一致收敛性及其判别法
一致收敛的判别方法

一致收敛的判别方法在数学中,一致收敛是一种函数序列的收敛方式,它比点态收敛更强。
一致收敛的判别方法是判断函数序列是否一致收敛的方法。
我们需要了解一致收敛的定义。
如果对于任意给定的正数ε,都存在正整数N,使得当n>N时,对于所有的x∈D,都有|fn(x)-f(x)|<ε成立,那么函数序列{fn(x)}在D上一致收敛于f(x)。
接下来,我们介绍一致收敛的判别方法。
1. Weierstrass判别法Weierstrass判别法是一种常用的判别方法。
它的基本思想是将函数序列中的每个函数表示为一个收敛的无穷级数,然后通过比较级数的收敛性来判断函数序列的一致收敛性。
具体来说,如果对于所有的x∈D,都有|fn(x)-an(x)|<bn(x)成立,其中{an(x)}是收敛于f(x)的函数序列,{bn(x)}是一个非负的收敛于0的函数序列,那么函数序列{fn(x)}在D上一致收敛于f(x)。
2. Cauchy判别法Cauchy判别法是另一种常用的判别方法。
它的基本思想是通过比较函数序列中的两个函数之间的差值来判断函数序列的一致收敛性。
具体来说,如果对于任意给定的正数ε,都存在正整数N,使得当m,n>N时,对于所有的x∈D,都有|fn(x)-fm(x)|<ε成立,那么函数序列{fn(x)}在D上一致收敛。
3. Dini定理Dini定理是一种特殊的判别方法,它适用于函数序列在紧致集上的情况。
具体来说,如果函数序列{fn(x)}在紧致集K上逐点收敛于f(x),且f(x)在K上连续,那么函数序列{fn(x)}在K上一致收敛于f(x)。
一致收敛的判别方法有很多种,我们需要根据具体情况选择合适的方法。
在实际应用中,我们可以结合多种方法来判断函数序列的一致收敛性,以保证结果的准确性。
一致收敛的概念和判别法

7.1第7讲 一致收敛的概念与判别法所谓函数项级数是指级数的每项均为某一变量或多个变量的函数的级数,也就是说是无穷多个函数求和的问题,研究函数项级数主要回答下列几个问题:1. 收敛区域,即对于函数项级数:()1n n a x ∞=∑,x 在什么范围内级数是收敛的?这一问题是平凡的,因为对于给定x ,由数项级数之收敛性即可判别级数的收敛性,从而确定x 之收敛域。
2. 设()()1n n S x a x ∞==∑是收敛的,若()n a x 均为连续函数,问()S x 是否连续?回答是不一定。
例如:当1x <时,()1n n a x x −=,则有()11S x x=−,()n a x 在1x =处左连续,但()S x 在1x =处不是左连续的。
问题还可以提为:什么时候()S x 连续? 3. 可导性能否保持?即:若()n a x 均为可导函数,问()S x 是否可导?同样有问题:什么时候可导性可以保持?特别地,如果均可导,()S x 的导数与()n a x 的导数有何关系?4. 可积性问题。
即:若()n a x 均为可积函数,问()S x 是否可积?何时可积?它们的积分有何关系? 为了研究上述几个问题,我们需要引进“一致收敛”的概念。
7.2§1 一致收敛的概念讨论级数的收敛性实质上是其部分和函数()n S x 的性质,因此我们先考虑极限过程()()lim n n S x S x →∞=的性质。
上面所说的关于和函数的连续性,可导性、可积性有一个共同的特点,就是某一点x 处的连续性与可导性均与函数在该点邻域的性质有关,而不仅仅只与该点函数值相关,而可积性则更是函数在某一区间内的性质了。
另一方面,函数序列()n f x 在0x x =处是否收敛实际上只是数列()0n f x 的性质,与0x 点邻域内的性质是不相干的,因此从这一角度看,我们知道收敛性是无法用来描述其极限函数之性质的,因而有必要引入新的概念来区分不同的收敛性,以刻画函数序列的极限函数的性质。
函数项级数一致收敛性判别法归纳

函数项级数的一致收敛性与非一致收敛性判别法归纳一定义引言设函数列{}n f 与函数f 定义在同一数集D 上,若对任给的正数ε,总存在某一正数N ,使得当N n >时,对一切D x ∈,都有()()ε<-x f x f n 则称函数列{}n f 在上一致收敛于()x f ,记作()()x f x f n→→()∞→n ,Dx ∈设()x u n 是定义在数集E 上的一个函数列,表达式()()(),21 ++++x u x u x u n Ex ∈)1(称为定义在E 上的函数项级数,简记为()x u n n ∑∞=1或()x u n ∑;称()()x u x S nk k n ∑==1,E x ∈, ,2,1=n )2(为函数项级数)1(的部分和函数列.设数集D 为函数项级数∑∞=1)(n n x u 的收敛域,则对每个D x ∈,记∑∞==1)()(n n x u x S ,即D x x S x S n n ∈=∞→),()(lim ,称)(x S 为函数项级数∑∞=1)(n n x u 的和函数,称)()()(x S x S x R n n -=为函数项级数∑)(x u n 的余项.定义1]1[设{})(x S n 是函数项级数∑)(x u n 的部分和函数列,若{})(x S n 在数集D 上一致收敛于函数)(x S ,或称函数项级数∑)(x u n 在D 上一致收敛于)(x S ,或称∑)(x u n 在D 上一致收敛.由于函数项级数的一致收敛性是由它的部分和函数列来确定,所以可以根据函数列一致收敛性定义得到等价定义.定义2]1[设{})(x S n 是函数项级数∑)(x u n 的部分和函数列,函数列{})(x S n ,和函数)(x S 都是定义在同一数集D 上,若对于任给的正数ε,总存在某一正整数N ,使得当Nn >时,对一切D x ∈,都有ε<-)()(x S x S n ,则称函数项级数∑)(x u n 在D 上一致收敛于函数)(x S ,或称∑)(x u n 在D 上一致收敛.同时由ε<-=)()()(x S x S x R n n ,故)(x R n 在D x ∈上一致收敛于0.定义3设函数项级数∑)(x u n 在区间D 上收敛,其和函数为∑∞==1)()(n n x u x S ,部分和函数列∑==nk n n x u x S 1)()(,若0>∃o ε,+∈∀N N ,N n o >∃及D x ∈'∃,使得o n x s x s o ε≥'-)()(,则函数项级数∑)(x u n 在区间D 上非一致收敛.例1试证∑∞=1n n x 在[]r r ,-)10(<<r 上一致收敛,但在)1,1(-内不一致收敛.证明显然∑∞=1n n x 在)1,1(-内收敛于xx-1.对任意的0>ε,欲使当N n >和r x r ≤≤-时,恒有ε<-=--+=∑xxx xx n nk k 1111成立,只要当N n >时,恒有ε<-+rr n 11成立,只要当N n >时,恒有()rr n lg 1lg 1ε->+成立,只要当N n >时,恒有()rr n lg 1lg ε->成立,只要取()⎥⎦⎤⎢⎣⎡-=r r N lg 1lg ε即可.依定义,∑∞=1n nx 在[]r r ,-上一致收敛于x x -1.存在e o 2=ε,对任意自然数N ,都存在N N n o >+=1和()1,121-∈++=N N x o ,使ε2111111111>⎪⎭⎫⎝⎛+++=-=--++=∑N o n o o o n k k oN N x x x x xo o成立,依定义,∑∞=1n n x 在)1,1(-内不一致收敛.二函数项级数一致收敛性的判定方法定理1Cauchy 一致收敛准则]1[函数项级数()∑x u n 在数集D 上一致敛的充要条件为:对0>∀ε,总+∈∃N N ,使得当N n >时,对一切D x ∈和一切正整数p ,都有()()ε<-+x S x S n p n 或()()()ε<++++++x u x u x u p n n n 21或()ε<∑++=pn n k kx u 1特别地,当1=p 时,得到函数项级数一致收敛的一个必要条件:推论1函数项级数在()∑x u n 在数集D 上一致收敛的必要条件是函数列(){}x u n 在D上一致收敛于0.定理2]2[函数项级数()x u n n ∑∞=1在点集D 上一致收敛于)(x S 的充分必要条件是:()()0:sup lim 1=⎭⎬⎫⎩⎨⎧∈-∑=∞→D x x S x u n k n n .定理3放大法]3[(){}x S n 是函数项级数()∑x u n 的部分和函数列,和函数)(x S ,都是定义在同一数集D 上,对于任意的n ,存在数列{}n a ()0>n a ,使得对于D x ∈∀,有()()()n n n a x S x S x R <-=,且0lim =∞→n n a ,则称函数列(){}x S n 一致收敛于)(x S ,即函数项级数()∑x u n 在D 上一致收敛于函数)(x S .证明因0lim =∞→n n a ,故对任给的0>ε,+∈∃N N (与x 无关),使得当N n >时,对一切D x ∈,都有()()()ε<≤-=n n n a x S x S x R .由定义2得函数列(){}x S n 一致收敛于)(x S ,即函数项级数()∑x u n 在D 上一致收敛于)(x S .注:用放大法判定函数项级数()∑x u n 一致收敛性时,需要知道)(x S .定理4确界法函数项级数在数集D 上一致收敛于)(x S 的充要条件是()()()0sup lim sup lim =-=∈∞→∈∞→x S x S x R n Dx n n Dx n 证明充分性设(){}x S n 是函数项级数()∑x u n 的部分和函数列,)(x S 为和函数,则有()()()x S x s x R n n -=,并令()x R a n Dx n ∈=sup ,而()0sup lim =∈∞→x R n Dx n ,即0lim 0=→n n a ,由定理3(放大法)得知函数项级数()∑x u n 一致收敛于函数)(x S .