微电网运行与控制作业
微电网运行与控制技术-3

9
四、微电网中的继电保护
微电网接入对配电网继电保护的影响
瞬时速断、时限速断、定时限过电流保护组合构成的保护装置。
瞬时速断、时限速断作为线路的的主保护,定时过流保护作为线路的后备保护。
三段式电流保护各段保护范围及时限的配合
L1首端故障, L1的三段保护均启动,速断保护动作。 L1末端故障, L1的时限速断、定时过流保护均启动,时限速断保护动作。 L2首端故障, L1定时过流保护启动, L2的三段保护均启动, L2速断保护动作。
四、微电网中的继电保护
微电网接入对配电网继电保护的影响
孤岛和重合闸
下图为微电网重新并联到大电网的自动重合闸过程。假设微电网孤岛运行时,分布式电源提供的 功率小于负荷功率,因此微电网的频率下降。
21
四、微电网中的继电保护
微电网接入对配电网继电保护的影响
其他方面的问题
微电网保护还涉及一些其它的问题。这些问题通常是常规电力系统保护的一些共性问题。主要为 铁磁谐振和接地问题。 当电力系统发生故障时,可能产生铁磁谐振,从而损坏系统中的变压器和其他电气设备。 例如当电缆发生故障时通常为永久性的,可采用快速熔断器作为过电流保护。由于三相系统中的 熔断器各相可能不能同时动作,将出现变压器短时间内处于两相工作状态。电缆的等值电容与变 压器电抗串联,可能满足谐振条件,引起瞬时过电压和过电流。 微电网中分布式电源多处接地可能使得故障发生时形成不同路径的电流通路。 如果分布式电源通过Dyn接线的变压器接地,当线路发生接地短路故障时,故障电流不仅从故障 点流向系统中的主变压器,而且将流向分布式电源所接的变压器。
DG不同接入位置的影响作用
DG在馈线中间接入,相邻线路feeder line2上k1点发生故障,故障电流可能由DG流向故障点, 造成feeder line 1上的保护1误动作;在feeder line1的k2点发生故障时,由于DG的助增作用 ,保护3的灵敏度降低,可能拒动,需要重新计算保护1的分支系数。由于DG的接入,保护2需要 最大允运行方式整定。
微电网操作与控制

微电网操作与控制微电网(Microgrid)是指由多种不同的分布式能源资源、负荷和能量储存设备组成的小型电力系统。
它具有自主运行、互联互通和可控性强的特点,已成为解决能源转型和可持续发展的重要手段。
本文旨在探讨微电网的操作与控制策略,帮助读者更好地理解和应用微电网技术。
一、微电网概述微电网由分布式能源资源(如光伏发电、风力发电等)、负荷(如住宅、商业建筑等)和能量储存设备(如储能电池等)组成,形成一个相对独立的电网系统。
与传统的中央电网系统相比,微电网更加灵活和可靠,并且具备自主控制和管理的能力。
二、微电网的运行模式微电网的运行模式可以分为三种:独立运行模式、与主电网并网运行模式以及与主电网脱网运行模式。
1. 独立运行模式在独立运行模式下,微电网与主电网完全隔离,完全依靠分布式能源和能量储存设备供电。
这种模式适用于一些远离主电网的地区,比如岛屿、山区等。
2. 与主电网并网运行模式与主电网并网运行是微电网最常见的工作方式。
在这种模式下,微电网可以通过电网互联与主电网交换电能,在能源供应不足时从主电网购电,能源供应充足时则可以将多余的电能卖回主电网。
3. 与主电网脱网运行模式与主电网脱网运行是指微电网不再与主电网交换电能,完全依靠自身的分布式能源和能量储存设备运行。
这种模式适用于一些需要独立供电的环境,比如远离城市的无人岛屿、油气开采现场等。
三、微电网的操作与控制策略为了实现微电网的安全稳定运行,需要采取一系列的操作与控制策略,具体如下:1. 能源管理和优化策略能源管理和优化是微电网操作与控制的核心任务。
通过合理调度和分配分布式能源资源,最大限度地提高能源利用效率,并确保电网系统的稳定运行。
包括实时监测和管理能源供需平衡、优化能源调度策略、灵活控制充放电等。
