抽屉原理优秀教案.doc
小学数学《抽屉原理》教案

小学数学《抽屉原理》教案教学目标:1.了解抽屉原理的定义及相关概念;2.能够应用抽屉原理解决问题;3.培养学生的逻辑思维和推理能力。
教学重难点:1.掌握抽屉原理的概念和证明方法;2.培养学生运用抽屉原理解决问题的能力。
教学准备:1.教师准备好抽屉和球(或者其他小物体);2.黑板、彩色粉笔。
教学过程:Step 1 引入问题引入抽屉原理:同学们,你们有没有听过抽屉原理呢?它是数学中的一条非常重要的原理,广泛应用于各个领域。
今天我们就一起来学习一下抽屉原理。
Step2 导入示例教师在教室里摆放若干抽屉,并将一些球随意放在这些抽屉里。
然后请同学们观察这个情景,并思考一下,最少需要几个抽屉才能确保至少有一个抽屉里放有两个球?引导同学们思考之后,教师可以让同学们讨论并互相交流自己的想法。
然后,教师可以请同学们表达自己的观点,并给出答案。
教师可以解释抽屉原理的定义,并引导同学们理解。
Step3 抽屉原理的定义抽屉原理:如果有n+1个对象放进n个抽屉里,那么至少有一个抽屉里至少放了两个对象。
教师可以在黑板上列举一些例子,阐明抽屉原理的用法和意义。
Step4 抽屉原理的证明教师可以通过一个简单的证明过程来验证和解释抽屉原理。
例如,教师可以假设有6个抽屉,里面放有10个球。
假设每个抽屉里放的球的数量都不同,最多只能有1个球。
因为每个抽屉只能放最多1个球,所以只能放6个球。
但是实际上,我们有10个球。
所以,这个假设是错误的。
同理,假设每个抽屉里放的球的数量都不同,最少只能有0个球。
因为每个抽屉里放的球的数量都不同,所以最多只能放5个球。
但是实际上,我们有10个球。
所以,这个假设也是错误的。
通过这个简单的证明过程,我们可以得出结论:如果有n+1个对象放进n个抽屉里,那么至少有一个抽屉里至少放了两个对象。
Step5 拓展应用在日常生活中,抽屉原理的应用非常广泛。
尤其在数学、计算机科学和概率统计等领域有着重要的作用。
同学们可以思考一下抽屉原理在哪些实际问题中可以应用,并举例说明。
抽屉原理教案14篇

抽屉原理教案14篇抽屉原理优质课教案篇一××老师的《抽屉原理》一课结构完整,过程清晰,充分体现了学生的主体地位,为学生提供了足够的自主探索的空间,引导学生在观察、猜测、操作、推理和交流等数学活动中初步了解“抽屉原理”,并学会了用“抽屉原理”解决简单的实际问题。
1、本节课充分放手,让学生自主思考,采用自己的方法“证明”:“把4枝笔放入3个文具盒中,不管怎么放,总有一个杯子里至少放进2枝筷子”,然后交流展示,为后面开展教与学的活动做了铺垫。
此处设计注意了从最简单的数据开始摆放,有利于学生观察、理解,有利于调动所有学生的积极性。
在有趣的类推活动中,引导学生得出一般性的结论,让学生体验和理解“抽屉原理”的最基本原理:当物体个数大于抽屉个数时,一定有一个抽屉中放进了至少2个物体。
这样的教学过程,有助于发展学生的类推能力,形成比较抽象的数学思维。
在评价学生各种“证明”方法,针对学生的不同方法教师给予针对性的鼓励和指导,让学生在自主探索中体验成功,获得发展。
在学生自主探索的基础上,进一步比较优化,让学生逐步学会运用一般性的数学方法来思考问题。
2、在教学过程中充分发挥了学生的主体性,在抽屉原理(2)的推导过程中,至少是“商+余数”,还是“商+1”个物体放进同一个抽屉。
让学生互相争辩,再由学生自己想办法来进行验证,使学生更好的理解了抽屉原理。
另外,本节课中,学生争先恐后的学习行为,积极参与自学、交流、合作、展示、补充、互评、提问、质疑、反思等的学习过程,“自主、合作、探究”的学习方式,给人留下了深刻的印象,学生主体地位得到了充分的落实。