必要性注:实质上是用极值的方法把一致收敛问题转化为求数列极限的问题.定理5若()∑x u n 在区间D 上收敛,则()∑x u n 在D 上一致收敛的充要条件是{}D x n ⊂∀,有()0lim =∞→x R n n .证明充分性假设()∑x u n 在D 上不一致收敛,则0>∃o ε,{}D x n ⊂∃,使得()()o n x S x S ε≥-,如此得到{}D x n ⊂,但()0lim ≠∞→n n n x R ,这与已知条件矛盾.必要性因已知()∑x u n 在D 上一致收敛,所以N ∃>∀,0ε,使得当N n >时,对一切D x ∈,都有()()ε<-x S x S n ,对于{}D x n ⊂∀,则有()()ε<-n n n x S x S ,即()ε<n n x R ,得()0lim =∞→n n n x R .例2设()0≥x u n , 2,1=n ,在[]b a ,上连续,又()x u n ∑在[]b a ,收敛于连续函数()x f ,则()x u n ∑在[]b a ,一致收敛于()x f .证明已知()()()x S x f x R n n -=(其中()()∑==nk k n x u x S 1)是单调递减且趋于0,所以[]b a x N n ,,∈∀∈∀有()0≥x R n ,且[]ε∀∈∀,,0b a x >0,()εε,),(00,0x x N n N ≥>∃时,有()ε<≤00x R n .将n 固定,令()ε,00x N N n ==,因为()()()x S x f x R n n -=在[]b a ,上连续,既然()ε<x R n ,所以00>∃δ,当()0000,δδ+-∈x x x 时,()ε<0x R n .从而0N n >时更有()ε<x R n 即()ε<x R n ,仅当()0000,δδ+-∈x x x .如上所述,对每个点[]b a x ,∈λ,可找到相应的领域()λλλλδδ+-x x ,及相应的λN ,使得λN n >时,对∈x ()λλλλδδ+-x x ,恒有()ε<x R n .如此{()λλλλδδ+-x x ,:[]b a x ,∈λ}构成[]b a ,的一个开覆盖,从而必存在有限子覆盖,不妨记为{()()r r r r x x x x δδδδ+-+-,,,1111 },于是[]b a x ,∈∀,总{}r i ,2,1∈使得i i i i x x x δδ+-∈,(),取{}r N N N N ,,max 21=,那么N n >时,恒有()ε<x R n ,由定理5得()x u n∑在[]b a ,一致收敛于()x f .定理6M 判别法或优先级判别法或Weierstrass 判别法]1[设函数项级数()x u n ∑定义在数集D 上,∑n M 为收敛的正项级数,若对一切D x ∈,有2,1,)(=≤n M x u n x )3(则函数项级数()x u n ∑在D 上一致收敛.证明由假设正项级数()x u n ∑收敛,根据函数项级数的Cauchy 准则,∀0>ε,∃某正整数N ,使得当N n >及任何正整数p ,有ε<+=++++++p n n p n n M M M M 11又由(3)对一切D x ∈,有()≤+≤++++++x u x u x u x u p n n p n n )()()(11ε<+++p n n M M 1根据函数项级数一致收敛的Cauchy 准则,级数()x u n ∑在D 上一致收敛.注:若能用从判定()∑∞=1n n x u 一致收敛,则()∑∞=1n n x u 必是绝对收敛,故M 判别法对条件收敛的函数项级数失效.例3函数项级数∑∑22cos ,sin nnxn nx 在()+∞∞-,上一致收敛,因为对一切∈x ()+∞∞-,有22221cos ,1sin n n nx n n nx ≤≤,而正项级数∑21n是收敛的.推论2设有函数项级数()x u n ∑,存在一收敛的正项级数∑∞=1n n a ,使得对于,I x ∈∀有()()+∞<≤=∞→k k a x u nn n 0lim,则函数项级数()∑∞=1n n x u 在区间I 一致收敛证明已知()()+∞<≤=∞→k k a x u nn n 0lim,即,,,,00I x N n N N ∈∀>∀∈∃>∃+ε有()0ε<-k a x u n n 即()k a x u n n +<0ε,从而()()n n a k x u +<0ε,又因为∑∞=1n n a 收敛,则()n n a k ∑∞=+10ε也收敛,由M 判别法得函数项级数()∑∞=1n n x u 在区间I 一致收敛.由广义调和级数∑∞=11n p n ,当1>p 时收敛,故当n a =pn 1时,有推论2'设有函数项级数()∑∞=1n n x u ,若存在极限k x u n n p n =∞→)(lim 且1,0>+∞<≤p k ,则函数项级数()x u n ∑在区间I 一致收敛.例4证明函数项级数∑∞=+++1)1)((1n n x n x 在[)∞,0是一致收敛的.证明对于∑∞=+++1)1)((1n n x n x ,存在收敛的正项级数∑∞=121n n,且=+++⋅∞→)1)((1lim 2n x n x n n 1)1)((lim2=+++∞→n x n x n n 由的推论2与推论2'得,∑∞=+++1)1)((1n n x n x 在[)∞,0一致收敛.定理7比较判别法[]4两个函数项级数()∑x u n 与()x v n ∑,若N N ∈∃0,当I x N n ∈∀>∀,0有()x v c x u n n <)((其中c 为正常数),且函数项级数()x v n ∑在区间I 绝对一致收敛,则函数()x u n∑区间I 绝对一致收敛.证明已知()x v n ∑在区间I 绝对一致收敛,即对cε∀0>(其中c 为正常数),11,N n N N >∀∈∃及I x N p ∈∈,,有()()()cx v x v x v p n n n ε<++++++ 21;又由条件知I x N n N ∈>∀∃,,00有()x v c x u n n <)(;取{},,max 01N N N =当I x N p N n ∈∈∀>∀,,,有()()()<++++++x u x u x u p n n n 21()()()()εε=⋅<++++++cc x v x v x v c p n n n 21.由收敛级数一致收敛Cauchy 准则知,函数项级数∑)(x u n 在区间I 一致收敛,从而函数项级数()x u n ∑在区间I 绝对一致收敛.定理8[]4若有函数级数()∑x u n 与()x v n ∑,N N ∈∃0,I x N n ∈∀>∀,0有()x cv x u n n <)((其中c 为正常数),且函数项级数()∑∞=1n n x v 在区间I 一致收敛,则函数()∑∞=1n n x u 区间I 绝对一致收敛.证明已知I x N n N ∈>∀∃,,00,有()x v c x u n n <)((其中c 为正常数).又函数项级数()∑∞=1n n x v 在区间I 绝对一致收敛,即I x N p N n N N c ∈∈>∀∈∃>∀,,,,011ε,有()()()()cx v x v x v x v x v p n n p n n n ε<+=++++++++ 121)(;取{},,max 10N N N =当I x N p N n ∈∈>∀,,有()()()()()()x u x u x u x u x u x u p n n n p n n n +++++++++≤++ 2121()()()x v x v c p n n ++++< 1εε=⋅<cc 从而函数项级数()x u n ∑在区间I 绝对一致收敛.推论3比较极限法若有两个函数级数()∑∞=1n n x u 与()())0(1≠∑∞=x v x v n n n ,且有()()k x v x u nn n =∞→lim且+∞<≤k 0,若级数()x v n ∑在区间I 绝对一致收敛,则函数()∑x u n 在区间I 也绝对一致收敛.证明由()()k x v x u nn n =∞→lim且+∞<≤k 0,即,,00N n ∈∃>∀ε当I x N n ∈>,有()()0ε<-k x v x u n n 使()()c k x v x u n n =+<0ε且00>+=εk c .即N n >∀及I x ∈有()()x v c x u n n <,又级数()x v n ∑在区间I 绝对一致收敛,由比较判别法定理7知级数()∑∞=1n n x u 在区间I 绝对一致收敛.推论4[]4有函数列(){}x u n 在区间I 上一致有界,且函数级数()∑∞=1n n x v 在区间I 绝对一致收敛,则函数级数()()x v x u n n ∑在区间I 上也绝对一致收敛.证明由已知函数列(){}x u n 在区间I 上一致有界,即I x N n M ∈∈∀>∃,,0有()M x u n ≤,使当I x N n ∈∈∀,有()()()x v M x v x u n n n ≤⋅,又因函数级数()∑x v n 在区间I 绝对一致收敛,由比较判法定理7知,函数级数()()x v x u n n ∑在区间I 上绝对一致收敛.例5若函数级数()()x c x a n n ∑∑,在区间I 一致收敛,且I x N n ∈∈∀,,有()()()x c x b x a n n n ≤≤,则函数项级数()x b n ∑在区间I 上一致收敛.证明由条件函数()()x c x a n n ∑∑,在区间I 一致收敛,则级数()()()∑-x a x c n n 在区间I 上一致收敛.