常用医学影像设备CT.MRI.核医学篇

合集下载

医学影像设备学概述

医学影像设备学概述

医学影像设备学概述引言医学影像设备是现代医学中不可或缺的工具,它们通过利用不同的物理原理和技术手段,能够获取人体内部的结构和功能信息。

通过医学影像设备,医生可以准确地诊断疾病并制定合适的治疗方案。

本文将对医学影像设备学进行概述,包括常见的医学影像设备的分类、原理和应用等内容。

分类根据影像的获取方式和原理,医学影像设备可以分为以下几类:1.放射学影像设备:放射学影像设备利用不同类型的射线,如X射线和γ射线,通过透视或穿透身体来获取影像信息。

常见的放射学影像设备有X 射线机和CT扫描仪。

2.超声波影像设备:超声波影像设备利用高频声波的反射和传播特性,生成人体内部器官的影像。

它具有无辐射、便携、实时性强等优点,被广泛应用于妇产科、心脏科等领域。

3.磁共振影像设备:磁共振影像设备利用强磁场和无线电波来获取人体内部器官的影像。

它具有较高的分辨率和对软组织的良好显示效果,常用于检测脑部疾病、关节损伤等。

4.核医学影像设备:核医学影像设备利用放射性同位素的荧光特性,通过检测其在人体内部的分布和代谢,获得影像信息。

核医学影像设备包括单光子发射计算机断层扫描仪(SPECT)和正电子发射计算机断层扫描仪(PET)等。

工作原理和应用1. 放射学影像设备放射学影像设备主要通过射线的透射和吸收来获取影像信息。

X射线机是其中最常见的设备之一,它通过产生高能量的X射线束,并将其照射到患者身体上。

X射线束在不同组织和器官中的吸收程度不同,通过探测器接收被吸收后的射线,再通过图像处理系统生成图像。

X射线机常用于检查骨骼、胸部、腹部等部位的疾病。

CT扫描仪是一种利用X射线成像的设备,它通过连续的X射线束扫描患者身体,并通过计算机重建出横断面的影像。

CT扫描仪具有快速、高分辨率、多层次成像等优点,被广泛应用于各种疾病的检查和诊断。

2. 超声波影像设备超声波影像设备利用高频声波在人体组织中的传播和反射特性,通过探头发射和接收声波信号,生成实时的二维或三维图像。

常用医学影像设备CTMRI核医学篇共28页

常用医学影像设备CTMRI核医学篇共28页

常用医学影像设备CTMRI核医学篇

46、寓形宇内复几时,曷不委心任去 留。

47、采菊东篱下,悠然见南山。

48、啸傲东轩下,聊复得此生。
ห้องสมุดไป่ตู้

49、勤学如春起之苗,不见其增,日 有所长 。

50、环堵萧然,不蔽风日;短褐穿结 ,箪瓢 屡空, 晏如也 。
46、我们若已接受最坏的,就再没有什么损失。——卡耐基 47、书到用时方恨少、事非经过不知难。——陆游 48、书籍把我们引入最美好的社会,使我们认识各个时代的伟大智者。——史美尔斯 49、熟读唐诗三百首,不会作诗也会吟。——孙洙 50、谁和我一样用功,谁就会和我一样成功。——莫扎特

