概率知识点总结及题型汇总-统计概率知识点总结
概率与统计知识点总结

概率与统计知识点总结一、概率的基本概念概率,简单来说,就是衡量某个事件发生可能性大小的一个数值。
比如抛硬币,正面朝上的概率是 05,意思是在大量重复抛硬币的实验中,正面朝上的次数大约占总次数的一半。
随机事件,就是在一定条件下,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件。
比如掷骰子得到的点数就是随机事件。
必然事件,就是在一定条件下必然会发生的事件。
比如太阳从东方升起,这就是必然事件。
不可能事件,就是在一定条件下不可能发生的事件。
比如在地球上,水往高处流就是不可能事件。
概率的取值范围在 0 到 1 之间。
0 表示事件不可能发生,1 表示事件必然发生。
二、古典概型古典概型是一种最简单、最基本的概率模型。
它具有两个特点:试验中所有可能出现的基本事件只有有限个;每个基本事件出现的可能性相等。
计算古典概型中事件 A 的概率公式为:P(A) = A 包含的基本事件个数/基本事件的总数。
例如,一个袋子里有 5 个红球和 3 个白球,从中随机摸出一个球是红球的概率,基本事件总数是 8(5 个红球+ 3 个白球),红球的个数是 5,所以摸到红球的概率就是 5/8。
三、几何概型与古典概型不同,几何概型中的基本事件个数是无限的。
比如在一个时间段内等可能地到达某一地点,或者在一个区域内等可能地取点。
几何概型的概率计算公式是:P(A) =构成事件 A 的区域长度(面积或体积)/试验的全部结果所构成的区域长度(面积或体积)。
举个例子,在区间0, 10中随机取一个数,这个数小于 5 的概率就是 5/10 = 05。
四、条件概率条件概率是在已知某个事件发生的条件下,另一个事件发生的概率。
记事件 A 在事件 B 发生的条件下发生的概率为 P(A|B)。
计算公式为:P(A|B) = P(AB) / P(B) ,其中 P(AB) 表示事件 A 和事件 B 同时发生的概率。
比如说,已知今天下雨,明天也下雨的概率就是一个条件概率。
(完整版)(最全)高中数学概率统计知识点总结

(完整版)(最全)高中数学概率统计知识点总结-CAL-FENGHAI.-(YICAI)-Company One1概率与统计一、普通的众数、平均数、中位数及方差1、 众数:一组数据中,出现次数最多的数。
2、平均数:①、常规平均数:12nx x x x n++⋅⋅⋅+=②、加权平均数:112212n n n x x x x ωωωωωω++⋅⋅⋅+=++⋅⋅⋅+3、中位数:从大到小或者从小到大排列,最中间或最中间两个数的平均数。
4、方差:2222121[()()()]n s x x x x x x n=-+-+⋅⋅⋅+-二、频率直方分布图下的频率1、频率 =小长方形面积:f S y d ==⨯距;频率=频数/总数2、频率之和:121n f f f ++⋅⋅⋅+=;同时 121n S S S ++⋅⋅⋅+=; 三、频率直方分布图下的众数、平均数、中位数及方差 1、众数:最高小矩形底边的中点。
2、平均数: 112233n nx x f x f x f x f =+++⋅⋅⋅+ 112233n n x x S x S x S x S =+++⋅⋅⋅+3、中位数:从左到右或者从右到左累加,面积等于0.5时x 的值。
4、方差:22221122()()()n n s x x f x x f x x f =-+-+⋅⋅⋅+-四、线性回归直线方程:ˆˆˆybx a =+ 其中:1122211()()ˆ()nni i i i i i nni i i i x x y y x y nxybx x x nx ====---∑∑==--∑∑ , ˆˆay bx =- 1、线性回归直线方程必过样本中心(,)x y ;2、ˆ0:b>正相关;ˆ0:b <负相关。
3、线性回归直线方程:ˆˆˆy bx a =+的斜率ˆb 中,两个公式中分子、分母对应也相等;中间可以推导得到。
五、回归分析1、残差:ˆˆi i i ey y =-(残差=真实值—预报值)。
高考数学概率统计知识点总结(文理通用)

概率与统计知识点及专练(一)统计基础知识:1. 随机抽样:(1).简单随机抽样:设一个总体的个数为N ,如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样.常用抽签法和随机数表法.(2).系统抽样:当总体中的个数较多时,可将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取1个个体,得到所需要的样本,这种抽样叫做系统抽样(也称为机械抽样).(3).分层抽样:当已知总体由差异明显的几部分组成时,常将总体分成几部分,然后按照各部分所占的比进行抽样,这种抽样叫做分层抽样.2. 普通的众数、平均数、中位数及方差: (1).众数:一组数据中,出现次数最多的数(2).