广东省肇庆市端州区九年级(上)期末数学试卷
广东省肇庆市端州区九年级上学期末考试(7套)(扫描版)(

2015-2016学年度第一学期期末水平测试(A )九年级数学科参考答案及评分说明一、选择题(本大题共10小题,每小题3分,满分30分)二、填空题(共6题,每题3分,共18分)11. 3; 12.(-1,5); 13.; 14.; 15. 8; 16. . 三、解答题(一)17.解法1:因式分解,得 (x+3)(x+4)=0,…………… (2分) ∴x+3=0或x+4=0,…………… (3分) ∴ x 1=﹣3,x 2=﹣4.…………… (5分)解法2: a=1, b=7, c=12 …………… (1分)0112147422>=⨯⨯-=-=∆ac b …………… (2分)方程有两个不相等的实数根,2171217242±-=⨯±-=-±-=a ac b b x … (3分) ……… (5分)18.解:设抛物线的解析式为…………… (1分)则…………… (2分) 把点(-3,-2)代入上式,得 …………… (3分) 解得,a=1…………… (4分)3)2(2-+=∴x y 抛物线的解析式为…………… (5分)19.证明:连结OC ,如图,…………… (1分) ∵OD∥BC,∴∠1=∠B,∠2=∠3,…………… (2分) 又∵OB=OC,∴∠B=∠3,…………… (3分)∴∠1=∠2,…………… (4分) ∴AD=DC.…………… (5分)四.解答题(二)(每小题7分,共21分)20.解:设年销售量的平均下降率为,…………… (1分)依题意得:,…………… (4分) 化为:,解得=30%, (不合题意,舍去) …………… (6分)答:该市2011年到2013年烟花爆竹年销售量的平均下降率为. …………… (7分)21.解:(1)如图(图略)…………… (2分) 则为所求作的图形…………… (3(2)点B 扫过的图形为扇形…………… (4分)︒=∠∴︒90901BOB 旋转角为 …………… (5分) 103,1=∴OB B )(点 …………… (6分)12901053603602BOBn r S πππ⨯⨯∴===扇形 …………… (7分)22.解:(1)方法一:画树状图如下: …………… (3分)所有出现的等可能性结果共有12种,其中满足条件的结果有2种. ……… (4分) ∴P (恰好选中甲、丙两位同学). …………… (5分)〖评分说明〗不管结论是否正确,树状图或列表正确给3分, 每一个子项正确可给1分. 所有出现的等可能性结果共有12种,其中满足条件的结果有2种. …………… (4分) ∴P (恰好选中甲、丙两位同学). …………… (5分) (2)P (恰好选中乙同学)=. …………… (7分)五、解答题(三)(每小题8分,共16分)23、解:(1) ∵S △PBQ =12PB ·BQ …………… (1分)PB =AB -AP =18-2x ,BQ =x …………… (2分)∴y =12(18-2x )x …………… (3分)即y =-x 2+9x (0<x ≤4)…………… (5分)(2)由(1)知:y =-x 2+9x ,∴y =-(x -92)2+814,…………… (6分)∵当0<x ≤92时,y 随x 的增大而增大,而0<x ≤4,∴当x =4时,y 最大值=20,…………… (7分)即△PBQ 的最大面积是20 cm 2…………… (8分)24.(1)证明: 如图1,连接OD.∵ OA=OD, AD平分∠BAC,∴∠ODA=∠OAD, ∠OAD=∠CAD。
广东省肇庆市端州区九年级上学期末数学A卷(解析版)(初三)期末考试.doc

广东省肇庆市端州区九年级上学期末数学A卷(解析版)(初三)期末考试姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)【题文】若一元二次方程ax2+bx+c=0有一根为0,则下列结论正确的是A、a=0B、b=0C、c=0D、c≠0【答案】C【解析】试题分析:根据题意可知,x=0是一元二次方程=0的一根,把x=0代入方程可得c=0.故选C.考点:一元二次方程的解.A【题文】下列图案中,既是轴对称图形又是中心对称图形的是【答案】B【解析】试题分析:A、是轴对称图形但不是中心对称图形,故错误;B、既是轴对称图形又是中心对称图形,故正确;C、是中心对称图形但不是轴对称图形,故错误;D、是中心对称图形但不是轴对称图形,故错误.故选B.考点:①中心对称图形;②轴对称图形.【题文】关于抛物线y=(x-1)2-2,下列说法中错误的是A、顶点坐标为(1,-2)B、对称轴是直线x=1C、当x>1时,y随x的增大而减小D、开口方向向上【答案】C【解析】试题分析:由抛物线y=可知,顶点坐标为(1,-2),对称轴为x=1,x>1时y随x增大而增大,抛物线开口向上.∴A、B、D判断正确,C错误.故选C.考点:二次函数的性质.评卷人得分【题文】如图,∠A是⊙O的圆周角,∠A=50°,则∠BOC的度数为A、40°B、50°C、90°D、100°【答案】D【解析】试题分析:∵∠A是⊙O的圆周角,∠A=50°,∴∠BOC=2∠A=100°.故选D.考点:圆周角定理.【题文】下列事件中是必然事件的是A、实心铁球投入水中会沉入水底lA、(x-1)2=-2B、(x-2)2=2C、(x+2)2=2D、(x-2)2=6【答案】B【解析】试题分析:把方程-4x+2=0的常数项移到等号的右边,得到-4x=-2,方程两边同时加上一次项系数一半的平方,得到-4x+4=-2+4,配方得=2.故选B.考点:一元二次方程的解法—配方法.【题文】下列说法正确的是A、三点确定一个圆B、平分弦的直径垂直于弦,并且平分弦所对的两条弧C、与直径垂直的直线是圆的切线D、能够互相重合的弧是等弧【答案】D【解析】试题分析:A、不在同一条直线上的三点确定一个圆,故错误;B、平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧,故错误;C、垂直于半径并且经过半径外端的直线是圆的切线,故错误;D、能够互相重合的弧是等弧,故正确.故选D.考点:①确定圆的条件;②垂径定理;③切线的判定;④圆的定义.【题文】如图,AB是⊙O的弦,半径OC⊥AB于点D,且AB=6cm,OD=4cm。
广东省肇庆市端州区地质中学2022-2023学年数学九上期末统考试题含解析

2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)1.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知4EF CD ==,则球的半径长是( )A .2B .2.5C .3D .42.二次函数y=(x ﹣1)2+2,它的图象顶点坐标是( )A .(﹣2,1)B .(2,1)C .(2,﹣1)D .(1,2) 3.若关于x 的方程()222110x k x k +++-=有两个不相等的实数根,则k 的取值范围是( )A .54k ≤-B .54k <-C .54k -≥D .54k >- 4.顺次连接四边形ABCD 各边的中点,所得四边形是( )A .平行四边形B .对角线互相垂直的四边形C .矩形D .菱形5.如图所示,半径为3的⊙A 经过原点O 和C (0,2),B 是y 轴左侧⊙A 优弧上的一点,则tan B =( )A .2B .22C 2D 22 6.某商场对上周女装的销售情况进行了统计,如下表,经理决定本周进女装时多进一些红色的,可用来解释这一现象的统计知识是( )颜色黄色绿色白色紫色红色数量(件)100 180 220 80 520 A.平均数B.中位数C.众数D.方差7.如图,在Rt△ABC中,CD是斜边AB上的中线,已知AC=3,CD=2,则cosA的值为()A.34B.43C.73D.748.下列银行标志图片中,既是轴对称图形又是中心对称图形的是()A.B.C.D.9.如图所示,抛物线y=ax2-x+c(a>0)的对称轴是直线x=1,且图像经过点(3,0),则a+c的值为()A.0B.-1C.1D.210.如图,反比例函数kyx=(0)k≠第一象限内的图象经过ABC∆的顶点A,C,AB AC=,且BC y⊥轴,点A,C,的横坐标分别为1,3,若120BAC∠=︒,则k的值为()A.1 B2C3D.2二、填空题(每小题3分,共24分)11.如果m 是一元二次方程2320x x --=的一个根,那么2262m m -+的值是__________.12.同时抛掷两枚质地均匀的硬币,则两枚硬币全部正面向上的概率是 .13.如图,在平面直角坐标系中,点A 在抛物线y=x 2﹣2x+2上运动.过点A 作AC ⊥x 轴于点C ,以AC 为对角线作矩形ABCD ,连结BD ,则对角线BD 的最小值为_______.14.一个不透明的盒子里有n 个除颜色外其他完全相同的小球,其中有9个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后放回盒子,通过大量重复摸球试验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数是_______.15.如图,已知AD ∥BC ,AC 和BD 相交于点O ,若△AOD 的面积为2,△BOC 的面积为18,BC =6,则AD 的长为_____.16.二次函数2(0)y ax bx c a =++≠的部分图象如图所示,图象过点(4,0)-,对称轴为直线1x =-,下列结论:①0abc >;②20a b -=;③一元二次方程20ax bx c ++=的解是14x =-,21x =;④当0y >时,42x -<<,其中正确的结论有__________.17.已知∠A =60°,则tan A =_____.18.如图,在平面直角坐标系中,点A 是函数 (0)k y x x=<图象上的点,AB⊥x 轴,垂足为 B ,若 △ABO 的面积为3,则k 的值为__.三、解答题(共66分)19.(10分)已知,四边形ABCD 中,E 是对角线AC 上一点,DE =EC ,以AE 为直径的⊙O 与边CD 相切于点D ,点B 在⊙O 上,连接OB .(1)求证:DE =OE ;(2)若CD∥AB,求证:BC 是⊙O 的切线;(3)在(2)的条件下,求证:四边形ABCD 是菱形.20.(6分)通过实验研究,专家们发现:初中学生听课的注意力指标数是随着老师讲课时间的变化而变化的.讲课开始时,学生的兴趣激增,中间有一段时间的兴趣保持平稳状态,随后开始分散.学生注意力指标数y 随时间x (min )变化的函数图象如图所示(y 越大表示注意力越集中).当010x ≤≤时,图象是抛物线的一部分,当1020x ≤≤和2040x ≤≤时,图象是线段.(1)当010x ≤≤时,求注意力指标数y 与时间x 的函数关系式.(2)一道数学综合题,需要讲解24min ,问老师能否安排,使学生听这道题时,注意力的指标数都不低于1.21.