2. 集中与分散控制策略微电网的控制可分为集中控制和分散控制两种方式。
集中控制指的是通过一个中心控制单元实现对整个微电网的控制和管理。
分散控制则是将控制功能分散到各个设备上,通过设备之间的通信和协调实现微电网的控制。
电气工程中的微电网系统设计与运行控制

电气工程中的微电网系统设计与运行控制随着能源需求的增长和可再生能源的发展,微电网系统正逐渐成为电力系统领域的热门话题。
微电网系统通过将分布式发电、能量储存和智能电网技术相结合,实现了对电力系统更高效、可靠和可持续的管理。
本文将讨论微电网系统的设计和运行控制。
微电网系统的设计是微电网项目的核心环节。
首先需要确定系统的规模和目标,以及系统的主要构成。
微电网系统一般由可再生能源发电设备、传统能源发电设备、能量储存设备和智能电网技术组成。
根据项目的具体需求和资源状况,设计师需选择合适的设备和组件,并进行系统拓扑的优化设计。
在微电网系统的设计中,关键问题是系统的能量平衡和负荷匹配。
系统设计师需结合能源资源的特点和负荷需求的变化,制定相应的能量管理策略。
同时,应考虑能量储存设备的容量和充放电效率等因素,以确保系统的稳定供电。
另外,微电网系统的运行控制也是至关重要的一环。
运行控制主要包括电力流控制、频率和电压控制以及故障管理。
电力流控制是微电网系统中的主要控制手段,它通过智能电网技术实现对发电设备和负荷的有效管理。
频率和电压控制是保障系统稳定运行的重要手段,它们通过对各种控制机制的协调调节,实现电网的容量平衡和电压平衡。
故障管理是针对系统出现异常情况时的应急措施,包括自动切换、故障诊断和故障隔离等措施。
为了保证微电网系统的安全可靠运行,还需要进行系统的监测和管理。
监测系统可以实时监控系统的运行状态,包括发电设备的输出功率、负荷的需求及系统的容量状况等。
管理系统则负责对监测信息进行处理和分析,制定相应的工作计划和维护措施,以保证系统的高效运行。
此外,微电网系统的经济性也是考虑的重要因素。
微电网系统的投资和运维成本较高,而且与传统电力系统相比存在一定的技术和管理风险。
因此,在微电网系统的设计和运行控制中,应充分考虑成本优化和风险管理。
总之,微电网系统的设计和运行控制是电气工程中的重要课题。
通过合理的系统设计和有效的运行控制,微电网系统能够实现对分布式能源的高效利用和可持续管理,为电力系统的发展做出重要贡献。
高效稳定的电力系统微网设计与运行控制

高效稳定的电力系统微网设计与运行控制电力系统微网是近年来在能源领域兴起的一种新型能源供应和管理模式。
它通过将分散的可再生能源、传统能源以及能量存储设备进行集成和优化,实现了在小范围内相对独立的电力供应。
高效稳定的电力系统微网设计与运行控制是确保微网运行的关键因素。
在设计电力系统微网时,首先需要确定微网的规模和用途。
微网可以是小型社区、工业园区、商业区等。
根据用电负荷的需求,确定微网的发电容量和储能系统的容量。
此外,还需考虑微网与外部电网的连接方式,包括并网运行和孤网运行两种模式。
设计电力系统微网时,需要充分利用可再生能源,例如太阳能和风能。
可再生能源的接纳率决定了微网的绿色程度和经济性。
为了实现高效利用可再生能源,可以采用多种技术手段,如光伏阵列的最大功率点追踪、风力发电机组的变桨角控制等。
此外,还需考虑负荷的平衡和稳定,可以通过合理的电能管理和调度策略来解决。
在微网的运行过程中,稳定性是一个重要的考虑因素。
微网内部的分布式能源转换装置和负荷的波动可能引起微网的不稳定。
因此,合理的运行控制策略是确保微网稳定运行的关键。
运行控制策略包括频率控制、电压控制和功率预测等。
频率控制是指通过调节发电机组的输出功率来维持微网的电力频率稳定。
电压控制则是通过调节发电机组和储能系统的输出电压来维持微网内电压的稳定。