3、注意渗透数学和生活的联系。
并在游戏中深化知识。
学了“抽屉原理”有什么用?能解决生活中的什么问题?教学中教师注重了联系学生的生活实际。
课前老师设计一个游戏:“学生在一副去掉了大小王的扑克牌中,任意抽取五张,老师猜:总有一种花色的牌至少有两张。
”这是为什么?学生很惊讶。
人教版六年级数学下册《抽屉原理》教案

人教版六年级数学下册《抽屉原理》教案一、前置知识1.熟练掌握集合的概念及符号表示法。
2.了解数学计数方法,如排列、组合、乘法原理、加法原理等。
3.了解如何利用数轴表示数值大小,并掌握引入数轴的前提条件。
4.掌握简单的数学问题解决方法,如列方程、列等式、画图等。
二、教学目标1.理解抽屉原理的含义和应用场景。
2.通过例题掌握抽屉原理的实际应用方法。
3.培养学生的逻辑思维能力和解决实际问题的能力。
三、教学步骤1. 导入新课进入教室后,老师先放一段视频或图片,引发学生对抽屉原理的好奇心,引导学生能够发现空间中物体的分布规律,然后简单介绍一下抽屉原理的出现背景和基本概念。
2. 理论讲解既然要学习抽屉原理,那我们就要了解一下它的基本概念:抽屉原理:将若干个物品放入若干个抽屉中,若物品的个数比抽屉的个数还要多,则必有至少1个抽屉中,至少放了两个物品。
接下来,让学生通过班级演示“抽屉放苹果”的情境,让学生大致了解什么是抽屉原理,并且感受到抽屉原理的实用性和简单性。
3. 实例演练为了更直观地让学生体验抽屉原理的作用,让学生自己动手实践一下。
3.1 学生活动1现在有7个苹果,要放在5个抽屉里,问:抽屉中至少放了几个苹果?这时,同学们可以分别计算抽屉中放1个、2个、3个苹果的情况,直到发现一定有至少1个抽屉中放了至少2个苹果。
3.2 学生活动2现在有12个苹果,要放在4个抽屉里,问:抽屉中至少放了几个苹果?此时,学生们可以自己思考一下,也可以一起讨论和计算。
4. 综合练习让学生自己独立解决下面的问题:有10个苹果,分别编号为1到10,现在要将苹果分成若干组,使得编号相同的苹果在同一组中,那么至少要分成几组?这个问题中,可以将苹果编号看成是抽屉,将分组的方案看成是物品。
这样,就可以顺利推导出至少要分成5组。
5. 总结反思通过以上的教学,我相信同学们已经对抽屉原理有了一个更深的了解,同时也掌握了抽屉原理的具体应用场景和实际解决方法。
抽屉原理教案

抽屉原理教案抽屉原理教案教学目标:1. 理解抽屉原理的基本概念和应用;2. 掌握使用抽屉原理解决问题的方法;3. 培养学生的逻辑思维和数学推理能力。
教学重点:1. 抽屉原理的定义和应用;2. 如何使用抽屉原理解决问题。
教学难点:如何将抽屉原理应用于实际问题的解决。
教学准备:1. 教师准备PPT和教学素材;2. 学生课前预习相关知识。
教学过程:Step 1 导入新课教师通过简单的引入问题激发学生思考,例如:如果班上有10个学生,分别是A、B、C、D、E、F、G、H、I、J,怎样保证至少有两个学生的名字首字母相同?Step 2 介绍抽屉原理教师通过PPT或板书介绍抽屉原理的定义和基本概念,解释抽屉原理是数学中一种常用的原理,也称为鸽巢原理。
简单介绍抽屉原理的应用领域。
Step 3 学习抽屉原理的应用方法教师通过多个具体例子,引导学生学习使用抽屉原理解决问题的方法。
例如:给出10个整数,证明至少存在两个整数的和能被10整除。
Step 4 练习与巩固教师出示如下问题:在一桶里有101个苹果,你要从中选出100个,那么至少会包含两个相同的苹果。
