命题定理优秀教案

合集下载

《命题+定理与证明》教案

《命题+定理与证明》教案

《命题、定理与证明》教案第一章:命题的概念与分类1.1 命题的定义引入命题的概念,让学生理解命题是由题设和结论组成的陈述句。

举例说明命题的正确性和错误性。

1.2 命题的分类分类介绍简单命题和复合命题,包括并列命题、蕴含命题和条件命题。

引导学生理解命题的逻辑关系,如且、或、非等。

第二章:定理与证明2.1 定理的定义与特点解释定理的概念,强调定理是经过证明的命题。

引导学生了解定理的重要性和应用价值。

2.2 证明的方法与要求介绍直接证明、反证法、归纳法等常见的证明方法。

强调证明的逻辑严密性和步骤完整性。

第三章:几何定理与证明3.1 几何定理的分类分类介绍几何定理,如三角形的性质定理、四边形的性质定理等。

强调几何定理在几何学中的基础性作用。

3.2 几何证明的基本步骤与技巧引导学生掌握几何证明的基本步骤,包括命题的引入、证明的假设、证明的逻辑推理和结论的得出。

介绍几何证明中常用的技巧,如相似三角形的性质、平行线的性质等。

第四章:代数定理与证明4.1 代数定理的分类分类介绍代数定理,如多项式的性质定理、方程的解的定理等。

强调代数定理在代数学中的基础性作用。

4.2 代数证明的基本步骤与技巧引导学生掌握代数证明的基本步骤,包括命题的引入、证明的假设、证明的逻辑推理和结论的得出。

介绍代数证明中常用的技巧,如因式分解、恒等式的性质等。

第五章:命题、定理与证明的应用5.1 命题、定理与证明在数学中的应用通过实际问题引入命题、定理与证明的应用,让学生理解其在数学问题解决中的重要性。

引导学生运用命题、定理与证明的方法解决实际问题。

5.2 命题、定理与证明在其他学科中的应用引导学生思考命题、定理与证明在其他学科中的应用,如物理学、化学等。

鼓励学生探索命题、定理与证明在生活中的应用。

第六章:逻辑推理与命题、定理6.1 逻辑推理的基本概念引入逻辑推理的概念,让学生理解逻辑推理是推理的一种,是思维的基本形式。

解释演绎推理、归纳推理和类比推理等逻辑推理的基本类型。

《命题+定理与证明》教案

《命题+定理与证明》教案

《命题、定理与证明》教案一、教学目标:1. 理解命题的概念,能够判断一个句子是否是命题。

2. 掌握定理的定义,了解定理的重要性和应用。

3. 学会如何阅读和理解证明,能够运用证明的方法解决问题。

二、教学内容:1. 命题的概念和分类。

2. 定理的定义和特点。

3. 证明的方法和技巧。

三、教学重点与难点:1. 重点:命题的概念,定理的定义,证明的方法。

2. 难点:证明的构思和推理过程。

四、教学方法:1. 采用问题驱动法,引导学生主动探索和发现。

2. 通过案例分析和讨论,培养学生的逻辑思维和推理能力。

3. 利用多媒体辅助教学,提供丰富的学习资源。

五、教学准备:1. 教材或教学资源:《命题、定理与证明》相关章节。

2. 多媒体设备:投影仪、电脑等。

3. 教学工具:黑板、粉笔、PPT等。

教案示例:一、导入(5分钟)1. 引入命题的概念,让学生思考日常生活中遇到的命题。

2. 引导学生判断一个句子是否是命题。

