调度的优化。

2. 故障诊断和预测:通过对电梯的运行数据进行分析,实现对电梯故障的诊断和预测。

可以使用机器学习算法、神经网络等方法,进行故障识别和预测。

3. 安全监控和报警:通过对电梯运行状态和乘客行为进行监控,实时掌握电梯的安全状况。

同时,可以设置报警机制,及时响应电梯故障和紧急情况。

电梯控制系统的设计与可靠性分析

电梯控制系统的设计与可靠性分析

电梯控制系统的设计与可靠性分析电梯控制系统是现代建筑必备的设施之一,有着极为重要的意义。

控制系统的设计与可靠性评估是电梯的关键问题之一。

本文将从电梯控制系统的原理、设计方法与可靠性分析等方面进行探讨。

一、电梯控制系统的原理电梯控制系统常用的方式有两种:串行方式和并行方式。

其中串行方式是指通过控制卡在地面按钮处将电梯召唤到指定楼层,并且在电梯上摆放面板,让人们选择目标楼层。

这种方式属于传统方式,缺点是速度慢,但优点是运作独立,单元式管理比较方便。

并行方式则是在多部电梯之间共享同一扶梯,充分利用电梯利用率,常用在大型建筑中。

这种方式下电梯不再安装面板,而是由人在地面口进行直接选楼。

控制系统除了传送命令以外,还要把电梯装置的各种调整命令传送回机房,并经过测量和收集,为控制系统提供反馈。

控制系统也需要提供足够的保护机制以确保电梯的运行安全,例如检测电梯在某一方向运行时若与障碍物相撞则自动停车等,在此不再赘述。

二、电梯控制系统设计方法电梯控制系统的设计应该具备的原则是尽可能方便、快捷、安全、经久耐用、维修保养方便等,这就要求控制系统的设计和模块化。

控制系统通常分为几个部分,例如:1.取样器:通常是一些传感器,例如感应器、按钮等,通过他们电梯可以从外部和内部接收指令。

2. 控制器:接收取样器提供的进出设备指令,控制电梯的运行方向、速度等。

此部分可以分为主控制器和副控制器。

主控制器即是运行主控制控制器位置的部分,而副控制器只能保持电梯的位置。

3. 驱动器:这部分用于控制马达的转动,控制电梯的速度,以及让电梯按照既定方式行驶。

需要注意的是,电梯在行驶时应该平稳,不应该刹车过急或者启动过猛,对驱动器的品牌和质量要做好把控。

4. 翻译部分:即将控制器和驱动器的指令翻译为实际的操作,例如让电梯到达目标楼层,让电梯保持固定位置等。

这些组成部分的互相配合使得电梯能够正确、安全、稳定地运行。

三、电梯控制系统的可靠性分析在电梯控制系统中,可靠性是一个非常重要的问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 引言自1889年美国奥梯斯升降机公司推出世界第一部以电动机为动力的升降机以来,电梯在驱动方式上经历了卷筒式驱动、牵引式驱动等历程,逐渐形成了直流电机拖动和交流电机拖动两种不同的拖动方式。

如今电梯已成为人们进出高层建筑不可或缺的代步工具;而且作为载人工具,人们在运行的平滑性、高速性、准确性、高效性等一系列静、动态性能方面对它提出了更高的要求。

由于早期的电梯继电器控制方式存在故障率较高、可靠性差、接线复杂、一旦接收完成不易更改等缺点,所以需要开发一种安全、高效的控制方式。

可编程控制器(PLC)既保留了继电器控制系统的简单易懂、控制精度高、可靠性好、控制程序可随工艺改变、易于与计算机接口、维修方便等诸多高品质性能。

因此,PLC在电梯控制领域得到了广泛而深入的应用。

随着微电子技术和计算机技术的迅速发展,PLC(即可编程控制器)在工业控制领域内得到十分广泛地应用。

PLC是一种基于数字计算机技术、专为在工业环境下应用而设计的电子控制装置,它采用可编程序的存储器,用来存储用户指令,通过数字或模拟的输入/输出,完成一系列逻辑、顺序、定时、记数、运算等确定的功能,来控制各种类型的机电一体化设备和生产过程。