(6分)(2011四川泸州,23,6分)甲口袋中装有两个相同的小球,它们的标号分别为2和7,乙口袋中装有两个相同的小球,它们的标号分别为4和5,丙口袋中装有三个相同的小球,它们的标号分别为3,8,1.从这3个口袋中各随机地取出1个小球.(1)求取出的3个小球的标号全是奇数的概率是多少?(2)以取出的三个小球的标号分别表示三条线段的长度,求这些线段能构成三角形的概率.22.(8分)九年级1班将竞选出正、副班长各1名,现有甲、乙两位男生和丙、丁两位女生参加竞选.(1)男生当选班长的概率是;(2)请用列表或画树状图的方法求出两位女生同时当选正、副班长的概率.23.(8分)中国经济的快速发展让众多国家感受到了威胁,随着钓鱼岛事件、南海危机、萨德入韩等一系列事件的发生,国家安全一再受到威胁,所谓“国家兴亡,匹夫有责”,某校积极开展国防知识教育,九年级甲、乙两班分别选5名同学参加“国防知识”比赛,其预赛成绩如图所示:(1)根据上图填写下表:平均数中位数众数方差甲班8.5 8.5乙班8.5 10 1.6(2)根据上表数据,分别从平均数、中位数、众数、方差的角度分析哪个班的成绩较好.24.(8分)如图1,在矩形ABCD中,AB=6cm,BC=8cm,如果点E由点B出发沿BC方向向点C匀速运动,同时点F由点D出发沿DA方向向点A匀速运动,它们的速度分别为每秒2cm和1cm,FQ⊥BC,分别交AC、BC于点P 和Q,设运动时间为t秒(0<t<4).(1)连接EF,若运动时间t=23秒时,求证:△EQF是等腰直角三角形;(2)连接EP,当△EPC的面积为3cm2时,求t的值;(3)在运动过程中,当t取何值时,△EPQ与△ADC相似.25.(10分)某汽车专卖店经销某种型号的汽车.已知该型号汽车的进价为15万元/辆,经销一段时间后发现:当该型号汽车售价定为25万元/辆时,平均每周售出8辆;售价每降低1万元,平均每周多售出2辆.(1)当售价为22万元/辆时,平均每周的销售利润为___________万元;(2)若该店计划平均每周的销售利润是90万元,为了尽快减少库存,求每辆汽车的售价.26.(10分)如图,点A是我市某小学,在位于学校南偏西15°方向距离120米的C点处有一消防车.某一时刻消防车突然接到报警电话,告知在位于C点北偏东75°方向的F点处突发火灾,消防队必须立即沿路线CF赶往救火.已知消防车的警报声传播半径为110米,问消防车的警报声对学校是否会造成影响?若会造成影响,已知消防车行驶的速度为每小时60千米,则对学校的影响时间为几秒?(13≈3.6,结果精确到1秒)参考答案一、选择题(每小题3分,共30分)1、B【解析】取EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,设OF=x,则OM=4-x,MF=2,然后在Rt△MOF中利用勾股定理求得OF的长即可.【详解】如图:EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴四边形CDMN 是矩形,∴MN=CD=4,设OF=x ,则ON=OF ,∴OM=MN-ON=4-x ,MF=2,在直角三角形OMF 中,OM 2+MF 2=OF 2,即:(4-x )2+22=x 2,解得:x=2.5,故选B .【点睛】本题主考查垂径定理及勾股定理的知识,正确作出辅助线构造直角三角形是解题的关键.2、D【解析】二次函数的顶点式是()?y a x h k =-+,,其中 (),h k 是这个二次函数的顶点坐标,根据顶点式可直接写出顶点坐标.【详解】解:212y x =-+抛物线解析式为(),()12.∴二次函数图象的顶点坐标是,故选:D.【点睛】根据抛物线的顶点式,可确定抛物线的开口方向,顶点坐标(对称轴),最大(最小)值,增减性等.3、D【分析】利用一元二次方程的根的判别式列出不等式即可求出k 的取值范围.【详解】解:由题意得=(2k+1)2-4(k 2-1)=4k+5>0解得:k >-54故选D【点睛】此题主要考查了一元二次方程的根的判别式,熟记根的判别式是解题的关键.4、A【解析】试题分析:连接原四边形的一条对角线,根据中位线定理,可得新四边形的一组对边平行且等于对角线的一半,即一组对边平行且相等.则新四边形是平行四边形.解:如图,根据中位线定理可得:GF=BD且GF∥BD,EH=BD且EH∥BD,∴EH=FG,EH∥FG,∴四边形EFGH是平行四边形.故选A.考点:中点四边形.5、C【分析】根据题意连接CD,根据勾股定理求出OD,根据正切的定义求出tan∠D,根据圆周角定理得到∠B=∠D,等量代换即可.【详解】解:连接CD(圆周角定理CD过圆心A),在Rt△OCD中,CD=6,OC=2,则2242CD OC-=tan∠D=2 OCOD=由圆周角定理得∠B=∠D,则tan∠2故选:C.【点睛】本题考查圆周角定理、锐角三角函数的定义,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半、熟记锐角三角函数的定义是解题的关键.6、C【解析】在决定本周进女装时多进一些红色的,主要考虑的是各色女装的销售的数量,而红色上周销售量最大.【详解】解:在决定本周进女装时多进一些红色的,主要考虑的是各色女装的销售的数量,而红色上周销售量最大.由于众数是数据中出现次数最多的数,故考虑的是各色女装的销售数量的众数.故选:C .【点睛】反映数据集中程度的统计量有平均数、中位数、众数方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.7、A【分析】利用直角三角形的斜边中线与斜边的关系,先求出AB ,再利用直角三角形的边角关系计算cosA .【详解】解:∵CD 是Rt △ABC 斜边AB 上的中线,∴AB=2CD=4,∴cosA=AC AB =34. 故选A.【点睛】本题考查了直角三角形斜边的中线与斜边的关系、锐角三角函数.掌握直角三角形斜边的中线与斜边的关系是解决本题的关键.在直角三角形中,斜边的中线等于斜边的一半.8、B【解析】由题意根据轴对称图形与中心对称图形的概念进行依次判断即可.【详解】解:A 、是轴对称图形,不是中心对称图形,故本选项错误;B 、是轴对称图形,也是中心对称图形,故本选项正确;C 、是轴对称图形,不是中心对称图形,故本选项错误;D 、不是轴对称图形,也不是中心对称图形,故本选项错误.故选:B .【点睛】本题考查中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.9、B【解析】∵抛物线2(0)y ax x c a =-+>的对称轴是直线1x =,且图像经过点P (3,0),∴930112a c a -+=⎧⎪-⎨-=⎪⎩ ,解得:1232a c ⎧=⎪⎪⎨⎪=-⎪⎩, ∴13()122a c +=+-=-. 故选B.10、C【分析】先表示出CD ,AD 的长,然后在Rt △ACD 中利用∠ACD 的正切列方程求解即可.【详解】过点A 作AD BC ⊥,∵点A 、点C 的横坐标分别为1,3,且A ,C 均在反比例函数k y x=第一象限内的图象上, ∴(1,)A k ,3,3k C ⎛⎫ ⎪⎝⎭, ∴CD=2,AD=k-3k , ∵AB AC =,120BAC ∠=︒,AD BC ⊥,∴30ACD ∠=︒,90ADC ∠=︒,∵tan ∠ACD=AD DC, ∴3DC AD =,即233k k ⎛⎫=- ⎪⎝⎭,∴3k =. 故选:C .【点睛】本题考查了等腰三角形的性质,解直角三角形,以及反比例函数图像上点的坐标特征,熟练掌握各知识点是解答本题的关键.二、填空题(每小题3分,共24分)11、6【分析】根据m 是一元二次方程2320x x --=的一个根可得m 2-3m=2,把2262m m -+变形后,把m 2-3m=2代入即可得答案.【详解】∵m 是一元二次方程2320x x --=的一个根,∴m 2-3m=2,∴2262m m -+=2(m 2-3m)+2=2×2+2=6,故答案为:6【点睛】本题考查一元二次方程的解的定义,熟练掌握定义并正确变形是解题关键.12、14. 【解析】试题分析:画树状图为:共有4种等可能的结果数,其中两枚硬币全部正面向上的结果数为1,所以两枚硬币全部正面向上的概率=14.故答案为14. 考点:列表法与树状图法.13、1【分析】根据矩形的性质得到BD=AC ,所以求BD 的最小值就是求AC 的最小值,当点A 在抛物线顶点的时候AC 是最小的.【详解】解:∵()222211y x x x =-+=-+,∴抛物线的顶点坐标为(1,1),∵四边形ABCD 为矩形,∴BD=AC ,而AC ⊥x 轴,∴AC 的长等于点A 的纵坐标,当点A 在抛物线的顶点时,点A 到x 轴的距离最小,最小值为1,∴对角线BD 的最小值为1.故答案为:1.【点睛】本题考查矩形的性质和二次函数图象的性质,解题的关键是通过矩形的性质将要求的BD 转化成可以求最小值的AC . 14、1【解析】根据利用频率估计概率得到摸到黄球的概率为1%,然后根据概率公式计算n 的值. 【详解】解:根据题意得9n =1%, 解得n =1,所以这个不透明的盒子里大约有1个除颜色外其他完全相同的小球.故答案为1.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.当实验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率. 15、1【分析】根据AD ∥BC 得出△AOD ∽△BOC ,然后利用相似三角形的面积之比可求出相似比,再根据相似比即可求出AD 的长度.【详解】解:∵AD ∥BC ,∴△AOD ∽△BOC ,∵△AOD 的面积为1,△BOC 的面积为18,∴△AOD 与△BOC 的面积之比为1:9, ∴13AD BC =, ∵BC =6,∴AD =1.故答案为:1.【点睛】本题主要考查相似三角形的性质,掌握相似三角形的性质是解题的关键.16、①②④【分析】①由抛物线的开口向下知a <0,与y 轴的交点在y 轴的正半轴上得到c >0,由对称轴为12b x a =-=-,得到b <0,可以①进行分析判断; ②由对称轴为12b x a=-=-,得到2a=b ,b-2a=0,可以②进行分析判断; ③对称轴为x=-1,图象过点(-4,0),得到图象与x 轴另一个交点(2,0),可对③进行分析判断;④抛物线开口向下,图象与x 轴的交点为(-4,0),(2,0),即可对④进行判断.【详解】解:①∵抛物线的开口向下,∴a <0,∵与y 轴的交点在y 轴的正半轴上,∴c >0, ∵对称轴为12b x a =-=-<0 ∴b <0,∴abc >0,故①正确; ②∵对称轴为12b x a=-=-, ∴2a=b ,∴2a-b=0,故②正确;③∵对称轴为x=-1,图象过点A (-4,0),∴图象与x 轴另一个交点(2,0),∴关于x 的一元二次方程ax 2+bx+c=0的解为x=-4或x=2,故③错误;④∵抛物线开口向下,图象与x 轴的交点为(-4,0),(2,0),∴当y >0时,-4<x <2,故④正确;∴其中正确的结论有:①②④;故答案为:①②④.