抽屉原理教案
抽屉原理教案14篇

抽屉原理教案14篇抽屉原理优质课教案篇一××老师的《抽屉原理》一课结构完整,过程清晰,充分体现了学生的主体地位,为学生提供了足够的自主探索的空间,引导学生在观察、猜测、操作、推理和交流等数学活动中初步了解“抽屉原理”,并学会了用“抽屉原理”解决简单的实际问题。
1、本节课充分放手,让学生自主思考,采用自己的方法“证明”:“把4枝笔放入3个文具盒中,不管怎么放,总有一个杯子里至少放进2枝筷子”,然后交流展示,为后面开展教与学的活动做了铺垫。
此处设计注意了从最简单的数据开始摆放,有利于学生观察、理解,有利于调动所有学生的积极性。
在有趣的类推活动中,引导学生得出一般性的结论,让学生体验和理解“抽屉原理”的最基本原理:当物体个数大于抽屉个数时,一定有一个抽屉中放进了至少2个物体。
这样的教学过程,有助于发展学生的类推能力,形成比较抽象的数学思维。
在评价学生各种“证明”方法,针对学生的不同方法教师给予针对性的鼓励和指导,让学生在自主探索中体验成功,获得发展。
在学生自主探索的基础上,进一步比较优化,让学生逐步学会运用一般性的数学方法来思考问题。
2、在教学过程中充分发挥了学生的主体性,在抽屉原理(2)的推导过程中,至少是“商+余数”,还是“商+1”个物体放进同一个抽屉。
让学生互相争辩,再由学生自己想办法来进行验证,使学生更好的理解了抽屉原理。
另外,本节课中,学生争先恐后的学习行为,积极参与自学、交流、合作、展示、补充、互评、提问、质疑、反思等的学习过程,“自主、合作、探究”的学习方式,给人留下了深刻的印象,学生主体地位得到了充分的落实。
3、注意渗透数学和生活的联系。
并在游戏中深化知识。
学了“抽屉原理”有什么用?能解决生活中的什么问题?教学中教师注重了联系学生的生活实际。
课前老师设计一个游戏:“学生在一副去掉了大小王的扑克牌中,任意抽取五张,老师猜:总有一种花色的牌至少有两张。
”这是为什么?学生很惊讶。
抽屉原理教案

抽屉原理教案抽屉原理教案教学目标:1. 理解抽屉原理的基本概念和应用;2. 掌握使用抽屉原理解决问题的方法;3. 培养学生的逻辑思维和数学推理能力。
教学重点:1. 抽屉原理的定义和应用;2. 如何使用抽屉原理解决问题。
教学难点:如何将抽屉原理应用于实际问题的解决。
教学准备:1. 教师准备PPT和教学素材;2. 学生课前预习相关知识。
教学过程:Step 1 导入新课教师通过简单的引入问题激发学生思考,例如:如果班上有10个学生,分别是A、B、C、D、E、F、G、H、I、J,怎样保证至少有两个学生的名字首字母相同?Step 2 介绍抽屉原理教师通过PPT或板书介绍抽屉原理的定义和基本概念,解释抽屉原理是数学中一种常用的原理,也称为鸽巢原理。
简单介绍抽屉原理的应用领域。
Step 3 学习抽屉原理的应用方法教师通过多个具体例子,引导学生学习使用抽屉原理解决问题的方法。
例如:给出10个整数,证明至少存在两个整数的和能被10整除。
Step 4 练习与巩固教师出示如下问题:在一桶里有101个苹果,你要从中选出100个,那么至少会包含两个相同的苹果。
学生在思考一段时间后,教师逐步引导学生分析和解答问题,引导学生使用抽屉原理解决问题。
Step 5 拓展应用教师提供更复杂的问题,并鼓励学生在小组内合作讨论解决方法。
例如:如果地球上有7.8亿人口,那么至少有多少人的生日在同一天?Step 6 总结与布置作业教师通过总结课堂上所学的内容,强调抽屉原理的应用和重要性。
布置作业,要求学生进一步巩固和拓展抽屉原理的应用。
教学延伸:1. 学生可以结合自己生活中的问题,尝试利用抽屉原理解决;2. 学生可以通过查阅相关资料,了解抽屉原理在其他领域的应用案例。
抽屉原理教案幼儿园

抽屉原理教案幼儿园
一、教学目标
1.了解抽屉原理的概念;
2.学习抽屉原理的具体应用;
3.培养幼儿的逻辑思维能力。
二、教学内容
1.抽屉原理的概念;
2.抽屉原理的应用案例;
3.数学实验中的抽屉原理。
三、教学重难点
1.抽屉原理的概念和应用;
2.数学实验中如何运用抽屉原理。
四、教学过程
1.教师进行简单的抽屉实验,让幼儿合作实验;