平均数:常规平均数:12nx x x x n ++⋅⋅⋅+=(3).中位数:从大到小或者从小到大排列,最中间或最中间两个数的平均数(4).方差:2222121[()()()]n s x x x x x x n =-+-+⋅⋅⋅+-(5).标准差:s3 .频率直方分布图中的频率:(1).频率 =小长方形面积:f S y d ==⨯距;频率=频数/总数; 频数=总数*频率(2).频率之和等于1:121n f f f ++⋅⋅⋅+=;即面积之和为1: 121n S S S ++⋅⋅⋅+=4. 频率直方分布图下的众数、平均数、中位数及方差: (1).众数:最高小矩形底边的中点(2).平均数:112233n n x x f x f x f x f =+++⋅⋅⋅+ 112233n n x x S x S x S x S =+++⋅⋅⋅+(3).中位数:从左到右或者从右到左累加,面积等于0.5时x 的值(4).方差:22221122()()()nn s x x f x x f x x f =-+-+⋅⋅⋅+-5.线性回归直线方程:(1).公式:ˆˆˆy bx a=+其中:1122211()()ˆ()n ni i i ii in ni ii ix x y y x y nxybx x x nx====---∑∑==--∑∑(展开)ˆˆa y bx=-(2).线性回归直线方程必过样本中心(,) x y(3).ˆ0:b>正相关;ˆ0:b<负相关(4).线性回归直线方程:ˆˆˆy bx a=+的斜率ˆb中,两个公式中分子、分母对应也相等;中间可以推导得到6. 回归分析:(1).残差:ˆˆi i ie y y=-(残差=真实值—预报值)分析:ˆie越小越好(2).残差平方和:2 1ˆ() ni iiy y =-∑分析:①意义:越小越好;②计算:222211221ˆˆˆˆ()()()() ni i n niy y y y y y y y =-=-+-+⋅⋅⋅+-∑(3).拟合度(相关指数):2 2121ˆ()1()ni iiniiy y Ry y==-∑=--∑分析:①.(]20,1R∈的常数;②.越大拟合度越高(4).相关系数:()()n ni i i ix x y y x y nx y r---⋅∑∑==分析:①.[1,1]r∈-的常数;②.0:r>正相关;0:r<负相关③.[0,0.25]r∈;相关性很弱;(0.25,0.75)r∈;相关性一般;[0.75,1]r∈;相关性很强7. 独立性检验:(1).2×2列联表(卡方图): (2).独立性检验公式①.22()()()()()n ad bc k a b c d a c b d -=++++②.上界P 对照表:(3).独立性检验步骤:①.计算观察值k :2()()()()()n ad bc k a b c d a c b d -=++++ ②.查找临界值0k :由犯错误概率P ,根据上表查找临界值0k③.下结论:0k k ≥即认为有P 的没把握、有1-P 以上的有把握认为两个量相关;0k k <:即认为没有1-P 以上的把握认为两个量是相关关系。
概率知识点总结及归纳

概率知识点总结及归纳一、概率基础知识1. 随机试验与样本空间随机试验是指在相同条件下,重复进行实验,结果不确定的现象,如掷硬币、抛骰子等。
每次实验的所有可能结果组成的集合称为样本空间,通常用Ω表示。
样本空间的元素称为样本点,通常用ωi表示。
2. 事件与事件的概率事件是样本空间的子集,即样本空间中的一些样本点组成的集合。
事件的概率是指该事件发生的可能性大小,通常用P(A)表示,其中A表示事件。
3. 概率的性质(1)非负性:对任意事件A,有0≤P(A)≤1。
(2)规范性:必然事件的概率为1,不可能事件的概率为0。
(3)可加性:若事件A与事件B互斥(即A与B无公共样本点),则P(A∪B) = P(A) + P(B);若事件A与事件B不互斥,则P(A∪B) = P(A) + P(B) - P(A∩B)。
4. 等可能概型当所有样本点发生的可能性相等时,称为等可能概型。
在等可能概型中,事件A的概率公式为P(A) = n(A)/n(Ω),其中n(A)表示事件A中样本点的个数,n(Ω)表示样本空间中样本点的个数。
二、概率的计算方法1. 古典概率法古典概率法适用于等可能概型,即所有样本点发生的可能性相等的情况。
在此情况下,事件A的概率公式为P(A) = n(A)/n(Ω),其中n(A)表示事件A中样本点的个数,n(Ω)表示样本空间中样本点的个数。
2. 几何概型法几何概型法适用于计算几何概型中的事件概率。
对于几何概型中一个区域的面积为S,事件A发生的区域面积为S(A),则事件A的概率为P(A) = S(A)/S。
3. 频率统计法频率统计法适用于大量试验中,用实验结果的频率估计事件的概率。
当试验次数增大时,事件A发生的频率逼近于事件A的概率。
频率统计法是概率理论与统计学的基础,也是实际应用中常用的方法。