医用影像设备的分类

医用影像设备的分类

医用影像设备的分类
现代医用影像设备可分为医用影像诊断设备和医用影像治疗设备两大类。

其中医用影像诊断设备可分为:①X线设备,包括X线机和CT;②磁共振成像设备;
③核医学设备;④超声成像设备;⑤热成像设备;⑥医用光学设备(医用内镜)。

X线设备:是通过测量透过人体的X线来实现人体成像的,即是利用人体各组织的密度和厚度不同,对X线的衰减不同,来显示脏器的形态影像。

磁共振成像设备:是通过测量构成人体组织元素的原子核发出的MR信号,来实现人体成像的。

MRI设备可作任何方向的体层检查,可反映人体分子水平的生理、生化等方面的功能特性。

超声成像设备:分为利用超声回波的超声诊断仪和利用超声透射的超声CT 两大类。

超声诊断仪根据其显示方式不同,可分为A型(幅度显示)、B型(辉度显示)、D型(多普勒成像)、M型(运动显示)等。

核医学设备:是通过有选择地测量摄入体内的放射性核素所发出的γ射线来实现人体成像的设备。

此类设备主要有γ相机、SPECT和PET。

热成像设备:是通过测量体表的红外信号和体内的微波信号,实现人体成像的设备。

医用内镜:是能够直观地观察人体内部器官的形态的设备,相对其他影像设备其诊断准确性更高。

医用内镜的种类很多,其中最常见的有光导纤维内镜和电子内镜。

医院大型医疗设备有哪些

医院大型医疗设备有哪些

医院大型医疗设备有哪些医院大型医疗设备是指用于医疗诊断、治疗和监测的专业设备。

这些设备在现代医疗中起到关键作用,可以帮助医生准确诊断病情并提供相应的治疗方案。

以下是一些常见的医院大型医疗设备:1. CT扫描机:CT扫描机使用X射线和计算机技术生成横断面图像,可用于检查和诊断内脏器官、骨骼和血管病变等。

2. 核磁共振成像(MRI)设备:MRI设备利用磁场和无线电波生成高分辨率的三维图像,可以检查大脑、脊椎、关节和其他组织的疾病和损伤。

3. 透视机:透视机是一种用于实时观察和引导手术过程的设备,它使用X射线可以显示医生在进行手术或放射治疗时的解剖结构。

4. 超声波设备:超声波设备使用高频声波来生成内部器官的图像。

它可以用于检查和评估妇科、肝脏、心脏和血管等疾病。

5. X射线设备:X射线设备是一种常见的诊断工具,它使用X射线穿透身体,生成内部器官的影像。

它可用于检查骨折、肺部感染和肿瘤等。

6. 肺功能检测设备:肺功能检测设备用于评估肺部功能和呼吸系统的健康状况,以便诊断和管理呼吸系统疾病,如哮喘和慢性阻塞性肺疾病。

7. 血液透析机:血液透析机是用于治疗肾功能衰竭患者的设备,它通过过滤患者的血液来清除体内的废物和多余的液体。

8. 心电图机:心电图机用于记录心脏电活动的设备,可检测心脏病、心律失常和心肌缺血等疾病。

9. 麻醉机:麻醉机用于给患者提供安全、准确的麻醉药物,以确保手术期间患者的舒适和安全。

10. 手术台:手术台是一种专门设计用于执行手术的平台,可以提供舒适和安全的操作环境。

这只是一小部分医院大型医疗设备的例子。

随着医学科技的不断发展,新的设备和技术不断涌现,为医疗行业带来了更多的创新和改进。

医院会根据需要和预算选择适合的设备来提供高质量的医疗服务。

医学影像设备分类

医学影像设备分类

医学影像设备分类医学影像设备分为两大类:医学影像诊断设备和医学影像治疗设备。

一、医学影像诊断设备1、X线成像设备:有普通X线机、数字X线摄影设备、X-CT等。

特点:•信息载体:X线•检测信号:透过X线•获得信息:吸收系数•显示信息:物体组成密度•影像特点:形态学•信号源:X线管•探测器:•安全性:有辐射2、MRI设备特点•信息载体:电磁波•检测信号:MR信号•获得信息:质子密度、T1、T2、流速等•显示信息:物体组成、生理、生化变化•影像特点:形态学•信号源:氢质子•探测器:射频线圈•安全性:无辐射,但有强磁场3、超声成像设备•回波类A型:幅度显示,B型:切面显示,C型:亮度显示,M型:运动显示,P型:平面目标显示等。