二、命题的分类(10分钟)1. 讲解命题的分类,包括陈述句、疑问句、命令句等。

2. 举例说明不同类型的命题。

三、定理的定义(10分钟)1. 引入定理的概念,解释定理的定义和特点。

2. 给出几个经典的数学定理,如勾股定理、Pythagorean theorem等。

四、证明的方法(15分钟)1. 介绍直接证明、反证法、归纳法等常见的证明方法。

2. 通过示例讲解每种证明方法的步骤和应用。

五、课堂练习(10分钟)1. 给出一些练习题,让学生运用所学的知识进行证明。

2. 引导学生分组讨论,互相交流解题思路。

六、总结与反思(5分钟)1. 回顾本节课所学的内容,让学生总结命题、定理和证明的概念和方法。

2. 鼓励学生提出问题,解答学生的疑惑。

教学反思:本节课通过问题驱动法和案例分析,引导学生理解和掌握命题、定理和证明的概念和方法。

在教学过程中,注意关注学生的学习情况,及时给予指导和帮助。

通过课堂练习和讨论,培养学生的逻辑思维和推理能力。

命题定理与证明教案

命题定理与证明教案

命题定理与证明教案教案标题:命题定理与证明教学目标:1. 了解命题定理的概念和基本特征;2. 学会使用命题定理进行证明;3. 培养学生的逻辑思维和证明能力。

教学内容:1. 命题和命题的基本运算;2. 命题定理的概念和分类;3. 命题定理的证明方法。

教学步骤:引入(5分钟):通过提出一个简单的问题或情境,引起学生对命题和证明的兴趣。

例如,通过一个实际生活中的例子,引导学生思考如何证明某个命题的真实性。

概念讲解(15分钟):1. 介绍命题的概念和基本运算,包括命题的合取、析取、否定和条件等;2. 解释命题定理的概念,即由已知命题推导出的新命题;3. 分类介绍命题定理,如数学中的几何定理、代数定理等。

案例分析(20分钟):选择一个简单的命题定理案例,引导学生分析命题的结构和证明方法。

例如,选择一个几何定理,让学生通过观察图形、分析已知条件和推理过程,得出结论并进行证明。

练习与讨论(15分钟):给学生提供一些命题定理的练习题,让他们运用所学的证明方法进行推理和证明。

在讨论过程中,引导学生思考证明过程中可能出现的问题和解决方法。

拓展应用(15分钟):引导学生思考命题定理在实际问题中的应用,例如在几何中的应用、数学推理中的应用等。

鼓励学生提出自己的问题,并尝试用命题定理进行证明。

总结与反思(5分钟):总结本节课所学的内容,强调命题定理在数学学科中的重要性。

鼓励学生思考如何运用所学的证明方法解决其他问题。

教学资源:1. 教材:命题逻辑相关章节的教材;2. 案例材料:选择一个简单的命题定理案例,供学生分析和证明;3. 练习题:准备一些命题定理的练习题,供学生巩固所学知识。

评估方式:1. 课堂练习:通过学生在课堂上完成的练习题,评估他们对命题定理和证明方法的掌握情况;2. 讨论参与度:评估学生在讨论过程中的积极性和思考能力;3. 个人作业:布置一道综合性的命题定理证明题作为作业,评估学生的综合运用能力。

教学延伸:1. 鼓励学生深入研究一些经典的命题定理,了解其证明方法和应用领域;2. 引导学生进行更复杂的命题定理证明,培养他们的逻辑思维和问题解决能力;3. 鼓励学生参加数学竞赛等活动,提升他们的命题定理证明水平。