2.引导幼儿讨论实验结果和抽屉原理的概念;
3.播放动画视频,介绍抽屉原理的具体应用;
4.教师指导幼儿进行简单的数学实验,应用抽屉原理。
五、教学后记
在幼儿的成长过程中,培养他们的逻辑思维能力对于孩子的发展至关重要。
通过本次的抽屉原理教学,让幼儿感受到抽屉原理在实际应用中的重要作用,并让孩子们在实验过程中体会到科学的魅力,同时也培养了幼儿的实验精神和团队协作意识。
希望通过本次教学,幼儿们能够对抽屉原理有一个更加深入的认识,同时也能够在今后的学习生活中更加喜欢和关注数学这门学科。
《抽屉原理》说课稿

《抽屉原理》说课稿《抽屉原理》说课稿1一、说教材《抽屉原理》共有三个例题,例1、例2的内容,教材通过几个直观例子,借助实际操作向同学介绍抽屉原理。
让同学经受抽屉原理的探究过程,重在引导同学通过实际操作发觉、总结规律,为后面学习抽屉原理〔二〕及利用这一原理解决问题做下了有力的铺垫。
二、说教学目标1、经受“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简约的实际问题。
2、通过操作进展同学的类推技能,形成比较抽象的数学思维。
3、通过“抽屉原理”的敏捷应用感受数学的魅力。
教学重点:经受“抽屉原理”的探究过程,初步了解“抽屉原理”。
教学难点:理解“抽屉原理”,并会用“抽屉原理”解决简约的实际问题。
三、说教学流程本节课共三个教学环节:游戏导入——探究新知——解决问题——课堂小结下面我分别说说前3个环节。
第一环节——游戏导入通过“抢椅子”游戏,体验不管怎么坐,肯定有一把椅子上至少坐两个同学。
激起同学认识上的爱好,趁机抓住他们认知上的求知欲,作为新课的切入点,这样导入极大地激发了同学探究新知的热忱,使同学积极主动地投入到新课的学习中。
第二环节——探究新知此环节正是本节课的关键一环,这一环节的教学,我重在让同学经受知识发生、进展的过程,让同学不但知其然,更要知其所以然。
课上我让同学通过小组合作摆一摆,说一说,让每一个同学都参加到知识的探究中来,让同学实际到讲台前演示,并对数进行分解法,把同学得出的结论进行汇总,最末由同学总结出了结论:5根小棒放进4个杯子,肯定有一个杯子里至少有2根小棒。
例2是让同学明确数量、抽屉和结论三者之间的关系,特别是对“肯定有一个杯子里至少有小棒的根数”是除法算式中的商加“1”,而不是商加“余数”,我适时挑出针对性问题进行沟通、争论,使同学从本质上理解了“抽屉原理”,引导同学总结归纳这一类“抽屉问题”的一般规律。
第三环节——解决问题此环节是对同学学习效果的检验,在设置习题方面采用层层深入,有肯定的梯度,由同学很简单找到抽屉的题型过度到抽屉隐蔽在题目中,渐渐提高难度,所选择的题力争与实际生活相结合。
六年级上册奥数(教案)第15讲:抽屉原理

(六年级)备课教员:×××第十五讲抽屉原理一、教学目标: 1. 熟悉抽屉原理,灵活利用所学知识解决问题。
2. 培养学生的逻辑推理思维和能力。
3.经历探究抽屉原理的过程,提高学生对解决数学问题的能力和兴趣,感受数学的魅力。
二、教学重点:掌握抽屉原理的两个“原理”,利用“最不利原则“解决问题。
三、教学难点:找到抽屉原理中的“抽屉”。
四、教学准备:ppt五、教学过程:第一课时(50分钟)一、导入(7分)师:同学们,老师想和大家玩个游戏,你们想要玩吗?生:想。
师:这个游戏的内容是——老师说一句话,看老师说得准不准,好不好?生:好。
师:老师认为,你们之中一定有2个人在同一个月过生日(视学生人数而定)!你们信不信?生:不信。
师:好,那老师先和大家打个赌,如果老师赢了,你们要给老师一个降龙十巴掌;如果老师输了,就给大家每人两个大拇指(视具体情况而定)。
好不好?生:好。
师:那我们就来说一下,自己是在哪个月过生日的?(根据学生人数而定)生:……师:好,大家给老师降龙十巴掌吧。
师:你们想知道老师为什么猜得这么准吗?生:想。
师:想的话,要好好听今天的课哦,今天上课的内容就是抽屉原理。
【板书课题:抽屉原理】师:同学们知道什么是抽屉原理吗?生:……师:有的同学之前学过,已经知道了,有的同学还没有学过,还不知道。
那么没关系,只要你认真学今天的内容,都能学得很好。