•透射类超声CT特点•信息载体:超声波,大于0.15MHz•检测信号:反射回波•获得信息:密度、传导率•显示信息:组织弹性及密度变化•影像特点:线性动态•信号源:压电换能器•探测器:压电换能器•安全性:安全4、核医学成像设备• 相机:显像和功能•SPECT:具有γ相机的全部功能,增加了体层成像•PET:使用FDG-18 氟葡萄糖特点•信息载体:γ射线•检测信号:511keV湮灭光子(PET)•获得信息:RI分布•显示信息:标志物的不同浓度•影像特点:生理学•信号源:摄取标志物•探测器:闪烁计数器•安全性:有辐射5、热成像设备•信息载体:红外线、微波•检测信号:红外线•获得信息:组织温度•显示信息:组织血流、神经活动等•影像特点:生理学•信号源:组织器官•探测器:温度传感器•安全性:安全6、内窥镜•光导纤维内窥镜•电子内窥镜:由内镜、光源、视频处理、显示、记录等组成。

CCD(Charges Coupled Device)•超声内镜二、医学影像治疗设备•介入放射学系统:Interventional radiology•立体定向放射外科SRS:Stereotactic Radiosugery•立体定向放射治疗SRT:Stereotactic Radiotherapy•X-刀、γ刀。

