八下数学第三章第三章

合集下载

北师大版八年级下册数学第三章 图形的平移与旋转第2节《图形的旋转(1)》教学设计

北师大版八年级下册数学第三章 图形的平移与旋转第2节《图形的旋转(1)》教学设计

第三章图形的平移与旋转2.图形的旋转(一)一、学生起点分析学生在七年级下学期已经学习了“生活中的轴对称”一节,而且在本章的第一节,学生又经历了探索图形平移性质的过程,已经积累了相当的图形变换的数学活动经验,同时八年级学生逻辑思维从经验型逐步向理论型发展,观察能力、记忆能力和想象能力也在迅速发展,他们有强烈的独立思考、自主探索的愿望,这些对本节的学习都会有帮助。

但旋转是三种变换中难度较大的一种,图形也比较复杂,因此,学生对旋转图形的形成过程的理解仍会有一定的困难。

二、教学任务分析图形的旋转是继平移、轴对称之后的又一种图形基本变换,是义务教育阶段数学课程标准中图形变换的一个重要组成部分。

教材从学生实际接触、观察到的一些现象出发,从具体到抽象,从感性到理性,从实践到理论,再用理论检验实践,循序渐进地指导学生认识自然界和生活中的旋转,进而探索其性质。

因此,旋转是培养学生思维能力、树立运动变化观点的良好素材;同时“图形的旋转”也为本章后续学习对称图形、中心对称图形做好准备,为今后学习“圆”的知识内容做好铺垫。

教学目标知识与能力:通过具体事例认识旋转,理解旋转前后两个图形对应点到旋转中心的距离相等,对应点与旋转中心的连线所成的角彼此相等的性质.过程与方法:经历对生活中与旋转现象有关的图形进行观察、分析、欣赏、以及动手操作、画图等过程,掌握有关画图的操作技能,发展初步的审美能力,增强对图形欣赏的意识.情感态度价值观:引导学生用数学的眼光看待有关问题,发展学生的数学观,学到活生生的数学.重点:类比平移与旋转的异同,掌握旋转的定义和基本性质,并利用数学知识解释生活中的旋转现象.难点:探索旋转的性质,特别是,对应点到旋转中心的距离相等.三、教学过程设计第一环节创设情境,引入新知演示俄罗斯方块游戏,构成游戏的模块均是由一个小正方形平移变换而来,通过学生玩游戏,发现除了平移运动之外还有旋转运动.引导学生列举出一些具有旋转现象的生活实例,引出课题:“生活中的旋转”。

部编版(人教版)八年级数学下册目录

部编版(人教版)八年级数学下册目录

部编版(人教版)八年级数学下册目录1. 第一章有理数- 1.1 有理数的概念与表示- 1.2 有理数的加减法- 1.3 有理数的乘除法- 1.4 有理数的应用2. 第二章美的光影——相似与全等- 2.1 图形的旋转- 2.2 图形的翻转- 2.3 相似与全等的基本概念- 2.4 相似三角形的判定与性质- 2.5 海伦公式及应用3. 第三章数据的亲戚——概率- 3.1 随机事件与概率- 3.2 等可能事件与概率- 3.3 互斥事件与相关事件的概率- 3.4 概率的运算与应用4. 第四章陶菲利尼调色法——等比与菱形二层结构- 4.1 等比数列的基本性质- 4.2 等比数列的求和与应用- 4.3 菱形二层结构的应用5. 第五章平面直角坐标系- 5.1 平面直角坐标系的引入与标识- 5.2 点的坐标与坐标的表示- 5.3 直线与方程- 5.4 解直线方程6. 第六章相遇于“二”- 6.1 二次根式的引入和计算- 6.2 一元二次方程- 6.3 一元二次方程的应用- 6.4 平方差公式7. 第七章旅游地图——平行四边形与三角形- 7.1 平行四边形的性质- 7.2 平行四边形的判定- 7.3 三角形的基本概念与性质- 7.4 三角形的判定与性质8. 第八章立体几何的魅力- 8.1 空间几何的基本概念与性质- 8.2 锥体与棱柱- 8.3 球与圆的性质与计算以上是部编版(人教版)八年级数学下册的目录。