4. 概率的性质及计算(1)互补事件的概率:对于事件A,其互补事件为A的对立事件,即事件A不发生的概率为1减去事件A发生的概率,即P(Ac) = 1 - P(A)。
高中数学必修二统计概率知识点总结

必修第二册第九章 统计知识点总结知识点一:简单随机抽样1. 全面调查和抽样调查2.简单随机抽样的概念放回简单随机抽样不放回简单随机抽样一般地,设一个总体含有N(N 为正整数)个个体,从中逐个抽取n (1≤n<N)个个体作为样本如果抽取是放回的,且每次抽取时总体内的各个个体被抽到的概率都相等,我们把这样的抽样方法叫做放回简单随机抽样如果抽取是不放回的,且每次抽取时总体内未进入样本的各个个体被抽到的概率都相等,我们把这样的抽样方法叫做不放回简单随机抽样放回简单随机抽样和不放回简单随机抽样统称为简单随机抽样.通过简单随机抽样获得的样本称为简单随机样本3.抽签法先把总体中的个体编号,然后把所有编号写在外观、质地等无差别的小纸片(也可以是卡片、小球等)上作为号签,并将这些小纸片放在一个不透明的盒里,充分搅拌.最后从盒中不放回地逐个抽取号签,使与号签上的编号对应的个体进入样本,直到抽足样本所需要的个体数.调查方式全面调查(普查)抽样调查定义对每一个调查对象都进行调查的方法,称为全面调查,又称普查根据一定目的,从总体中抽取一部分个体进行调查,并以此为依据对总体的情况作出估计和推断的调查方法,称为 抽样调查相关概念总体:在一个调查中,我们把调查对象的全体称为总体.个体:组成总体的每一个调查对象称为个体样本:把从总体中抽取的那部分个体 称为样本.样本量:样本中包含的个体数称为 样本量4.随机数法(1)定义:先把总体中的个体编号,用随机数工具产生已编号范围内的整数随机数,把产生的随机数作为抽中的编号,使与编号对应的个体进入样本,重复上述过程,直到抽足样本所需要的个体数.(2)产生随机数的方法:(i)用随机试验生成随机数;(ii)用信息技术生成随机数.5.总体均值和样本均值(1)总体均值:一般地,总体中有N个个体,它们的变量值分别为Y1,Y2,…,Y N,则称Y=Y1+Y2+⋯+Y NN =1N∑i=1NY i为总体均值,又称总体平均数.(2)总体均值加权平均数的形式:如果总体的N个变量值中,不同的值共有k(k≤N)个,不妨记为Y1,Y2,…,Y k,其中Y i出现的频数f i(i=1,2,…,k),则总体均值还可以写成加权平均数的形式Y=1N ∑i=1kf i Y i.(3)如果从总体中抽取一个容量为n的样本,它们的变量值分别为y1,y2,…,y n,则称y=y1+y2+⋯+y nn =1n∑i=1ny i为样本均值,又称样本平均数.6.分层随机抽样的相关概念(1)分层随机抽样的定义:一般地,按一个或多个变量把总体划分成若干个子总体,每个个体属于且仅属于一个子总体,在每个子总体中独立地进行简单随机抽样,再把所有子总体中抽取的样本合在一起作为总样本,这样的抽样方法称为分层随机抽样,每一个子总体称为层.(2)比例分配:在分层随机抽样中,如果每层样本量都与层的大小成比例,那么称这种样本量的分配方式为比例分配.(3)进行分层随机抽样的相关计算时,常用到的关系①样本容量n总体容量N =该层抽取的个体数该层的个体数;②总体中某两层的个体数之比等于样本中这两层抽取的个体数之比;③样本的平均数和各层的样本平均数的关系:w=mm+n x+nm+ny=MM+Nx+NM+Ny.1.画频率分布直方图的步骤(1)求极差:极差为一组数据中最大值与最小值的差;(2)决定组距与组数:当样本容量不超过100时,常分成5-12组,为方便起见,一般取等长组距,并且组距应力求“取整”;(3)将数据分组;(4)列频率分布表:一般分四列:分组、频数累计、频数、频率.其中频数合计应是样本容量,频率合计是⑥1;.(5)画频率分布直方图:横轴表示分组,纵轴表示频率组距=频率,各小长方形的面积的总和等于1.小长方形的面积=组距×频率组距2.其他统计图表统计图表主要应用扇形图直观描述各部分数据在全部数据中所占的比例条形图和直方图直观描述不同类别或分组数据的频数和频率反映统计对象在不同时间(或其他合适情形)的发展折线图变化情况1.第p百分位数:一般地,一组数据的第p百分位数是这样一个值,它使得这组数据中至少有p%的数据小于或等于这个值,且至少有(100-p)%的数据大于或等于这个值.2.计算一组n个数据的第p百分位数的步骤第1步,按从小到大排列原始数据.第2步,计算i=n×p%.第3步,若i不是整数,而大于i的比邻整数为j,则第p百分位数为第j项数据;若i是整数,则第p百分位数为第i项与第(i+1)项数据的平均数.3.四分位数:第25百分位数,第50百分位数,第75百分位数,这三个分位数把一组由小到大排列后的数据分成四等份,因此称为四分位数.知识点四:总体集中趋势的估计1.众数、中位数和平均数的定义(1)众数:一组数据中出现次数最多的数.(2)中位数:一组数据按大小顺序排列后,处于中间位置的数.如果这组数据是偶数个,则取中间两个数据的平均数.