四大医学影像设备

四大医学影像设备

四大医学影像设备医学影像设备是现代医学诊断的重要工具,通过不同的技术原理,能够呈现出人体内部的结构、功能和病理改变。

四大医学影像设备分别是CT扫描仪、MRI扫描仪、X射线机和超声波设备。

它们在不同的临床情况下应用广泛,并对疾病的早期诊断、治疗方案制定和病情观察起到了至关重要的作用。

一、CT扫描仪CT(Computed Tomography)扫描仪是一种利用X射线技术进行层析成像的设备。

它通过机器围绕患者旋转,以不同的角度来获取多个切面的X射线图像。

这些图像通过计算机处理后,可以生成具有丰富解剖细节的三维图像。

CT扫描仪常用于骨骼系统和头部器官的检查,能够发现骨折、肿瘤、出血等病变。

二、MRI扫描仪MRI(Magnetic Resonance Imaging)扫描仪利用磁场和无线电波来产生高清晰度的影像,不涉及X射线辐射。

MRI扫描仪通过调整磁场的强度和方向,对人体内的水分子进行定位,然后利用无线电波对其进行刺激,最后通过接收信号来生成图像。

MRI扫描仪适用于检查脑部、脊柱、关节、内脏等部位的病变,对于软组织的显示效果更好。

三、X射线机X射线机是一种利用X射线照射人体进行影像记录的设备。

它通过产生高能的X射线,并将其照射到患者的身体部位。

被照射到的X射线会被部分吸收或散射,而其余的则会通过人体组织,然后被感光屏或电子器件记录下来,形成影像。

X射线机广泛应用于检查骨骼、胸腔、腹部等部位的病变,对于肺部疾病和骨折的检测较为常见。

四、超声波设备超声波设备利用超声波的回声来生成影像,其辐射力量较小,对患者无损伤。

超声波设备通过将高频超声波引入人体,然后通过探头接收回声信号,并利用计算机处理后生成图像。

超声波设备适用于妇产科、心血管、肝胆脾等腹部器官的检查,对于孕妇和婴儿的检查尤为重要。

综上所述,四大医学影像设备在医学诊断中具有重要作用。

它们能够提供准确、快速的图像,帮助医生对疾病进行判断和评估,为患者提供更好的治疗方案。

医学影像学知识点总结

医学影像学知识点总结

医学影像学知识点总结一、概述医学影像学是一门运用各种成像技术和设备,对人体进行无创式检查,进而提供诊断、治疗和监测的学科。

它通过图像技术帮助医生了解病变的性质、位置和范围,为临床决策提供依据。

二、常见成像技术和设备1. X线摄影:X线是医学影像学中最早应用的一种成像技术,适用于检查骨骼、胸部、腹部等部位。

常见的设备有X线机、CR(数字胶片)和DR(数字影像)系统。

2. CT(计算机断层摄影):CT是一种通过多次X线扫描构建三维断层图像的成像技术,适用于检查头部、胸部、腹部等部位。

其设备通过旋转扫描体部来获得大量影像切片,并通过计算机重建成三维图像。

3. MRI(磁共振成像):MRI是利用磁共振原理对人体组织进行成像的技术,适用于检查脑部、脊柱、关节等部位。

其设备通过引入强磁场和无线电波来获取人体内部的信号,并通过计算机重建成图像。

4. 超声波成像:超声波成像是利用超声波的反射与回声生成图像的技术,适用于检查肝脏、心脏、肾脏等部位。

其设备通过超声波的传递和接收来获取组织的回声信号,并通过声波传感器转化为图像。

5. 核医学影像学:核医学影像学是利用放射性同位素进行检查的成像技术,适用于检查器官功能、血流和代谢情况。

常见的核医学检查有放射性核素扫描和单光子发射计算机断层扫描(SPECT)。

6. PET(正电子发射断层扫描):PET是一种利用正电子发射进行成像的技术,适用于检查脑部、心脏、肿瘤等部位。

其设备通过引入放射性示踪剂来观察组织的代谢活性,并通过重建图像显示病变的分布。

三、影像学常见病变及表现1. 骨科影像学:- 骨折:常见的骨折类型有完全骨折、骨折脱位和颈椎骨折等。

影像学表现为骨头断裂、骨块错位或脱位。

- 骨质疏松症:主要表现为骨密度降低、骨小梁疏松和骨骼变形,可通过骨密度测量和骨质疏松评估进行诊断。

- 关节炎:包括风湿性关节炎、骨性关节炎和类风湿性关节炎等。

影像学上可见关节软骨破坏、关节间隙变窄和关节周围骨质增生。

医学影像诊断中的常见设备与操作说明

医学影像诊断中的常见设备与操作说明