首先我们要来知道什么是抽屉原理。
知道的同学可以说一下吗?生:把几个苹果放到抽屉里,有一个抽屉一定有多个苹果。
师:嗯,说得很棒,但还不够准确。
应该是,如果有10个苹果,把10个苹果放到9个抽屉里面,一定有一个抽屉至少有2个苹果。
想知道为什么吗?生:想!师:好,那就让我们在实战中来慢慢掌握吧。
【出示例题一】二、探索发现授课(40分)(一)例题1:(13分)一个小组共有13名同学,其中至少有2名同学同一个月过生日,为什么?师:大家发现没有,刚才我们已经玩的游戏,其实和这个题目是一样的?生:发现了。
抽屉原理的教学设计和反思

抽屉原理的教学设计和反思教学设计:教学目标:1.理解抽屉原理的概念和基本思想。
2.掌握抽屉原理的应用方法。
3.培养学生的逻辑思维和问题解决能力。
教学内容:1.抽屉原理的定义和基本思想。
2.抽屉原理的应用实例。
3.练习题和实践活动。
教学步骤:步骤一:导入通过一个问题引入抽屉原理的概念,例如:一个房间里有10个人,其中至少有两个人的生日是同一天。
请问为什么?步骤二:讲解抽屉原理的定义和基本思想1.定义:抽屉原理是指如果有n+1个物体放入n个抽屉中,其中必定至少有一个抽屉中放入了两个或两个以上的物体。
2.基本思想:通过将物体和抽屉进行映射,将问题转化为抽屉中物体的分配问题。
步骤三:讲解抽屉原理的应用实例1.生日问题:假设有366个人,那么至少有两个人的生日是同一天。
2.鸽巢原理:如果有n+1只鸽子被放入n个巢中,那么至少有一个巢中放入了两只或两只以上的鸽子。
3.数字排列问题:如果将1到10之间的10个整数任意排列,那么至少存在两个整数,它们的差是9的倍数。
步骤四:练习题和实践活动1.给学生出示一些抽屉原理的应用题,让学生尝试解答。
2.分组让学生共同设计一个实践活动,利用抽屉原理解决一个实际问题。
步骤五:总结和拓展总结抽屉原理的基本思想和应用方法,并鼓励学生在实际生活中寻找更多的应用场景。
反思:在练习题和实践活动环节,可以设计一些具有挑战性的问题,让学生能够动手解决,培养他们的问题解决能力和创新思维。
同时,分组设计实践活动可以锻炼学生的合作和沟通能力。
在总结和拓展环节,可以鼓励学生主动思考和探索抽屉原理在其他领域的应用,培养他们的拓展思维和创新意识。
总的来说,通过教学设计和反思,可以使学生在理解和掌握抽屉原理的基础上,培养其逻辑思维和问题解决能力,为其今后的学习和生活打下坚实的基础。
抽屉原理教学设计(共8篇) - 副本

抽屉原理教学设计(共8篇)篇:《抽屉原理》设计《抽屉原理》教学设计教学目标:1.知识与能力:初步了解抽屉原理,运用抽屉原理知识解决简单的实际问题。
2.过程和方法:经历抽屉原理的探究过程,通过动手操作、分析、推理等活动,发现、归纳、原理。
3.情感与价值:通过“抽屉原理”的灵活应用感受数学的魅力;提高同学们解决问题的能力和兴趣。
教学重点:经历“抽屉原理”的探究过程,初步了解“抽屉原理”。
教学难点:理解“抽屉原理”,并对一些简单实际问题加以“模型化”。
教学过程:一、创设情景导入新课师:同学们喜欢玩游戏吗?讲台前面有6张凳子,请7位同学来抢凳子坐。
我不看同学们怎样坐,我敢肯定的说:这6张凳子中总有一张凳子至少有两个同学同坐,大家相信吗?(师生演示)师:想知道老师为什么能做出如此准确的判断吗?这其中蕴含一个有趣的数学原理——抽屉原理。
(板书课题)这节课我们就一起来研究这个数学原理。
师:通过今天的学习,你想知道些什么?二、自主操作探究新知(一) 活动1 课件出示:把4枝铅笔放到3个笔筒里,可以怎么放?师:你们摆摆看,会有什么发现?把你们发现的结果用自己喜欢的方式记录下来。
1、学生动手操作,师巡视,了解情况。
2、汇报交流说理活动① 师:有什么发现?谁能说说看?师根据学生的回答用数字在黑板上记录。
板书:(4,0,0)(3,1,0)(2,2,0)(2,1,1)师:你们是这样记录的吗?师:还可以用图记录。
我把用图记录的用课件展示出来。
师:还可以用表格记录。
师板书在黑板上。
② 再认真观察记录,还有什么发现?板书:不管怎样放,总有一个笔筒里至少有2枝铅笔。