命题定理与证明教案

命题定理与证明教案

命题定理与证明教案命题定理与证明教案一、教学目标1.了解命题定理的概念;2.掌握常见的命题定理;3.掌握命题证明的基本方法;4.培养学生的逻辑思维和推理能力。

二、教学重难点1.命题定理的概念和基本性质;2.命题证明的基本方法。

三、教学过程1.引入通过一个简单的例子引入命题定理的概念和证明方法。

假设有一个命题:“对于任意两个正整数a和b,如果a和b都是偶数,则它们的和也是偶数。

”请同学们讨论这个命题的真假以及如何证明它。

2.概念讲解命题定理的概念:命题定理是对于某个命题的推理,通过逻辑演绎规则和已知条件,推出某个命题的结论。

常见的命题定理:1)条件定理:如果一个命题中含有一个条件,那么可以通过假设这个条件为真,然后推导出其他结论。

2)直接证明法:通过运用已有的数学理论和定理来证明命题的真假。

3)间接证明法:假设命题的否定是真的,然后通过逻辑推理推出矛盾,从而证明命题的真实性。

4)数学归纳法:通过证明当命题对某个数成立时,也对其紧随其后的数成立,从而推导出命题对所有自然数成立。

3.案例分析通过几个经典的数学命题定理,引导学生理解命题的证明方法。

1)费马大定理:对于任何大于2的整数n,不存在正整数x、y和z使得xⁿ + yⁿ = zⁿ成立。

2)勾股定理:直角三角形的斜边的平方等于两腰长的平方和。

3)平均值不等式:对于任意n个正数,它们的算数平均数大于等于它们的几何平均数。

4.讲解方法通过具体的例子,教学命题的证明方法。

1)条件定理的证明方法:假设条件为真,然后推导出命题的结论。

2)直接证明法的证明方法:根据已经存在的数学理论和定理,逐步推导出命题的结论。

3)间接证明法的证明方法:假设命题的否定是真的,然后通过逻辑推理推导出矛盾,从而证明命题的真实性。

4)数学归纳法的证明方法:证明命题对某个数成立,然后证明当命题对某个数成立时,也对其紧随其后的数成立。

5.课堂练习设立一些练习题,让学生灵活运用所学的命题证明方法进行练习。

命题、定理-教案

命题、定理-教案

命题、定理民族中学王征文一、学习目标:知识目标:了解命题、真命题、假命题、定理的含义,会区分命题的题设和结论。

能力目标:能区分命题的题设和结论;会把一些简单命题改写成“如果…….那么”的形式。

.情感目标:初步体会合理化思想.。

二、学习重点: 命题、定理的概念;区分命题的题设和结论。

学习难点:区分命题的题设和结论,会把一些简单命题改写“如果…….那么….”的形式。

三、学习过程:预习提示:预习课本p21—p22回答:㈠对一件事情______的语句,叫做命题。

1、命题由_____和_____是已知事项,_____是由已知事项.。

2、命题常可以写成__________的形式,“_____”后接的部分是题没,“_______”后接的部分是结论。

.3、_______叫真命题_______叫假命题,_______叫定理.。

4、指出下列命题的题设和结论:⑴如果AB⊥CD,垂足是O,那么∠AOC=90·。

⑵两直线平行,同位角相等。

⑶同位角相等。

㈡把下列命题改写成“如果………那么………”的形式,并判断其是真命题,还是假命题.若是假命题,举出一个反例。

⑴内错角相等,两直线平行。

⑵在同一平面内,平行于同一条直线的两直线平行。

⑶等角的补角相等。

⑷等边三角形的三条边都相等。

四、点拔质疑:1、命题必须是“对某件事情作出判断”的语句,重在“作出判断”。

2、假命题与命题的区别,不要误认为作出错误判断的语句(即假命题)就不是命题。

3、命题的题设与结论不包括“如果”和“那么”。

4、区分不出命题的题设和结论时,就把命题改写成“如果………那么……”的形式。

5、凡是定理都是真命题。

五.学生活动:所有题目均见“预习提示”,学生分组进行:一组1.2两题. 二组3.4题。

其余各组每组1个小题。

六.课堂小结小组交流本节课所学的知识点,并把自己的体会,疑惑与同伴交流。

七.反馈提高(检测)1、下列句子哪些是命题:(1)猴子是动物的一种(2)玫瑰花是动物。

人教版初中数学七年级下册5.3.2《命题、定理、证明》教案

人教版初中数学七年级下册5.3.2《命题、定理、证明》教案
五、教学反思
今天在教授《命题、定理、证明》这一章节时,我发现学生们对命题的概念接受得比较快,但是在理解定理和证明方法上遇到了一些困难。这让我意识到,虽然定理和证明在数学中非常重要,但它们的概念对学生来说可能比较抽象,需要更多的实际例证和练习来加深理解。
在讲解定理时,我尝试通过具体的例子来展示定理的形成和应用,但感觉效果并不如预期。我意识到,可能需要更多的生活实例或者图形辅助,让学生能够直观地感受到定理在解决问题时的作用。接下来,我会在准备教案时加入更多直观的教学素材,比如动画或者实物模型,以提高学生的兴趣和参与度。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解命题的基本概念。命题是可以判断真假的陈述句,它是数学逻辑推理的基础。定理则是经过严格证明的真命题,它在数学体系中扮演着重要的角色。
2.案例分析:接下来,我们来看一个具体的案例。这个案例将展示如何通过已知的定理来证明一个新的命题,以及这个过程如何帮助我们解决实际问题。
3.重点难点解析:在讲授过程中,我会特别强调命题的结构和定理的应用这两个重点。对于难点部分,如证明方法的选择和使用,我会通过具体的例题和逐步解析来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与命题、定理相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的证明练习。这个练习将演示如何运用所学的证明方法来证实一个命题的正确性。
人教版初中数学七年级下册5.3.2《命题、定理、证明》教案
一、教学内容
人教版初中数学七年级下册5.3.2《命题、定理、证明》教案:
1.理解命题的概念,能识别简单命题的结构。
2.学习定理的定义,了解定理在数学证明中的作用。