本册的内容涵盖有理数、相似与全等、概率、等比与菱形二层结构、平面直角坐标系、一元二次方程、平行四边形与三角形以及立体几何等主题。

每一章节都包含了相关的概念、性质、计算和应用。

北师大版八年级下册数学各章知识要点总结

北师大版八年级下册数学各章知识要点总结

北师大版八年级下册数学各章知识要点总结北师大版八年级下册数学各章学问要点总结北师大版八年级数学下册各章学问要点总结第一章一元一次不等式和一元一次不等式组一、一般地,用符号“<”(或“≤”),“>”(或“≥”)连接的式子叫做不等式。

1、能使不等式成立的未知数的值,叫做不等式的解. 2、不等式的解不唯一,把全部满意不等式的解集合在一起,构成不等式的解集.3、求不等式解集的过程叫解不等式.4、由几个一元一次不等式组所组成的不等式组叫做一元一次不等式组5、不等式组的解集:一元一次不等式组各个不等式的解集的公共局部。

6、等式根本性质1:在等式的两边都加上(或减去)同一个数或整式,所得的结果仍是等式.根本性质2:在等式的两边都乘以或除以同一个数(除数不为0),所得的结果仍是等式.二、不等式的根本性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变.(注:移项要变号,但不等号不变。

)性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向转变.不等式的根本性质、若a>b,则ac>bc;、若a>b,c>0则ac>bc,若cc,则a>c四、一元一次不等式与一次函数五、一元一次不等式组※1.定义:由含有一个一样未知数的几个一元一次不等式组成的不等式组,叫做一元一次不等式组.※2.一元一次不等式组中各个不等式解集的公共局部叫做不等式组的解集.假如这些不等式的解集无公共局部,就说这个不等式组无解.几个不等式解集的公共局部,通常是利用数轴来确定.※3.解一元一次不等式组的步骤:(1)分别求出不等式组中各个不等式的解集;(2)利用数轴求出这些解集的公共局部,(3)写出这个不等式组的解集.两个一元一次不等式组的解集的四种状况(a、b为实数,且a找公因式的一般步骤:(1)若各项系数是整系数,取系数的最大公约数;(2)取一样的字母,字母的指数取较低的;(3)取一样的多项式,多项式的指数取较低的.(4)全部这些因式的乘积即为公因式.四、分解因式的一般步骤为:(1)若有“-”先提取“-”,若多项式各项有公因式,则再提取公因式.(2)若多项式各项没有公因式,则依据多项式特点,选用平方差公式或完全平方公式.(3)每一个多项式都要分解到不能再分解为止.五、形如a+2ab+b或a-2ab+b的式子称为完全平方式.六、分解因式的方法:1、提公因式法。