学生在思考一段时间后,教师逐步引导学生分析和解答问题,引导学生使用抽屉原理解决问题。
Step 5 拓展应用教师提供更复杂的问题,并鼓励学生在小组内合作讨论解决方法。
例如:如果地球上有7.8亿人口,那么至少有多少人的生日在同一天?Step 6 总结与布置作业教师通过总结课堂上所学的内容,强调抽屉原理的应用和重要性。
布置作业,要求学生进一步巩固和拓展抽屉原理的应用。
教学延伸:1. 学生可以结合自己生活中的问题,尝试利用抽屉原理解决;2. 学生可以通过查阅相关资料,了解抽屉原理在其他领域的应用案例。
《抽屉原理》教学设计

《抽屉原理》教学设计抽屉原理教学反思篇一学生的数学学习过程是一个以学生已有的知识和经验为基础的主动建构的过程,数学应强调从学生的生活经验出发,将教学活动置于真实的生活背景之中,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,体会到数学就在身边。
这个游戏都是抽屉原理在生活中的运用,使生活问题数学化,数学教学生活化,让学生在数学学习中得到发展!活动化的数学课堂,使学生在生动、活泼的数学活动中主动参与、主动实践、主动思考、主动探索、主动创造;使学生的数学知识、数学能力、数学思想、数学情感得到充分的发展,从而达到动智与动情的完美结合,全面提高学生的整体素质。
只有学生主动参与到学习活动中,才是有效的教学。
在4个苹果放入3个抽屉学习中,充分利用学具操作,为学生提供主动参与的机会,让学生想一想、圈一圈,把抽象的数学知识同具体的实物结合起来,化难为易,化抽象为具体,让学生体验和感悟数学。
这节课我能充分为学生营造宽松自由的学习氛围和学习空间,能让学生自己动脑解决一些实际问题,从而更好的理解抽屉原理。
在教学过程中能够及时地去发现并认可学生思维中闪亮的火花。
不足之处在于教学过程中应更多的关注学困生的思维活动,及时的给予认可和指导,使教学能够面向全体学生。
《抽屉原理》教学设计篇二一、教学内容这一册教材包括下面一些内容:负数、圆柱与圆锥、比例、统计、数学广角、整理和复习等。
教学重点:百分数的应用、圆柱的侧面积和表面积的计算方法、圆柱和圆锥的体积计算方法、比例的意义和基本性质、正比例和反比例、扇形统计图、转化的解题策略以及总复习的四个板块的系列内容。
教学难点:圆柱和圆锥体积计算方法的推导、成正比例和反比例量的判断、用方向和距离确定位置、众数和中位数平均数、解题策略的灵活运用。
二、教学目标这一册教材的教学目标是让学生:1、了解负数的意义,会用负数表示一些日常生活中的问题。
2、理解比例的意义和基本性质,会解比例,理解正比例和反比例的意义,能够判断两种量是否成正比例或反比例,会用比例知识解决比较简单的实际问题;能根据给出的有正比例关系的数据在有坐标系的方格纸上画图,并能根据其中一个量的值估计另一个量的值。
抽屉原理教案大班

抽屉原理教案大班教案标题:抽屉原理教案(大班)教学目标:1. 了解和理解抽屉原理的概念。
2. 能够应用抽屉原理解决简单的问题。
3. 培养学生的逻辑思维和解决问题的能力。
教学准备:1. 教师准备:抽屉原理的示意图、抽屉原理的实例、大班教学所需的教学工具(如黑板、白板、彩色粉笔、卡片等)。
2. 学生准备:纸和铅笔。
教学步骤:引入(5分钟):1. 通过一个简单的问题引入抽屉原理的概念,例如:班级里有10个学生,但只有5个座位,那么至少会有几个学生是共用一个座位的?2. 引导学生思考这个问题,并鼓励他们分享自己的答案和思路。
讲解(10分钟):1. 讲解抽屉原理的定义:如果有n+1个物体放入n个容器中,那么至少会有一个容器里放入了两个或以上的物体。