(完整版)命题、定理、证明教案设计

13.1.1命题、定理、证明(1)(一)教学目标1、了解命题的概念。

2、能区分命题的题设和结论。

3、经历判断命题真假的过程,对命题的真假有一个初步的了解。

(二)教学重难点重点:命题的概念和区分命题的题设与结论.难点:区分命题的题设和结论。

(三)学情分析:七年级学生对语句有一定的理解和判断能力。

(四)课前预习预习教材第20页至21页,并尝试完成课本随堂练习。

(五)教学过程一、情境引入教师与学生们打招呼,说出以下四句话:(1)七(3)的同学们你们好吗?(2)大家今天都能认真听课吗?(3)七(3)班的所有学生都是好学生。

(4)有时间我请大家吃饭。

问题1:下列四句话中,哪一句是对一件事情作出判断的语句?(1)七(3)的同学们你们好吗? ( )(2)大家今天都能认真听课吗?()(3)七(3)班的所有学生都是好学生。

()(4)有时间我请大家吃饭。

( )问题2 下列语句在表述形式上,哪些是对事情作了判断?(1)如果两条直线都与第三条直线平行,那么这两条直线也互相平行( )(2)画一个角等于已知角 ( )(3)对顶角相等;()(4)若a2=b2,则a=b。

( )(5)两条平行线被第三条直线所截,同旁内角互补;( )(6)若a2=4,求a的值; ( )二、新知探究,合作交流教师点评:象上题中的(1)、(3)、(4)、(5)这样判断一件事情的语句叫做命题.注意:1、只要对一件事情作出了判断,不管正确与否,都是命题。

如:相等的角是对顶角.2、如果一个句子没有对某一件事情作出任何判断,那么它就不是命题.如:画线段AB=CD.问题3 判断下列语句是不是命题?(1)两点之间,线段最短;()(2)请画出两条互相平行的直线;()(3)过直线外一点作已知直线的垂线; ( )(4)如果两个角的和是90º,那么这两个角互余.()提问几位学生,从而检查学生们是否真正理解命题的概念。

问题4 你能举出一些命题的例子吗?(教师这时让几名学生发言)问题5 请同学们观察一组命题,并思考命题是由几部分组成的?(1)如果两条直线都与第三条直线平行,那么这两条直线也互相平行;(2)两直线平行,同位角相等;(3)如果两个角的和是90º,那么这两个角互余;教师点评:命题是由题设(或条件)和结论两部分组成。

命题 定理与证明教案

命题定理与证明教案教案标题:命题、定理与证明教学目标:1. 理解命题、定理及其证明的概念和意义;2. 掌握常见的命题和定理,并能够正确运用它们;3. 培养学生的逻辑思维和证明能力;4. 培养学生的合作学习和批判性思维。

教学内容:1. 命题的定义和特点;2. 定理的定义和特点;3. 证明的基本方法和步骤;4. 常见的数学命题和定理。

教学步骤:一、导入(5分钟)1. 引入命题的概念,通过简单的例子让学生理解命题的定义和特点。

二、讲解命题和定理(15分钟)1. 介绍定理的概念和特点,并与命题进行比较,强调定理的重要性和应用价值。

2. 通过实际生活中的例子,引导学生理解定理的意义和作用。

三、讲解证明的基本方法和步骤(15分钟)1. 介绍证明的基本方法,如直接证明、间接证明、反证法等,并解释其应用场景。

2. 分步骤讲解证明的基本步骤,如假设、推理、总结等。

四、引导学生进行命题和定理的证明(20分钟)1. 给出一个简单的命题或定理,引导学生进行证明,鼓励学生积极参与讨论和思考。

2. 引导学生运用已学的证明方法和步骤,逐步完成证明过程。

五、总结与拓展(5分钟)1. 总结本节课所学的内容,强调命题、定理和证明的重要性。

2. 提出一些拓展问题,激发学生的思维和求解问题的能力。

教学辅助手段:1. 教学投影仪和幻灯片,用于展示相关概念和例子;2. 板书,用于记录学生的思路和解题过程。

教学评估:1. 课堂参与度评估:观察学生的积极性和主动性;2. 个人作业评估:布置相关命题和定理的证明作业,评估学生的独立思考和解题能力;3. 小组合作评估:组织学生进行小组合作,解决复杂的命题和定理证明问题,评估学生的团队合作和批判性思维能力。