八年级下学期数学知识点总结

八年级下学期数学知识点总结

八年级下学期数学知识点总结第一章勾股定理定义:如果直角三角形两条直角边分别为a,b,斜边为c,即直角三角形两直角边的平方和等于斜边的平方。

判定:如果三角形的三边长a,b,c满足a +b = c ,那么这个三角形是直角三角形。

定义:满足a +b =c 的三个正整数,称为勾股数。

第二章实数定义:任何有限小数或无限循环小数都是有理数。

无限循环小数称为无理数(有理数总是可以用有限循环小数或无限循环小数来表示)一般地,如果一个正数x的平方等于a,那么这个正数x 就叫做a的算术平方根。

特别地,我们规定0的算术平方根是0。

一般地,如果一个数x的平方等于a,那么这个数x就叫做a的平方根(也叫二次方根) 一个正数有两个平方根;0只有一个平方根,它是0本身;负数没有平方根。

求一个数a的平方根的运算,叫做开平方,其中a叫做被开方数。

一般地,如果一个数x的立方等于a,那么这个数x就叫做a的立方根(也叫做三次方根)。

正数的立方根是正数;0的立方根是0;负数的立方根是负数。

求一个数a的立方根的运算,叫做开立方,其中a叫做被开方数。

有理数和无理数统称为实数,即实数可以分为有理数和无理数。

每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数。

即实数和数轴上的点是一一对应的。

在数轴上,右边的点表示的数比左边的点表示的数大。

第三章图形的平移与旋转定义:在一个平面内,一个图形沿着一定的方向移动一定的距离,这样的图形移动称为平移。

平移不会改变图形的形状和大小。

经过平移,对应点所连的线段平行也相等;对应线段平行且相等,对应角相等。

在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称旋转中心,转动的角称为旋转角。

旋转不改变图形的大小和形状。

任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等。

第四章四边形性质探索定义:若两条直线互相平行,则其中一条直线上任意两点到另一条直线的距离相等,这个距离称为平行线之间的距离。

北师大版八年级下册数学 第三章 图形的平移与旋转 简单的图案设计

北师大版八年级下册数学 第三章 图形的平移与旋转  简单的图案设计

探究新知
方法总结 图案形成过程的分析方法
解这类题首先要仔细观察图形,找出构成该图形的基本 图案,这些基本图案一般都会重复多次出现,然后结合几 种图形变换的概念和性质看这些基本图案通过怎样的 变换才能最终得到所给图形.
巩固练习
变式训练
如图,甲、乙、丙、丁四个图中的图2是由图1经过轴对称、平移、 旋转这三种运动变换而得到的,请分别分析出它们是如何运动变 换的.图中每个方格的单位长度为1.
探究新知
方法总结
设计图案时要注意两点: 一是要把设计的图案当作一个整体,即整体构思; 二是作图的过程中可以把图案中几个相邻的基本图案当作 一个新的基本图案,要明确图案设计及作图的要求,图案作 完后,一定要检验图形是否符合题意.
巩固练习
变式训练
下列四个图形中,若以其中一部分作为基本图案,无论用旋转
还是平移都不能得到的图形是(
)
C
探究新知
知识点 4
图案设计欣赏
运动美
探究新知
运动美
探究新知
探究新知
★★★
★★★
★★★★★ ★★★★★
★★★★★★★★★★★
★★★★★★★★★
★★★★★★★
★★★★★
★★★
组合美

连接中考
(2020·枣庄)如图的四个三角形中,不能 由△ABC经过旋转或平移得到的是 ( B )
正方形组成.
课堂检测
能力提升题
1.为了美化环境,需在一块正方形的空地上分别种植四种不同的 花草.现要将这块空地分割成4块全等图形,且分割后整个图形成 中心对称图形.现给出一种画法(如图①),请按上述要求,再画出3 种不同的画法.
课堂检测 解:答案不唯一.如图所示:

八年级数学北师大版初二下册--第三单元 3.3《中心对称》(第二课时)课件

八年级数学北师大版初二下册--第三单元 3.3《中心对称》(第二课时)课件

知1-讲
例2 如图,在下列图形中,中心对称图形有( C ) A.1个 B.2个 C.3个 D.4个
导引:这些图形绕某一点旋转一定角度都能与原图形完 全重合,但旋转180°后能与原图形重合的有3个, 只有最后一个图形不重合.
总结
知1-讲
正多边形图案是否为中心对称图形的识别方法: 边数为偶数的正多边形图案是中心对称图形,
知识点 1 中心对称图形的定义
知1-导
问题
(1)如图,将线段AB绕它的中点旋转180°,你 有什么发现?
A
B
可以发现:线段AB绕它的中点旋转180°后与 它BCD 绕它的两条对角线的交点O旋
转180°,你有什么发现?
A
D
O
B
C
Y 可以发现: ABCD 绕它的两条对角线的交点O旋
第三章 图形的平移与旋转
3.3 中心对称
第2课时 中心对称图形
1 课堂讲解 2 课时流程
中心对称图形的定义 中心对称图形的性质 中心对称图形的作图
逐点 导讲练
课堂 小结
作业 提升
我们上节课学习了中心对称的相关知识,中心对 称是指两个图形的关系,而把这两个图形看作一个整 体是什么图形呢?是我们这节课所要学习的中心对称 图形.
相应地,与边数为偶数的正多边形具有类似的特 征的图形是中心对称图形;边数为奇数的正多边 形或具有类似的特征的图形一定不是中心对称图 形.
1 下列哪些图形是中心对称图形?
知1-练
解:中心对称图形有(1)(2)(3).
(来自《教材》)
知1-练
2 下面扑克牌中,哪些牌的牌面是中心对称图形?
解:第一张和第三张牌的牌面是中心对称图形.
(2)本题还有其他分割方法,请分割试一试.