2. 通过示意图和实例向学生解释抽屉原理的原理和应用。
探究(20分钟):1. 将学生分成小组,每组给出一个抽屉原理的问题,并让他们思考和讨论解决方案。
2. 鼓励学生在小组内分享自己的思路和解决方案,并指导他们运用抽屉原理解决问题。
3. 每个小组选择一位代表,向全班展示他们的问题和解决方案。
巩固(10分钟):1. 教师引导学生总结抽屉原理的概念和应用。
2. 教师提供更多的抽屉原理问题,让学生在纸上进行解答,并检查他们的答案。
拓展(10分钟):1. 教师提供更复杂的抽屉原理问题,让学生进行思考和解答。
2. 鼓励学生提出自己的抽屉原理问题,并与同学一起解决。
总结(5分钟):1. 教师总结本节课的内容和重点。
2. 鼓励学生提出对抽屉原理的疑问和思考,并进行解答。
评估:1. 通过学生在小组讨论和展示中的表现,评估他们对抽屉原理的理解和应用能力。
2. 检查学生在纸上解答问题的准确性和思维逻辑。
教学延伸:1. 鼓励学生在日常生活中运用抽屉原理解决问题,如整理书包或柜子中的物品。
2. 提供更多的抽屉原理问题,让学生继续思考和解答。
教学反思:教案中的教学步骤和时间安排可根据实际情况进行调整。
抽屉原理教案
抽屉原理教案抽屉原理教案一、教学目标:1. 理解抽屉原理的概念和基本思想;2. 掌握抽屉原理的应用方法和技巧;3. 培养学生运用抽屉原理解决问题的能力。
二、教学重难点:1. 抽屉原理的基本概念和思想;2. 抽屉原理的应用方法。
三、教学准备:1. 教学用具:黑板、彩色粉笔、教学PPT等;2. 教学材料:与抽屉原理相关的问题和例题。
四、教学过程:1. 导入(5分钟)教师向学生提出如下问题:"班级有30个学生,每人有5个朋友。
根据抽屉原理,猜一猜至少有多少人有相同数量的朋友?" 让学生思考并回答。
2. 规范定义(10分钟)教师向学生解释抽屉原理的定义和基本思想。
抽屉原理是指:如果有n个物体放入n-1个盒子里,那么至少会有一个盒子内有两个或两个以上的物体。
这个原理可以用来解决一些关于分组、选择、归置等问题。
3. 概念说明(15分钟)教师通过举例子让学生更加深入地理解抽屉原理的概念和意义。
比如:班级有30个学生,每人有5个朋友。
按照抽屉原理推断,至少有两个人拥有相同数量的朋友。
4. 应用方法(15分钟)教师向学生介绍抽屉原理的应用方法和技巧。
要运用抽屉原理解决一个问题,首先要明确问题中"抽屉"和"物体"的具体含义,然后根据抽屉原理的基本思想进行推理和分析,最后得出结论。
5. 解决问题(20分钟)教师向学生提供一些涉及抽屉原理的问题和例题,要求学生独立思考并解答。
教师可以适时引导学生分析问题,帮助他们进行正确的推理和判断。
6. 拓展应用(15分钟)教师让学生在课堂上或课后自主探索并应用抽屉原理解决其他问题。
鼓励学生动手尝试,培养他们探索和创新的能力。
7. 归纳总结(10分钟)教师与学生一起归纳总结抽屉原理的应用方法和技巧,并强调抽屉原理在数学和日常生活中的重要作用。
五、板书设计:抽屉原理• 定义:如果有n个物体放入n-1个盒子里,那么至少会有一个盒子内有两个或两个以上的物体。
抽屉原理优秀教案
抽屉原理优秀教案
简介
抽屉原理(Pigeonhole Principle)是一种非常基础的组合数学原理,也是解决问题的常用思路。
在高中数学的课程中,抽屉原理也是非常重要的一部分。
下面将介绍一份优秀的抽屉原理教案,帮助老师更好地让学生掌握该原理。
教材准备
•白板、白板笔、橡皮擦、教材
•尺子、铅笔、草稿纸
教学目标
•理解抽屉原理的概念和应用条件;
•运用抽屉原理解决实际问题;