功率预测是指通过对负荷的实时监测和分析,预测未来一段时间内的负荷需求,从而调整发电和储能的输出。
此外,还需要考虑微网与外部电网的连接问题。
微网可以通过与外部电网的接口来实现并网运行,从而实现电力的共享和调度。
在并网运行模式下,微网可以向外部电网购电或卖电,以满足不同的负荷需求和发电情况。
然而,在遭遇外部电网故障或自然灾害时,微网还需要具备孤网运行的能力,即在没有外部电网供电的情况下,维持微网内部电力的供应。
为了实现高效稳定的电力系统微网设计与运行控制,还需要考虑微网的监控和管理系统。
监控系统可以实时监测微网的发电情况、负荷情况以及电网参数等,并将监测数据传输给管理系统。
微电网运行与控制华北电力

Vf逆变电源:额定容量0.5MVA,出 口额定线电压0.4kV,内阻抗为0.032 欧姆,饱和电流值为1倍额定电流
线路阻抗正负序阻抗相等: 0.253+0.072jΩ/km,零序阻抗为 1.012+j0.289Ω/km
1/25/2020 3
5.2 DG故障电流特性
• 一、传统电力系统的故障分析 • 二、典型控制策略下DG输出特性分析 • 三、DG故障电流特性分析 • 四、微电网故障电流特性分析
1/25/2020 4
一、传统电力系统的故障分析
(1)短路故障类型
危害最 大
发生频 率最高
1/25/2020 5
一、传统电力系统的故障分析
二、典型控制策略下DG输出特性分析
(1)分布式电源限流控制器
Dq坐标系控制器限流
限流公式:
1/25/2020 13
二、典型控制策略下DG输出特性分析
(2)PQ控制逆变器输出特性
PQ 控制方法
Байду номын сангаас1/25/2020 14
二、典型控制策略下DG输出特性分析
(2)PQ控制逆变器输出特性
电网发生故障时,存在两种输出状态 1)正序电流未达到保护限值
(2)对称分量法
1/25/2020 6
一、传统电力系统的故障分析
(2)对称分量法
1/25/2020 7
一、传统电力系统的故障分析
(3)三相短路分析
1/25/2020 8
一、传统电力系统的故障分析
(4)单相接地短路分析
第四章 微电网运行与控制技术

4.1 微电网自动控制结构与体系
4.1.1 微电网的经典结构与控制目标 1、经典微电网的基本结构 如图4.1所示,它由微电源、储能装置和电/热 负荷构成,并联在低压配电网中。微电源接入 负荷附近,很大的减少了线路损耗,增强了重 要负荷抵御来自主电网故障的影响的能力。微 电源具有“即插即用”的特性,通过电力电子 接口实现并网运行和孤岛运行方式下的控制、 测量和保护功能,这些功能有助于实现微电网 两种运行方式间的无缝切换。
P
Q
ref
u d id u q iq u d id
u d id u q iq u d id
(4-1)
ref
通过式(4-1)计算得到dq轴的电流值,把它 作为电流环参考值,与实际的电流值做差, 然后通过PI控制器。得到滤波电感参数后,设 置dq轴电压参考分量,通过Park反变换,得 到三相交流分量,通过PWM输出给逆变器。
如图4.4所示Droop控制有功-频率(P-f)和 无功-电压(Q-U)呈线性关系,当微电源输 出有功、无功增加时,运行点由A点移动到 B点,达到一个新的稳定运行状态,该控制 方法不需要各微源之间通信联系就可以实 施控制,所以一般采取对微电源接口逆变 器控制。
图4.4 频率、电压下垂特性
4.2 微电网的逆变器控制
在大电网发生故障或其电能质量不符合标准情 况时,微电网可以孤网运行,保证微电网自身 和大电网的正常运行,从而提高供电安全性和 可靠性。因此孤网运行时微电网最重要的能力, 而实现这一性能的关键技术是微电网与主电网 之间的电力电子接口处的控制环节—静态开关。 该静态开关可实现在接口处灵活控制的接受和 输送电能。从大电网的角度看,微电网相当于 负荷,是一个可控的整体单元。另一方面,对 用户来说,微电网是一个独立自治的电力系统, 它可以满足不同用户对电能质量和可靠性的要 求。