浙教版八下数学各章节知识点以及重难点

浙教版八下数学各章节知识点以及重难点
3)对角线相等的梯形是等腰梯形.(其证明的方法务必掌握)
关注:梯形中常见的几种辅助线的画法.
补充:梯形的中位线定理,尤其关注其证明方法.
二.重点和难点:
重点:解方程的方法。
难点:建立方程模型解决实际问题。
第三章频数及其分布
一.知识点:
1.频数:所考察的对象出现的次数称为频数。频数的和等于总数。
2.频率:频数与总数的比值称为频率。频率的和等于1.
3.频数分布直方图:横半轴表示组别,纵半轴表示频数,用宽相等的长方形表示不同的频数分布情况,这样的图形称为频数分布直方图。
1)中心对称图形的定义以及常见的中心对称图形
定义:如果一个图形绕着某个点旋转180°后能和原图形重合,那么这个图形就叫做中心对称图形。常见的中心对称图形有:平行四边形,英文大写字母S、Z。
2)经过对称中心的直线一定把中心对称图形的面积二等分,对称点的连线段一定经过对称中心且被对称中心平分.
4.三角形的中位线以及中位线定理
被开方数不含有开得尽方的数,所含因式是一次式(就是字母的次数是一次),被开方数不含分母。满足这三个条件的二次根式称为最简二次根式。
4.同类二次根式:
化成最简二次根式后,被开方数相同的几个二次根式称为同类二次根式。
5.二次根式的运算
(1)(减)法:先化简,再合并。
(2)乘(除)法:先乘除,再化简。
6.分母有理化:
3)菱形+有一个角是直角
注意:其他还有一些判定正方形的方法,但都不能作为定理使用.
5.梯形:一组对边平行,另一组对边不平行的四边形是梯形。
等腰梯形的性质:等腰梯形同一底边上的两个底角相等;等腰梯形的对角线相等.
等腰梯形的判定:1)定义:两腰相等的梯形叫等腰梯形。

八年级数学下目录

八年级数学下目录

八年级数学下第一章三角形证明1.等腰三角形2.直角三角形3.线段的垂直平分线4.角平分线4在中考中会出1道大题,分值在8—10分,还会和其他知识点结合出现;1—2道选择题或填空题,分值在3—8分,主要考察等腰三角形的相关概念、性质和判定,线段垂直平分线的性质,直角三角形的勾股定理及其逆定理,角平分线的性质。

不定第二章一元一次不等式与一元一次不等式组1.不等式关系2.不等式的基本性质3.不等式的解集4一元一次不等式5.一元一次不等式与一次函数6.一元一次不等式组4在中考中会出现1道选择题或填空题,分值在3—4分,主要考察不等式及其性质,一元一次不等式组及其解法,一元一次不等式的应用。

3-4分第三章图形的平移与旋转1.图形的平移2.图形的旋转3.中心对称4.简单的图案设计2在中考中最多出一道选择题或填空题,分值3—4分,主要考察图形的平移、旋转,中心对称3-4分第四章因式分解1.因式分解2.提公因式法3.公式法3中考中会出现1道填空题或在计算题中出现,分值4分,主要考察用提公因式法和公式法进行因式分解不定第五章分式与分式方程1.认识分式2.分式的乘除法3.分式的加减法4.分式方程4中考中会出现1道填空题,分值在4分,主要考察通分和约分以及分式的计算4分第六章平行四边形1.平行四边形的性质2.平行四边形的判定3.三角形的中位线4.多边形的内角和与外角和4中考中会出现1—2道大题,分值在8—20分;1—2道选择题或填空题分值在3—8分,主要考察平行四边形的概念和性质以及平行四边形的判定不定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 数据分析初步
3.1 平均数
平均数:n 个数的算术平均数;
加权平均数:如果在一组数据中,有1n 个1x ,2n 个2x ,3n 个3x ,……k n 个k x ,