又I x N n ∈∈∀,有()()()x c x b x a n n n ≤≤,故()()()()x a x c x a x b n n n n -≤-≤0且级数()()()∑-x a x c n n 在区间I 绝对一致收敛,由定理8知,级数()()()∑-x a x b n n 在区间I 上一致收敛.又已知()x a n ∑在区间I 一直收敛,从而级数()()()()()[]()()()()x a x a x b x a x a x b x b nnnnnnn∑∑∑∑+-=+-=在区间I 上一致收敛.推论5设函数项级数()∑x u n 定义在数集]2[上,()∑x v n 在上一致收敛且()0>x v n ,若对一切D x ∈,有()()x v x u n n ≥, ,2,1则函数项级数()∑x u n 在D 上一致收敛.定理9逼近法[]5若对任意的自然数n 和D x ∈,都有()()()x w x u x v n n n ≤≤成立,又()x v n ∑和()x w n ∑都在数集D 上一致收敛于)(x S ,则()x u n ∑也在D 上一致收敛于)(x S .证明设()()x v x V nk k n ∑==1,()()x u x U nk k n ∑==1,()()x w x W nk k n ∑==1因为D x N n ∈∀∈∀+,都有()()()x w x u x v n n n ≤≤,所以D x N n ∈∀∈∀+,有()()()x W x U x V n n n ≤≤.又()x v n ∑,()x w n ∑在区间D 上一致收敛于)(x S ,即+∈∃>∀N N ,0ε,当N n >时,对一切D x ∈∀有()()()εε+<<-x S x V x S n 及()()()εε+<<-x S x W x S n ;所以+∈∃>∀N N ,0ε,当N n >时,对一切D x ∈∀有()()()()()εε+<≤≤<-x S x W x U x V x S n n n .由函数项级数一致收敛定义知,()x u n n∑∞=1在D 上也一致收敛于)(x S .定理10由有性质判别若()x u n ∑和()x v n ∑在点集D 上一致收敛,则[]∑±)()(x v x u n n 在D 上也一致收敛证明由()x u n ∑和()x v n ∑均在点集D 上一致收敛知,对N ∃>∀,0ε(自然数),使得当N n ≥时,对∀自然数p 和x 有()()()ε<+++++x u x u x u p n n n 21()()ε<++++++x v x v x v p n n n 21)(所以()()()()()())()()(2211x v x u x v x u x v x u p n p n n n n n ++++++++++++ ()()()+++≤+++x u x u x u p n n n 21()()x v x v x v p n n n ++++++ 21)(εεε2=+<由函数项级数一致收敛的Cauchy 收敛准则知,[]∑±)()(x v x u n n 在D 上也一致收敛定理11Dini 定理设()()()() ,2,10,0=≤≥n x u x u n n 在[]b a D ,=上连续,又()x u n ∑在[]b a ,上收敛于连续函数,则函数项级数()x u n ∑在[]b a ,一致收敛.使用步骤:⑴判定()0≥x u n 且连续;⑵求和函数)(x S ;⑶判定求和函数)(x S 在[]b a ,上连续.Abel 引理定理12Abel 判别法[]1证明推论6设函数项级数()x u n ∑在D 上一致收敛,函数()x g 在D 上有界,则()()x u x g n ∑在D 上一致收敛.证明因为()x g 在D 上有界,所以,0>∃M 使()M x g ≤,对D x ∈∀成立.因()x u n ∑在D 上一致收敛,,0,,0>∃>∀∴p N ε使当N n >,时有()Mx u p n nk k ε<∑+=,对D x ∈∀成立,此式表明()()()()εε=⋅<<∑∑+=+=MM x u x g x u x g pn nk k p n nk k .由Cauchy 准则知()()x u x g n ∑在D 上一致收敛.定理13Dirichlet 判别法[]1设(i )()x u n ∑的部分和函数列()()x u x s nk k n ∑==1在I 上一直致有界;(ii )对每一个I x ∈,()x v n 单调;(ⅲ)在I 上()()∞→→n x v n 0,则级数和()()x u x v n n ∑在I 上一致收敛.证明充分性由(i )∃正数M ,对一切I x ∈,有()M x s n ≤,因此当为任何正整数p n ,时()()()()()M x s x s x u x u x u n p n p n n n 221≤-=++++++ ,对任何一个I x ∈,再由(ii )及Abel 引理,得到()()()()()x v x v M x v x v x v p n n p n n n ++++++≤+++22)(121 .再由(ⅲ)对,0,0>∃>∀N ε当N n >时,对一切I x ∈,有()ε<x v n ;所以()()()()εεεM M x v x u x v x u p n p n n n 6)2(211=+<++++++ 于是由一致收敛的Cauchy 准则级数()()x u x v n n ∑在I 上一致收敛.注:事实上必要性也成立,即已知()()x u x v n n ∑在I 上一致收敛,可推出(i )(ii )(ⅲ)成立,这里不再赘述.例6若数列{}n a 单调且收敛于0,则级数∑nx a n cos 在[]()πααπα<<-02,上一致收敛.证明由()π2,0,2sin221sin cos 211∈⎪⎭⎫ ⎝⎛+=+∑=x x x n kx nk 得在[]απα-2,上有212sin 21212sin21212sin 221sin cos 1+≤+≤-⎪⎭⎫ ⎝⎛+=∑=αx x x n kx nk ,所以级数∑nx cos 的部分和函数列在[]απα-2,上一致有界,于是令()()nnnax v nx x u ==,cos ,则由Dirichlet 判别法可得级数∑nx a n cos 在[]()πααπα<<-02,上一致收敛.定理14积分判别法[]4设()y x f ,为区域(){}+∞<≤∈=y D x y x R 1,|,上的非负函数,()x u n∑是定义在数集D 上的正项函数级()()n x f x u n ,=,如果()y x f ,在[)+∞,1上关于y 为单调减函数,若含参变量反常积分()⎰+∞1,dy y x f 在数集D 上一致收敛,则()x u n ∑在数集D 上一致收敛.证明由()⎰+∞1,dy y x f 在数集D 上一致收敛,对0>∀ε,∃一个N ,当N n >时,对一切自然数p 和一切D x ∈,有()ε<⎰+pn ndy y x f ,.由()()()<+++++x u x u x u p n n n 21()ε<⎰+pn ndy y x f ,,所以()x u n ∑在数集D 上一致收敛.例7设()∑∞=-⋅=1n nx e n x S ,证明()x S 在区间()+∞,0连续.证明首先对任意取定一点()+∞∈,00x ,都存在0>δ,使得[)+∞∈,0δx ,我们只要证明()x S 在0x 即可.令()yx e y y x f -⋅=,,[)+∞∈,δx ,由()δy yx e y e y y x f --⋅<⋅=,,[)+∞∈,δx ,并且无穷级数dy ey y ⎰+∞-⋅δδ1收敛,所以含参积分dy e y y ⎰+∞-⋅δδ1在[)+∞∈,δx 上一致收敛.又因为()()()()⎭⎫⎩⎨⎧>+∞<≤=∈<-=-δ1,0|,,,01,y x y x R y x yx e y x f yx y 即对任意固定[)+∞∈,δx ,()yx e y y x f -⋅=,关于y 在区间⎪⎭⎫⎢⎣⎡+∞,1δ上是单调递减的,由定理14知,函数级数∑∞+⎥⎦⎤⎢⎣⎡=-⋅11δn nxen 在区间[)+∞∈,δx 上是一致收敛的.利用函数项级数的性质可得,()∑∞+⎥⎦⎤⎢⎣⎡=-⋅=11*δn nxen x S 在区间[)+∞∈,δx 连续,从而()()x S e n x S n nx *11+⋅=∑=-δ在区间[)+∞∈,δx 也连续,所以()x S 在0x 连续,由0x 在()+∞,0的任意性可知,()x S 在()+∞,0上连续.含参变量无穷积分与函数项级数都是对函数求和的问题,前者连续作和,后者离散作和,因此它们的一致收敛性定义及判别法都是平行的,而且所表示的函数分析性质(如连续、可微、可积性)也一致,在此不在赘述.由定理14,我们可利用积分的便利条件判断某些数项级数的一致收敛,也可用函数项级数的一致收敛性判别某些含参变量积分一致收敛.定理15函数列(){}x u n 在[]b a ,上连续且单调,级数()∑a u n 和级数()||b u n 收敛,则级数()x u n ∑在[]b a ,上一致收敛.证明级数()∑a u n 和()∑b u n 收敛.则()∑a u n +()∑b u n 收敛.由(){}x u n 在[]b a ,上连续且单调,则()||x u n <()||a u n +()||b u n ,由M 判别法知,级数()x u n ∑在[]b a ,上一致收敛.定理16[]6设函数()x u n ,() ,2,1=n 在[]b a ,上可微(其中b a ,为有限数),且满足如下条件:(i )函数项级数()x u pn n k k∑++=1在[]b a ,上收敛;(ii )存在常数M ,使得对任意的自然树1≥m ,任意的实数[]b a x ,∈,恒有()M x u n<∑/,则函数项级数()x u n n∑∞=1在[]b a ,上一致收敛.