【点睛】本题考查了二次函数的图象与系数的关系,解答此类问题的关键是掌握二次函数y=ax 2+bx+c 系数符号由抛物线开口方向、对称轴、抛物线与y 轴的交点、抛物线与x 轴交点的个数确定,解题时要注意数形结合思想的运用.17【分析】直接利用特殊角的三角函数值得出答案.【详解】tan A =tan60°.【点睛】本题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.18、-6【解析】根据反比例函数k 的几何性质,矩形的性质即可解题.【详解】解:由反比例函数k 的几何性质可知,k 表示反比例图像上的点与坐标轴围成的矩形的面积,∵△ABO的面积为3,由矩形的性质可知,点A与坐标轴围成的矩形的面积=6,∵图像过第二象限,∴k=-6.【点睛】本题考查了反比例函数k的几何性质,属于简单题,熟悉性质内容是解题关键.三、解答题(共66分)19、(1)证明见解析;(2)证明见解析;(3)证明见解析.【解析】(1)先判断出∠2+∠3=90°,再判断出∠1=∠2即可得出结论;(2)根据等腰三角形的性质得到∠3=∠COD=∠DEO=60°,根据平行线的性质得到∠4=∠1,根据全等三角形的性质得到∠CBO=∠CDO=90°,于是得到结论;(3)先判断出△ABO≌△CDE得出AB=CD,即可判断出四边形ABCD是平行四边形,最后判断出CD=AD即可.【详解】(1)如图,连接OD,∵CD是⊙O的切线,∴OD⊥CD,∴∠2+∠3=∠1+∠COD=90°,∵DE=EC,∴∠1=∠2,∴∠3=∠COD,∴DE=OE;(2)∵OD=OE,∴OD=DE=OE,∴∠3=∠COD=∠DEO=60°,∴∠2=∠1=30°,∵AB∥CD,∴∠4=∠1,∴∠1=∠2=∠4=∠OBA =30°, ∴∠BOC =∠DOC =60°, 在△CDO 与△CBO 中,{OD OBDOC BOC OC OC=∠=∠=,∴△CDO ≌△CBO (SAS ),∴∠CBO =∠CDO =90°, ∴OB ⊥BC ,∴BC 是⊙O 的切线;(3)∵OA =OB =OE ,OE =DE =EC ,∴OA =OB =DE =EC ,∵AB ∥CD ,∴∠4=∠1,∴∠1=∠2=∠4=∠OBA =30°, ∴△ABO ≌△CDE (AAS ),∴AB =CD ,∴四边形ABCD 是平行四边形,∴∠DAE =12∠DOE =30°, ∴∠1=∠DAE ,∴CD =AD ,∴▱ABCD 是菱形.【点睛】此题主要考查了切线的性质,同角的余角相等,等腰三角形的性质,平行四边形的判定和性质,菱形的判定,判断出△ABO ≌△CDE 是解本题的关键.20、(1)y =212455x x -++20(0≤x ≤10);(2)能,理由见解析. 【分析】(1)利用待定系数法假设函数的解析式,代入方程的点分别求出a 、b 、c 的值,即可求出当010x ≤≤时,注意力指标数y 与时间x 的函数关系式.(2)根据函数解析式,我们可以求出学生在这这道题时,注意力的指标数都不低于1时x 的值,然后和24进行比较,即可得到结论.【详解】(1)设010x ≤≤ 时的抛物线为2y ax bx c =++ .由图象知抛物线过(0,20),(5,39),(10,48)三点,所以20255391001048c a b c a b c =⎧⎪++=⎨⎪++=⎩. 解得1524520a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩所以()21252001054y x x x =-++≤≤ (2)由图象知,当2040x ≤≤ 时, 7765y x =-+ . 当010x ≤≤ 时,令36y ,2125362055x x =-++. 解得:12420x x ==, (舍去).当2040x ≤≤ 时,令36y,得736765x =-+ , 解得: 20042877x == 因为44284242477-=>, 所以老师可以通过适当的安排,在学生的注意力指标数不低于1时,讲授完这道数学综合题.【点睛】本题考查了二次函数的应用,掌握待定系数法求解函数解析式是解题的关键.21、解:(1)16;(2)12. 【分析】(1)根据题意画出树状图,根据树状图进行解答概率;(2)用列举法求概率.【详解】解:(1)画树状图得∴一共有12种等可能的结果,取出的3个小球的标号全是奇数的有2种情况,∴取出的3个小球的标号全是奇数的概率是:P(全是奇数)=21126= (2)∵这些线段能构成三角形的有2、4、3,7、4、8,7、4、1,7、5、3,7、5、8,7、5、1共6种情况,∴这些线段能构成三角形的概率为P(能构成三角形)=61122= 【点睛】本题考查概率的计算,难度不大. 22、(1)12(2)16【详解】解:(1)12; (2)树状图为;所以,两位女生同时当选正、副班长的概率是21126=.(列表方法求解略)· (1)男生当选班长的概率=2142= (2)与课本上摸球一样,画出树状图即可23、(1)8.50.78,,;(2)答案见解析 【分析】(1)根据“中位数”、“众数”的定义及“方差”的计算公式结合统计图中的数据进行分析计算即可; (2)按照题中要求,分别根据平均数、中位数、众数、方差的意义进行说明即可.【详解】解:(1)甲的众数为:8.5,方差为:(222221[(8.58.5)(7.58.5)(88.5)(8.58.5)108.5)5⎤-+-+-+-+-⎦0.7,乙的中位数是:8;故答案为8.50.78,,;(2)从平均数看,两班平均数相同,则甲、乙两班的成绩一样好;从中位数看,甲班的中位数大,所以甲班的成绩较好;从众数看,乙班的众数大,所以乙班的成绩较好;从方差看,甲班的方差小,所以甲班的成绩更稳定.【点睛】理解“平均数、中位数、众数、方差的意义和计算方法”是正确解答本题的关键.24、(1)详见解析;(2)2秒;(3)2秒或12857秒或12839秒.【分析】(1)由题意通过计算发现EQ=FQ=6,由此即可证明;(2)根据题意利用三角形的面积建立方程即可得出结论;(3)由题意分点E在Q的左侧以及点E在Q的右侧这两种情况,分别进行分析即可得出结论.【详解】解:(1)证明:若运动时间t=23秒,则BE=2×23=43(cm),DF=23(cm),∵四边形ABCD是矩形∴AD=BC=8(cm),AB=DC=6(cm),∠D=∠BCD=90°∵∠D=∠FQC=∠QCD=90°,∴四边形CDFQ也是矩形,∴CQ=DF,CD=QF=6(cm),∴EQ=BC﹣BE﹣CQ=8﹣43﹣23=6(cm),∴EQ=QF=6(cm),又∵FQ⊥BC,∴△EQF是等腰直角三角形;(2)由(1)知,CE=8﹣2t,CQ=t,在Rt△ABC中,tan∠ACB=ABBC=34,在Rt△CPQ中,tan∠ACB=PQCQ=PQt=34,∴PQ=34t,∵△EPC的面积为3cm2,∴S△EPC=12CE×PQ=12×(8﹣2t)×34t=3,∴t=2秒,即t的值为2秒;(3)解:分两种情况:Ⅰ.如图1中,点E在Q的左侧.①∠PEQ=∠CAD时,△EQP∽△ADC,∵四边形ABCD是矩形,∴AD∥BC,∴∠CAD=∠ACB,∵△EQP∽△ADC,∴∠CAD=∠QEP,∴∠ACB=∠QEP,∴EQ=CQ,∴CE=2CQ,由(1)知,CQ=t,CE=8-2t,∴8-2t=2t,∴t=2秒;②∠PEQ=∠ACD时,△EPQ∽△CAD,∴PQ EQ AD CD,∵FQ⊥BC,∴FQ∥AB,∴△CPQ∽△CAB,∴PQ CQ AB BC =,即68PQ t =, 解得:34PQ t =, ∴348682t t t =--,解得:12857t =; Ⅱ.如图2中,点E 在Q 的右侧.∵0<t <4,∴点E 不能与点C 重合,∴只存在△EPQ ∽△CAD ,可得PQ EQ AD CD =,即638348t t -=, 解得:12839t =; 综上所述,t 的值为2秒或12857秒或12839秒时,△EPQ 与△ADC 相似. 【点睛】 本题是相似形综合题,主要考查矩形的性质和判定,三角函数,相似三角形的判定和性质,用方程的思想解决问题是解本题的关键.25、(1)98 (2)20万元【分析】(1)根据当该型号汽车售价定为25万元/辆时,平均每周售出8辆;售价每降低0.5万元,平均每周多售出1辆,即可求出当售价为22万元/辆时,平均每周的销售量,再根据销售利润=一辆汽车的利润×销售数量列式计算; (2)设每辆汽车降价x 万元,根据每辆的盈利×销售的辆数=90万元,列方程求出x 的值,进而得到每辆汽车的售价.【详解】(1)由题意,可得当售价为22万元/辆时,平均每周的销售量是:25220.5-×1+8=14, 则此时,平均每周的销售利润是:(22−15)×14=98(万元);(2)设每辆汽车降价x 万元,根据题意得:(25−x−15)(8+2x )=90,解得x 1=1,x 2=5,当x =1时,销售数量为8+2×1=10(辆);当x =5时,销售数量为8+2×5=18(辆),为了尽快减少库存,则x =5,此时每辆汽车的售价为25−5=20(万元),答:每辆汽车的售价为20万元.【点睛】此题主要考查了一元二次方程的应用,本题关键是会表示一辆汽车的利润,销售量增加的部分.找到关键描述语,找到等量关系:每辆的盈利×销售的辆数=90万元是解决问题的关键.26、4秒【分析】作AB ⊥CF 于B ,根据方向角、勾股定理求出AB 的长,根据题意比较得到消防车的警报声对听力测试是否会造成影响;求出造成影响的距离,根据速度计算即可.【详解】解:作AB ⊥CF 于B ,由题意得:∠ACB =60°,AC =120米,则∠CAB =30°∴1602BC AC ==米, ∴cos30603AB AC ==∵3110,∴消防车的警报声对学校会造成影响, 造成影响的路程为222110(603)201372-=≈米,∵600007243600÷≈秒, ∴对学校的影响时间为4秒.【点睛】本题考查的是解直角三角形的应用-方向角问题,正确标注方向角、熟记锐角三角函数的概念是解题的关键.。
广东省肇庆市端州区九年级(上)期末数学试卷(解析版)