③ 怎样摆可以一次得出结论?(启发学生用平均分的摆法,引出用除法计算。
)板书:4÷3=1(枝)……1(枝)④ 师:这种方法是不是很快就能确定总有一个笔筒里至少有几枝铅笔呢?(学生交流)⑤ 把5枝铅笔放进4个笔筒里呢?还用摆吗?板书:5÷4=1(枝)……1(枝)⑥ 课件出示:把6枝铅笔放进5个笔筒呢?把7枝铅笔放进6个笔筒呢?把10枝铅笔放进9个笔筒呢?把100枝铅笔放进99个笔筒呢?板书:7÷6=1(枝)……1(枝)10÷9=1(枝)……1(枝)100÷99=1(枝)……1(枝)⑦ 观察这些算式你发现了什么规律?预设学生说出:至少数=商+余数师:是不是这个规律呢?我们来试一试吧!3、深化探究得出结论课件出示:5只鸽子飞回3个鸽笼,至少有两只鸽子要飞进同一个鸽笼里,为什么?① 学生活动② 交流说理活动预设:生1:题目的说法是错误的,用商加余数,应该至少有3只鸽子要飞进同一个鸽笼。
《抽屉原理》教学设计

《抽屉原理》教学设计一、教学目标:1.理解《抽屉原理》的基本概念和含义;2.掌握运用《抽屉原理》解决问题的方法;3.培养学生的逻辑思维和数学推理能力。
二、教学重点:1.理解《抽屉原理》的概念和含义;2.掌握运用《抽屉原理》解决问题的方法。
三、教学难点:1.培养学生的逻辑思维和数学推理能力;2.运用《抽屉原理》解决复杂的问题。
四、教学内容:1.《抽屉原理》的基本概念和含义;2.运用《抽屉原理》解决问题的方法和步骤。
五、教学过程:1.导入(10分钟)通过一个生活实例引入《抽屉原理》的基本概念,比如班级有30位学生,但座位只有20个,一定会有两个学生坐在同一张椅子上。
引导学生思考其中的数学原理和规律。
2.概念讲解(20分钟)介绍《抽屉原理》的基本概念和含义,解释为什么在一些情况下一定会存在相应的结果。
通过几个简单的示例,让学生进一步理解《抽屉原理》的运用。
3.练习与讨论(30分钟)给学生一些练习题,让他们运用《抽屉原理》解答。
通过拆解和分析问题,引导学生运用逻辑思维和数学推理能力解决问题。
教师可以组织学生进行小组讨论,鼓励他们互相交流和分享解题思路。
4.深化应用(20分钟)给学生一些复杂的问题,要求他们运用《抽屉原理》解决。
这些问题可以与日常生活和数学知识相结合,培养学生的抽象思维和解决实际问题的能力。
5.总结与归纳(10分钟)带领学生总结《抽屉原理》的应用场景和解题步骤。
鼓励学生思考如何在其他领域运用《抽屉原理》解决问题,并进行展示。
六、教学评价:1.在课堂上观察学生参与讨论和解答问题的情况,评价他们的思维和合作能力;2.收集学生练习和作业,评价他们对《抽屉原理》的理解和应用能力;3.针对学生的学习情况,给予个别指导和反馈,提供进一步的辅导和支持。
七、教学资源准备:1.课件和投影仪;2.练习题和作业;3.随堂练习和活动的材料。
八、教学延伸:1.鼓励学生阅读与《抽屉原理》相关的文献和书籍,深入理解其原理和应用;2.组织学生参加数学竞赛和解题比赛,锻炼他们的解决问题和运用《抽屉原理》的能力;3.组织学生讨论与《抽屉原理》相关的开放性问题,培养他们的自主学习和探究能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
抽屉原理
教学目标
知识与技能:经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽
屉原理”解决简单的实际问题。
培养学生有根据、有条理地进行思
考和推理的能力。
过程与方法:通过操作发展学生的类推能力,形成比较抽象的数学思维。
情感态度与价值观:通过“抽屉原理”的灵活应用感受数学的魅力。
提高学生解
决数学问题的能力和兴趣。
教学重点:经历“抽屉原理”的探究过程,初步了解“抽屉原理”。
教学难点:理解“抽屉原理”,并对一些简单实际问题加以“模型化”
教具准备:小棒,杯子,书(每组5,7本),扑克牌,练习题字条, 教学过程
一、游戏激趣,初步体验。
老师组织学生做“抢凳子的游戏”。
请4位同学上来,摆开3张凳子。
老师宣布游戏规则:4位同学围着凳子转圈,老师喊“停”的时候,3个人
每个人都必须坐在凳子上。
教师背对着游戏的学生,宣布游戏开始,然后叫“停”!