教学建议:1. 鼓励学生多思考、多讨论,培养他们的逻辑思维能力;2. 引导学生运用已学的证明方法和步骤进行证明,提醒他们注意证明的逻辑严谨性;3. 鼓励学生多参与合作学习,培养他们的团队合作和批判性思维能力;4. 提供更多的练习题和拓展问题,帮助学生巩固所学知识和拓展思维能力。

命题 定理证明教案

命题定理证明教案教案标题:命题定理证明教案教案目标:1. 学生能够理解命题和定理的概念,并能够区分二者之间的区别。

2. 学生能够掌握命题与定理证明的基本步骤和方法。

3. 学生能够应用所学知识,独立完成命题和定理的证明过程。

教学准备:1. 教师准备多个命题和定理的示例,确保其难度适中,以帮助学生理解和掌握证明过程。

2. 准备白板、黑板或投影仪等教学工具,以便进行示范和讲解。

3. 准备学生练习题和答案,以便学生进行课后巩固。

教学步骤:引入:1. 向学生介绍命题和定理的概念,解释它们在数学中的重要性和应用。

2. 引导学生思考,命题与定理之间的区别是什么?为什么需要证明定理?讲解命题证明的基本步骤:1. 解释命题证明的基本步骤:假设、前提、推理、结论。

2. 通过示例向学生展示命题证明的过程,解释每个步骤的具体含义和作用。

3. 强调证明过程中的逻辑推理和严谨性,鼓励学生在证明过程中注重细节和逻辑推理的严密性。

讲解定理证明的基本步骤:1. 解释定理证明的基本步骤:假设、前提、推理、结论。

2. 通过示例向学生展示定理证明的过程,解释每个步骤的具体含义和作用。

3. 强调证明过程中的逻辑推理和严谨性,鼓励学生在证明过程中注重细节和逻辑推理的严密性。

练习与巩固:1. 分发练习题给学生,让他们独立完成命题和定理的证明过程。

2. 监督学生的练习过程,及时解答他们遇到的问题,并给予指导和建议。

3. 收集学生的练习作业,进行批改和评价,并及时反馈给学生。

总结:1. 总结命题和定理证明的基本步骤和方法。

2. 强调证明过程中的逻辑推理和严谨性的重要性。

3. 鼓励学生在学习过程中勇于尝试、思考和提问,培养他们的证明能力和逻辑思维能力。

教案评估:1. 观察学生在课堂上对命题和定理证明的理解和掌握程度。

2. 检查学生在练习题中的表现,评估他们的证明能力和逻辑思维能力。

3. 收集学生的反馈意见,了解他们对教学内容和方法的理解和接受程度。

人教版七年级数学下册5.3.2命题、定理、证明教学设计

2.从以下题目中选择两题进行深入探讨,要求写出详细的解题过程和证明步骤:
a.证明:三角形的内角和等于180度。
b.证明:对角线相等的平行四边形是矩形。
c.证明:圆的任意直径垂直于圆的切线。
3.结合生活实际,自行设计一个包含命题、定理和证明的数学问题,并用所学的知识进行解答。要求问题具有一定的挑战性,能够体现学生对几何知识的综合运用。
4.强调证明过程中需要注意的问题,如逻辑严密、步骤清晰等。
(三)学生小组讨论
1.将学生分成若干小组,每组分配一个几何问题,要求学生运用所学的定理和证明方法解决问题。
2.学生在小组内展开讨论,共同探讨解决问题的方法,教师巡回指导,给予提示和帮助。
3.各小组汇报讨论成果,分享解题过程和经验,其他小组进行评价和补充。
(三)情感态度与价值观
1.培养学生严谨、细致的学习态度,使学生认识到数学的严密性和逻辑性。
2.增强学生对数学美的感知,激发学生对数学学科的兴趣和热爱。
3.培养学生勇于探索、善于思考的品质,使学生体验到数学探究的乐趣。
4.引导学生将所学知识应用于实际生活,认识到数学在现实生活中的重要性,增强学生的社会责任感。
5.创设轻松愉快的学习氛围,鼓励学生提问、表达,激发学生的学习兴趣和积极性。
三、教学重难点和教学设想
(一)教学重难点
1.理解并掌握命题的概念,能够正确判断命题的真假。
2.熟悉基本的几何定理,并能运用定理解决实际问题。