(3)平均数:一组数据的和除以数据个数所得到的数.2.众数、中位数、平均数与频率分布直方图的关系(1)平均数:在频率分布直方图中,样本平均数可以用每个小矩形底边中点的横坐标与小矩形的面积的乘积之和近似代替.(2)中位数:在频率分布直方图中,中位数左边和右边的直方图的面积应该相等.(3)众数:众数是最高小矩形底边的中点所对应的数据.2.众数、中位数、平均数与频率分布直方图的关系众数众数是最高小长方形底边的中点所对应的数据,表示样本数据的中心值中位数①在频率分布直方图中,中位数左边和右边的直方图面积相等,由此可以估计中位数的值,但是有偏差;②表示样本数据所占频率的等分线平均数①平均数等于每个小长方形的面积乘小长方形底边中点的横坐标之和;②平均数是频率分布直方图的重心,是频率分布直方图的平衡点1.一组数据x1,x2,…,x n的方差和标准差数据x1,x2,…,x n的方差为1n ∑i=1n(x i-x)2=1n∑i=1nx i2-x2,标准差为√1n∑i=1n(x i-x)2.2.总体方差和总体标准差(1)总体方差和标准差:如果总体中所有个体的变量值分别为Y1,Y2,…,Y N,总体的平均数为Y,则称S2= 1N ∑i=1N(Y i-Y)2为总体方差,S=√S2为总体标准差.(2)总体方差的加权形式:如果总体的N个变量值中,不同的值共有k(k≤N)个,不妨记为Y1,Y2,…,Y k,其中Y i出现的频数为f i(i=1,2,…,k),则总体方差为S2= 1N ∑i=1kf i(Y i-Y)2.3.样本方差和样本标准差如果一个样本中个体的变量值分别为y1,y2,…,y n,样本平均数为y,则称s2= 1n ∑i=1n(y i-y)2为样本方差,s=√s2为样本标准差.4.标准差的意义标准差刻画了数据的离散程度或波动幅度,标准差越大,数据的离散程度越大;标准差越小,数据的离散程度越小.5.分层随机抽样的方差设样本容量为n,平均数为x,其中两层的个体数量分别为n1,n2,两层的平均数分别为x1,x2,方差分别为s12,s22,则这个样本的方差为s2=n1n [s12+(x1-x)2]+n2n[s22+(x2-x)2].必修第二册第十章概率知识点总结知识点一:有限样本空间与随机事件1.随机试验的概念和特点(1)随机试验:我们把对随机现象的实现和对它的观察称为随机试验,简称试验,常用字母E表示.(2)随机试验的特点:(i)试验可以在相同条件下重复进行;(ii)试验的所有可能结果是明确可知的,并且不止一个;(iii)每次试验总是恰好出现这些可能结果中的一个,但事先不能确定出现哪一个结果.2.样本点和样本空间定义字母表示样本点我们把随机试验E的每个可能的基本结果称为样本点用ω表示样本点样本空间全体样本点的集合称为试验E的样本空间用Ω表示样本空间有限样本空间如果一个随机试验有n个可能结果ω1,ω2,…,ωn,则称样本空间Ω={ω1,ω2,…,ωn}为有限样本空间Ω={ω1,ω2,…,ωn}3.事件的类型我们将样本空间Ω的子集称为随机事件,简称事件,并把只包含一个样本点的事件称为基本事件.随机事件一般用大写字母A,B,C,…表示.在每次试验中,当且仅当A中某个样本点出现时,称为事件A发生.Ω作为自身的子集,包含了所有的样本点,在每次试验中总有一个样本点发生,所以Ω总会发生,我们称Ω为必然事件.而空集⌀不包含任何样本点,在每次试验中都不会发生,我们称⌀为不可能事件.必然事件与不可能事件不具有随机性.为了方便统一处理,将必然事件和不可能事件作为随机事件的两个极端情形.这样,每个事件都是样本空间Ω的一个子集.知识点二:事件的关系和运算1.包含关系定义一般地,若事件A 发生,则事件B 一定发生,我们就称事件B 包含事件A(或事件A 包含于事件B)含义 A 发生导致B 发生 符号表示B ⊇A(或A ⊆B)图形表示特殊情形如果事件B 包含事件A,事件A 也包含事件B,即B ⊇A 且A ⊇B,则称事件A 与事件B 相等,记作A=B2.并事件(和事件)定义一般地,事件A 与事件B 至少有一个发生,这样的一个事件中的样本点或者在事件A 中,或者在事件B 中,我们称这个事件为事件A 与事件B 的并事件(或 和事件)含义 A 与B 至少有一个发生符号表示A ∪B(或A+B)图形表示3.交事件(积事件)定义一般地,事件A 与事件B 同时发生,这样的一个事件中的样本点既在事件A中,也在事件B 中,我们称这样的一个事件为事件A 与事件B 的交事件(或积 事件)含义 A 与B 同时发生 符号表示A ∩B(或AB)图形表示4.互斥(互不相容)一般地,如果事件A与事件B不能同时发生,也就是说A∩B是一个不可能定义事件,即A∩B=⌀,则称事件A与事件B互斥(或互不相容)含义A与B不能同时发生符号表示A∩B=⌀图形表示5.互为对立一般地,如果事件A与事件B在任何一次试验中有且仅有一个发生,即A∪B=定义Ω,且A∩B=⌀,那么称事件A与事件B互为对立.事件A的对立事件记为A 含义A与B有且仅有一个发生符号表示A∩B=⌀,且A∪B=Ω图形表示6.