电力系统规划设计-微网运行与控制

接上篇:电力系统规划设计-新能源并网微电网,现在无疑是比较前沿的内容,国内这块与国外相比有一些差距。
参与做过一些微电网规划,比如三沙岛的,也参观过一些实验室的微电网模型,许继的示范项目,试着总结一二。
一、微电网概述首先说说分布式能源和微电网的区别吧。
分布式能源(DER):一般定义为包括分布式发电(DG)、储能装置(ES)和与公共电网相连的系统。
其中DG是指满足终端用户的特殊需求,接在用户侧的小型发电系统,主要有内燃机,微型燃气轮机、燃料电池、太阳能、风能等发电系统。
分布式能源有很多优点,比如可实现能源综合梯级利用,弥补大电网稳定性方面不足,环境友好等,但是它的最本质缺点在于不可控和随机波动性,从而造成高渗透率下对电网稳定的负面影响。
所以,分布式能源和微电网的本质区别就在于前者不可控,后者可控。
微电网(MG)把分布式发电、储能装置、负荷通过控制系统协调控制,形成单一可控单元,直接接在用户侧,优点是非常明显的。
微电网的控制模式和策略是里面的关键部分,无论是系统级的主从、对等和综合性控制模式,还是逆变器级的P/Q、U/f、下垂控制,乃至和储能相结合的控制方式,都是微电网的核心部分。
而这些,在分布式能源系统里面是不会涉及的。
所以说,很多外面在搞的微网项目,特别是中国人在国外援建,都是在混淆概念,没有控制系统,其实只能叫做分布式发电(分布式能源系统都算不上)。
所以说微电网的核心在于“自治独立,协调互济”,自治独立指的是微电网具备阻断电网故障影响的能力,使微电网的孤网运行具有不失负荷或者少失负荷;协调互济指的是微电网和主网可以建立互相支援的关系。
国外这块,美国,欧盟和日本研究和应用较为领先,三者之间对于微电网的定义略有区别但不大,国内这块,学校里面天大好像还可以,示范工程许继有两个。
二、微电网的架构微电网的体系结构一般采用国际上比较成熟的三层结构(许继的示范工程也是如此):配电网调度层、微电网集中控制层、分布式电源和负荷就地控制层。
微电网运行与控制第一章

2013年9月10日星期二
7-5
§1-2 微电网背景
2.燃料电池 燃料电池效率高,污染物排放低,但目前价格较高。 主要的燃料电池有:磷酸盐燃料电池、高温固体氧化物熔融 碳酸盐燃料、低温质子交换膜(PEM)燃料电池等。 燃料电池效率高,与内燃发动机结合具有较低的污染排放。 3.可更新能源发电 光伏发电系统 风力发电系统 生物燃料微型发电系统 4.能量存储系统 蓄电池、超级电容 、超导电磁线圈和高速飞轮储能系统。 能量存储系统在微型发动机的直流母线上可提供当系统负荷 改变时所需要的容量。 5.热能回收技术 为使微电网能够持续发展,应用于热电联产系统中的热能回 收技术十必不可少的 。如低温和高温热交换技术等。
2013年9月10日星期二 7-3
§1-1 引言
微电网的结构应该遵守电网的运行规约以及除了对已存在的 用户具有可接受的影响外没有任何危害。 微电网应能够提供不间断电源的性质。 五、微电网的优点 为配电网提供电能阻塞的缓解作用,延缓新发电设备或输电 容量的投资以及跟随负荷变化和局部电压的支持等。 从电网的观点来看,微电网主要优点是能够在电力系统中作 为一个集中的负荷运行,从而可将其视为可控制的实体。 用户可从微电网受益,微电网的设计和运行不仅可满足本地 用户的电能和热能的需要,还可实现不间断电源的功能,增 强本地供电可靠性,减少线路损耗和维持本地电压等。
第一章 绪论
§1-1 引言 §1-2 微电网背景
2013年9月10日星期二
7-1
§1-1 引言