医学影像诊断中的常见设备与操作说明医学影像诊断是现代医学领域中非常重要的一项技术,它通过使用各种设备来获取人体内部的影像信息,以帮助医生进行疾病的诊断和治疗。

本文将介绍一些常见的医学影像设备,并对其操作进行说明。

一、X线设备X线设备是医学影像诊断中最常见的设备之一。

它通过向患者身体部位发射X射线,并通过接收器捕捉经过人体组织的X射线,从而生成人体内部的影像。

操作X线设备时,医生需要将患者放置在X线机的检查床上,然后调整机器的参数,如曝光时间和电压,以获得清晰的影像。

患者需要保持静止,并按照医生的指示进行体位调整,以确保拍摄到所需的部位。

二、CT扫描设备CT扫描设备是一种通过使用X射线和计算机技术来生成横断面影像的设备。

在CT扫描过程中,患者需要躺在扫描床上,然后通过圆形的扫描器进行扫描。

操作CT扫描设备时,医生需要设置扫描器的参数,如扫描层厚度和扫描速度。

患者需要保持静止,并在扫描过程中按照医生的指示进行呼吸停顿,以避免影响图像质量。

三、MRI设备MRI设备是一种使用强磁场和无线电波来生成人体内部影像的设备。

在进行MRI检查时,患者需要躺在扫描床上,然后被推入磁共振机。

操作MRI设备时,医生需要设置磁场强度和扫描序列,以获得所需的影像。

患者需要保持静止,并在扫描过程中注意呼吸平稳,以避免图像失真。

四、超声波设备超声波设备是一种使用高频声波来生成人体内部影像的设备。

在进行超声波检查时,医生会将一种称为超声探头的设备放置在患者身体部位上,并通过探头发射声波,并接收反射回来的声波,从而生成影像。

操作超声波设备时,医生需要调整探头的位置和参数,如频率和增益,以获得清晰的影像。

患者需要保持放松,并按照医生的指示进行体位调整,以确保拍摄到所需的部位。

五、核医学设备核医学设备是一种使用放射性同位素来生成人体内部影像的设备。

在进行核医学检查时,患者需要接受放射性同位素的注射或摄入,并等待一段时间,以使同位素在体内分布。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.2.1世界首台双源CT:SOMATOM Definition
极具创造性的SOMATOMDefinition双源CT超越了探测器排数的简单叠加,超越了当今多层CT理念。其特点如下: 1.超越任何心跳 a.在任何心率情况下均不需要使用β受体阻滞剂,双源CT心脏成像如同拍摄普通胸片一样简单; b.在任何心率情况下,83ms的单时相时间分辨率均可为用户提供无运动伪影的心脏图像;
为呵护患者设计的自动最佳电流调节Adaptive mA功能, 实时控制旋转中的管电流,不仅降低对患者的辐射, 也抑制了广范围摄影时画质的偏差; Hyper Q-net 软件可将 CT 的大量图像高速传输到 PC 机上, 使在普通电脑上进行解析和印制胶片成为可能,提高了作业效率。
2 MRI
• 2.1 简介
开放、友好的患者检查腔和最安全、最 舒适、最易入位的患者入位平台. 增强部门生产能力、坚固、高性能剃度 (gradients). 由于诊断可信度的提高及其运用的简易 性,将把对患者的服务提高到一个新的 高度.
2.2.2 MAGNETOM Verio
西门子MAGNETOM Verio全景 开放式3.0T磁共振仪,具备70 cm超大孔径和163 cm超短磁体, 保证临床获得更广泛、更深入的 应用领域; 在Tim技术的基础上,Verio 创新地研发了TrueForm适形技 术平台,实现了人们长久追求的 柱形成像空间,从而使磁共振物 理学与人体解剖学完美结合; 零液氦消耗技术和与1.5T磁 共振相同的机房要求将医院的经 济效益最大化; 其卓越的性能将为今后的手 术室MRI、PET-MR等提供可靠 的质量保证。
c.能为心率不齐的病人进行心脏成像且无需准。 2.50%的扫描剂量获得100%的心脏诊断细节与当今最节省扫描剂量的单源CT相比,在典型心率条件下,双源CT可以减少50%以 上的剂量。 3.一站式的急症诊断 a.160kW的功率储备使得即使在最快扫描速度下也可以获得最佳图像质量; b.78cm的扫描孔径和重建视野,200cm的扫描范围; c.可为急诊病人提供快速有效的一站式诊断。 4.双能量成像超越常规视野SOMATOMDefinition的双能量扫描成像功能开辟了全新的CT临床应用和研究领域,其包括:对血管和 骨骼进行直接的减影成像;肿瘤组织特征识别;体液识别。