•提高学生的组合数学思维和解决问题的能力。
教学过程
1. 引入
1.1 翻译和解释抽屉原理的概念。
1.2 提示学生,抽屉原理能够帮助解决哪些问题,引出本课核心内容。
2. 案例练习
2.1 由老师出题,引导学生使用抽屉原理解决有关组合数学的实际问题。
2.2 根据题目难易程度逐步提高练习难度,帮助学生逐步掌握使用抽屉原理的方法。
3. 归纳
3.1 学生归纳抽屉原理的应用范围和方法,并在白板上进行讲解。
3.2 带领学生解决课堂上未完成的案例,检测学生对抽屉原理的掌握程度。
4. 课后练习
4.1 布置课后练习,让学生巩固抽屉原理的应用。
4.2 课后批改作业,对学生掌握程度进行检测和评价。
教学评估
•课堂互动表现
•课堂练习和课后作业完成情况
•学生对课程知识点的掌握和理解
小结
本教案针对高中生,以案例练习为主,教师通过引入案例和逐步讲解抽屉原理的方法,帮助学生掌握该原理的应用方法,提高学生的组合数学思维和解决问题的能力。
同时,通过课堂互动和课后练习等方式进行评估,帮助学生巩固和深化所学知识,从而达到提高教学质量的目的。
小学数学《抽屉原理》教案
小学数学《抽屉原理》教案课时数:2课时教学目标:1.了解抽屉原理的概念和应用;2.能够运用抽屉原理解决问题;3.培养学生观察、归纳、推理和解决问题的能力;4.通过实例让学生体会数学在解决实际问题中的作用。
教学重点:1.抽屉原理的概念;2.抽屉原理的应用。
教学难点:1.如何运用抽屉原理解决问题;2.培养学生解决实际问题的能力。
教学准备:1.教师准备课件和教具;2.学生准备笔记本和铅笔。
教学过程:一、导入(10分钟)1.教师用一个实例引出抽屉原理的概念:“假设有10双袜子,颜色只有红、蓝、黄三种。
那么不论如何排列,一定有两双颜色一样的袜子放在同一个抽屉里。
请问为什么?”2.引导学生思考这个问题,鼓励他们发言讨论。
二、概念解释与引入(10分钟)1.教师向学生解释抽屉原理的概念:“抽屉原理又称为鸽巢原理,意思是:如果有n+1个对象,要放进n个盒子里,那么至少有一个盒子里放的对象个数一定多于1个。
”2.通过图示和具体例子向学生展示抽屉原理的应用。
三、教学示范与讲解(30分钟)1.教师通过几个简单的问题向学生展示抽屉原理的应用方法,并给予解答讲解。
示例问题1:抽屉原理在生活中的应用有哪些?示例问题2:在0到9这10个数字中,至少有两个数字的个位数字相同,你能找出这两个数字吗?2.让学生自己尝试解答一些问题,并请学生上台展示解答过程,让其他学生进行评价和补充。
四、拓展与应用(20分钟)1.让学生分组完成以下问题:问题1:甲乙两个班级的学生共有50人,这两个班级每个班至少有多少人?问题2:小区有100户居民,每户最多能养2只宠物,那么这个小区最多能养多少只宠物?问题3:一台机器每小时可以生产100件产品,要生产1000件产品至少需要多少时间?2.鼓励学生思考不同的解决方法和思路,并让每个小组展示他们的解答过程。
五、总结与反思(10分钟)1.教师进行知识总结,强调抽屉原理的应用方法和思维方式。
2.鼓励学生反思本节课学到的内容,提出问题和思考。
小学奥数教案——抽屉原理(解析版)
小学奥数教案——抽屉原理(解析版)第一篇:小学奥数教案——抽屉原理(解析版)教案抽屉原理一本讲学习目标初步抽屉原理的方法和心得。