师:都坐下了吗?老师不用看,也知道肯定有一张凳子上至少坐着2位同学。
老师说得对吗?(要不再试一次)
刚才的游戏为什么我能做出准确的判断呢?道理是什么?这其中蕴含着一
个有趣的数学原理,这节课我们就一起来研究这个原理。
二、操作探究,发现规律
就从刚才的游戏入手,用4根小棒代替4个同学用3个杯子代替3个凳子,
4个同学抢3个凳子游戏就相当于把4根小棒放进3个杯子里,现在请小组同学
共同合作动手摆摆有几种不同的摆法?也可以记录下来。
说说每种摆法中较多的
杯子里分别有几根小棒?想想你们有什么发现?
1、概括现象。
学生以小组为单位进行操作和交流时,教师深入了解学生操
作情况,找出列举所有情况的学生。
(观察)
(1)先请列举所有情况的学生进行汇报,教师根据学生的回答板书所有的
情况。
(4,0,0)(3,1,0)(2,1,1)(2,2,1)
(2)说说每种摆法中较多的杯子里分别有几根小棒?
每种摆法中较多的杯子里有的是2,3,4根小棒,还可以怎么概括这句话?
至少有2根小棒,至少是什么意思?是不是每个杯子里都至少有2根呢?不
管哪种摆法,总有一个杯子有这种情况。
多喊几个人说(把你的这个发现也
说给同学听)得出:把4根小棒放进3个杯子里,不管怎么放,总有一个杯
子里至少放2根。
(老师板书)再请同学们互相说说刚才我们把4根小棒放
进3个杯子里,有什么发现?要求把句子说完整,
2、找出规律
把4根小棒放进3个杯子里,除了这样一一列举,我们能不能找到一种更为
直接简便的方法,也能得到这个结论呢?小组内互相讨论动手摆摆。
师:你能边演示边讲解吗?(学生操作演示)
生:我们发现如果每个盒子里放1枝铅笔,最多放3枝,剩下的1枝不管放进哪一个盒子里,总有一个盒子里至少有2枝铅笔。
师:这种方法好吗?现在我们就用刚才这个同学的方法把4根小棒放进3个杯子里,总有一个杯子至少有2根。
每组至少要有3个同学边演示边讲解,其他同学督促。
再指名学生边演示边说。
他们都是怎样分小棒的?(平均分)
为什么要这样分?
这样分,只分一次就能确定总有一个盒子至少有几枝笔了?
只有平均分才能将小棒尽可能的分散,保证“至少”的情况。
师:同意吗?那么把5枝笔放进4个盒子里呢?(可以结合操作,说一说)
生:(一边演示一边说)
师:把6根小棒放进5个杯子里呢?还用摆吗?
师:把7根小棒放进6个杯子里呢?把100根小棒放进99个杯子呢?
师:许多同学没有再摆学具,证明这个结论是正确的,用的什么方法?
生:用平均分的方法,就能说明存在“总有一个杯子里至少有2根小棒”。
师:同学们都有这个发现吗?再看看老师的板书你还发现了什么?分的小棒数比杯子数多1,总有一个杯子至少有2根小棒。
如果多2呢,是7根小棒放进5个杯子里,不管怎么放,是不是总有一个杯子至少也有2根呢?