证明对0>∀ε,因为b a ,为有限数,所以存在自然数k ,使得()εεk a b k a +≤≤-+1,我们在闭区间[]b a ,上插入分点i a x a x i ε+==,0,()1,2,1-=k i ,b x k =,于是,闭区间被分成k 个小区间[]i i x x ,1-,()k i ,2,1=.从而有[]b a ,=[]i i ki x x U ,11-=.又因为函数项级()x u n n ∑∞=1在[]b a ,上是收敛的,故对任意i x ()1,2,1-=k i ,存在自然数()i x N ,ε,使得()i x N n ,ε>时,对任意p ,有()ε<∑++=pn n j ijx u 1.于是,对任意[]i i x x x ,1-∈,在自然数()i x N ,ε,使得()1,->i x N n ε时,对任意p ,有()()()()ipn n j jp n n j p n n j ijjpn n j jx u x u x u x u ∑∑∑∑++=++=++=++=+-=1111()()()∑∑∑++=++=++=+-≤pn n j ijpn n j pn n j ijjx u x u x u 111()εε+-≤-++=∑11/i pn n j jxx u ()()εεε+--≤-=+=∑∑11/1/i nj jpn j jxx u u ()()εεε+-+≤-=+=∑∑11/1/||i nj jpn j jxx u u ()ε12+≤M 因此,对0>∀ε,存在自然数(){}1,,1,0|,max 0-==k i x N N i ε,使得当0N n >时,任意[]b a x ,∈,任意自然数p ,均有()ε)12(1+<∑++=M x u pn n j j.即函数项级数()x u n n∑∞=1在[]b a ,上一致收敛.定理17设()x u nn ∑为定义在数集D 上的函数项级数,D x ∈0为()x u nn ∑的收敛点,且每个()x u n 在上一致可微,()x u nn∑/在上一致收敛,记()=x S ()x u nn∑.定理18设函数列(){}x u n 在闭区间[]b a ,上连续可微,且存在一点[]b a x ,0∈,使得()x u n n∑∞=1在点0x处收敛;()x u n n ∑∞=1/在[]b a ,上一致收敛,则函数项级数()x u n n∑∞=1在[]b a ,上一致收敛.证明已知()x u n n ∑∞=1在点[]b a x ,0∈处收敛,()x u n n ∑∞=1/在[]b a ,上一致收敛.即对()εε1,N o ∃>∀,使得()ε1N n ≥时,对+∈∀N p ,有()ε<∑+=+=p n k n k kx u 1成立.对[]b a x ,∈∀,有()ε<∑+=+=p n k n k k x u 1/.根据拉格朗日中值定理,[]b a x N p N n ,,,∈∀∈∀>∀+,有()()∑∑++=++=-pn n k pn n k kkx u x u 11≤()∑+=+=p n k n k ku 1/ξ0x x -<()a b -ε,(ξ介于x 与0x 之间).于是[]b a x N p N n ,,,∈∀∈∀>∀+,()()()()∑∑∑∑++=++=++=++=+-≤pn n k kp n n k p n n k kkpn n k kx u x u x u x u 1111||()()1+-=+-≤a b a b εεε.即()x u n n ∑∞=1在[]b a ,上一致收敛.引理2若函数项级数()x u n ∑在[]b a ,上收敛,()()N n b x u n n bx ∈=-→lim 则()x u n ∑在[]b a ,一致收敛的必要条件是()x b n n ∑∞=1收敛.证明由函数项级数的柯西收敛准则有,[]b a x N p N n N N ,,,,,0∈∀∈∀>∀∈∃>∀++ε,有()()()ε<+++++x u x u x u p n n n 21.()4又()n n bx b x u N n =∈∀-→+lim ,,在(4)的两端取极限,令-→b x 得ε≤+++++p n n n b b b 21,于是由Cauchy 收敛准则知()x b n n ∑∞=1收敛.(①若()n n x b x u b =+∞=+∞→lim ,,则()x u n ∑在[)+∞,a 一致收敛的必要条件是()x b n ∑收敛.②若(){}x u n 在[)b a ,连续,则()x u n ∑在[)b a ,一致收敛()b u n ∑⇒收敛.)定理19利用内闭一致收敛判别[]7若函数项级数()x u n ∑在[)b a ,内闭一致收敛,则()x u n ∑在[]b a ,一致收敛⇔{}[)b x b a x n n n =⊂∀+∞→lim ,,,级数()n n x u ∑收敛.证明必要性,充分性用反正法,这里不再赘述.注:仅由闭一致收敛性和引理的必要条件(集函数级数在区间端点收敛或端点的极限级数收敛)是不能得到函数级数在区间一致收敛的.例8证明∑∞=1sin n n nx在()π2,0内闭一致收敛,且在端点收敛,但在()π2,0不一致收敛.证明∑<<∀nx sin ,0,πεε的部分和函数列(){}x S n 在[]επε-2,一致有界,而⎭⎬⎫⎩⎨⎧n 1在[]επε-2,一致收敛于0,于是由Dirichlet 判别法知,∑n nx sin 在[]επε-2,一致收敛,从而在()π2,0内闭一致收敛.当0=x 或π2时,级数显然收敛.取()+∈∈=N n n x n ,2,02ππ,则0lim =∞→n n x 但()∑∑∑∞=∞==⋅=1112sin n n n n n nn n x u π发散,故由定理19知,∑∞=1sin n n nx在()π2,0不一致收敛.推论7若()x u n ∑在[)+∞,a 内闭一致收敛,则()x u n ∑在[)+∞,a 一致收敛的充要条件是{}[)+∞=+∞⊂∀∞→n n n x a x lim ,,,()x u n∑皆收敛.证明与定理19类似,略.定理20[]7设函数级数()x u n ∑在[)b a ,收敛,且满足引理2中必要条件,则()x u n ∑在[)b a ,一致收敛⇔[){}[)00lim ,,,,x x b a x b a x n n n =⊂∀∈∀∞→,()n n n x u ∑∞=1皆收敛.证明必要性用反证法.假设[]{}[]00lim ,,,,x x b a x b a x n n n =⊂∃∈∃∞→,而()n n n x u ∑∞=1发散.若a x =0或b x =0,则由定理20知不可;若()b a x ,0∈,则存在{}n x 的子列{}kn x 或00lim ,x x x x k k n k n =≥∞→或00lim ,x x x x k k n k n =≤∞→,于是由定理19知()x u n ∑在()b x ,0或()0,x a 在不一致收敛,从而在[)b a ,不一致收敛,矛盾.必要性获证.充分性用反证法.设()x u n n ∑∞=1在[)b a ,不一致收敛,则由定理18的证明可得,{}[)b a x n ,⊂且[]b a x x n n ,lim 0∈=∞→而()n n n x u ∑∞=1发散,矛盾.推论8设()x u n n ∑∞=1在[)+∞,a 收敛,且满足引理的必要条件,则()x u n ∑在[)+∞,a 一致收敛⇔[)+∞∈∀,0a x 或{}[)00lim ,,,x x a x x n n n =+∞⊂∀+∞=∞→,()n n n x u ∑∞=1皆收敛.证明与定理20的类似,略.推论12[]4设∑)(x u n 使定义在数集D 上的正项函数项级数,)(x u n ,),2,1( =n 在D上有界,若D x n ∈∞→,时,1)()(1-+x u x u nn n 一致收敛于)(x q ,设{})(inf x q q =,则当1>q 时,∑)(x un在D 上一致收敛.证明由1>q ,D x n ∈∞→,时,1)()(1-+x u x u nn n 一致收敛于)(x q ,取10-<<∀q ε,11,N n N ≥∃时,对一切D x ∈,有ε<--+)(1)()(1x q x u x u nn n ,所以1)(1)()(1>->->-+εεq x q x u x u n n n ,取22,,1N n N q s ≥∃-<<ε,有sn n q 111+≥-+ε,取{}21,max N N N o =,当O N n >时,对一切D x ∈,有sssn n nn n n q x u x u )1(111)()(1+=+>-+>+ε,因此)()1()(1x u n x u n n sn s ++≥,所以sS O N S On sn M N x u N x u n O ≤≤)()(,由1>s 时,∑s S O n MN 收敛,由优级数判别法可知∑)(x u n 在D 上一致收敛.推论13函数列{})(x u n 定义于数集D 上,且)(1x u 在D 上有界,若+∈∃N N 对一切的D x N n ∈∀>,,有1)()(1<≤+q x u x u n n ,则函数项级数∑∞=1)(n n x u 在D 上一致收敛.证明不妨设对于+∈∀N n ,有q x u x u n n ≤+)()(1,即q x u x u n n )()(1≤+,则1=n ,q x u x u )()(12≤,假设当1-=k n ,111)()()(--≤≤k k k q x u q x u x u 成立,则当k n =,k k k q x u q x u x u )()()(11≤≤+也成立,故由数学归纳法得11)()(-≤n n q x u x u ,且)(1x u 在D 有界,即0>∃M ,对D x ∈,有M x u ≤)(1所以1)(-≤n n Mq x u ,又已知几何级数∑∞=1n n q 收敛,故级数∑∞=-11n n Mq收敛,由优级数判别法知∑∞=1)(n n x u 在D 上一致收敛.