一、分布式发电系统的起源 传统电力系统的规约和运行环境的发展变化 小型发电系统如微型涡轮发电机组、燃料电池、光伏发电系 统和生物燃料发电系统等的涌现 分布式发电系统包括各种类型的小型发电机、能量存贮系统、 负荷控制以及小型发电机和大电网之间的先进的电力电子接 口装置。 二、微电网的定义 微电网可以定义为一组负荷和微型发电系统作为一个单一的 系统运行,为用户同时提供电能和热能,微电网中大部分微 型发电系统必须基于电力电子接口,从而保证作为单一集合 系统运行时提供一定的适应能力。 微电网采用自适应控制,允许微电网呈现到大电网时,作为 一个单一的控制单元,满足局部电力系统的可靠性和安全性 的需要。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于PQ控制方法的微电网并网运行摘要:0引言随着环境问题和能源问题的日益突出,世界各国开始纷纷为寻求更加环保节能的新能源发电方式而努力。
近年来,具有环境污染少、能源利用率高及安装地点灵活等优点的分布式发电开始受到世界各国的关注,然而,随着分布式发电的迅速发展及其在大电网中的大量接入,其对大电网的影响也是显而易见的因此,急需另外一种发电方式来解决以上问题,随着新型技术的应用,特别是现代控制理论及电力电子技术的发展,本世纪初微电网的概念被提出。
微电网中的大多数微电源通过逆变器接入系统,因此对微电源的控制即为对其逆变器的控制。
无论是并网运行还是独立运行,都需要对微电网的各个逆变器进行有效地控制,以维持电压和频率在允许变化的围之,从而满足负荷对电能质量的要求。
PQ控制一般用于发电具有间歇性的微电源,如光伏发电、风力发电等,并用于并网发电,此时微电网的电压由大电网或其他微电源提供稳定支撑时,则此微电源逆变器控制的主要目标就是保证逆变器输出的有功电流和无功电流跟踪参考电流以及电流的频率和相位与微电网电压保持一致。
1 微电网的结构微电网将分布式电源、负荷、储能装置、控制装置等汇集而成一个小型发配电系统,是一个能够实现自我控制和管理的自治系统,图1-1给出了一种典型的微电网系统示意图。
图1-1典型的微电网系统图 1-1 中微电网通过公共耦合点(Point of Common Coupling,PCC)处的静态开关(Static Transfer Switch,STS)与配电网相连,整体呈辐射状结构,共有2条馈线 A、B。
重要或敏感负荷接在馈线A上,不重要的负荷接在馈线B上。
这样,当微电网与主网解列时,可以切去不重要的负荷,保证网重要负荷和发电平衡。
另外,微电网中还配置有潮流控制器和能量管理器等控制设备,帮助实现微电网有效的控制和管理。
当负荷发生变化时,潮流控制器可根据本地电压频率信息对潮流进行调节,控制分布式电源输出的功率;而能量管理器则可以综合地解决微电网在进行电压和潮流控制以及解列操作时出现的功率分配、稳定运行等一系列运行问题,保证微电网的功率平衡。
2 微电源的控制方法微电网存在两种典型的运行模式:正常情况下微电网与大电网并联运行,称为并网模式;当检测到电网故障或者电能质量不满足要求时,微电网将及时的与大电网断开而独立运行,称为孤岛模式。
并网运行时,由大电网提供参考电压和参考频率;独立运行时,则要求微电网至少有一个微电源能建立稳定的电压和频率,并且使之处于允许的围之。
微电网中的大多数微电源通过逆变器接入系统,因此对微电源的控制即为对其逆变器的控制。
无论是并网运行还是独立运行,都需要对微电网的各个逆变器进行有效地控制,以维持电压和频率在允许变化的围之,从而满足负荷对电能质量的要求。
尤其是微电网在独立运行模式下,由于微电源不再利用并联运行的常规大电网获得电压和频率参考,此时的控制将更加复杂。
微电源逆变器的控制方式有V/f 控制和PQ 控制两种,V/f 控制方法使微电源输出的电压和频率在允许变化的围之,而PQ 控制方法使微电源输出恒定的有功和无功功率。
2.1 PQ 控制通常P/Q 控制方式用于微电网并网运行状态,在该状态下,微电网负荷波动、频率和电压扰动由大电网承担,各DG 不参与电压和频率的调节,直接采用大电网提供电压和频率作为支撑。