师:同学们非常了不起,善于运用观察、分析、思考、推理、证明的方法研究问题,得出结论。
同学们的思维也在不知不觉中提升了许多,那么让我们再来看这样一个问题。
3、抽屉原理“模型化”
出示:把5本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?以小组为单位可以边摆边说。
怎样摆最简单。
(留给学生思考的空间,师巡视了解各种情况)
学生汇报。
(喊两个学生回答)
能不能用一个算式表达这个过程
板书:5÷2=2本……1本(商加1)(总有一个抽屉里至有3本书)为什么用除法?(强调平均分)
把7本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?不用摆你能做出来吗?试试。
把9本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?
7÷2=3本……1本(商加1)
9÷2=4本……1本(商加1)
师:观察板书你能发现什么?
生1:“总有一个抽屉里的至少有2本”只要用“商+1”(板书)
同意他的看法吗?那现在请帮我解决这个问题。
如果把5本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?小组合作共同寻找答案。
生:“总有一个抽屉里的至少有3本”只要用5÷3=1本……2本,用“商+2”就可以了。
生:不同意!先把5本书平均分放到3个抽屉里,每个抽屉里先放1本,还剩2本,这2本书再平均分,不管分到哪两个抽屉里,总有一个抽屉里至少有2本书,不是3本书。
师:到底是“商+1”还是“商+余数”呢?谁的结论对呢?在小组里进行研究、讨论,也可以动手分一分。
交流、说说你认为哪种方法才是正确的。
生3∶我们组的结论是5本书平均分放到3个抽屉里,“总有一个抽屉里至少有2本书”用“商加1”就可以了,不是“商加2”。
师:现在大家都明白了吧?那么怎样才能够确定总有一个抽屉里至少有几个物体呢?小组讨论互相说说。
生4:如果书的本数是奇数,用书的本数除以抽屉数,再用所得的商加1,就会发现“总有一个抽屉里至少有商加1本书”了。
(板书:至少数=商+1 )
师:同学们同意吧?
师:你们的这一发现,称为“抽屉原理”,(板书:抽屉原理)
三、揭示课题,达标检测
“抽屉原理”又称“鸽笼原理”,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理”,这一原理在解决实际问题中有着广泛的应
用。
“抽屉原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。
现在我们一起看看这道“鸽笼原理”的问题。
1、8只鸽子飞回3个鸽舍,至少有几只鸽子要飞进同一个鸽舍里。
为什么?先自己思考再在小组内交流。
然后咸几个学生回答。
用算式表示你的想法。
(得出:求至少数,平均分,用除法,至少数=商+1)
2、我们上课前玩的抢凳子的游戏,你们现在知道老师为什么那么厉害了吧,你们也行吗?试试,请三个男同学抢二个凳子,每人都必须坐凳子上。
说说会有什么结果出现?说理由。
学生游戏证明。
你能用算式表示你的想法吗?(得出:求至少数,平均分,用除法,至少数=商+1)
3、小结:经过刚才的探索研究,我们经历了一个很不简单的思维过程,我们获得了解决这类问题的好办法,下面我们再来做个小游戏。
全班同学向后转闭上眼睛,老师喊5个男同学,2个女同学上台,(男同学手里拿“男”字站一块,女同学拿“女”站一块)先让学生猜这7个同学中同性别的至少有几个?(提示,实际就相当于把7根小棒放进男和女这2个杯子里。
不管怎么放总有一个杯子至少有几个)
先动笔算算。
再猜,说理由,用算式表示。
7÷2=3(个)……1(个)
验证结果:全班学生面向黑板,同性别的男生有5个符合你们的猜测吗?
4、我们班13个同学中,至少有2个同学是同一个月出生的,为什么?学生自由练习,小组内交流,指名汇报。
5、师:我这里有一副扑克牌,去掉了两张王牌,还剩52张,我请五位同学每人任意抽1张,听清要求,不要让别人看到你抽的是什么牌。
请大家猜测一下,同种花色的至少有几张?为什么?生:2张/因为5÷4=1 (1)
师:先验证一下你们的猜测:举牌验证。
师:如有3张同花色的,符合你们的猜测吗?
四、总结
通过这节课的学习,你又了解了哪些知识?
板书设计:
抽屉原理:至少数=商+1
平均分
总有一个杯子至少有2根把5本书放进2个抽屉中,总
小棒杯子一个抽屉至少放进 3 本书
4 3 5÷2=2……1 2+1=3
5 4 7÷2=3……1 3+1=4
6 5 9÷2=4……1 4+1=5
100 99 5÷3=2……2 2+1=3。