广东省肇庆市端州区九年级(上)期末数学试卷(解析版)21.(7分)如图1,将一张矩形纸片ABCD沿着对角线BD向上折叠,顶点C落到点E处,BE交AD于点F.(1)求证:△BDF是等腰三角形;(2)如图2,过点D作DG∥BE,交BC于点G,连结FG交BD于点O.判断四边形FBGD的形状,并说明理由.22.(7分)某校开展校园“美德少年”评选活动,共有“助人为乐”,“自强自立”、“孝老爱亲”,“诚实守信”四种类别,每位同学只能参评其中一类,评选后,把最终入选的20位校园“美德少年”分类统计,制作了如下统计表.类别频数频率助人为乐美德少年a0.20自强自立美德少年3b孝老爱亲美德少年70.35诚实守信美德少年6c根据以上信息,解答下列问题:(1)统计表中的a= ,b ,c= ;(2)校园小记者决定从A、B、C三位“自强自立美德少年”中,随机采访两位,用画树状图或列表的方法,求A,B都被采访到的概率.五、解答题(三)(本大题共3小题,每小题9分,共27分)23.(9分)如图,二次函数的图象与x轴交于A(﹣3,0)和B(1,0)两点,交y轴于点C(0,3),点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D.(1)请直接写出D点的坐标.(2)求二次函数的解析式.(3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围.24.(9分)如图,在△ABC中,∠C=90°,∠ABC的平分线BE交AC于点E,过点E作直线BE的垂线交AB于点F,⊙O是△BEF的外接圆.(1)求证:AC是⊙O的切线;(2)过点E作EH⊥AB于点B,求证:EF平分∠AEH;(3)求证:CD=HF.25.(9分)如图,正方形ABCD的边长为8,E、F、G、H分别是AB、BC、CD、DA上的动点,且AE=BF=CG=DH.(1)求证:四边形EFGH是正方形;(2)判断直线EG是否经过一个定点,如有请指出该定点位置并说明理由.(3)求四边形EFGH面积的最小值.2019-2019学年广东省肇庆市端州区九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑1.(3分)5的倒数是()A.﹣5 B.5 C.D.﹣【分析】根据倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.【解答】解:∵5×=1,∴5的倒数是.故选:C.【点评】本题主要考查倒数的定义,要求熟练掌握.需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.(3分)16平方根是()A.4 B.﹣4 C.±4 D.±8【分析】依据平方根的定义和性质求解即可.【解答】解:16平方根是±4.故选:C.【点评】本题主要考查的是平方根的定义和性质,掌握平方根的性质是解题的关键.3.(3分)下列四个图形中是中心对称图形的为()A.B.C.D.【分析】根据中心对称图形的概念对各图形分析判断即可得解.【解答】解:A、该图形是中心对称中线,故本选项正确;B、该图形是轴对称图形,不是中心对称中线,故本选项错误;C、该图形是轴对称图形,不是中心对称中线,故本选项错误;D、该图形是轴对称图形,不是中心对称中线,故本选项错误;故选:A.【点评】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.(3分)一元二次方程x2﹣mx﹣2=0的一个根为2,则m的值是()A.1 B.2 C.3 D.4【分析】根据一元二次方程的解的定义,把x=2代入方程x2﹣mx﹣2可得到关于m的一次方程,然后解此一次方程即可.【解答】解:把x=2代入方程得4﹣2m﹣2=0,、解得m=1.故选:A.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.5.(3分)将抛物线y=(x+2)2先向左平移2个单位,再向下平移3个单位,那么所得抛物线的函数关系式是()A.y=﹣2(x+2)2+3 B.y=x2﹣3 C.y=x2+3 D.(x+4)2﹣3【分析】先确定抛物线y=(x+2)2的顶点坐标为(﹣2,0),再利用点平移的规律得到点(﹣2,0)平移后所得对应点的坐标为(0,﹣3),然后利用顶点式写出平移后所得抛物线的函数关系式.【解答】解:抛物线y=(x+2)2的顶点坐标为(﹣2,0),把点(﹣2,0)向左平移2个单位,再向下平移3个单位所得对应点的坐标为(0,﹣3),所以平移后所得抛物线的函数关系式是y=x2﹣3.故选:B.【点评】本题考查了二次函数的几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.6.(3分)如图,⊙O是△ABC的外接圆,连接OA、OB,∠OBA=50°,则∠C的度数为()A.30°B.40°C.50°D.80°【分析】根据三角形的内角和定理求得∠AOB的度数,再进一步根据圆周角定理求解.【解答】解:∵OA=OB,∠OBA=50°,∴∠OAB=∠OBA=50°,∴∠AOB=180°﹣50°×2=80°,∴∠C=∠AOB=40°.故选:B.【点评】此题综合运用了三角形的内角和定理以及圆周角定理.一条弧所对的圆周角等于它所对的圆心角的一半.7.(3分)关于x的二次函数y=﹣(x﹣1)2+2,下列说法正确的是()A.图象的开口向上B.图象与y轴的交点坐标为(0,2)C.当x>1时,y随x的增大而减小D.图象的顶点坐标是(﹣1,2)【分析】分别根据抛物线的图象与系数的关系、抛物线的顶点坐标公式及抛物线的增减性对各选项进行逐一分析.【解答】解:A、∵二次函数y=﹣(x﹣1)2+2中,a=﹣1<0,∴此抛物线开口向下,故本选项错误;B、∵当x=0时,y=﹣(0﹣1)2+2=1,∴图象与y轴的交点坐标为(0,1),故本选项错误;C、∵抛物线的对称轴x=1,且抛物线开口向下,∴当x>1时,y随x的增大而减小,故本选项正确;D、抛物线的顶点坐标为(1,2),故本选项错误.故选:C.【点评】本题考查的是二次函数的性质,即二次函数y=a(x﹣h)2+k(a≠0)的顶点坐标是(h,k),对称轴直线x=h,当a<0时,抛物线y=a(x﹣h)2+k (a≠0)的开口向下,x>h时,y随x的增大而减小.8.(3分)如图,点D是等边△ABC内一点,如果△ABD绕点A逆时针旋转后能与△ACE重合,则∠DAE的度数是()A.45°B.60°C.90°D.120°【分析】由旋转的定义可知∠BAC、∠DAE都是旋转角,可得答案.【解答】解:∵△ABD和△ACE重合,∴∠BAC、∠DAE都是旋转角,∵△ABC为等边三角形,∴∠DAE=∠BAC=60°,故选:B.【点评】本题主要考查旋转的性质,掌握旋转前后的对应角、旋转角相等是解题的关键.9.(3分)关于x的一元二次方程9x2﹣6x+k=0有两个不相等的实根,则k的范围是()A.k<1 B.k>1 C.k≤1 D.k≥1【分析】根据判别式的意义得到△=(﹣6)2﹣4×9k>0,然后解不等式即可.【解答】解:∵关于x的一元二次方程9x2﹣6x+k=0有两个不相等的实根,∴△=(﹣6)2﹣4×9k>0,解得k<1.故选:A.【点评】此题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.10.(3分)如图,已知正方形ABCD的边长为2cm,动点P从点A出发,在正方形的边上沿A→B→C的方向运动到点C停止.设点P的运动路程为x(cm),在下列图象中,能表示△ADP的面积y(cm2)与x(cm)的函数关系的图象是()A.B.C.D.【分析】根据点P的运动路线,y与x的函数关系分成两段,根据题意列出函数关系即可.【解答】解:由题意,当0≤x≤2时,y==x当2≤x≤4时,y=2故选:C.【点评】本题为动点问题的函数图象探究题,考查了一次函数图象以及数形结合思想,解答时注意分段讨论.二、填空题(本大题共6小题,每小题4分,共24分)请将下列各题的正确答案写在答题卡相应的位置上11.(4分)分解因式:a2﹣a= a(a﹣1).【分析】这个多项式含有公因式a,分解因式时应先提取公因式.【解答】解:a2﹣a=a(a﹣1).【点评】本题考查了提公因式法分解因式,比较简单,注意不要漏项.12.(4分)不等式组的解集是x>2 .【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【解答】解:不等式组整理得:,则不等式组的解集为x>2,故答案为:x>2【点评】此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.13.(4分)在一个不透明的袋子里,装有5个红球,3个白球,它们除颜色外大小,材质都相同,从中任意摸出一个球,摸到红球的概率是.【分析】由题意可得红球的个数,根据概率公式计算其概率即可得出结果.【解答】解:∵共有(5+3)个球,红球有5个,∴摸出的球是红球的概率是:P=,故答案为:.【点评】本题主要考查概率的计算,一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.14.(4分)圆锥的侧面积为6πcm2,底面圆的半径为2cm,则这个圆锥的母线长为 3 cm.【分析】圆锥的侧面积=底面周长×母线长÷2,把相应数值代入即可求解.【解答】解:设母线长为R,底面半径是2cm,则底面周长=4π,侧面积=2πR=6π,∴R=3.故答案为:3.【点评】本题利用了圆的周长公式和扇形面积公式求解.比较基础,重点是掌握公式.15.(4分)如图,⊙O的半径为10cm,AB是⊙O的弦,OC⊥AB于D,交⊙O于点C,且CD=4cm,弦AB的长为16 cm.【分析】连接OA,求出OD,根据勾股定理求出AD,根据垂径定理得出AB=2AD,代入求出即可,【解答】解:连接OA,∵OA=OC=10cm,CD=4cm,∴OD=10﹣4=6cm,在Rt△OAD中,有勾股定理得:AD==8cm,∵OC⊥AB,OC过O,∴AB=2AD=16cm.故答案为16.【点评】本题考查了勾股定理和垂径定理的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.16.(4分)如图,正方形ABCD和正方形EFCG的边长分别为3和1,点F,G 分别在边BC,CD上,P为AE的中点,连接PG,则PG的长为.【分析】方法1、延长GE交AB于点O,作PH⊥OE于点H,则PH是△OAE的中位线,求得PH的长和HG的长,在Rt△PGH中利用勾股定理求解.方法2、先造成△AHP≌△EGP,进而求出DH,DG,最后用勾股定理即可得出结论.【解答】解:方法1、延长GE交AB于点O,作PH⊥OE于点H.则PH∥AB.∵P是AE的中点,∴PH是△AOE的中位线,∴PH=OA=(3﹣1)=1.∵直角△AOE中,∠OAE=45°,∴△AOE是等腰直角三角形,即OA=OE=2,同理△PHE中,HE=PH=1.∴HG=HE+EG=1+1=2.∴在Rt△PHG中,PG===.故答案是:.方法2、如图1,延长DA,GP相交于H,∵四边形ABCD和四边形EFCG是正方形,∴EG∥BC∥AD,∴∠H=∠PGE,∠HAP=∠GEP,∵点P是AE的中点,∴AP=EP,∴△AHP≌△EGP,∴AH=EG=1,PG=PH=HG,∴DH=AD+AH=4,DG=CD﹣CG=2,根据勾股定理得,HG==2,∴=PG=,故答案为.【点评】本题考查了勾股定理和三角形的中位线定理,正确作出辅助线构造直角三角形是关键.三、解答题(一-)本大题共3小题,每小题6分,共18分)17.(6分)解方程:x(x+1)=3x+3.【分析】方程移项后,提取公因式化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【解答】解:方程移项得:x(x+1)﹣3(x+1)=0,分解因式得:(x﹣3)(x+1)=0,可得x﹣3=0或x+1=0,解得:x1=3,x2=﹣1.