电梯是随着高层建筑的兴建而发展起来的一种垂直运输工具。

多层厂房和多层仓库需要有货梯;高层住宅需要有住宅梯;百货大楼和宾馆需要有客梯,自动扶梯……在现代社会,电梯已像汽车、轮船一样,成为人类不可缺少的交通运输工具。

据统计,美国每天乘电梯的人次多于乘载其它交通工具的人数。

当今世界,电梯的使用量已成为衡量现代化程度的标志之一。

追溯电梯这种升降设备的历史,据说它起源于公元前236年的古希腊。

当时有个叫阿基米德的人设计出---人力驱动的卷筒式卷扬机。

1858年以蒸汽机为动力的客梯,在美国出现,继而有在英国出现水压梯。

1889年美国的奥梯斯电梯公司首先使用电动机作为电梯动力,这才出现名副其实的电梯,并使电梯趋于实用化。

1900年还出现了第一台自动扶梯。

1949年出现了群控电梯,首批4~6台群控电梯在纽约的联合国大厦被使用。

1955年出现了小型计算机(真空管)控制电梯。

1962年美国出现了速度达8米/秒的超高速电梯。

1963年一些先进工业国只成了无触点半导体逻辑控制电梯。

1967年可控硅应用于电梯,使电梯的拖动系统筒化,性能提高。

1971年集成电路被应用于电梯。

第二年又出现了数控电梯。

1976年微处理机开始用于电梯,使电梯的电气控制进入了一个新的发展时期。

2 电梯的简介2.1 电梯的概述1854年,在纽约水晶宫举行的世界博览会上,美国人伊莱沙·格雷夫斯·奥的斯第一次向世人展示了他的发明-历史上第一部安全升降梯。

从那以后,升降梯在世界范围内得到了广泛应用。

以奥的斯的名字而命名的电梯公司也开始了她辉煌的旅程。

150年以来,她已经发展成为世界、亚洲和中国领先的电梯公司。

生活在继续,科技在发展,电梯也在进步。

电梯的材质由黑白到彩色,样式由直式到斜式,在操纵控制方面更是步步出新-手柄开关操纵,按钮控制,信号控制,集选控制、人机对话等,多台电梯还出现了并联控制,智能群控;双层轿箱电梯展示出节省井道空间,提升运输能力的优势,变速式自动人行道扶梯大大节省了行人的时间;不同外形的扇形、三角形、半棱形、圆形观光电梯则使身处其中的乘客的视线不再封闭。

据统计,我国在用电梯34.6多万台,每年还以约5万~6万台的速度增长。

电梯服务中国已有100 多年历史,而我国在用电梯数量的快速增长却发生在改革开放以后,目前我国电梯技术水平已与世界同步。

100多年来,中国电梯行业的发展经历了以下几个阶段:①对进口电梯的销售、安装、维保阶段(1900~1949年),这一阶段我国电梯拥有量仅约 1 100多台;②独立自主,艰苦研制、生产阶段(1950~1979年),这一阶段我国共生产、安装电梯约1万台;③建立三资企业,行业快速发展阶段(自1980年至今),这一阶段我国共生产、安装电梯约40万台。

目前,我国已成为世界最大的新装电梯市场和最大的电梯生产国。

2.2 电梯工作的原理曳引绳两端分别连着轿厢和对重,缠绕在曳引轮和导向轮上,曳引电动机通过减速器变速后带动曳引轮转动,靠曳引绳与曳引轮摩擦产生的牵引力,实现轿厢和对重的升降运动,达到运输目的。