3.学会运用逻辑推理进行证明,提高学生的逻辑思维能力。
4.能够将所学知识综合运用,解决复杂的几何问题。
(二)教学设想
1.创设情境,引入命题概念
-利用生活实例,如“两点之间线段最短”,引导学生理解命题的概念,并学会判断命题的真假。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学师生共用教学案第三周第1课时
__班组号
学生:
(2)下列命题中真命题是()A、两个锐角之和为钝角B、两个锐角之和为锐角C、钝角大于它地补角D、锐角小于它地余角
(3)命题:①对顶角相等;②垂直于同一条直线地两直线平行;③相等地角是对顶角;④同位角相等.其中假命题有()A、1个B、2个C、3个D、4个
(6)∵∠1+∠4=180º,∴a∥b(_______________).
6、已知:如图AB⊥BC,BC⊥CD且∠1=∠2,求证:BE∥CF
证明:∵AB⊥BC,BC⊥CD(已知)
∴==90பைடு நூலகம்()
∵∠1=∠2(已知)
∴=(等式性质)
∴BE∥CF()
7、已知:如图,AC⊥BC,垂足为C,∠BCD是∠B地余角.
2、许多命题都由和两部分组成.
是已知事项,是由已知事项推出地事项.
3、命题常写成"如果……那么……"地形式,这时,"如果"后接地部分是,
"那么"后接地地部分是.
真命题:.
命题地分类(定理:地真命题.)
假命题:.
三.探究合作:1、指出下列命题地题设和结论:
(1)如果两个数互为相反数,这两个数地商为-1;
(5)角平分线是一条射线()
2、选择题(1)下列语句不是命题地是()
A、两点之间,线段最短B、不平行地两条直线有一个交点
C、x与y地和等于0吗?D、对顶角不相等.
教(学)后反思:
(2)两直线平行,同旁内角互补;
(3)同旁内角互补,两直线平行;
(4)等式两边乘同一个数,结果仍是等式;
(5)绝对值相等地两个数相等.
(6)如果AB⊥CD,垂足是O,那么∠AOC=90°
四、尝试应用:1、判断下列语句是不是命题
(1)延长线段AB()(2)两条直线相交,只有一交点()
(3)画线段AB地中点()(4)若|x|=2,则x=2()
(1)∵a∥b,∴∠1=∠3(_________________);
(2)∵∠1=∠3,∴a∥b(_________________);
(3)∵a∥b,∴∠1=∠2(__________________);
(4) ∵a∥b,∴∠1+∠4=180º (_____________________)
(5)∵∠1=∠2,∴a∥b(__________________);
3、初步培养不同几何语言相互转化地能力.
学习重点:命题地概念和区分命题地题设与结论
学习难点:区分命题地题设和结论
二、自学导航:
1、下列语句,哪些是命题?哪些不是?
(1)过直线AB外一点P,作AB地平行线.
(2)过直线AB外一点P,可以作一条直线与AB平行吗?
(3)经过直线AB外一点P,可以作一条直线与AB平行.
3、分别指出下列各命题地题设和结论.(1)如果a∥b,b∥c,那么a∥c
(2)同旁内角互补,两直线平行.
4、分别把下列命题写成“如果……,那么……”地形式.
(1)两点确定一条直线;(2)等角地补角相等;(3)内错角相等.
五、拓展提升:
5、如图,已知直线a、b被直线c所截,在括号内为下面各小题地推理填上适当地根据:
求证:∠ACD=∠B.
证明:∵AC⊥BC(已知)
∴∠ACB=90°()
∴∠BCD是∠ACD地余角
∵∠BCD是∠B地余角(已知)
∴∠ACD=∠B()
执笔人:
审核人:
教师:
时间:
课题:
5.3.2命题、定理
课型:新授
评价:
一、学习目标:1、掌握命题地概念,并能分清命题地组成部分.
2、经历判断命题真假地过程,对命题地真假有一个初步地了解.
相关文档
最新文档