【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.18.(6分)先化简,再求值:()•(x2﹣1),其中x=.【分析】先利用乘方分配律展开、约分、合并可得,再将x的值代入计算可得.【解答】解:原式=•(x+1)(x﹣1)+•(x+1)(x﹣1)=x+1+x﹣1=2x,当x=时,原式=2.【点评】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.19.(6分)在如图所示的平面直角坐标系中,解答下列问题:(1)将△ABC绕点A逆时针方向旋转90°,画出旋转后的△A1B1C1;(2)求线段AB在旋转过程中所扫过的面积.【分析】(1)根据旋转的定义作出变换后的对应点,再顺次连接可得;(2)根据扇形的面积公式计算可得.【解答】解:(1)如图所示,△A1B1C1即为所求;(2)∵AB==5,∠BAB1=90°,∴线段AB在旋转过程中所扫过的面积为=.【点评】本题主要考查作图﹣旋转变换,解题的关键是根据旋转的性质作出变换后的对应点及扇形的面积公式.四、解答题(二)(本大题共3小题,每小题7分,共21分)20.(7分)肇庆市某楼盘准备以每平方米9000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米7290元的均价开盘销售.求平均每次下调的百分率.【分析】设出平均每次下调的百分率为x,利用预订每平方米销售价格×(1﹣每次下调的百分率)2=开盘每平方米销售价格列方程解答即可.【解答】解:设平均每次降价的百分率是x,根据题意列方程得,9000(1﹣x)2=7290,解得:x1=0.2=20%,x2=1.8(不合题意,舍去);答:平均每次降价的百分率为20%.【点评】此题考查了一元二次方程的应用,利用基本数量关系:预订每平方米销售价格×(1﹣每次下调的百分率)2=开盘每平方米销售价格.21.(7分)如图1,将一张矩形纸片ABCD沿着对角线BD向上折叠,顶点C落到点E处,BE交AD于点F.(1)求证:△BDF是等腰三角形;(2)如图2,过点D作DG∥BE,交BC于点G,连结FG交BD于点O.判断四边形FBGD的形状,并说明理由.【分析】(1)根据两直线平行内错角相等及折叠特性判断;(2)根据已知矩形性质及第一问证得邻边相等判断;【解答】证明:(1)如图1,根据折叠,∠DBC=∠DBE,又AD∥BC,∴∠DBC=∠ADB,∴∠DBE=∠ADB,∴DF=BF,∴△BDF是等腰三角形;(2)∵四边形ABCD是矩形,∴AD∥BC,∴FD∥BG,又∵DG∥BE,∴四边形BFDG是平行四边形,∵DF=BF,∴四边形BFDG是菱形;【点评】此题考查了翻折问题,结合矩形的性质、菱形的判定和性质解答,关键是根据翻折不变性解答.22.(7分)某校开展校园“美德少年”评选活动,共有“助人为乐”,“自强自立”、“孝老爱亲”,“诚实守信”四种类别,每位同学只能参评其中一类,评选后,把最终入选的20位校园“美德少年”分类统计,制作了如下统计表.类别频数频率助人为乐美德少年a0.20自强自立美德少年3b孝老爱亲美德少年70.35诚实守信美德少年6c根据以上信息,解答下列问题:(1)统计表中的a= 4 ,b 0.15 ,c= 0.3 ;(2)校园小记者决定从A、B、C三位“自强自立美德少年”中,随机采访两位,用画树状图或列表的方法,求A,B都被采访到的概率.【分析】(1)先利用第3组的频数和频率计算出调查的总人数,然后计算a、b、c的值;(2)画树状图展示所有6种等可能的结果数,再找出A,B都被采访到的结果数,然后利用概率公式计算.【解答】解:(1)7÷0.35=20,a=20×0.20=4,b=3÷20=0.15,c=6÷20=0.3;故答案为4,0.15,0.3;(2)画树状图为:共有6种等可能的结果数,其中A,B都被采访到的结果数为2,所以A,B都被采访到的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.也考查了统计图.五、解答题(三)(本大题共3小题,每小题9分,共27分)23.(9分)如图,二次函数的图象与x轴交于A(﹣3,0)和B(1,0)两点,交y轴于点C(0,3),点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D.(1)请直接写出D点的坐标.(2)求二次函数的解析式.(3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围.【分析】(1)根据抛物线的对称性来求点D的坐标;(2)设二次函数的解析式为y=ax2+bx+c(a≠0,a、b、c常数),把点A、B、C的坐标分别代入函数解析式,列出关于系数a、b、c的方程组,通过解方程组求得它们的值即可;(3)根据图象直接写出答案.【解答】解:(1)∵如图,二次函数的图象与x轴交于A(﹣3,0)和B(1,0)两点,∴对称轴是x==﹣1.又点C(0,3),点C、D是二次函数图象上的一对对称点,∴D(﹣2,3);(2)设二次函数的解析式为y=ax2+bx+c(a≠0,a、b、c常数),根据题意得,解得,所以二次函数的解析式为y=﹣x2﹣2x+3;(3)如图,一次函数值大于二次函数值的x的取值范围是x<﹣2或x>1.【点评】本题考查了抛物线与x轴的交点,待定系数法求二次函数解析式以及二次函数与不等式组.解题时,要注意数形结合数学思想的应用.另外,利用待定系数法求二次函数解析式时,也可以采用顶点式方程.24.(9分)如图,在△ABC中,∠C=90°,∠ABC的平分线BE交AC于点E,过点E作直线BE的垂线交AB于点F,⊙O是△BEF的外接圆.(1)求证:AC是⊙O的切线;(2)过点E作EH⊥AB于点B,求证:EF平分∠AEH;(3)求证:CD=HF.【分析】(1)连接OE,由于BE是角平分线,则有∠CBE=∠OBE;而OB=OE,就有∠OBE=∠OEB,等量代换有∠OEB=∠CBE,那么利用内错角相等,两直线平行,可得OE∥BC;又∠C=90°,所以∠AEO=90°,即AC是⊙O的切线;(2)根据等角的余角相等即可证明;(3)连结DE,先根据AAS证明△CDE≌△HFE,再由全等三角形的对应边相等即可得出CD=HF.【解答】(1)证明:(1)如图,连接OE.∵BE⊥EF,∴∠BEF=90°,∴BF是圆O的直径,∴OB=OE,∴∠OBE=∠OEB,∵BE平分∠ABC,∴∠CBE=∠OBE,∴∠OEB=∠CBE,∴OE∥BC,∴∠AEO=∠C=90°,∴AC是⊙O的切线;(2)证明:∵∠C=∠BHE=90°,∠EBC=∠EBA,∴BEC=∠BEH,∵BF是⊙O是直径,∴∠BEF=90°,∴∠FEH+∠BEH=90°,∠AEF+∠BEC=90°,∴∠FEH=∠FEA,∴FE平分∠AEH.(3)证明:如图,连结DE.∵BE是∠ABC的平分线,EC⊥BC于C,EH⊥AB于H,∴EC=EH.∵∠CDE+∠BDE=180°,∠HFE+∠BDE=180°,∴∠CDE=∠HFE,∵∠C=∠EHF=90°,∴△CDE≌△HFE(AAS),∴CD=HF,【点评】本题主要考查了切线的判定,全等三角形的判定与性质,三角形相似的判定和性质以及解直角三角形等.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.25.(9分)如图,正方形ABCD的边长为8,E、F、G、H分别是AB、BC、CD、DA上的动点,且AE=BF=CG=DH.(1)求证:四边形EFGH是正方形;(2)判断直线EG是否经过一个定点,如有请指出该定点位置并说明理由.(3)求四边形EFGH面积的最小值.【分析】(1)由正方形的性质得出∠A=∠B=∠C=∠D=90°,AB=BC=CD=DA,证出AH=BE=CF=DG,由SAS证明△AEH≌△BFE≌△CGF≌△DHG,得出EH=FE=GF=GH,∠AEH=∠BFE,证出四边形EFGH是菱形,再证出∠HEF=90°,即可得出结论;(2)连接AC、EG,交点为O;先证明△AOE≌△COG,得出OA=OC,证出O为对角线AC、BD的交点,即O为正方形的中心;(3)设四边形EFGH面积为S,BE=xcm,则BF=(8﹣x)cm,由勾股定理得出S=x2+(8﹣x)2=2(x﹣4)2+32,S是x的二次函数,容易得出四边形EFGH面积的最小值.【解答】解:(1)∵四边形ABCD是正方形,∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=DA,∵AE=BF=CG=DH,∴AH=BE=CF=DG,在△AEH、△BFE、△CGF和△DHG中,∴△AEH≌△BFE≌△CGF≌△DHG(SAS),∴EH=FE=GF=GH,∠AEH=∠BFE,∴四边形EFGH是菱形,∵∠BEF+∠BFE=90°,∴∠BEF+∠AEH=90°,∴∠HEF=90°,∴四边形EFGH是正方形;(2)直线EG经过一个定点,这个定点为正方形的中心(AC、BD的交点);理由如下:连接AC、EG,交点为O;如图所示:∵四边形ABCD是正方形,∴AB∥CD,∴∠OAE=∠OCG,在△AOE和△COG中,∴△AOE≌△COG(AAS),∴OA=OC,OE=OG,即O为AC的中点,∵正方形的对角线互相平分,∴O为对角线AC、BD的交点,即O为正方形的中心;(3)设四边形EFGH面积为S,设BE=xcm,则BF=(8﹣x)cm,根据勾股定理得:EF2=BE2+BF2=x2+(8﹣x)2,∴S=x2+(8﹣x)2=2(x﹣4)2+32,∵2>0,∴S有最小值,当x=4时,S的最小值=32,∴四边形EFGH面积的最小值为32cm2.【点评】本题是四边形综合题目,考查了正方形的性质与判定、菱形的判定、全等三角形的判定与性质、勾股定理、二次函数的最值等知识;本题综合性强,有一定难度,特别是(2)(3)中,需要通过作辅助线证明三角形全等和运用二次函数才能得出结果.。
九年级上册肇庆数学期末试卷测试卷附答案