清楚随机事件的运算与集合运算的对应关系有助于解决此类问题.符号事件的运算集合的运算A 随机事件集合A A的对立事件A的补集AB 事件A与B的交事件集合A与B的交集A∪B 事件A与B的并事件集合A与B的并集知识点三:古典概型1.古典概型的定义试验具有如下共同特征:(1)有限性:样本空间的样本点只有有限个;(2)等可能性:每个样本点发生的可能性相等.我们将具有以上两个特征的试验称为古典概型试验,其数学模型称为古典概率模型,简称古典概型.2.古典概型的概率计算公式一般地,设试验E是古典概型,样本空间Ω包含n个样本点,事件A包含其中的k个样本点,则定义事件A的概率P(A)= kn =n(A)n(Ω),其中n(A)和n(Ω)分别表示事件A和样本空间Ω包含的样本点个数.知识点四:概率的基本性质1.概率的基本性质性质1 对任意的事件A,都有P(A)≥0.性质2 必然事件的概率为1,不可能事件的概率为0,即P(Ω)=1,P(⌀)=0.性质3 如果事件A与事件B互斥,那么P(A∪B)=P(A)+P(B).性质4 如果事件A与事件B互为对立事件,那么P(B)=1-P(A),P(A)=1-P(B).性质5 如果A⊆B,那么P(A)≤P(B).性质6 设A,B是一个随机试验中的两个事件,我们有P(A∪B)=P(A)+P(B)-P(A∩B).知识点五:事件的相互独立性1.相互独立事件的定义:对任意两个事件A与B,如果P(AB)=P(A)P(B)成立,则称事件A 与事件B相互独立,简称为独立.2.相互独立事件的性质:当事件A,B相互独立时,则事件A与事件B相互独立,事件A与事件B相互独立,事件A与事件B相互独立.【提示】公式P(AB)=P(A)P(B)可以推广到一般情形:如果事件A1,A2,…,A n相互独立,那么这n个事件同时发生的概率等于每个事件发生的概率的积,即P(A1A2·…·A n)=P(A1)P(A2)·…·P(A n).3. 两个事件是否相互独立的判断方法(1)直接法:由事件本身的性质直接判定两个事件发生是否相互影响.(2)公式法:若P(AB)=P(A)P(B),则事件A,B为相互独立事件.4.求相互独立事件同时发生的概率的步骤:①首先确定各事件之间是相互独立的.②求出每个事件的概率,再求积.5.事件间的独立性关系已知两个事件A,B相互独立,它们的概率分别为P(A),P(B),则有事件表示概率A,B同时发生AB P(A)P(B)A,B都不发生A B P(A)P(B)A,B恰有一个发生(A B)∪(A B) P(A)P(B)+P(A)P(B)A,B中至少有一个发生(A B)∪(A B)∪(AB) P(A)P(B)+P(A)P(B)+P(A)P(B)A,B中至多有一个发生(A B)∪(A B)∪(A B) P(A)P(B)+P(A)P(B)+P(A)P(B)。
统计概率知识点归纳总结大全

统计概率知识点归纳总结大全统计概率是数学中的一个重要分支,它是一门研究数据收集、分析、解释和预测的学科。
在我们的日常生活中,统计概率也是不可避免的。
在我们购买彩票、浏览社交媒体的统计数据、选举、医学实验中的分析等方面,统计学都在起着重要的作用。
下面我们就来对统计概率的知识点进行归纳总结。
一、基本概念1. 概率是指某一事件发生的可能性大小,通常表示为P。
2. 样本空间是指所有可能的结果构成的集合,一般用S表示。
3. 事件是指样本空间S的子集,即可能发生的结果的集合。
4. 随机变量是指样本空间S中的元素与实数集之间的一个函数。
5. 概率分布是指随机变量每个可能取值的概率。
二、概率公式1. 概率加法规则:P(A或B) = P(A) + P(B) - P(A且B),其中A 且B是指A和B同时发生的概率。
2. 概率乘法规则:P(A且B) = P(A) × P(B|A),其中P(B|A)是指在A发生的前提下,B发生的概率。
3. 贝叶斯公式:P(A|B) = P(B|A) × P(A) / P(B),其中P(A|B)是指在B发生的前提下,A发生的概率。
4. 全概率公式:P(A) = ∑ P(A|B_k) × P(B_k),其中B_k是划分样本空间的一组事件。
三、概率分布1. 离散型随机变量的概率分布:P(X=x_i) = p_i,其中X为随机变量,x_i为可能取值,p_i为取值为x_i的概率。
2. 离散型随机变量的期望:E(X) = ∑ x_i × p_i,其中x_i为可能取值,p_i为取值为x_i的概率。
3. 连续型随机变量的概率密度函数:f(x),其中f(x)为概率密度函数的值,表示X落在一个x到(x+dx)的范围内的概率为f(x) × dx。
4. 连续型随机变量的期望:E(X) = ∫ x × f(x)dx。
5. 方差: Var(X) = E(X²) - [E(X)]²。
概率 统计知识点总结

概率统计知识点总结一、概率统计基本概念1. 随机事件和样本空间在概率统计中,随机事件是指在一次试验中可能发生的结果,例如抛硬币的结果可以是正面或反面。