2.2 设备简介
• • • • 2.2.1 GE MRI Signa 产品系列 2.2.2 MAGNETOM Verio 2.2.3 ZGV MRI 2.2.4 Superstar 0.35T/HQ 0.35T/HQ 0.23T
2.2.1 GE MRI Signa 产品系列
对整体成像3.0T磁共振系统进行了首次 (美国)食品及药品管理局质量认证。 由于3.0T VH/I系统所需环境空间灵活, 重点集中在操作和成像质量上,所以能 够满足临床设备日益严格、精确的要求。
2.2.4 Superstar 0.35T/HQ 0.35T/HQ 0.23T
•三高品质即高平台、高配置、高性能; •全景开放式设计。为永磁开放式成像系统中最为舒适最为友善,为病人提 供全方位开放的检查环境; •极好的磁体品质。拥有多项专利技术,将高科技与其临床应用价值融为一 体; •强劲的梯度性能。在图像质量和扫描时间上具有决定性的意义; •极佳的射频系统。高而均匀的射频场、标准4通道发射/接收相控阵硬件平 台、全数字化信号采集技术、专有的多层激发采集的SIMEX技术等; •提供丰富的相控阵接收线圈,针对不同部位专有设计。对常用部位如体部 等,配有不同尺寸的接收线圈,保证更高的填充率以获得优质图像。各种 线圈适合任何临床扫描序列,充分满足临床各个部位的应用; •强大的计算机配置,具有双核CPU的并行应用,海量的存储空间,极大的 内存容量,友好的WINDOWS操作系统,国际标准的DICOM3.0接口和超 快速的图像重建器; •采用宽体游离检查床,具有先进的侧方摆位方式,有利于偏中心部位成像, 方便危重患者的扫描。配备精确的激光定位系统; •软件设计更加注重智能化和人性化,拥有先进的成像序列和丰富的临床应 用软件。
3.窗宽和窗位,窗位是指图像显示所指的CT值范围的中心。例如观察脑组织常用窗位为+ 35HU,而观察骨质则用+300-+600HU。窗宽指显示图像的CT值范围。例如观察脑的窗宽用100, 观察骨的窗宽用1000。这样,同一层面的图像数据,通过调节窗位和窗宽,便可分别得到适于显示 脑组织与骨质的两种密度图像。 4.部分容积效应::CT图像上各个像素的数值代表相应单位组织全体的平均CT值,它不能如 实反映该单位内各种组织本身的CT值。在CT扫描中,凡小于层厚的病变,其CT值受层厚的病变, 其CT值受层厚内其它组织的影响,所测出的CT值不能代表病变的真正的CT值:如在高密度组织中 较小的低密度病灶,其CT值偏高;反之,在低密度组织中的较小的高密度病灶,其CT值偏低,这 种现象称为部分容积效应。 5.噪声
每圈扫描可同时显示4张图像,且具有丰富的层厚选择, 可进行自亚毫米至10毫米的层厚设定,一次摄影可获得三种层厚的图像;
亚秒扫描速度和实时0.2秒图像重建时间令人感受超乎想象的快捷 和全新的图像显示技术,更有实时电影回放,使医生的同步诊断轻松实现;
为了高速且稳定地式—Optical WAVE 技术;
1.2 设备简介
• 1.2.1世界首台双源CT:SOMATOM Definition • 1.2.2 AQUILION64 • 1.2.3 ANATOM (ASR-800F) • 1.2.4 Presto CT
1.2.1世界首台双源CT:SOMATOM Definition
西门子医疗系统集团在北美放射学 会(RSNA)第92届年会上宣布, SOMATOM®Definition的首批 syngo双能应用已经获得美国食品 药品管理局(FDA)的510(k)批准。 SOMATOMDefinition是全球第一款 也是唯一一款双源CT(DSCT)系 统。FDA允许SOMATOMDefinition 的两个X线源在同一次螺旋扫描中 采用两个不同的能量级别。这使临 床医师能够进行多种方式来探究组 织特征,并使双能应用成为常规临 床应用的一部分。
1.2.4 Presto CT
Mdsin品质提供的日本Hitachi日立 Presto CT,有以下特点: 通过NEW WAVE计算法,克服了多排CT检查床大节距与高画质的矛盾关系, 即使在广范围摄影使用大节距7时,也可抑制多排螺旋特有的伪影, 同样保证获得高画质图像; 采用日立高效 F.S.M.D 多排探测器, 通过将通道间的分离带宽度大幅减少,使X线利用率明显提高;