采用电力电子逆变器的分布式电源的P/Q 控制方式主要有俩种。
方法一通过设定的微型电源原动机的有功参考值来进行有功功率调节,并通过直流电压控制器参与辅助调节,而无功按照参考值进行控制。
逆变器P/Q 控制方式一框图如图2-1所示。
图2-1P/Q 控制方式一框图*act i *react i在该P/Q 控制方式下,有功控制和无功控制对象不同。
有功控制通过分布式电源控制器与逆变器直流电压控制器共同完成。
首先给定原动机功率参考值P SetPoint ,之后在原动机自身功率调节器作用下按参考值进行有功功率输出,同时在逆变器直流侧的电压控制器 PI1 作用下,保障直流电压恒定,从而实现DG 有功功率输出。
无功功率控制主要通过逆变器进行。
首先对逆变器右侧的端口电流i 和电压u 信号进行测量及计算,得出无功输出Q 。
然后在调节器PI2的作用下,根据无功功率参考值Q ref 与实测的逆变器输出无功Q 之间的经过差值调节器来控制无功电流的幅值,从而实现恒定无功调节。
方法二是指通过直接控制逆变器实现P/Q 控制。
在该控制下,通过选择合理的同步旋转轴在Park 变换将逆变器输出电压abc 分量转化为dq0分量,此时q 轴电压分量为0,u eq =0,逆变器的输出功率用下式表示为由上式得电流环的dq 轴参考值为dq 轴电流实际测量值i gd 、i gq 与电流参考值i gd,ref 、i gq,ref 之间的差值通过PI 调节器作用后,可为逆变器电压输出参考值u id,ref1、u iq,ref1,经滤波后,由其控制逆变器dq 轴电压参考分量值u id,ref 和u iq,ref ,之后通过Park 反变换将其转化为abc 分量进而对逆变器进行控制。
图2-2 P/Q 控制方式二框图2.2微电源逆变器数学模型分析⎝⎛⨯-=⨯+⨯-=⨯=⨯+⨯=gq gd gd gq gq gd gd gd gq gq gd gd i u i u i u Q i u i u i u P refref ⎩⎨⎧-==gdref ref gq gd ref ref gd u Q i u P i //,,在介绍微电源逆变器的控制方法之前,首先要进行微电源逆变器数学模型的建立,本文选择介绍三相电压型桥式逆变器,并假设其直流侧为恒定直流源。
三相逆变器主电路拓扑结构如图2-3所示,直流侧电压V dc经过三相逆变器后转换为三相交流电,再经LC滤波器滤除高次谐波,得到工频正弦交流电,给负荷供电且剩余电能还可输出给微电网。
图2-3 三相逆变器主电路拓扑结构其中,L1、C1、R1为滤波电感、滤波电容、滤波电阻,因R1一般较小,在数学建模时可以忽略不计,Z2为负载参数,L3、R3为输出线路参数,u1a、u1b、u1c为逆变器的输出电压,u2a、u2b、u2c 为负载电压,i1a、i1b、i1c为滤波电感L1上的电流,i2a、i2b、i2c为滤波电容上的电流,i3a、i3b、i3c为负载电流和电网电流之和。
从上图中可以看出,逆变器直流侧电源电压用直流电代替。
该并网逆变器为电压型三相桥式逆变器,主要由DC/AC逆变电路和输出滤波电路两部分组成。
DC/AC逆变电路由3个半桥组成, 关管全部采用全控型器件,如GTO、IGBT、GTR等,D1-D6为续流二极管。
当对波形要求较高时,则一般采用PWM调制方法,以抑制高次谐波。
根据各开关管导通时间的长短,该电路可分为180°导电型和120°导电型。
在180°导电型中,每个开关管的驱动信号持续180°,同一相上下两个开关管交替导通,任何时刻都有3个开关管导通,在一个周期,6个关管触发导通的次序为T1-T6,依次相隔60°。
在120°导电型中,同一相上两臂的导通间隔为60°,各相依次相差120°。