二概念解析把3个苹果任意放到两个抽屉里,可以有哪些放置的方法呢?一个抽屉放一个,另一个抽屉放两个;或3个苹果放在某一个抽屉里.尽管放苹果的方式有所不同,但是总有一个共同的规律:至少有一个抽屉里有两个或两个以上的苹果.如果把5个苹果任意放到4个抽屉里,放置的方法更多了,但仍有这样的结果.由此我们可以想到,只要苹果的个数多于抽屉的个数,就一定能保证至少有一个抽屉里有两个或两个以上的苹果.道理很简单:如果每个抽屉里的苹果都不到两个(也就是至多有1个),那么所有抽屉里的苹果数的和就比总数少了.由此得到:抽屉原理:把多于n个的苹果放进n个抽屉里,那么至少有一个抽屉里有两个或两个以上的苹果。
如果把苹果换成了鸽子,把抽屉换成了笼子,同样有类似的结论,所以有时也把抽屉原理叫做鸽笼原理.不要小看这个“原理”,利用它可以解决一些表面看来似乎很难的数学问题。
比如,我们从街上随便找来13人,就可以断定他们中至少有两个人属相(指鼠、牛、虎、兔、…等十二种生肖)相同.怎样证明这个结论是正确的呢?只要利用抽屉原理就很容易把道理讲清楚.事实上,由于人数(13)比属相数(12)多,因此至少有两个人属相相同(在这里,把13人看成13个“苹果”,把12种属相看成12个“抽屉”)。
应用抽屉原理要注意识别“抽屉”和“苹果”,苹果的数目一定要大于抽屉的个数。
三例题讲解例1 有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子.请你证明,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。
分析与解答首先要确定3枚棋子的颜色可以有多少种不同的情况,可以有:3黑,2黑1白,1黑2白,3白共4种配组情况,看作4个抽屉.把每人的3枚棋作为一组当作一个苹果,因此共有5个苹果.把每人所拿3枚棋子按其颜色配组情况放入相应的抽屉.由于有5个苹果,比抽屉个数多,所以根据抽屉原理,至少有两个苹果在同一个抽屉里,也就是他们所拿棋子的颜色配组是一样的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《数学广角——抽屉原理》
实验小学
潘聪聪
《数学广角——抽屉原理》
【教学内容】:
我说讲课的内容是人教版六年级数学下册数学广角《抽屉原理》第一课时,也就是教材70-71页的例1和例2。
【教学目标】:
知识与技能:经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。
通过猜测、验证、观察、分析等数学活动,建立数学模型,发现规律。
渗透“建模”思想。
过程与方法:经历从具体到抽象的探究过程,提高学生有根据、有条理地进行思考和推理的能力。
情感与态度:通过“抽屉原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。
【教学重点】:
1、经历“抽屉原理”的探究过程,初步了解“抽屉原理”。
2、“总有”“至少”具体含义,以及为什么商+1而不是加余数。
【教学难点】:
理解“抽屉原理”,并对一些简单实际问题加以“模型化”。
【教法和学法】:
以学生为课堂的主体,采用创设情境,提出问题,让学生动手操作、自主探究、合作交流。
【教学准备】:一定数量的笔、铅笔盒、课件。
【教学过程】:
一、游戏激趣,初步体验
师:同学们喜欢做游戏吗?学习新课之前,我们先做个游戏,老师这里准备了2张凳子,请3个同学上来,(找生)听清要求,老师说“请坐”
时,每个同学必须都坐下,谁没坐下谁犯规,(师背对)听明白了吗?好“请坐!”告诉老师他们都坐下了吗?老师不用看,就知道一定有一张凳子上至少坐了两名同学,对吗?假如请这3位同学再反复坐几次,老师还敢肯定地说:“不管怎么坐,总有一张凳子上至少坐2名同学,你们相信吗?其实这个游戏里面蕴藏着一个非常有趣的数学原理,想不想通过自己动手实践来发现它?