样本空间是指所有可能的结果的集合,例如抛硬币的样本空间为{正面,反面}。
2. 概率和基本概率公式概率是指某一事件在所有可能事件中发生的频率,通常用P(A)表示。
基本概率公式是P(A)=n(A)/n(S),其中n(A)表示事件A发生的次数,n(S)表示样本空间的大小。
3. 条件概率条件概率是指在事件B已经发生的条件下,事件A发生的概率,通常表示为P(A|B)。
4. 独立事件两个事件A和B称为独立事件,意味着事件A的发生不受事件B的影响,其概率关系为P(A∩B)=P(A)×P(B)。
二、概率统计的数据分析方法1. 描述性统计描述性统计是对数据进行总结和描述的方法,包括平均数、中位数、众数、标准差、极差等指标,用来描述数据的集中趋势、离散程度和分布形状。
2. 探索性数据分析探索性数据分析是一种用图表和统计分析方法探索数据背后的规律和结构的方法,通过绘制图表和计算相关指标,发现数据之间的关系、趋势和异常值。
3. 统计推断统计推断是根据样本数据对总体参数进行推断的方法,包括点估计和区间估计,以及假设检验。
三、概率统计的应用1. 随机过程随机过程是研究随机事件随时间或空间变化的规律性的数学模型,包括马尔可夫过程、布朗运动、泊松过程等,广泛应用于金融、电信、生物等领域。
2. 统计建模统计建模是根据数据建立数学模型,预测未来的趋势和规律,包括线性回归模型、时间序列模型、机器学习模型等。
3. 贝叶斯统计贝叶斯统计是一种基于贝叶斯定理的概率统计方法,它将先验信息和样本数据结合起来,进行参数估计和模型推断,常用于医学、生态学、市场营销等领域。
四、概率统计的挑战和发展1. 大数据与统计随着大数据时代的到来,传统的统计方法和模型已经无法满足大规模、高维度、非结构化数据的分析需求,需要发展新的统计方法和算法。
2024高考数学概率统计知识点总结与题型分析

2024高考数学概率统计知识点总结与题型分析概率统计作为数学课程的一个重要分支,在高考中占有重要的一席之地。
它是一个与现实生活息息相关的学科,旨在通过收集、整理和分析数据,帮助我们做出正确的判断和决策。
本文对2024高考数学概率统计的知识点进行了总结,并对可能出现的题型进行了分析。
一、基本概念和公式1. 随机事件:指在一次试验中可能发生也可能不发生的事件。
2. 样本空间:指一个试验所有可能结果的集合。
3. 必然事件:指在一次试验中一定会发生的事件。
4. 不可能事件:指在一次试验中一定不会发生的事件。
5. 事件的概率:指随机事件发生的可能性大小。
6. 加法原理:对于两个互不相容的事件A和B,它们的和事件A∪B的概率等于各个事件的概率之和。
P(A∪B) = P(A) + P(B)7. 乘法原理:对于两个相互独立的事件A和B,它们的积事件A∩B的概率等于各个事件的概率之积。
P(A∩B) = P(A) × P(B)二、概率计算1. 事件的概率计算:对于离散型随机事件,概率可通过频率估计和计数原理计算。
对于连续型随机事件,概率可通过定积分计算。
2. 事件的互斥与独立:如果两个事件A和B互斥(即不能同时发生),则它们的和事件A∪B的概率等于各自事件的概率之和。
如果两个事件A和B相互独立(即一个事件的发生不受另一个事件发生与否的影响),则它们的积事件A∩B的概率等于各自事件的概率之积。
三、排列组合与概率计算1. 排列:排列是从n个不同元素中取出m个元素(m≤n),并有顺序地排成一列的方式。
排列的计算公式为:A(n,m) = n! / (n-m)!2. 组合:组合是从n个不同元素中取出m个元素(m≤n),不考虑顺序地组成一个集合的方式。
组合的计算公式为:C(n,m) = n! / [m! × (n-m)!]3. 概率计算中的排列组合:当事件A与某个事件B相关时,在计算A的概率时,需要考虑B 发生的不同排列组合情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率知识点总结及题型汇总一、确定事件:包括必然事件和不可能事件1、在一定条件下必然要发生的事件,叫做必然事件。
必然事件是指一定能发生的事件,或者说发生的可能性是100%;如:从一包红球中,随便取出一个球,一定是红球。
2、在一定条件下不可能发生的事件,叫做不可能事件。
不可能事件是指一定不能发生的事件,或者说发生的可能性是0,如:太阳从西边出来。
这是不可能事件。
3、必然事件的概率为1,不可能事件的概率为0二、随机事件在一定条件下可能发生也可能不发生的事件,叫做随机事件。
一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同.一个随机事件发生的可能性的大小用概率来表示。