推论14函数列{})(x u n 定义于数集D 上,且)(1x u 在D 上有界,若D x ∈∀,有1)()(lim1<=+∞→l x u x u n n n ,则函数项级数在D 上一致收敛.证明因为1)()(lim1<=+∞→l x u x u n n n .即1-=∃q o ε)1(<<q l ,+∈∃N N ,对一切D x N n ∈∀>,,有1)()(1-≤-+q l x u x u n n ,即q x u x u n n ≤+)()(1,由推论10得函数项级数∑∞=1)(n n x u 在数集D 上一致收敛.例11判断函数项级数∑∞=1!n nn x n n 在[)+∞,1上一致收敛性.证明因为11)(1≤=xx u ,且11111lim !)1()!1(lim )()(lim 111<<=⎪⎭⎫ ⎝⎛+=++=∞→++∞→+∞→e xe x n n n x n x n n x u x u nn n n n n n nn n ,由推论13可知函数项级数∑∞=1!n nn xn n 在[)+∞,1上一致收敛.定理23[]8(根式判别法)设∑)(x u n 为定义在数集D 上的函数项级数,记n n n x u x q )()(=,若存在正整数N ,正数q ,使得1)(<≤q x u n n 对一切的N n >,D x ∈成立,则函数项级数∑)(x u n 在D 上一致收敛.证明由定理条件n n q x u ≤)(对一切N n >,D x ∈成立,而几何级数∑n q 收敛,由优级数判别法知,函数项级数∑)(x u n 在D 上一致收敛.推论15[]8(根式判别法的极限形式)设)(x u n 为定义在数集D 上的函数列,若n n x u )(一致收敛于)(x q ,且1)(<≤q x q {}1)(sup (<∈x q Dx ,即1)()(lim <≤=∞→q x q x u n n n ,对D x ∈∀成立,则函数项级数∑)(x u n 在D 上一致收敛.证明由n n x u )(一致收敛于)(x q )(∞→n ,取q -<<10ε,O N ∃,当o N n >时,对一切D x ∈有ε<-)()(x q x u n n ,所以εε+<+<q x q x u n n )()(,所以n n q x u )()(ε+<,又因为1<+εq ,由优级数判别法知∑)(x u n 在D x ∈上一致收敛.推论51'设()∑x u n 为定义在数集D 上的正项函数项级数,记()n n n x u q =,若()1sup lim <=∈∞→q x q n Dx n ,则函数项级数()∑x u n 在D 上一致收敛.证明由假设()1sup lim <=∈∞→q x q n Dx n ,则存在正整数N ,使得当N n >时,有()1<≤q x q n ,则对任意的N n >,D x ∈∀有()n n q x u ≤,而几何级数∑n q 收敛,由函数项级数一致收敛性优级数判别法知()∑x u n 在D 上一致收敛,即得证.例12函数项级数∑n xn在()()+∞⋃-∞-,,r r 上一致收敛,(其中r 是实常数且1>r ),因为()x nx u q nnn n ==,设()()+∞⋃-∞-=,,r r D ,()11lim sup lim <==∞→∈∞→r r n x q nn n Dx n ,由推论51'得函数项级数∑n xn在()()+∞⋃-∞-,,r r 上一致收敛.推论16[]8有函数项级数()∑x u n ,若对D x ∈∀,有()1lim <=∞→l x u n n n ,则函数项级数()∑x u n 在D 上一致收敛.证明因()1lim <=∞→l x u n n n ,则1-=∃q o ε,1<<q l ,+∈∃N N ,D x ∈∀,有()l q l x u nn -<-,即()1<<q x u n n ,从而()n n q x u <依定理8得函数项级数()∑x u n 在D上一致收敛.例13判别函数项级数nn x ∑⎪⎭⎫⎝⎛+12在R 上的一致收敛性.证明因()1012lim lim 12<=+=∞→+∞→n xn nnn x n ,依推论15函数项级数nn x ∑⎪⎭⎫ ⎝⎛+12在R 上一致收敛.定理24[]8(对数判别法)设()x u n 为定义在D 上的正的函数列,若()()x p nx u n n =-∞→ln ln lim 存在,那么①若D x ∈∀,()1>>p x p 对,则函数项级数()∑x u n 一致收敛;②若对D x ∈∀,()1<<p x p ,则函数项级数()∑x u n 不一致收敛.证明由定理条件知,对任意0>ε,N ∃,使得对一切N n >,有()()()εε+<-<-x p nx u x p n ln ln ,即()()()εε-+<<x p n x p n x u n 11,则当()1>>p x p 对D x ∈∀成立时,有()pn n x u 1<,而p 级数∑p n 1当1>p 时收敛,由优级数判别法知函数项级数()∑x u n 在D 上一致收;而当()1<<p x p ,对D x ∈∀成立时,有()p n n x u 1>,而p 级数∑p n1当1<p 时发散,从而函数项级数()∑x u n 不一致收敛.定理25设函数项级数()∑x u n ,()∑x v n 都是定义在数集D 上的正项函数项级数,当D x ∈,∞→n 时,()()x v x u n n 一致收敛于()x q ,设(){}1inf q x q D x =∈,(){}2sup q x q Dx =∈;①当+∞<=21,0q q 时,若()∑x v n 在D 上一致收敛,则()∑x u n 在D 上也一致收敛.②当+∞=>21,0q q 时,若()∑x u n 在D 上一致收敛,则()∑x v n 在D 上也一致收敛.③当+∞<>21,0q q 时,()∑x u n 与()∑x v n 在数集D 上同时一致收敛,或同时不一致收敛.证明由当D x ∈,∞→n 时,()()x v x u n n 一致收敛于()x q ,则任取0>ε,总+∈∃N N ,当N n >时,对一切D x ∈有()()()ε<-x q x v x u n n ,得到()()()()εεεε+<+<<+-≤+-21q x q x v x u x q q n n 即()()()()()x v q x u x v q n n n εε+<<-21.①当+∞<=21,0q q 时,由上式的右半部分可知若()∑x v n 在D 上一致收敛,则()∑x u n在D 上也一致收敛;②当+∞=>21,0q q 时,由上式左半部分可知若()∑x u n 在D 一致收敛,则()∑x v n 在D 上也一致收敛;③当+∞<>21,0q q 时,取1q <ε易知()∑x u n 与()∑x v n 同时一致收敛或同时不一致收敛.Lipschitz (莱布尼茨)型函数项级数一致收敛判别[]5定义4设有函数项级数()()∑+-x u n n 11,其中()x u n ,(),,2,1 =n 是区间[]b a ,上的连续函数()0≥x u n ,且函数列(){}x u n 在区间[]b a ,上单调减少收敛于0,则称这类级数为Lipschitz 型函数项级数.定理26若()()∑+-x u n n 11,[]b a x ,∈为L 型函数项级数,则①此级数在[]b a ,上一致收敛;②()()()()()()()()()x u x u x u x u x u n p n p n n n n n pn n k k k 211111231211≤-++-+-=-+++++++++=+∑ .证明①因为()x u n 是[]b a ,上的连续函数,函数列(){}x u n 在区间[]b a ,上单调减少且收于连续函数()0=x u .所以()()x u x u k k 1+-在[]b a ,连续非负,而()()()[]()x u x u x u x u n k k k n 1111--=-∑-=+,由Dini 定理知函数项级数()()[]()x u x u x u n k k 111--∑∞=+在区间[]b a ,一致收敛于0,从而函数列(){}x u n 在[]b a ,一致收敛于0.又()⎩⎨⎧=+==+-+-=-∑==k n k n nk k 2,012,111111111,所以()1111≤-∑=+nk k ,故()∑=+-n k k 111一致有界,由Dirichlet 判别法知交错函数项级数()()∑+-x u n n 11在区间[]b a ,上一致收敛.②由①得()()∑+-x u n n 11一致收敛,设()()()x s x u n n =-∑+11,于是()()()()()()()()x s x s x s x s x s x s x u n p n n p n pn n k k k -+-==-++++=+∑111()()()()()()()()()()().211x u x u x u x u x u x r x r x s x s x s x s n n n p n n p n n n p n =+≤+≤+=-+-≤+++++例14试证()∑+--211x n n 在区间[]b a ,一致收敛.证明⎭⎬⎫⎩⎨⎧+21x n 是任意闭区间[]b a ,上的连续函数列且[]b a x ,∈∀,()()x u x u n n ≤≤+10,()0lim =∞→x u n n 由定理26知函数项级数()∑+--211x n n 在[]b a ,上一致收敛.推论17设函数列(){}x S n 在[]b a ,上收敛于)(x S ,若()x S n 可写成L 型函数项级数的部分和,则函数列(){}x S n 在上一致收敛于)(x S .