【设计意图:在课前进行的游戏激趣,一是激发学生的兴趣,引起探究的愿望;二为今天的探究埋下伏笔。
】
二、操作探究,发现规律
1、小组合作,初步感知。
师:下面我们先从简单的情况入手,请看大屏幕(出示例1:4只铅笔放入3个盒子中),有几种不同的放法?你能得到什么结论?下面我们小组合作(出示合作要求,请生读要求),看哪组动作最快?
(1)、学生动手操作,讨论交流,老师巡视,指导;
(2)、全班交流。
师:哪个小组愿意汇报一下你们的研究成果?(找生展示,师板书:(3,1,0)(2,2,0)(4,0,0)(1,1,2)。
师:老师也是这样摆的,我们一起看一下(课件演示)观察这几种放法,你能得到什么结论?(课件出示:不管怎么放,总有一个文具盒中至少有2枝铅笔)。
师:刚才我们把所有情况都一一列举出来,想一想不用一一列举,我们能不能只要一种情况,也能得到这个结论?(生答“平均分”的方法时,课件演示)每个盒子先放1枝,还剩几枝?(1枝)这1枝怎么摆?(放哪个里面都行)你有什么发现?(无论怎么放,总有1个盒子至少放2枝铅笔)。
师:既然是平均分,能用算式表示吗?(生答,师板书:4÷3=1……1)
师:这里的4指的是什么?3呢?商1呢?余数1呢?
师:看来解决这个问题时,用平均分的方法比较简便。
【设计意图:通过让学生自己动手操作,用列举法找出四枝铅笔放入三个盒子的所有方法,观察总结概括出四种方法的共同点,即总有一个盒子里至少有2枝铅笔,让学生充分理解“总有”、“至少”的含义。
】
2、逐步深入,建立模型
(1)初建模型
①如果把5枝铅笔放入4个盒子(出示),会是什么结果呢?(生答),你怎么想的?(生说)能用算式表示吗?(生答,师板书:5÷4=1……1)
②增加难度:把100支铅笔放进99个盒子呢?
m+ 1铅笔放进m个盒子呢?
③师:你有什么发现?(铅笔数比盒子数多1时,无论怎么放,总有一个盒子至少放2枝铅笔)。
你的发现和他一样吗?你们太了不起了,同桌互说1遍(出示,齐读)。
【设计意图:此环节让学生充分体会用平均分的好处,用除法算式表示出来,形象直观,便于学生理解,帮助学生初步建立模型。
】
(2)完善模型
①师:我们研究了铅笔数比杯子数多1的,那铅笔数比杯子数多2,多3,多4呢?会有什么情况出现呢?我们再来研究研究。
(出示例2:5本书放进2个抽屉里,不管怎么放,总有一个抽屉至少放几本书?为什么?)可以和小组的同学交流一下(小组交流)。
②汇报:
生:把5本书放2个抽屉,先平均分,每个抽屉放2本,剩1本,无论怎么放,总有1个抽屉至少放3本书。
(课件演示)谁能用算式表示出来?(板书:5÷2=2……1)
③师:用同样的方法推想:如果把7本书放2个抽屉里,不管怎么放,总有一个抽屉至少放几本书?