三、例题:指出下列事件中,哪些是必然事件,哪些是随机事件,哪些是不可能事件,哪些是确定事件?①一个玻璃杯从一座高楼的第10层楼落到水泥地面上会摔破;②明天太阳从西方升起;③掷一枚硬币,正面朝上;④某人买彩票,连续两次中奖;⑤今天天气不好,飞机会晚些到达.解:必然事件是①;随机事件是③④⑤;不可能事件是②.确定事件是①②三、概率1、一般地,对于一个随机事件A ,把刻画其发生可能性大小的数值,称为随机事件A 发生的概率,记为P(A) .(1)一个事件在多次试验中发生的可能性,反映这个可能性大小的数值叫做这个事件发生的概率。
(2)概率指的是事件发生的可能性大小的的一个数值。
2、概率的求法:一般地,如果在一次试验中,有n 种可能的结果,并且它们发生的可能性都相等,事件 A 包含其中的m种结果,那么事件A 发生的概率为P(A) = mn.(1)一般地,所有情况的总概率之和为1。
(2)在一次实验中,可能出现的结果有限多个.(3)在一次实验中,各种结果发生的可能性相等.(4)概率从数量上刻画了一个随机事件发生的可能性的大小,事件发生的可能性越大,则它的概率越接近1;反之,事件发生的可能性越小,则它的概率越接近0。
(5)一个事件的概率取值:0≤P(A)≤1当这个事件为必然事件时,必然事件的概率为1,即P(必然事件)=1不可能事件的概率为0,即P(不可能事件)=0随机事件的概率:如果A为随机事件,则0<P(A)<1(6)可能性与概率的关系事件发生的可能性越大,它的概率越接近于1,事件发生的可能性越小,则它的概率越接近0.3、求概率的步骤:(1)列举出一次试验中的所有结果(n个);(2)找出其中事件A发生的结果(m个);(3)运用公式求事件A的概率:P(A) = mn.5、在求概率时,一定要是发生的可能性是相等的,即等可能性事件等可能性事件的两种特征:(1)出现的结果有限多个; (2)各结果发生的可能性相等;例1:图1指针在转动过程中,转到各区域的可能性相等,图3中的第一个图,指针在转动过程中,转到各区域的可能性不相等,由上图可知,在求概率时,一定是出现的可能性相等,反映到图上来说,一定是等分的。
例2、下列事件哪些是等可能性事件?哪些不是?(1)抛掷一枚图钉,钉尖朝上或钉帽朝上或横卧。
不是(2)某运动员射击一次中靶心或不中靶心。
不是(3)从分别写有1,3,5,7中的一个数的四张卡片中任抽一张结果是1,或3或5或7。
是6、古典概率模型在一次实验中,可能出现的结果有限多个,每个基本事件出现的可能性相等。
将具有以上两个特点的概率模型成为古典概率模型,简称古典概型。
例题:(1)从标有数字1,2,3,4,5的5个小球(小球之间只有号码不同,其他均相同)中摸出一球,求摸出号码是2的概率.(2)从标有数字1,2,2,3,4,5的6个小球(小球之间只有号码不同,其他均相同)中摸出一球,求摸出号码是2的概率.此题考查概率的求法:如果一个试验有n种等可能的结果,事件A包含其中的m种结果,那么事件A的概率P(A)= mn,解题时注意对概率意义的理解.在(1)这次摸球实验中,共有5中可能的结果,事件A(摸出号码2这件事)包含其中的一种结果,那么摸出号码是2的概率.为1/5.在(2)这次摸球实验中,共有6中可能的结果,事件A(摸出号码2这件事)包含其中的二种结果,那么摸出号码是2的概率.为2/6=1/3.7、求概率的通用方法:在一次试验中,如果可能出现的结果只有有限个,且各种结果出现的可能性大小相等,那么我们可以通过列举试验结果的方法,求出随机事件发生的概率,这种求概率的方法叫列举法.列举法包括枚举法、列表法、树状图法(1)枚举法(列举法):通常在一次事件中可能发生的结果比较少时,我们可以把所有可能产生的结果全部列举出来,并且各种结果出现的可能性相等时使用。
等可能性事件的概率可以用列举法而求得。
但是我们可以通过用列表法和树形图法来辅助枚举法。
(2)列表法:当一次实验要涉及两个因素(例如掷两个骰子),并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果时使用。
(3)列树形图法:当一个实验要涉及3个或更多的因素(例如从3个口袋中取球)时,列表就不方便了,为不重不漏地列出所有可能的结果时使用。
四、频率与概率1、频数:在多次试验中,某个事件出现的次数叫频数2、频率:某个事件出现的次数与试验总次数的比,叫做这个事件出现的频率3、一般地,在大量重复试验中,如果事件A发生的频率mn会稳定在某个常数p附近,那么,这个常数p就叫作事件A的概率,记为P(A)=P。
五、概率公式中m、n之间的数量关系,P(A)的取值范围。
在概率公式P(A) = mn中m、n取何值,m、n之间的数量关系,P(A)的取值范围。
0 ≤m≤n, m、n为自然数∵0 ≤mn≤1, ∴0≤P(A) ≤1.当m=n时,A为必然事件,概率P(A)=1,当m=0时,A为不可能事件,概率P(A)=0.0≤P(A) ≤1六、几何概率1、如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型。