证明设有L 型函数项级数()()∑+-x u n n 11一致收敛于()x u ,[]b a x ,∈而()()()x u x S k nk k n ∑=+-=111,则对[]b a x ,∈∀,都有()()()()()x S x S x u x u n n nk k k n ==-=∞→=+∞→∑lim 1lim 11,即()()x S x u =,故函数列(){}x S n 在[]b a ,上一致收敛于)(x S .例15证明()∑-x nn11在[)+∞,δ上一致收敛.证明因为[)+∞∈∀,δx ,()x xn n 1110≤+≤,01lim =∞→xn n .由②[)+∞∈∀,δx ,+∈∀N p 有()()()δn x u x u n pn n k k K2211≤≤-∑++=,由δn 2与x 无关且02lim =∞→δn n 故()()εδ<≤-∑++=n x u pn k n k k 211,由Cauchy 准则证毕.定理27[]9利用结论:设幂级数∑∞=1n n n x a 的收敛半径0>R ,则①当∑∞=1n nn R a (或()∑∞=-1n nn R a )收敛时,∑∞=1n n n x a 在[]R ,0或()0,R -一致收敛;②∑∞=1n nn x a 在(]R R ,-内一致收敛,当且仅当∑∞=1n n n x a 在[]R R ,-上一致收敛.注:1Cauchy 准则与M 判别法比较实用一般优先考虑;2Cauchy 准则、M 判别法、放大法要实现对函数项级数一致收型性的判别,均要对一定的表达式进行有效是我放大.三非一致收敛性的判别1利用非一致收敛的定义定义3,略.例16讨论函数项级数()[]()∑++-111nx x n x在()+∞∈,0x 是否一致收敛.解()()[]()()111)11111(11111+-=+-+-=++-=∑∑==nx kx x k kx x k x x s nk nk n 当()+∞∈,0x 时,有()()1lim ==∞→x s x s n n .取o ε使210≤<o ε,无论n 多大只要nx 1=',就有()()o n n n s n s x s x s ε≥=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛='-'2111,故()[]()∑++-111nx x n x 在()+∞,0上非一致收敛.2利用确界原理的逆否命题定理28若函数项级数()∑x u n 在数集D 上非一致收敛的充要条件是()0sup lim ≠∈∞→x R n Dx n .证明它是确界原理的逆否命题,故成立.例17函数项级数()∑x u n 的部分和函数为()xx x S nn --=11,讨论()∑x u n 在()1.1-上是否一致收敛.证明部分和函数()x x x S n n --=11,当1<x 时,()(),11lim xx S x S n n -==∞→又当∞→n时,()()()()∞→⎪⎭⎫ ⎝⎛+=+-⎪⎭⎫⎝⎛+≥-=----∈11,11,11111supsup n nnx n x n n n n nn n x x x S x S ,故()∑x u n 在()1.1-内非一致收敛.注:极限函数知道时值得用3利用定理5的逆否命题定理29设()()x S x u n =∑,若存在{}D x n ⊂使得()0lim ≠∞→n n n x r ,则()∑x u n 在D 上不一致收敛.证明略.注:此定理比较实用.4利用Cauchy 准则逆否命题定理30函数项级数()∑x u n 在区间D 上非一致收敛的充要条件是存在0>o ε,+∈∀N N ,N n o >∃,D x ∈'∃,+∈N p 使得()opn n k kx u ε≥'∑++=1证明它是Cauchy 准则的逆否命题,故成立.例18讨论∑nnxsin 在[]π2,0=D 上的一致收敛性.解取21sin 31=o ε,对+∈∀N N ,N n o >∃,1+=o n p ,及()[]π2,0121∈+=o o n x 使()()()()()1212sin 121122sin 21121sin 11++++++++++++=-+o o o o o o o o o o n p n n n n n n n n n n x s x s o o ⎪⎪⎭⎫⎝⎛++++++>121211121sin o o o n n n 21sin 31>oε=故∑nnxsin 在[]π2,0=D 上非一致收敛.注:该类型关键是要找出o x 与o n 及p 之间的关系,从而凑出o ε,该类型题也有一种简便方法,即取1=p 能适用于很多例题.此方法比较实用,优先考虑.推论18函数列(){}x u n 在上非一致收敛于0,则函数项级数()∑x u n 在数集D 上非一致收敛.证明它是推论1的逆否命题,故成立.例19设()()()()12sin 1212cos+⋅++=n n x n n n x u n ,()∞∞-∈,x .讨论函数项级数()∑x u n的一致收敛性.解取()12+=n n x n ,则()()1sin 12cos lim 0lim +=-∞→∞→n x u n n n n ,此极限不存在,所以(){}x u n 在定义域内非一致收敛于0,则()∑x u n 在()∞∞-∈,x 内非一致收敛.推论19[]9若函数项级数()∑x u n 在区间D 上逐点收敛,且在区间D 中存在一点列{}n x ,使()0lim ≠∞→n n n x u ,则函数项级数()∑x u n 在区间D 上非一致收敛.例20讨论∑⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+-nx n x e n 11在()+∞,0上的一致收敛性.解因为()0.,,0a x ∃+∞∈∀使a x ≤,有ax nx e n a e nx n x e n 222211≤≤⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+-,知∑⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫⎝⎛+-nx n x e n 11在()+∞,0上非一致收敛.5利用求极值的方法定理31()()∑∞+==1n k kn x u x R ,若()0sup lim ≠∈∞→x R nDx n ,则()∑x u n 在D 上不一致收敛.例21证()∑-n n x x 1在[]1,0上处处收敛,但不一致收敛.证明因为()∑∑∑-=-n n n n x x x x 21,对[)1,0∈x ,∑n x 与∑n x 2都收敛,所以()∑-nnx x 1收敛,1=x 时()01=-∑nnx x 收敛,故()∑-nnx x 1在[]1,0上处处收敛;而()∑---=++x x x x x R n n n 11221,所以[]()22211,01111111sup ⎪⎭⎫⎝⎛--⎪⎭⎫⎝⎛--⎪⎭⎫⎝⎛-≥++∈n n n n x R n n n x ,又+∞=⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛--⎪⎭⎫⎝⎛-++∞→22211111111lim n n n n n n n ,故()∑-n n x x 1在[]1,0非一致收敛.注:极限函数知道时,可考虑用.6利用一致收敛函数列的一个性质判别[]10引理2若连续函数列(){}x f n 在区间D 上一致收敛于()x f ,则D x o ∈∀,{}D x n ⊂∀,o n n x x =∞→lim ,有()()o n nn x f x f=∞→lim 证明由(){}x f n 在D 上一致收于()x f ,即有()()0sup lim =-∈∞→x f x f n Dx n ,D x o ∈∀,{}D x n ⊂∀:o n n x x =∞→lim ,有()()()()x f x f x f x f n Dx n n n -≤-∈sup ,得()()0lim =-∞→x f x f n n n .根据连续函数列(){}x f n 在区间D 上一致收敛于()x f ,则()x f 也必在D 上连续,从而()()o n n n x f x f =∞→lim .定理32连续函数项级数()∑x u n 在区间D 上逐点收于)(x S ,且D x o ∈∃,{}Dx n ⊂∃o n n x x =∞→lim ,有()()o n n n x S x S ≠∞→lim 则函数项级数()∑x u n 在区间D 上非一致收敛于)(x S .例22讨论∑+221x n x在()+∞∞-,上一致收敛性.解显然()∑x u n 在()+∞∞-,上逐点收,且每一项都在()+∞∞-,上连续,取() ,2,11==n n x n ,则0lim =∞→n n x .再设()221x k x x u k +=,由定积分概念()()∑∑=∞→=∞→+=nk nk nn nk n k n x u 12111lim lim ()∑=∞→+=n k n k n n 12111lim dx x ⎰+=1021110arctgx =4π=()00=≠s 故知∑+221xn x在()+∞∞-,上非一致收敛.推论20设连续函数列(){}x S n 在区间D 上逐点收敛,且在D 中存在数列{}n a 和{}n b 满。
函数项级数收敛和一致收敛的判别

函数项级数收敛和一致收敛的判别函数项级数收敛和一致收敛的判别函数项级数是指将一列函数相加得到的级数,例如:$%sum%limits_{n=1}^%infty f_n(x)$。
如果该级数在某个区间内收敛,则称该级数在该区间内收敛,否则称该级数在该区间内发散。
函数项级数的收敛性可以分为点态收敛和一致收敛两种。