九年级上册肇庆数学期末试卷测试卷附答案一、选择题1.二次函数y=﹣(x﹣1)2+5,当m≤x≤n且mn<0时,y的最小值为2m,最大值为2n,则m+n的值为()A.B.2 C.D.2.入冬以来气温变化异常,在校学生患流感人数明显增多,若某校某日九年级8个班因病缺课人数分别为2、6、4、6、10、4、6、2,则这组数据的众数是()A.5人B.6人C.4人D.8人3.如图,点I是△ABC的内心,∠BIC=130°,则∠BAC=()A.60°B.65°C.70°D.80°4.如图,在平面直角坐标系中,M、N、C三点的坐标分别为(14,1),(3,1),(3,0),点A为线段MN上的一个动点,连接AC,过点A作AB⊥AC交y轴于点B,当点A从M运动到N时,点B随之运动,设点B的坐标为(0,b),则b的取值范围是()A.14-≤b≤1 B.54-≤b≤1 C.94-≤b≤12D.94-≤b≤15.已知圆锥的底面半径为3cm,母线为5cm,则圆锥的侧面积是 ( )A.30πcm2B.15πcm2C.152πcm2D.10πcm26.如图,以AB为直径的⊙O上有一点C,且∠BOC=50°,则∠A的度数为()A .65°B .50°C .30°D .25°7.下列图形,是轴对称图形,但不是中心对称图形的是( )A .B .C .D .8.某天的体育课上,老师测量了班级同学的身高,恰巧小明今日请假没来,经过计算得知,除了小明外,该班其他同学身高的平均数为172cm ,方差为k 2cm ,第二天,小明来到学校,老师帮他补测了身高,发现他的身高也是172cm ,此时全班同学身高的方差为'k 2cm ,那么'k 与k 的大小关系是( )A .'k k >B .'k k <C .'k k =D .无法判断9.如图,BC 是O 的直径,A ,D 是O 上的两点,连接AB ,AD ,BD ,若70ADB ︒∠=,则ABC ∠的度数是( )A .20︒B .70︒C .30︒D .90︒10.二次函数y =3(x +4)2﹣5的图象的顶点坐标为( )A .(4,5)B .(﹣4,5)C .(4,﹣5)D .(﹣4,﹣5)11.在△ABC 中,点D 、E 分别在AB ,AC 上,DE ∥BC ,AD :DB =1:2,,则:ADE ABC S S ∆∆=( ), A .19B .14C .16D .1312.如图,AB ,AM ,BN 分别是⊙O 的切线,切点分别为 P ,M ,N .若 MN ∥AB ,∠A =60°,AB =6,则⊙O 的半径是( )A .32B .3C .323D 3二、填空题13.若方程2410x x -+=的两根12,x x ,则122(1)x x x 的值为__________.14.如图,在△ABC 和△APQ 中,∠PAB =∠QAC ,若再增加一个条件就能使△APQ ∽△ABC ,则这个条件可以是________.15.设1x ,2x 是关于x 的一元二次方程240x x +-=的两根,则1212x x x x ++=______. 16.如图,在□ABCD 中,AB =5,AD =6,AD 、AB 、BC 分别与⊙O 相切于E 、F 、G 三点,过点C 作⊙O 的切线交AD 于点N ,切点为M .当CN ⊥AD 时,⊙O 的半径为____.17.数据2,3,5,5,4的众数是____.18.若扇形的半径长为3,圆心角为60°,则该扇形的弧长为___.19.如图,在平面直角坐标系中,直线l :28y x =+与坐标轴分别交于A ,B 两点,点C 在x 正半轴上,且OC =O B .点P 为线段AB (不含端点)上一动点,将线段OP 绕点O 顺时针旋转90°得线段OQ ,连接CQ ,则线段CQ 的最小值为___________.20.如图,O 的弦8AB =,半径ON 交AB 于点M ,M 是AB 的中点,且3OM =,则MN 的长为__________.21.已知3a =4b ≠0,那么ab=_____. 22.如图,⊙O 是正五边形ABCDE 的外接圆,则∠CAD =_____.23.某公园平面图上有一条长12cm 的绿化带.如果比例尺为1:2000,那么这条绿化带的实际长度为_____.24.如图,四边形ABCD 中,∠A =∠B =90°,AB =5cm ,AD =3cm ,BC =2cm ,P 是AB 上一点,若以P 、A 、D 为顶点的三角形与△PBC 相似,则PA =_____cm .三、解答题25.如图,AB BC =,以BC 为直径作O ,AC 交O 于点E ,过点E 作EG AB ⊥于点F ,交CB 的延长线于点G .(1)求证:EG 是O 的切线;(2)若23GF =,4GB =,求O 的半径.26.某养殖场计划用96米的竹篱笆围成如图所示的①、②、③三个养殖区域,其中区域①是正方形,区域②和③是矩形,且AG ∶BG =3∶2.设BG 的长为2x 米.(1)用含x 的代数式表示DF = ;(2)x 为何值时,区域③的面积为180平方米; (3)x 为何值时,区域③的面积最大?最大面积是多少?27.如图,在△ABC 中,AB =AC ,以AC 为直径的⊙O 交BC 于点D ,交AB 于点E ,过点D作DF ⊥AB ,垂足为F ,连接DE . (1)求证:直线DF 与⊙O 相切; (2)求证:BF =EF ;28.解方程: (1)x 2﹣2x ﹣1=0;(2)(2x ﹣1)2=4(2x ﹣1). 29.解方程:(1)2620x x ++= (2)2(3)3(3)x x x -=-30.如图,在平面直角坐标系中,一次函数y =12x +2的图象与y 轴交于A 点,与x 轴交于B 点,⊙P 的半径为5,其圆心P 在x 轴上运动.(1)如图1,当圆心P 的坐标为(1,0)时,求证:⊙P 与直线AB 相切;(2)在(1)的条件下,点C 为⊙P 上在第一象限内的一点,过点C 作⊙P 的切线交直线AB 于点D ,且∠ADC =120°,求D 点的坐标;(3)如图2,若⊙P 向左运动,圆心P 与点B 重合,且⊙P 与线段AB 交于E 点,与线段BO 相交于F 点,G 点为弧EF 上一点,直接写出12AG +OG 的最小值 . 31.中国古代有着辉煌的数学成就,《周髀算经》,《九章算术》,《海岛算经》,《孙子算经》等是我国古代数学的重要文献.(1)小聪想从这4部数学名著中随机选择1部阅读,则他选中《九章算术》的概率为 ;(2)某中学拟从这4部数学名著中选择2部作为“数学文化”校本课程学习内容,求恰好选中《九章算术》和《孙子算经》的概率.32.在矩形ABCD 中,3AB =,5AD =,E 是射线DC 上的点,连接AE ,将ADE ∆沿直线AE 翻折得AFE ∆.(1)如图①,点F 恰好在BC 上,求证:ABF ∆∽FCE ∆;(2)如图②,点F 在矩形ABCD 内,连接CF ,若1DE =,求EFC ∆的面积; (3)若以点E 、F 、C 为顶点的三角形是直角三角形,则DE 的长为 .【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】由m≤x≤n 和mn <0知m <0,n >0,据此得最小值为2m 为负数,最大值为2n 为正数.将最大值为2n 分两种情况,①顶点纵坐标取到最大值,结合图象最小值只能由x=m 时求出.②顶点纵坐标取不到最大值,结合图象最大值只能由x=n 求出,最小值只能由x=m 求出. 【详解】解:二次函数y=﹣(x ﹣1)2+5的大致图象如下:.①当m≤0≤x≤n <1时,当x=m 时y 取最小值,即2m=﹣(m ﹣1)2+5, 解得:m=﹣2.当x=n时y取最大值,即2n=﹣(n﹣1)2+5,解得:n=2或n=﹣2(均不合题意,舍去);②当m≤0≤x≤1≤n时,当x=m时y取最小值,即2m=﹣(m﹣1)2+5,解得:m=﹣2.当x=1时y取最大值,即2n=﹣(1﹣1)2+5,解得:n=52,或x=n时y取最小值,x=1时y取最大值,2m=-(n-1)2+5,n=52,∴m=11 8,∵m<0,∴此种情形不合题意,所以m+n=﹣2+52=12.2.B解析:B【解析】【分析】找出这组数据出现次数最多的那个数据即为众数.【详解】解:∵数据2、6、4、6、10、4、6、2,中数据6出现次数最多为3次,∴这组数据的众数是6.故选:B.【点睛】本题考查众数的概念,出现次数最多的数据为这组数的众数.3.D解析:D【解析】【分析】根据三角形的内接圆得到∠ABC=2∠IBC,∠ACB=2∠ICB,根据三角形的内角和定理求出∠IBC+∠ICB,求出∠ACB+∠ABC的度数即可;【详解】解:∵点I是△ABC的内心,∴∠ABC=2∠IBC,∠ACB=2∠ICB,∵∠BIC=130°,∴∠IBC+∠ICB=180°﹣∠CIB=50°,∴∠ABC+∠ACB=2×50°=100°,∴∠BAC=180°﹣(∠ACB+∠ABC)=80°.故选D . 【点睛】本题主要考查了三角形的内心,掌握三角形的内心的性质是解题的关键.4.B解析:B 【解析】 【分析】延长NM 交y 轴于P 点,则MN ⊥y 轴.连接CN .证明△PAB ∽△NCA ,得出PB PANA NC=,设PA =x ,则NA =PN ﹣PA =3﹣x ,设PB =y ,代入整理得到y =3x ﹣x 2=﹣(x ﹣32)2+94,根据二次函数的性质以及14≤x≤3,求出y 的最大与最小值,进而求出b 的取值范围. 【详解】解:如图,延长NM 交y 轴于P 点,则MN ⊥y 轴.连接CN . 在△PAB 与△NCA 中,9090APB CNA PAB NCA CAN∠∠︒⎧⎨∠∠︒-∠⎩==== , ∴△PAB ∽△NCA , ∴PB PANA NC =, 设PA =x ,则NA =PN ﹣PA =3﹣x ,设PB =y , ∴31y x x =-, ∴y =3x ﹣x 2=﹣(x ﹣32)2+94, ∵﹣1<0,14≤x≤3, ∴x =32时,y 有最大值94,此时b =1﹣94=﹣54, x =3时,y 有最小值0,此时b =1, ∴b 的取值范围是﹣54≤b≤1. 故选:B .【点睛】本题考查了相似三角形的判定与性质,二次函数的性质,得出y与x之间的函数解析式是解题的关键.5.B解析:B【解析】试题解析:∵底面半径为3cm,∴底面周长6πcm∴圆锥的侧面积是12×6π×5=15π(cm2),故选B.6.D解析:D【解析】【分析】根据圆周角定理计算即可.【详解】解:由圆周角定理得,1252A BOC∠=∠=︒,故选:D.【点睛】本题考查的是圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.7.A解析:A【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A.是轴对称图形,不是中心对称图形,符合题意;B.不是轴对称图形,是中心对称图形,不符合题意;C. 是轴对称图形,是中心对称图形,不符合题意;D. 是轴对称图形,是中心对称图形,不符合题意;故选:A . 【点睛】本题考查的知识点是识别轴对称图形与中心对称图形,需要注意的是轴对称图形是关于对称轴成轴对称;中心对称图形是关于某个点成中心对称.8.B解析:B 【解析】 【分析】设该班的人数有n 人,除小明外,其他人的身高为x 1,x 2……x n-1,根据平均数的定义可知:算上小明后,平均身高仍为172cm ,然后根据方差公式比较大小即可. 【详解】解:设该班的人数有n 人,除小明外,其他人的身高为x 1,x 2……x n-1, 根据平均数的定义可知:算上小明后,平均身高仍为172cm 根据方差公式:()()()22212111721721721n k x x x n -⎡⎤=-+-++-⎣⎦-()()()()2222'1211172172172172172n x x k x n -⎡⎤=-+-++-+-⎣⎦()()()2221211172172172n x x x n -⎡⎤=-+-++-⎣⎦∵111n n <- ∴()()()()()()222222121121111721721721721721721n n x x x x x x n n --⎡⎤⎡⎤-+-++-<-+-++-⎣⎦⎣⎦-即'k k <故选B . 