固定在轿厢上的导靴可以沿着安装在建筑物井道墙体上的固定导轨往复升降运动,防止轿厢在运行中偏斜或摆动。

常闭块式制动器在电动机工作时松闸,使电梯运转,在失电情况下制动,使轿厢停止升降,并在指定层站上维持其静止状态,供人员和货物出入。

轿厢是运载乘客或其他载荷的箱体部件,对重用来平衡轿厢载荷、减少电动机功率。

补偿装置用来补偿曳引绳运动中的张力和重量变化,使曳引电动机负载稳定,轿厢得以准确停靠。

电气系统实现对电梯运动的控制,同时完成选层、平层、测速、照明工作。

指示呼叫系统随时显示轿厢的运动方向和所在楼层位置。

安全装置保证电梯运行安全。

2.3 电梯的控制要求电梯由电动机进行拖动,其运行过程包括起动、停止、正转、反转、加速、减速、制动等。

对电梯的控制主要有主电动机控制、开(关)门电动机的控制、轿厢的运动方向、层楼显示、层站召唤、安全保护指令信号的管理。

(l)电梯可进入检修状态或无司机自动驾驶状态(安全自动响应层站召换或轿厢内指令信号)(2)电梯起动后,若某楼有呼梯信号,则轿厢停在该楼,并开门,时间到自动关门。

(3)当电梯处在‘悬停”时,若有呼梯信号,则对信号进行处理,高于当前楼层时则电梯上升,反之则下降。

(4)电梯运行中只响应顺向呼梯信号,对反向呼梯信号只作记忆。

(5)电梯应具有层楼显示、状态指示、极限位置保护等功能。

2.4 电梯的控制系统电梯的组成(1)曳引系统曳引系统的主要功能是输出与传递动力,使电梯运行。

曳引系统主要由曳引机、曳引钢丝绳,导向轮,反绳轮组成。

(2)导向系统导向系统的主要功能是限制轿厢和对重的活动自由度,使轿厢和对重只能沿着导轨作升降运动。

导向系统主要由导轨,导靴和导轨架组成。

(3)轿厢轿厢是运送乘客和货物的电梯组件,是电梯的工作部分。

轿厢由轿厢架和轿厢体组成。

(4)门系统门系统的主要功能是封住层站入口和轿厢入口。

门系统由轿厢门,层门,开门机,门锁装置组成。

(5)重量平衡系统系统的主要功能是相对平衡轿厢重量,在电梯工作中能使轿厢与对重间的重量差保持在限额之内,保证电梯的曳引传动正常。

系统主要由对重和重量补偿装置组成。

(6)电力拖动系统电力拖动系统的功能是提供动力,实行电梯速度控制。

电力拖动系统由曳引电动机,供电系统,速度反馈装置,电动机调速装置等组成。

(7)电气控制系统电气控制系统的主要功能是对电梯的运行实行操纵和控制。

电气控制系统主要由操纵装置,位置显示装置,控制屏(柜),平层装置,选层器等组成。

(8)安全保护系统保证电梯安全使用,防止一切危及人身安全的事故发生。

由限速器,安全钳,缓冲器,端站保护装置组成。

3 可编程控制技术的简介3.1 可编程控制器的介绍PLC可编程序控制器:PLC英文全称Programmable Logic Controller ,中文全称为可编程逻辑控制器,定义是:一种数字运算操作的电子系统,专为在工业环境应用而设计的。

它采用一类可编程的存储器,用于其内部存储程序,执行逻辑运算,顺序控制,定时,计数与算术操作等面向用户的指令,并通过数字或模拟式输入/输出控制各种类型的机械或生产过程。

从近年的统计数据来看,在世界范围内PLC产品的产量、销量、用量高居工业控制装置榜首,而且市场需求量一直以每年15%的比率上升。

PLC已成为工业自动化控制领域中占主导地位的通用工业控制装置。

3.2 可编程控制器的结构3.2.1 PLC的构成从结构上分,PLC分为固定式和组合式(模块式)两种。

固定式PLC包括CPU 板、I/O板、显示面板、内存块、电源等,这些元素组合成一个不可拆卸的整体。

模块式PLC包括CPU模块、 I/O模块、内存、电源模块、底板或机架,这些模块可以按照一定规则组合配置。

3.2.2 CPU的构成CPU是PLC的核心,起神经中枢的作用,每套PLC至少有一个CPU,它按PLC 的系统程序赋予的功能接收并存贮用户程序和数据,用扫描的方式采集由现场输入装置送来的状态或数据,并存入规定的寄存器中,同时,诊断电源和PLC内部电路的工作状态和编程过程中的语法错误等。

进入运行后,从用户程序存贮器中逐条读取指令,经分析后再按指令规定的任务产生相应的控制信号,去指挥有关的控制电路。

CPU主要由运算器、控制器、寄存器及实现它们之间联系的数据、控制及状态总线构成,CPU单元还包括外围芯片、总线接口及有关电路。

内存主要用于存储程序及数据,是PLC不可缺少的组成单元。

在使用者看来,不必要详细分析CPU的内部电路,但对各部分的工作机制还是应有足够的理解。

CPU的控制器控制CPU工作,由它读取指令、解释指令及执行指令。

但工作节奏由震荡信号控制。

运算器用于进行数字或逻辑运算,在控制器指挥下工作。

寄存器参与运算,并存储运算的中间结果,它也是在控制器指挥下工作。

CPU速度和内存容量是PLC的重要参数,它们决定着PLC的工作速度,IO数量及软件容量等,因此限制着控制规模。

3.2.3 I/O模块PLC与电气回路的接口,是通过输入输出部分(I/O)完成的。

I/O模块集成了PLC的I/O电路,其输入暂存器反映输入信号状态,输出点反映输出锁存器状态。

输入模块将电信号变换成数字信号进入PLC系统,输出模块相反。

I/O分为开关量输入(DI),开关量输出(DO),模拟量输入(AI),模拟量输出(AO)等模块。

开关量是指只有开和关(或1和0)两种状态的信号,模拟量是指连续变化的量。

常用的I/O分类如下:开关量:按电压水平分,有220VAC、110VAC、24VDC,按隔离方式分,有继电器隔离和晶体管隔离。

模拟量:按信号类型分,有电流型(4-20mA,0-20mA)、电压型(0-10V,0-5V,-10-10V)等,按精度分,有12bit,14bit,16bit等。

除了上述通用IO外,还有特殊IO模块,如热电阻、热电偶、脉冲等模块。

按I/O点数确定模块规格及数量,I/O模块可多可少,但其最大数受CPU所能管理的基本配置的能力,即受最大的底板或机架槽数限制。

3.2.4 电源模块PLC电源用于为PLC各模块的集成电路提供工作电源。

同时,有的还为输入电路提供24V的工作电源。

电源输入类型有:交流电源(220VAC或110VAC),直流电源(常用的为24VAC)3.3 PLC的工作原理PLC采用了一种不同于一般微型计算机的运行方式-扫描技术(扫描用户程序的时间一般均小于100ms)。

当PLC运行时,是通过执行反映控制要求的用户程序来完成控制任务的,需要执行众多的操作,但CPU不可能同时去执行多个操作,它只能按分时操作(串行工作)方式,每一次执行一个操作,按顺序逐个执行。

相关文档
最新文档