点态收敛是指对于每一个$x$,级数$%sum%limits_{n=1}^%inftyf_n(x)$都收敛,而一致收敛则是指存在一个收敛的函数$S(x)$,使得对于任意$%epsilon>0$,存在一个正整数$N$,使得当$n>N$时,对于所有$x$都有$|%sum%limits_{k=1}^n f_k(x)-S(x)|<%epsilon$。
下面将介绍函数项级数的一致收敛的判别方法:一、Weierstrass判别法Weierstrass判别法是判定函数项级数一致收敛的最常用方法之一。
其基本思想是将原函数项级数中的每一项$f_n(x)$都用一个上界函数$M_n(x)$来代替,并且要求这个上界函数满足以下两个条件:1. 对于任意$n$和$x$,都有$|f_n(x)|%leq M_n(x)$。
2. 上界函数$M_n(x)$的函数项级数$%sum%limits_{n=1}^%infty M_n(x)$在该区间内收敛。
如果满足上述条件,则原函数项级数在该区间内一致收敛。
二、Abel判别法Abel判别法是另一种判定函数项级数一致收敛的方法。
其基本思想是将原函数项级数表示为两个部分的乘积:$%sum%limits_{n=1}^%infty a_n(x)b_n(x)$,其中$a_n(x)=%sum%limits_{k=1}^n f_k(x)$,$b_n(x)$是一个单调有界函数。
如果满足以下两个条件,则原函数项级数在该区间内一致收敛:1. 函数$a_n(x)$在该区间内一致有界。
2. 函数$b_n(x)$在该区间内一致收敛到某个函数$B(x)$。
函数项级数一致收敛性判别及应用

函数项级数一致收敛性判别及应用函数项级数是由一系列函数的和组成的级数,通常用于描述函数的展开式或泰勒级数。
对于某些函数项级数,我们希望判断其在一定的条件下是否具有一致收敛性,这对于分析和解决问题具有很大的价值。
本文将介绍一些函数项级数一致收敛性的判别方法及其应用。
一、函数项级数收敛的定义设 $f_n$ 为定义在区间 $I$ 上的函数序列,如果存在函数 $f$ 使得$\lim_{n\to\infty}f_n(x)=f(x)$ 对于所有 $x\in I$ 成立,则称函数序列$\{f_n\}$ 在 $I$ 上逐点收敛于函数 $f$,并记为 $f_n\to f$($n\to\infty$)。
二、Weierstrass 判别法Weierstrass 判别法是判断函数项级数一致收敛性的重要方法之一。
它通常用于非负函数项级数。
证明如下:设 $s_N(x)=\sum_{n=1}^{N}f_n(x)$ 为前 $N$ 项和函数,$s(x)=\sum_{n=1}^{\infty}f_n(x)$ 为级数的和函数。
由于 $|f_n(x)|\leq M_n$,所以对于 $m>n$,有 $|s_m(x)-s_n(x)|=|\sum_{k=n+1}^{m}f_k(x)|\leq\sum_{k=n+1}^{m}|f_k(x)|\leq \sum_{k=n+1}^{m}M_k$。
三、Abel 判别法1. 证明 Riemann 积分的线性性如果函数 $f(x)$ 和 $g(x)$ 在区间 $[a,b]$ 上 Riemann 可积,则它们的线性组合$\alpha f(x)+\beta g(x)$ 也在 $[a,b]$ 上 Riemann 可积,并且$$\int_a^b(\alpha f(x)+\beta g(x))dx=\alpha \int_a^bf(x)dx+\beta\int_a^bg(x)dx$$如果 $f(x)$ 和 $g(x)$ 在 $[a,b]$ 上一致连续,则它们的线性组合也在$[a,b]$ 上一致连续。
一致收敛weierstrass判别法

一致收敛weierstrass判别法
一致收敛的Weierstrass判别法是一种判断函数列或函数项级数是否一致收敛的方法。
具体来说,如果函数项级数的每一项满足一定的条件,并且这个条件与函数项的位置无关,那么就可以利用Weierstrass判别法来判断这个函数项级数是否一致收敛。
具体来说,设函数项级数为∑u_n(x),如果对于任意给定的ε>0,总存在N,使得当n>N 时,对于一切x∈D(D是函数项级数的定义域),都有|u_n(x)|<ε,那么就说函数项级数∑u_n(x)在D上一致收敛。
Weierstrass判别法指出,如果函数项级数的每一项u_n(x)满足|u_n(x)|≤a_n(对于所有x∈D),并且数列∑a_n收敛,那么函数项级数∑u_n(x)在D上一致收敛。
这个判别法的优点在于,它不需要知道函数项级数的和的具体形式,只需要知道每一项的绝对值满足的条件,以及这个条件与x的位置无关,就可以判断函数项级数是否一致收敛。
因此,它是研究函数项级数收敛性的重要工具之一。
此外,一致收敛的函数项级数具有一些很好的性质,比如可以交换极限运算和无限求和运算的顺序,这在处理一些复杂的数学问题时非常有用。
因此,研究函数项级数的一致收敛性对于数学分析来说具有重要的意义。
含参量反常积分的一致收敛发判别法及推广汇总

含参量反常积分的一致收敛发判别法及推广汇总含参数的反常积分是指在积分中包含一个或多个参数的情况下的积分运算。
一致收敛是指在定义域上的每个点上,函数项级数都收敛于同一个函数。
一致收敛的发散判别法是用来判断含参数的反常积分是否一致收敛的方法。
它的基本思想是先对含参数的反常积分的被积函数进行求和,然后通过逐项求和的结果进行判断。
一般来说,当积分区间是有界区间时,可以直接采用一般的单调收敛判别法,若积分区间是无界区间,则需要使用其他方法来判断其一致收敛性。
以下是一些常见的含参数反常积分的一致收敛发判别法及推广:1.魏尔斯特拉斯判别法:该判别法适用于被积函数在区间上无上界的情况。
若函数项级数的每一项在区间上都存在可求得的上界,并且级数的系数与参数无关,即参数只出现在积分区间上,则该函数项级数在该区间上一致收敛。
2.绝对收敛发散判别法:若被积函数在积分区间上绝对收敛,则函数项级数在该区间上一致收敛。
3.阿贝尔判别法:若函数项级数在积分区间上逐项收敛,且在积分区间上一致有界,则函数项级数在该区间上一致收敛。
4.一致收敛的推广汇总:对于参数函数项级数的一致收敛判别,可以将其推广为参数函数项广义积分的一致收敛判别。
具体而言,可以参考以下几种情况的判别方法:a.线性组合的情况:若参数函数项级数与常数函数项级数的线性组合在积分区间上一致收敛,则参数函数项级数在该区间上一致收敛。
b.积分换元法的情况:若参数函数项级数的积分变量进行换元,得到的新的参数函数项级数在积分区间上一致收敛,则原参数函数项级数在该区间上一致收敛。
c.参数函数项级数的逐项积分的情况:若参数函数项级数的逐项积分在积分区间上一致收敛,则参数函数项级数在该区间上一致收敛。
d.参数函数项的相对收敛性:若参数函数项级数的每一项与参数的函数项级数的每一项的绝对值相比,在积分区间上一致有界,并且参数的函数项级数在该区间上一致收敛,则原参数函数项级数在该区间上一致收敛。
函数项级数一致收敛性判别及应用

函数项级数一致收敛性判别及应用函数项级数是指由函数组成的序列求和的过程,它在数学中具有重要的应用。
函数项级数一致收敛性判别及应用是函数序列求和过程中的一个重要问题,它涉及到函数项级数的收敛性和应用方面。
本文将介绍函数项级数一致收敛性的判别方法和应用,让读者对这个重要的数学问题有一个更深入的了解。
我们来介绍一下函数项级数一致收敛性的概念。
函数项级数的一致收敛性是指函数项级数在定义域上一致收敛。
在数学中,一致收敛是指序列或者函数在某个范围内均匀收敛。
对于函数项级数来说,一致收敛性意味着在整个定义域上,序列的收敛性都是均匀的,而不是局部的。
一致收敛性是函数项级数的重要性质,它在微积分、实分析和复分析等领域都有广泛的应用。
要判断函数项级数是否一致收敛,有一些常用的判别法则,下面我们将介绍其中的几种。
首先是Weierstrass判别法。
Weierstrass判别法是判断函数项级数一致收敛性的常用方法之一,它要求被求和的函数的绝对值在定义域上有一个上界,而且这个上界在定义域上是一致的。
具体而言,如果对于函数项级数中的每一个函数f(x)都存在一个数M,使得|f(x)|≤M对于定义域D中的所有x都成立,那么函数项级数就一致收敛。
Cauchy判别法也是判断函数项级数一致收敛的一种方法。
Cauchy判别法是根据函数项级数的收敛性和余项来判断一致收敛性的,它要求余项趋于零,即对于任意的ε>0,存在一个正整数N,当n和m都大于N时,|Rn- Rm|<ε成立。
如果余项满足这个条件,那么函数项级数就一致收敛。
我们要介绍的是Abel判别法。
Abel判别法适用于交错级数,它要求函数项级数的前n项和收敛,并且有界,而且收敛序列是单调递减的,这时交错级数就是一致收敛的。
这三种判别法则是判断函数项级数一致收敛性的常用方法,在实际应用中非常有用。
函数项级数一致收敛性的判别法则是实际问题的抽象和理论总结,它在实际应用中有广泛的用途。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
从而
|
six ny dy||
siu ndu|
Ay
Ax u
首页 ×
所以 sin xy dy 在[,)一致收敛. 0y 首页 ×
定 理 1 9 .8设 含 参 量 反 常 积 分 f(x ,y )d y c
首页 ×
定理19.12 设f(x, y)在
[a, )[c, )上 连 .若 续
f(x,
y)dx
关于 y在任何闭[c区 ,d]上 间一致收
a
f(x, y)dy
关于 x在任何闭[a区 ,b]上 间一致收
c
积分
dx | f(x,y)|dy 与
dy | f(x,y)|dx
单调递减且当 y时,对参量 x , g ( x, y ) 一致
地收敛于 0 , 则
f(x,y)g(x,y)dy
c
在 [ a, b ] 上一致收敛.