【点睛】此题考查的是比较方差的大小,掌握方差公式是解决此题的关键.9.A解析:A 【解析】 【分析】连接AC ,如图,根据圆周角定理得到90BAC ︒∠=,70ACB ADB ︒∠=∠=,然后利用互余计算ABC ∠的度数. 【详解】 连接AC ,如图, ∵BC 是O 的直径,∴90BAC ︒∠=,∵70ACB ADB ︒∠=∠=,∴907020ABC ︒︒︒∠=-=.故答案为20︒.故选A .【点睛】本题考查圆周角定理和推论,解题的关键是掌握圆周角定理和推论.10.D解析:D【解析】【分析】根据二次函数的顶点式即可直接得出顶点坐标.【详解】∵二次函数()2345y x +=-∴该函数图象的顶点坐标为(﹣4,﹣5),故选:D .【点睛】本题考查二次函数的顶点坐标,解题的关键是掌握二次函数顶点式()2y a x h k =-+的顶点坐标为(h ,k ). 11.A解析:A【解析】【分析】根据DE ∥BC 得到△ADE ∽△ABC ,再结合相似比是AD :AB=1:3,因而面积的比是1:9.【详解】解:如图:∵DE ∥BC ,∴△ADE ∽△ABC ,∵AD :DB=1:2,∴AD :AB=1:3,∴S △ADE :S △ABC =1:9.故选:A .【点睛】本题考查的是相似三角形的判定与性质,熟知相似三角形面积的比等于相似比的平方是解答此题的关键.12.D解析:D【解析】【分析】根据题意可判断四边形ABNM 为梯形,再由切线的性质可推出∠ABN=60°,从而判定△APO ≌△BPO ,可得AP=BP=3,在直角△APO 中,利用三角函数可解出半径的值.【详解】解:连接OP ,OM ,OA ,OB ,ON∵AB ,AM ,BN 分别和⊙O 相切,∴∠AMO=90°,∠APO=90°,∵MN ∥AB ,∠A =60°,∴∠AMN=120°,∠OAB=30°,∴∠OMN=∠ONM=30°,∵∠BNO=90°,∴∠ABN=60°,∴∠ABO=30°,在△APO 和△BPO 中,OAP OBP APO BPO OP OP ∠=∠⎧⎪∠=∠⎨⎪=⎩,△APO ≌△BPO (AAS ),∴AP=12AB=3, ∴tan ∠OAP=tan30°=OP AP∴.故选D.【点睛】本题考查了切线的性质,切线长定理,解直角三角形,全等三角形的判定和性质,关键是说明点P 是AB 中点,难度不大.二、填空题13.5【解析】【分析】根据根与系数的关系求出,代入即可求解.【详解】∵是方程的两根∴=-=4,==1∴===4+1=5,故答案为:5.【点睛】此题主要考查根与系数的关系,解题的关键是解析:5【解析】【分析】根据根与系数的关系求出12x x +,12x x ⋅代入即可求解.【详解】∵12,x x 是方程2410x x -+=的两根∴12x x +=-b a =4,12x x ⋅=c a=1 ∴122(1)x x x =1122x x x x ++=1212x x x x ++=4+1=5,故答案为:5.【点睛】此题主要考查根与系数的关系,解题的关键是熟知12x x +=-b a ,12x x ⋅=c a的运用. 14.∠P=∠B(答案不唯一)【分析】要使△APQ∽△ABC ,在这两三角形中,由∠PAB=∠QAC可知∠PAQ=∠BAC,还需的条件可以是∠B=∠P或∠C=∠Q或.【详解】解:这个条件解析:∠P=∠B(答案不唯一)【解析】【分析】要使△APQ∽△ABC,在这两三角形中,由∠PAB=∠QAC可知∠PAQ=∠BAC,还需的条件可以是∠B=∠P或∠C=∠Q或AP AQ AB AC=.【详解】解:这个条件为:∠B=∠P ∵∠PAB=∠QAC,∴∠PAQ=∠BAC∵∠B=∠P,∴△APQ∽△ABC,故答案为:∠B=∠P或∠C=∠Q或AP AQ AB AC=.【点睛】本题考查了相似三角形的判定与性质的运用,掌握相似三角形的判定与性质是解题的关键.15.-5.【解析】【分析】根据一元二次方程根与系数的关系即可求解.【详解】∵,是关于的一元二次方程的两根,∴,∴,故答案为:.【点睛】本题考查了一元二次方程根与系数的关系,如果,是方解析:-5.【解析】【分析】根据一元二次方程根与系数的关系即可求解.∵1x ,2x 是关于x 的一元二次方程240x x +-=的两根,∴121214x x x x +=-=-,, ∴()1212145x x x x ++=-+-=-,故答案为:5-.【点睛】本题考查了一元二次方程根与系数的关系,如果1x ,2x 是方程20x px q ++=的两根,那么12x x p +=﹣,12x x q =.16.2或1.5【解析】【分析】根据切线的性质,切线长定理得出线段之间的关系,利用勾股定理列出方程解出圆的半径.【详解】解:设半径为r ,∵AD、AB 、BC 分别与⊙O 相切于E 、F 、G 三点,AB =解析:2或1.5【解析】【分析】根据切线的性质,切线长定理得出线段之间的关系,利用勾股定理列出方程解出圆的半径.【详解】解:设半径为r ,∵AD 、AB 、BC 分别与⊙O 相切于E 、F 、G 三点,AB =5,AD =6∴GC=r ,BG=BF=6-r ,∴AF=5-(6-r )=r-1=AE∴ND=6-(r-1)-r=7-2r ,在Rt △NDC 中,NC 2+ND 2=CD 2,(7-r )2+(2r )2=52,解得r=2或1.5.故答案为:2或1.5.【点睛】本题考查了切线的性质,切线长定理,勾股定理,平行四边形的性质,正确得出线段关系,列出方程是解题关键.17.5【解析】【分析】由于众数是一组数据中出现次数最多的数据,注意众数可以不止一个,由此即可确定这组数据的众数.【详解】解:∵5是这组数据中出现次数最多的数据,∴这组数据的众数为5.故答案解析:5【解析】【分析】由于众数是一组数据中出现次数最多的数据,注意众数可以不止一个,由此即可确定这组数据的众数.【详解】解:∵5是这组数据中出现次数最多的数据,∴这组数据的众数为5.故答案为:5.【点睛】本题属于基础题,考查了确定一组数据的众数的能力,解题关键是要明确定义,读懂题意.18.【解析】【分析】根据弧长的公式列式计算即可.【详解】∵一个扇形的半径长为3,且圆心角为60°,∴此扇形的弧长为=π.故答案为:π.【点睛】此题考查弧长公式,熟记公式是解题关键.解析:π【解析】【分析】根据弧长的公式列式计算即可.【详解】∵一个扇形的半径长为3,且圆心角为60°,∴此扇形的弧长为603 180π⨯=π.故答案为:π.【点睛】此题考查弧长公式,熟记公式是解题关键.19.【解析】【分析】在OA上取使,得,则,根据点到直线的距离垂线段最短可知当⊥AB时,CP最小,由相似求出的最小值即可.【详解】解:如图,在OA上取使,∵,∴,在△和△QOC中,,解析:455【解析】【分析】在OA上取'C使'OC OC=,得'OPC OQC≅,则CQ=C'P,根据点到直线的距离垂线段最短可知当'PC⊥AB时,CP最小,由相似求出C'P的最小值即可.【详解】解:如图,在OA上取'C使'OC OC=,∵90AOC POQ∠=∠=︒,∴'POC QOC∠=∠,在△'POC和△QOC中,''OP OQPOC QOCOC OC=⎧⎪∠=∠⎨⎪=⎩,∴△'POC≌△QOC(SAS),∴'PC QC=∴当'PC最小时,QC最小,过'C 点作''C P ⊥AB ,∵直线l :28y x =+与坐标轴分别交于A ,B 两点,∴A 坐标为:(0,8);B 点(-4,0),∵'4OC OC OB ===,∴AB =''4AC OA OC =-=. ∵'''OB C P sin BAO AB AC ∠==, ''4C P =,∴''C P =∴线段CQ【点睛】 本题主要考查了一次函数图像与坐标轴的交点及三角形全等的判定和性质、垂线段最短等知识,解题的关键是正确寻找全等三角形解决问题,学会利用垂线段最短解决最值问题,属于中考压轴题.20.2【解析】【分析】连接OA ,先根据垂径定理求出AO 的长,再设ON=OA ,则MN=ON-OM 即可得到答案.【详解】解:如图所示,连接OA ,∵半径交于点,是的中点,∴AM=BM==4解析:2【解析】【分析】连接OA ,先根据垂径定理求出AO 的长,再设ON=OA ,则MN=ON-OM 即可得到答案.【详解】解:如图所示,连接OA ,∵半径ON交AB于点M,M是AB的中点,∴AM=BM=12AB=4,∠AMO=90°,∴在Rt△AMO中22OMAM∵ON=OA,∴MN=ON-OM=5-3=2.故答案为2.【点睛】本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.21..【解析】【分析】根据等式的基本性质将等式两边都除以3b,即可求出结论.【详解】解:两边都除以3b,得=,故答案为:.【点睛】此题考查的是等式的基本性质,掌握等式的基本性质是解决此解析:43.【解析】【分析】根据等式的基本性质将等式两边都除以3b,即可求出结论.【详解】解:两边都除以3b,得a b =43,故答案为:43.【点睛】此题考查的是等式的基本性质,掌握等式的基本性质是解决此题的关键.22.36°.【解析】【分析】由正五边形的性质得出∠BAE=(5﹣2)×180°=108°,BC=CD=DE,得出 ==,由圆周角定理即可得出答案.【详解】∵⊙O是正五边形ABCDE的外接圆,解析:36°.【解析】【分析】由正五边形的性质得出∠BAE=15(5﹣2)×180°=108°,BC=CD=DE,得出BC=CD=DE,由圆周角定理即可得出答案.【详解】∵⊙O是正五边形ABCDE的外接圆,∴∠BAE=15(n﹣2)×180°=15(5﹣2)×180°=108°,BC=CD=DE,∴BC=CD=DE,∴∠CAD=13×108°=36°;故答案为:36°.【点睛】本题主要考查了正多边形和圆的关系,以及圆周角定理的应用;熟练掌握正五边形的性质和圆周角定理是解题的关键.23.240m【解析】【分析】根据比例尺=图上距离∶实际距离可得实际距离,再进行单位换算.【详解】设这条公路的实际长度为xcm,则:1:2000=12:x,解得x=24000,24000c解析:240m【解析】【分析】根据比例尺=图上距离∶实际距离可得实际距离,再进行单位换算.【详解】设这条公路的实际长度为xcm ,则:1:2000=12:x ,解得x =24000,24000cm =240m .故答案为240m .【点睛】本题考查图上距离实际距离与比例尺的关系,解题的关键是掌握比例尺=图上距离∶实际距离.24.2或3【解析】【分析】根据相似三角形的判定与性质,当若点A ,P ,D 分别与点B ,C ,P 对应,与若点A ,P ,D 分别与点B ,P ,C 对应,分别分析得出AP 的长度即可.【详解】解:设AP =xcm .则解析:2或3【解析】【分析】根据相似三角形的判定与性质,当若点A ,P ,D 分别与点B ,C ,P 对应,与若点A ,P ,D 分别与点B ,P ,C 对应,分别分析得出AP 的长度即可.