112212......k k
k
n x n x n x n n n +++++为加权平均数;
1n ,2n ,…k n 表示各相同数据的个数,称为权;权越大,对平均数影响就越大;
例题:
1、已知下面的一组数据:1,7,10,8,x ,6,0,3,它们的平均数是5,那么x 等于( )
A 、6
B 、5
C 、4
D 、3
2、有m 个数的平均数是x ,n 个数的平均数是y ,则这(m+n )个数的平均数为:
A
2x y + B x y m n ++ C mx ny m n ++ D 2
mx ny
+
3、如果一组数据x 1,x 2,x 3,x 4的平均数是x ,那么另一组数据x 1,x 2+1,x 3+2,x 4+3的平均数是( )
A. x
B. x +1
C. x +1. 5
D. x +6
4、某居民院内月底统计用电情况,其中3户用电45度,5户用电50度,6户用电42度,则平均每户用电( )
A. 41度
B. 42度
C. 45.5度
D. 46度
5、为了调查某一路口某时段的汽车流量,记录了15天同一时段通过该路口的汽车辆数,其中2天是142辆,2天是145辆,6天是156辆,5天是157辆,那么这15天在该时段通过该路口的汽车平均数为( )
A. 146
B. 150
C. 153
D. 600
6、某招聘考试分笔试和面试两种,其中笔试按60%,面试按40%计算加权平均数作为总成绩。

孔明笔试成绩90分,面试成绩85分,那么孔明总成绩为:
7、为推选一名同学参加学校演讲比赛,班里组织了一次选拔赛,由教师组成评委,
对甲、乙、丙三名候选人分别从演讲内容、语言表达能力和感染力三方面打分,评委打分的结果如下表:
(1)、如果按三项得分的算术平均数确定优胜者,谁是优胜者?
(2)、如果三项得分分别按25%,35%,40%的比例计算总成绩,谁是优胜者?
(3)、哪一种计算方法比较合理,你认为要选哪一个学生去参加比赛?
8、在杭州市中学生篮球赛中,小方共打了10场球.他在第6,7,8,9场比赛中分别
得了22,15,12和19分,他的前9场比赛的平均得分y比前5场比赛的平均得分x要高.如果他所参加的10场比赛的平均得分超过18分
(1)用含x的代数式表示y;
(2)小方在前5场比赛中,总分可达到的最大值是多少?
(3)小方在第10场比赛中,得分可达到的最小值是多少?
3.2 中位数和众数
中位数:一组数据位于最中间的一个数据(数据个数为奇数时)或最中间两个数据的平均数(数据个数为偶数时);
众数:一组数据中出现次数最多的那个数据;
例题:
1、某地区连续5天的最高气温(单位:℃)分别是30,33,24,29,24.这组数据的中位
数是()
A.29
B.28
C.24
D.9
2、某校男子男球队10名队员的身高(厘米)如下:179、182、170、174、188、172、
180、195、185、182,则这组数据的中位数和众数分别是()
A.181,181 B.182,181 C.180,182 D.181,182
3、一组数据2,4,x,2,4,7的众数是2,则这组数据的平均数、中位数分别是
A.3.5,3 B.3,4 C.3,3.5 D. 4,3
4、右面的条形图描述了某车间工人日加工零件数的情况,则这些工人日加工零件数
的平均数、中位数、众数分别是()
A、6.4,10,4
B、6,6,6
C、6.4,6,6
D、6,6,10
5、五箱苹果的质量分别为(单位:千克):18,20,21,22,19.则这五箱苹果质量
的平均数和中位数分别为()
A、19和20
B、20和19
C、20和20
D、20和21
3.3 方差和标准差
方差:各数据与平均数的差的平方的平均数;
()()()222
2121...n S x x x x x x n ⎡⎤=
-+-++-⎣
⎦ 方差越大,说明数据的波动越大,越不稳定;
标准差:一组数据的方差的算术平方根;
S =
例题:
1、样本数据3,6,a ,4,2的平均数为5,则这个样本的方差是
A 、8
B 、5
C 、
D 、3
2、样本-1,2,0,1,-2的标准差为
A 、52
B C D 、2
3、在社会实践活动中,某同学对甲、乙、丙、丁四个城市一至五月份的白菜价格进行调查.四个城市5个月白菜的平均值均为3.50元,方差分别为S 甲2
=18.3,S

2
=17.4,S 丙2=20.1,S 丁2
=12.5.一至五月份白菜价格最稳定的城市是( )
A 、甲
B 、乙
C 、丙
D 、丁
4、下面是甲、乙两人10次射击成绩(环数)的条形统计图,则下 列说法正确的是( )
A、甲比乙的成绩稳定
B、乙比甲的成绩稳定
C、甲、乙两人的成绩一样稳定
D、无法确定谁的成绩更稳定。

相关文档
最新文档