首页 ×
阿贝尔判别法 设
⑴
f (x, y)dy 在 [ a, b ] 上一致收敛.
c
⑵ 对每一个固定的 x ∈[ a, b ],函数 g ( x, y ) 为 y
连续,故每个 un( x ) 都在 [ a, b ]上连续. 根据函数项 级数的连续性定理,函数 I(x)在[a,b]上连续 .
首页 ×
定理 19.10 设f(x,y)与fx(x,y)在区域
[a ,b ] [c,)上 连 I(x ) 续 f , (x ,y)d若 在 y c
[a,b]上收c敛 fx(x, ,y)dy在 [a,b]上一致收
若 g (y)d收 y ,则 敛 f(x ,y)d y
c
c
在[a,b]上一致收敛.
首页 ×
例2
证 明 含 参 量 反 常 积 分 0
cosxy 1 x2 dx
在(,)上一致收. 敛
证 因为,有
|
c1osxx2y|
1 1x2
y
并且反常积分
1 0 1 x2 dx
首页 ×
证:
因为
I(x) f(x,y)dy在[a,b]上
c
一致收敛, 由定理19.8,对任一递增且趋于
的数列 {An}(A1c), 函数项级数
I(x)n 1 A A n n1f(x,y)dyn 1 un(x)
在 [ a, b ] 上一致收敛. 又由于 f (x, y)在 [a,b][c, )
故由阿贝尔判别法,知 e xy sinxdx
0
x
在[ 0, d ] 上一致收敛
首页 ×
二、含参量反常积分的性质
定理 19.9(连续性) 设 f (x, y) 在
[a,b][c, ) 连续,若
I(x)c f(x,y)dy
在[a, b]上一致收敛, 则I(x)在[a,b]上连续。
即对于每 x[一 a,b]个 ,反常积分
I(x)c f(x,y)dy
都收敛,由反常积分收敛的定义,即
0 , N (,x ) c ,使得 MN,
| Mf(x,y)d yI(x)| c
其中 N 与 x 有关. 如果存在一个与 x[a,b]
无关的 N( ) 使得该不等式成立,就称
则I(x)在[a,b]上可微,且
I(x) c
fx(x,y)dy
首页 ×
定理19.11(可积性) 设f(x, y)在 [a,b][c,)上 连 续 , 若
I(x)c f(x,y)dy
在[a,b]上 一 致 收 敛 I(x), 在[则 a,b]上 可积,且
b
b
adcx f(x ,y )d y c da y f(x ,y )d x
首页 ×
例1. 证 明 含 参 量 反 常 积 分 sinxydy
0y
在[, )上一致收敛( 0其 ),但中在
(0,)内不一致收敛。
分析 要证: 0, N 0,使得 A N 时 当,
对一x切 [, ),都有
| si nxydy|
Ay
首页 ×
a
c
c
a
中有一个收敛,则另一个积分也收敛,且
adcx f(x ,y )d y cday f(x ,y )d x
首页 ×
例5 计算
sb in x sa in x
I e px 0
d x(p 0 ,b a ) x
例6 计算
si nax
证: 令 u = x y , 得
sinxy sinu
dy
du 其中 A > 0.
Ay
Ax u
由于
s inu du
收敛,故
0u
0,M c,使 A 得 M 时 当 就, 有
| si nudu|
A u
取 N M , 则当 AN时, AM,
首页 ×
都收 ,则 敛它x的 是函 ,记 数这个I函 (x)有 ,数
I(x )c f(x ,y)d,yx [a ,b ]
则 ⑴ 式为定 [a,b]义 上在 的含 x的 参 无 量 穷
反常积分,或简称含参 量反常积分
首页 ×
设反常积分 I(x) f cosxy 0 1 x2 dx 在(,)上一致收. 敛
首页 ×
狄利克雷判别法 设
⑴ 存在 M > 0, 对一切 N > c , 及一切 x ∈[ a, b ]
都有
N
|c f(x, y)dy|M
⑵ 对每一个固定的 x ∈[ a, b ],函数 g ( x, y ) 关于 y
的单调函数,且存在 M > 0, 使得
|g ( x ,y ) | M , x [ a ,b ] y , c
则 c f(x,y)g(x,y)dy
在 [ a, b ] 上一致收敛.
首页 ×
例 3 证 明 含 参 量 反 常 积 分exy sinxdx
0
x
在[0, d]上一致收敛.
I 0
dx x
例7 计算
(r) ex2corsd xx 0
首页 ×
含参量无界函数非正常积分
设 f (x, y) 在 [a,b][c,d] 上有定义. 若对 x 的
某些值,y = d 为函数 f (x, y) 的瑕点,则称
d
c f (x, y)dy
为含参量 x 的无界函数反常积分,或简称为含参 量反常积分.
§2 含参量反常积分
一、一致收敛性及其判别法 二、含参量反常积分的性质
首页 ×
一、一致收敛性及其判别法
设函数f (x, y)定义在无界区域 R { (x ,y )|a x b ,c y } 上,若对于每一 的个 x[固 a,b定 ],反常积分
c f(x,y)dy (1)
在[a,b]一致收敛
对任 一 的趋 递 {A 于 n 增 }(其 数 A 1中 c), 列
函数项级数
n1
An1 An
f(x,y)dy un(x)
n1
在[a,b]上一致收敛.
首页 ×
魏 尔 斯 特 拉 斯 M 判 别 法
设有函g(数 y),使得
f(x ,y)g (y)x , [a ,b ]y , [c ,) .
反常积分在区间 [ a, b ]上一致收敛
首页 ×
定义1. 若 0 , N c ,使 得 当 M N 时 ,
对 一x切 [a,b], 都 有
| Mf(x,y)d yI(x)| c
则称含参量反常积分
c f(x, y)dy
在[a,b]一 致 收 敛I(于 x),
或含参量积[分 a,b]在 一致收.敛
证
因为,反常积分
sin x dx
收敛,
0x
从而对于参量 y 它在 [ 0, d ] 上一致收敛,
函数 g(x,y)exy对每个 x ∈[ 0, d ],关于变量 y
单调减少,且在[ 0, d ] 上一致有界:
|g ( x ,y )| |e x| y 1 , 0 y d ,x 0
首页 ×
由于
I(x)c f(x,y)dy
所以上述定义中的不等式
| Mf(x,y)d yI(x)| c
也可表示为
| f(x,y)dy| M
首页 ×
定 理 1 9 .7 ( 一 致 收 敛 的 柯 西 准 则 ) 设含量反常
积 分 f(x,y)d在 y [a,b]一 致 收 敛 c 0, M c, 使 A 1,A 得 2M 时 当, 对 x[a,b],都有 | A2 f(x,y)dy| A1