在同样直流电压时,180°导电的逆变电压比120°的高,故180°导电时开关管的利用率较高,因此180°导电型较为常用。
因此本文采取180°导电型的PWM调制方法,使直流电能转换为交流电能,得到与微电网同频同相的正弦交流电并与微电网连接。
输出滤波电路部分是为了抑制由于开关管动作产生的高次谐波,使逆变器输出电流与微电网电压同频同相。
常见的滤波电路主要有三种:L 型、LC 型和LCL 型。
其中,L 型结构最为简单,并网控制也较为容易,但其高频滤波性能较差,如果要滤除高频谐波,则需要很高的 关频率,且滤波效果很大程度上会依赖控制器的性能;LCL 型滤波结构虽然对高频谐波具有很好的衰减特性,但其控制策略及滤波参数的设计会比较复杂,并且因为是一个三阶的结构,较为容易引起系统振荡。
LC 型滤波结构并网控制简单,对高频谐波有很好的抑制作用,且能够实现孤岛运行模式和并网运行模式的相互切换,因此,本文选择LC 型滤波结构。
根据图2-3可列出如下方程:滤波电感L 1的电压方程为滤波电容C 1上的电流方程为其中,i 1 ,i 3,,u 1 ,u 2分别为电流矢量和电压矢量,且⎪⎪⎪⎭⎫ ⎝⎛=c b a i i i i 1111 ⎪⎪⎪⎭⎫ ⎝⎛=c b a i i i i 3333 ⎪⎪⎪⎭⎫ ⎝⎛=c b a u u u u 1111 ⎪⎪⎪⎭⎫ ⎝⎛=c b a u u u u 2222这俩个公式是三相逆变器在三相静止坐标系(a,b,c)下的数学模型,此模型具有物理意义清晰、直观易懂等优点,但由于交流量全为时变量,因此不易于控制系统的设计,为了便于控制系统的设计,一般要将三相静止坐标系(a,b,c)下的数学模型转换成与微电网基波频率同步旋转的(d,q)坐标系下的数学模型。
2111u u dt di L -=3121i i dt du C -=⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=c b a c b a c b a u u u u u u dt di dt di dt di L 2221111111⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=c b a c b a c b a i i i i i i dt du dt du dt du C 33311122213.微电源逆变器控制系统设计3.1 PQ计算在这个控制模块里,首先采集负载上的电压u2i与逆变器的输出电流i1i(i=a,b,c),然后按照下式计算逆变电源的输出功率(3-1)(3-2)各逆变电源实时测量电压和电流,计算所得的功率作为P-f、Q-U下垂特性控制模块的输入信号,为各逆变电源之间的功率合理分配提供了良好的依据。
3.2 PQ控制系统设计PQ控制方式适用于微电网与大电网并网运行的情况,此时,逆变器的输出电压由大电网决定,而只要通过调节逆变器的输出电流就能控制微电源的输出功率。
因此,只需要设计一个电流调节器来控制逆变器输出的有功电流和无功电流。
在三相静止坐标系(a,b,c)中,逆变器输出功率的表达式为(3-1)与(3-2),将其转化为两相旋转坐标系(d,q)中的功率表达式(3-3)(3-4)假设两相旋转坐标系(d,q)的d轴与负载电压矢量u2dq重合,则负载电压矢量的q轴分量u2q=0,此时,式(3-3)和式(3-4)简化为ccbbaaiuiuiuP121212++=[]cbabacacbiuuiuuiuuQ12212212231)()()(-+-+-=qqddiuiuP122+=qddqiuiuQ1212-=图3-1 PQ 控制系统中的解祸控制示意图(3-5)式(3-5)和式(3-6)中的u 2d 是恒定的,因此,通过控制i 1d 和i 1q 就能调节逆变器有功功率和无功功率的输出,即PQ 控制策略只需要设计输出电流的单闭环反馈就能实现。