1.2.2 AQUILION64
东芝一直引领着CT的发展潮流,从未停止过研发的脚步, 技术不断推陈出新,追求品质的卓越和技术的极至。 1985年,东芝发明了东芝的专利螺旋技术后,即推出世 界首台螺旋CT。1993年,东芝又以CT透视技术开创了一个 新的临床应用纪元。2000年,东芝首先宣布拥有4维容积 CT,2003年第一个推出64排CT,目前东芝是全球唯一已安 装了256排CT的厂家。 东芝CT,不仅在日本拥有最大的市场份额,在占全世界 医疗影像器材市场半壁江山的北美地区,也是最受欢迎的产 品之一。东芝有个明确的目标:提供世界上最好的CT。 东芝Aquilion64因为具备CT王者气质,故以空陆王者取 名为鹰狮64CT,提供的是能满足3个医生同时上机的强大配 置,可提供非常科学的影像科工作流程,在繁忙的影像工作 中真正实现扫描、诊断、科研都不耽误。 · 最好的心脏CT——实时四维容积成像 · 最快的急诊CT——实时动态心脑急诊成像 · 最低剂量的CT——5mAs
指 导 教 师 : 王 世 伟 教 授
——CT.MRI.核医学篇
077017 93k10b
李晨光
常用医学影像设备
核医学
CT
MRI
超声
X射线
• 1 CT • 2 MRI • 3 核医学
1 CT
• 1.1 主要参数
• 1.2 设备简介
1.1 主要参数
1.分辨率:是图象对客观的分辨能力,他包括空间分辨率,密度分辨率,时间分辨率。 2.CT值:在CT的实际应用中,我们蒋各种组织包括空气的吸收衰减值都与水比较,并将密度 固定为上限+1000。将空气定为下限-1000,其它数值均表示为中间灰度,从而产生了一个相对 的吸收系数标尺。
1.2.3 ANATOM (ASR-800F)
安科公司与美国ANALOGIC公司共同推出设计新颖、结构 紧凑、环境适应性强的新型全身螺旋CT,其特点如下:
永不磨损的自由滑环(非接触滑环螺旋扫描)技术带来 了螺旋CT概念的深刻变革;Anatom创造性地采用卫星能 源供电、射频天线传输数据,使得螺旋CT的连续旋转不再 依赖接触式滑环,免受滑环磨损、打火之困扰。 超长寿命的X光管给这一款CT带来最好的经济效益。采 用世界顶级球管生产商瓦利安公司的球管,通过独特的设 计,球管的使用寿命达到同挡CT的最大值。 高灵敏度固态探测器加上独具匠心的短几何设计是高质 量CT图像的保证;X线剂量只需一般CT的1/3;超低X射线 剂量对于患者及医护人员的体贴不言而喻,其延长X光球管 寿命的功效也显而易见,是真正的绿色环保CT。 太空节能电池的创造性应用使Anatom的能源要求降低 90%,整机耗电仅3KW,是常规螺旋CT的1/10,普通照明 电源,即插即用,无须稳压电源和电源增容;扫描过程中 突然停电时,不仅CT不会受到损害,还能继续完成25帧图 象的扫描。
• 2.2 设备简介
2.1 简介
MRI也就是核磁共振成像,英文全称是:nuclear magnetic resonance imaging,之所 以后来不称为核磁共振而改称磁共振,是因为日本科学家提出其国家备受核武器伤害,为 表示尊重,就把核字去掉了。 核磁共振是一种物理现象,作为一种分析手段广泛应用于物理、化学生物等领域,到 1973年才将它用于医学临床检测。为了避免与核医学中放射成像混淆,把它称为核磁共振 成像术(MR)。 MR是一种生物磁自旋成像技术,它是利用原子核自旋运动的特点,在外加磁场内,经 射频脉冲激后产生信号,用探测器检测并输入计算机,经过处理转换在屏幕上显示图像。 MR提供的信息量不但大于医学影像学中的其他许多成像术,而且不同于已有的成像术, 因此,它对疾病的诊断具有很大的潜在优越性。它可以直接作出横断面、矢状面、冠状面 和各种斜面的体层图像,不会产生CT检测中的伪影;不需注射造影剂;无电离辐射,对机 体没有不良影响。MR对检测脑内血肿、脑外血肿、脑肿瘤、颅内动脉瘤、动静脉血管畸形、 脑缺血、椎管内肿瘤、脊髓空洞症和脊髓积水等颅脑常见疾病非常有效,同时对腰椎椎间 盘后突、原发性肝癌等疾病的诊断也很有效。 MR也存在不足之处。它的空间分辨率不及CT,带有心脏起搏器的患者或有某些金属 异物的部位不能作MR的检查,另外价格比较昂贵。
相关文档
最新文档