生:把7本书平均分,每个抽屉放3本,剩1本,无论怎么放,总有
1个抽屉至少放4本(课件演示)。
可以用算式记录下来吗?(板书:7÷2=3……1)
④如果把9本书放进2个抽屉呢?
生:先把9本书平均分,每个放4本,余1本,不管怎么放,总有1个抽屉至少放5本(课件演示)。
用算式怎么表示?(板书:9÷2=4……1)
【设计意图:让学生在这个过程中发展了学生的类推能力,形成比较抽象的数学思维,逐步建立模型】
3、观察:你又有什么发现?(生:余数都是1,至少数=商+余数,至少数=商+1)
4、师:大家有没有发现这里的余数都是1,余数有没有是2、3、4的情况呢?
如果余数不是1,那会有什么结论呢?想不想知道?(出示:7只鸽子飞进5个鸽舍里,至少有2只鸽子要飞进同一个鸽舍里,这是为什么?)师:这里的笼子就是刚才的抽屉
①小组讨论。
②汇报交流。
先把7只鸽子平均分,每个鸽舍飞1只,还剩2只,把这2只再平均分,飞入不同的鸽舍里,所以无论怎么飞,总有1个笼子至少2只鸽子。
③师总结:看来,余数不是1时,要把余数再平均分,才能保证至少。
③怎么列式?(板书:7÷5=1……2)
【设计意图:从余数1到余数2,让学生再次体会要保证“至少”必须尽量平均分,余下的数也要进行二次平均分。
】
5、修改结论,得出规律:大家现在认为至少数应该与什么有关?(板书:至少数=商+1)
6、引出课题:同学们真了不起!不知不觉中你们已经发现了一个很伟大的数学原理,也就是我们今天研究的抽屉原理(板书课题)一起来看
大屏幕,(出示抽屉原理资料介绍)找生读。
师:抽屉原理又称为狄里克雷原理,我们班是谁最先发现的?(李瑞龙)我们把这个原理改为李瑞龙原理,李瑞龙原理诞生了,李瑞龙原理说的是什么?(齐说)
三、巩固应用,解决问题。
师:利用这个李瑞龙原理可以解决问题,我们看都能解决什么问题?(课件出示)
(1)3个小朋友同行,其中必有2个小朋友性别相同,想一想,为什么?
生说,师引导,把2种性别当抽屉,把3个人当物体。
(2)舞蹈小组有13名学生,至少有2名学生的生日在同一个月。
问:谁是物体?谁是抽屉?(引导:隐藏条件12个月当抽屉,13个人当物体)会列式吗?(生答:13÷12=1……1)
(3)一副扑克牌,去掉2张大小王,还剩52张,有几种花色?(4种)从中任意抽5张,无论怎么抽,为什么总有2张牌是同一花色的?问:谁是抽屉?谁是物体?(4种花色是抽屉,5张牌是物体)
(4)、小结:看来,我们利用李瑞龙原理解决问题时,我们一定要是找准谁是抽屉,谁是物体。
(课件出示)
【设计意图:对规律的认识是循序渐进的。
用抽屉原理解决具体问题进行建模,让学生体会抽屉的形式是多种多样的。
】
四、课堂总结:今天你学到了什么新知识?
五、布置作业:练习十二第1、2题
【板书设计】
数学广角——抽屉原理
物体数÷抽屉数= 商……余数至少数 =商+1
4 ÷ 3 = 1……1 2
5 ÷ 4 = 1……1 2
100 ÷ 99= 1……1 2
5 ÷ 2 = 2……1 3
7 ÷2 = 3……1 4
9 ÷2 = 4……1 5
7 ÷5 = 1……2 2
【设计意图】这样的板书设计是在教学过程中动态生成的,按讲课思路来安排的,力求简洁精练。
这样设计便于学生对本课知识的理解与记忆,突出了的教学重点,使板书真正起到画龙点睛的作用。