(1)几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个. 2)每个基本事件出现的可能性相等. (2)在几何概型中,事件A 的概率的计算公式如下:七、例题汇总(一)确定三事件 例1 下列事件中,哪些是不可能事件?哪些是必然事件?哪些是不确定事件?哪些是确定事件?,分析其发生概率的大小(1)抛掷一枚均匀的骰子,6点朝上; (2)367人中有2人的出生日期相同; (3)1+3>2; (4)太阳从西边升起.解析:根据事件发生的可能性大小判断相应事件的类型即可.(1)抛掷一枚均匀的骰子,1,2,3,4,5,6点都有可能朝上,故6点不一定朝上;(2)一年有365(或366)天,故367人中必然有2人的出生日期相同;(3)1+3肯定大于2;(4)太阳不可能从西边升起.由以上分析知:(1)是不确定事件, (2)(3)是必然事件, (4)是不可能事件. (2)(3)(4)是确定事件发生概率的大小判断,首先需要理解必然事件、不可能事件、不确定事件的意义.必然事件是指一定会发生的事件,发生的概率是1;不可能事件是指不可能发生的事件,发生的概率是0;不确定事件是指可能发生也可能不发生的事件,发生的概率介于0和1之间. 例2、下列事件属于必然事件的是( ) A.打开电视,正在播放新闻 B.我们班的同学将会有人成为航天员 C.实数a <0,则2a <0D.新疆的冬天不下雪解析:A 是随机事件,因为可能是播新闻也可能是其它电视节目;B 为随机事件,一个班有几十个学生当然有可能成为航天员;D 是不可能事件,因为新疆气温低,每年都会下雪.故选C 例3、(福建龙岩)下列事件:①在足球赛中,弱队战胜强队;②抛掷一枚硬币,落地后正面朝上;③任取两个正整数,其和大于1;④长分别为3、5、9厘米的三条线段能围成一个三角形.其中确定事件的个数是( ). A .1 B .2 C .3 D .4 B 解析:③④是确定事件 (二)概率意义的理解例1、 某商场举办购物有奖活动,在商场购满价值50元的商品可抽奖一次,丽丽在商场购物共花费120元,按规定抽了两张奖券,结果其中一张中了奖,能不能说商场的抽奖活动中奖率为50%?为什么?解析:因为中奖是不确定事件,而计算中奖率应该是以中奖的奖券数除以奖券的总数,但这些数据在本题中没有给出,所以不能计算出这次抽奖活动的中奖率,所以不能说商场的抽奖活动中奖率为50%.点评:概率是在做大量重复试验时,随着试验次数的增加,一个事件出现的频率,总在一个固定(面积或体积)面积或体积的区域长度试验的全部结果所构成)(构成事件A的区域长度P(A)常数的附近摆动,显示一定的稳定性,它是大量试验的结论.随机事件每次发生的结果是不可以预见的,但每次发生的概率是不变的.例2、下列说法正确的是 ( )A.某市“明天降雨的概率是75%”,表示明天有75%的时间会降雨B.随机抛掷一枚均匀的硬币,落地后正面一定朝上C.在一次抽奖活动中,“中奖的概率是1100”表示抽奖l00次就一定会中奖D.在平面内,平行四边形的两条对角线一定相交解析:明天降雨的概率是75%是说明明天有75%的可能性会降雨,而不是说明天有75%的时间在下雨;抛一枚硬币正面朝上的概率是0.5,说的是在做大量的抛一枚硬币的试验中,有一半的可能性出现正面朝上,而随机抛一格硬币落地后正面不一定朝上;抽奖活动中,中奖的概率为1100,指的是每抽奖一次都有1100的可能性中奖;故A 、B 、C 都错,因而选D. (三) 利用简单枚举法求概率例1 某小商店开展购物摸奖活动,声明:购物时每消费2元可获得一次摸奖机会,每次摸奖时,购物者从标有数字1,2,3,4,5的5个小球(小球之间只有号码不同,其他均相同)中摸出一球,若号码是2就中奖,奖品为一张精美图片.(1)摸奖一次得到一张精美图片的概率是多少?(2)一次,小聪购买了10元钱的物品,前4次摸奖都没有摸中,他想:“第5次摸奖我一定能摸中”,你同意他的想法吗?说说你的想法.解析:(1)每次摸奖时,有5种情况,只有摸到号码是2的球才中奖,于是得到一张精美图片的概率是P=15;(2)不同意,因为小聪第5次得到一张精美图片的概率仍是15,所以他第5次不一定中奖. 点评:此题考查概率的求法:如果一个试验有n 种等可能的结果,事件A 包含其中的m 种结果,那么事件A 的概率P (A )= mn ,解题时注意对概率意义的理解.例2、随意地抛一粒豆子,恰好落在图中的方格中(每个方格除颜色外完全一样),那么这粒豆子停在黑色方格中的概率是 .解析:1、这粒豆子落在每一个方格中的可能性是一样的,因此这粒豆子停在方格中的可能性共有12种,黑色方格的可能性有四种,所以黑色方格中的概率等于31124= 2、黑色方格中的概率等于黑色方格的面积与所有方格的面积比.设每个方格的面积是1,则P (这粒豆子停在黑色方格)=31124=. 点评:概率的大小与面积大小有关.事件发生的概率等于此事件所有可能结果所组成的图形面积除以所有可能结果组成的图形面积.例3 、掷两枚硬币,求下列事件的概率(1)两枚硬币正面全部朝上;(2)两枚硬币反面全部朝上 (3)一枚硬币正面朝上,一枚硬币反面朝上。