【详解】解:设AP =xcm .则BP =AB ﹣AP =(5﹣x )cm以A ,D ,P 为顶点的三角形与以B ,C ,P 为顶点的三角形相似,①当AD :PB =PA :BC 时,352x x =-, 解得x =2或3.②当AD :BC =PA +PB 时,3=25x x-,解得x =3, ∴当A ,D ,P 为顶点的三角形与以B ,C ,P 为顶点的三角形相似,AP 的值为2或3. 故答案为2或3.【点睛】本题考查了相似三角形的问题,掌握相似三角形的性质以及判定定理是解题的关键.三、解答题25.(1)见解析;(2)O 的半径为4. 【解析】【分析】 (1) 连接OE ,利用AB=BC 得出A C ∠=∠,根据OE=OC 得出,OEC C ∠=∠,从而求出OE AB ,再结合EG AB ⊥即可证明结论;(2)先利用勾股定理求出BF 的长,再利用相似三角形的性质对应线段比例相等求解即可. 【详解】解:(1)证明:连接OE . ∵AB BC =∴A C ∠=∠∵OE OC =∴OEC C ∠=∠∴A OEC ∠=∠∴OEAB ∵BA GE ⊥,∴OE EG ⊥,且OE 为半径 ∴EG 是O 的切线(2)∵BF GE ⊥∴90BFG ∠=︒∵23GF =4GB =∴222BF BG GF =-=∵BF OE ∥∴BGF OGE ∆∆∽ ∴BF BG OE OG =∴244OE OE=+ ∴4OE =即O 的半径为4. 【点睛】本题考查的知识点是切线的判定与相似三角形的性质,根据题目作出辅助线,数形结合是解题的关键.26.(1)48-12x ;(2)x 为1或3;(3)x 为2时,区域③的面积最大,为240平方米【解析】【分析】(1)将DF 、EC 以外的线段用x 表示出来,再用96减去所有线段的长再除以2可得DF 的长度;(2)将区域③图形的面积用关于x 的代数式表示出来,并令其值为180,求出方程的解即可;(3)令区域③的面积为S ,得出x 关于S 的表达式,得到关于S 的二次函数,求出二次函数在x 取值范围内的最大值即可.【详解】(1)48-12x(2)根据题意,得5x(48-12x)=180,解得x1=1,x2=3答:x为1或3时,区域③的面积为180平方米(3)设区域③的面积为S,则S=5x(48-12x)=-60x2+240x=-60(x-2)2+240∵-60<0,∴当x=2时,S有最大值,最大值为240答:x为2时,区域③的面积最大,为240平方米【点睛】本题考查了二次函数的实际应用,解题的关键是正确理解题中的等量关系,正确得出区域面积的表达式.27.见解析【解析】分析:(1)连接OD,由已知易得∠B=∠C,∠C=∠ODC,从而可得∠B=∠ODC,由此可得AB∥OD,结合DF⊥AB即可得到OD⊥DF,从而可得DF与⊙O相切;(2)连接AD,由已知易得BD=CD,∠BAD=∠CAD,由此可得DE=DC,从而可得DE=BD,结合DF⊥AB即可得到BF=EF.详解:(1)连结OD,∵AB=AC,∴∠B=∠C,∵OC=OD,∴∠ODC=∠C,∴∠ODC=∠B,∴OD∥AB,∵DF⊥AB,∴DF⊥OD,∴直线DF与⊙O相切;(2)连接AD.∵AC是⊙O的直径,∴AD⊥BC,又AB=AC,∴BD=DC ,∠BAD=∠CAD ,∴DE=DC ,∴DE=DB ,又DF ⊥AB ,∴BF=EF .点睛:(1)连接OD ,结合已知条件证得OD ∥AB 是解答第1小题的关键;(2)连接AD 结合已知条件和等腰三角形的性质证得DE=DC=BD 是解答第2小题的关键.28.(1)x =2;(2)x =52或x =12. 【解析】【分析】(1)根据配方法即可求出答案.(2)根据因式分解法即可求出答案.【详解】解:(1)∵x 2﹣2x ﹣1=0,∴x 2﹣2x +1=2,∴(x ﹣2)2=2,∴x =.(2)∵(2x ﹣1)2=4(2x ﹣1),∴(2x ﹣1﹣4)(2x ﹣1)=0, ∴x =52或x =12. 【点睛】 此题主要考查一元二次方程的求解,解题的关键是熟知一元二次方程的解法.29.(1)1233x x =-=-;(2)122,33x x == 【解析】【分析】(1)根据配方法即可求解;(2)根据因式分解法即可求解.【详解】(1)2620x x ++= 2697x x ++=2(3)7x +=3x +=1233x x =-=-.(2)2(3)3(3)x x x -=-2(3)3(3)0x x x ---=(23x)(x 3)0--=,2-3x=0或x-3=0 ∴122,33x x == 【点睛】 此题主要考查一元二次方程的求解,解题的关键是熟知方程的解法.30.(1)见解析;(2)D (233,33+2);(3)372. 【解析】【分析】(1)连接PA ,先求出点A 和点B 的坐标,从而求出OA 、OB 、OP 和AP 的长,即可确定点A 在圆上,根据相似三角形的判定定理证出△AOB ∽△POA ,根据相似三角形的性质和等量代换证出PA ⊥AB ,即可证出结论;(2)连接PA ,PD ,根据切线长定理可求出∠ADP =∠PDC =12∠ADC =60°,利用锐角三角函数求出AD ,设D (m ,12m+2),根据平面直角坐标系中任意两点之间的距离公式求出m 的值即可;(3)在BA 上取一点J ,使得BJ =5,连接BG ,OJ ,JG ,根据相似三角形的判定定理证出△BJG ∽△BGA ,列出比例式可得GJ =12AG ,从而得出12AG +OG =GJ +OG ,设J 点的坐标为(n ,12n +2),根据平面直角坐标系中任意两点之间的距离公式求出n ,从而求出OJ 的长,然后根据两点之间线段最短可得GJ +OG ≥OJ ,即可求出结论.【详解】(1)证明:如图1中,连接PA .∵一次函数y =12x +2的图象与y 轴交于A 点,与x 轴交于B 点, ∴A (0,2),B (﹣4,0),∴OA =2,OB =4,∵P (1,0),∴OP=1,∴OA2=OB•OP,AP=225+=OA OP∴OAOP=OBOA,点A在圆上∵∠AOB=∠AOP=90°,∴△AOB∽△POA,∴∠OAP=∠ABO,∵∠OAP+∠APO=90°,∴∠ABO+∠APO=90°,∴∠BAP=90°,∴PA⊥AB,∴AB是⊙P的切线.(2)如图1﹣1中,连接PA,PD.∵DA,DC是⊙P的切线,∠ADC=120°,∴∠ADP=∠PDC=12∠ADC=60°,∴∠APD=30°,∵∠PAD=90°∴AD=PA•tan30°=153,设D(m,12m+2),∵A(0,2),∴m2+(12m+2﹣2)2=159,解得m=±33,∵点D在第一象限,∴m 23,∴D(233,33+2).(3)在BA上取一点J,使得BJ=5,连接BG,OJ,JG.∵OA=2,OB=4,∠AOB=90°,∴AB22OA OB+2224+5∵BG5BJ5,∴BG2=BJ•BA,∴BGBJ=BABG,∵∠JBG=∠ABG,∴△BJG∽△BGA,∴JGAG=BGAB=12,∴GJ=12 AG,∴12AG+OG=GJ+OG,∵BJ 5,设J点的坐标为(n,12n+2),点B的坐标为(-4,0)∴(n+4)2+(12n+2)2=54,解得:n=-3或-5(点J在点B右侧,故舍去)∴J(﹣3,12),∴OJ22132⎛⎫+ ⎪⎝⎭372∵GJ+OG≥OJ,∴12AG +OG ≥2,∴12AG +OG【点睛】 此题考查的是一次函数与圆的综合大题,掌握相似三角形的判定及性质、切线的判定及性质、切线长定理、勾股定理、锐角三角函数和两点之间线段最短是解决此题的关键.31.(1)14;(2)16 【解析】【分析】(1)根据小聪选择的数学名著有四种可能,而他选中《九章算术》只有一种情况,再根据概率公式解答即可;(2)此题需要两步完成,所以可采用树状图法或者采用列表法求解.【详解】解:(1)小聪想从这4部数学名著中随机选择1部阅读, 则他选中《九章算术》的概率为14. 故答案为14; (2)将四部名著《周髀算经》,《九章算术》,《海岛算经》,《孙子算经》分别记为A ,B ,C ,D ,记恰好选中《九章算术》和《孙子算经》为事件M .方法一:用列表法列举出从4部名著中选择2部所能产生的全部结果:12种结果出现的可能性相等, 所有可能的结果中,满足事件M 的结果有2种,即DB ,BD ,∴P (M )=21=126. 方法二:根据题意可以画出如下的树状图:由树状图可以看出,所有可能的结果有12种,并且这12种结果出现的可能性相等, 所有可能的结果中,满足事件M 的结果有2种,即BD ,DB ,∴P (M )=21=126. 故答案为:16. 【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.32.(1)见解析;(2)EFC ∆的面积为513;(3)53、5、15、345)3【解析】【分析】(1)先说明∠CEF=∠AFB 和90B C ∠=∠=,即可证明ABF ∆∽FCE ∆;(2)过点F 作FG DC ⊥交DC 与点G ,交AB 于点H ,则90EGF AHF ∠=∠=;再结合矩形的性质,证得△FGE ∽△AHF ,得到AH=5GF ;然后运用勾股定理求得GF 的长,最后运用三角形的面积公式解答即可;(3)分点E 在线段CD 上和DC 的延长线上两种情况,然后分别再利用勾股定进行解答即可.【详解】(1)解:∵矩形ABCD 中,∴90B C D ∠=∠=∠=由折叠可得90D EFA ∠=∠=∵90EFA C ∠=∠=∴90CEF CFE CFE AFB ∠+∠=∠+∠=∴CEF AFB ∠=∠在ABF ∆和FCE ∆中∵AFB CEF ∠=∠,90B C ∠=∠=∴ABF ∆∽FCE ∆(2)解:过点F 作FG DC ⊥交DC 与点G ,交AB 于点H ,则90EGF AHF ∠=∠= ∵矩形ABCD 中,∴90D ∠=由折叠可得:90D EFA ∠=∠=,1DE EF ==,5AD AF == ∵90EGF EFA ∠=∠=∴90GEF GFE AFH GFE ∠+∠=∠+∠=∴GEF AFH ∠=∠在FGE ∆和AHF ∆中∵,90GEF AFH EGF FHA ∠=∠∠=∠=∴FGE ∆∽AHF ∆ ∴EF GF FA AH= ∴15GF AH= ∴5AH GF =在Rt AHF ∆中,90AHF ∠=∵222AH FH AF +=∴222(5)(5)5GF GF +-=∴513GF = ∴EFC ∆的面积为155221313⨯⨯= (3)设DE=x ,以点E 、F 、C 为顶点的三角形是直角三角形,则: ①当点E 在线段CD 上时,∠DAE<45°,∴∠AED>45°,由折叠性质得:∠AEF=∠AED>45°,∴∠DEF=∠AED+∠AEF>90°,∴∠CEF<90°,∴只有∠EFC=90°或∠ECF=90°,a,当∠EFC=90°时,如图所示:由折叠性质可知,∠AFE=∠D=90°,∴∠AFE+∠EFC=90°,∴点A,F,C在同一条线上,即:点F在矩形的对角线AC上,在Rt△ACD中,AD=5,CD=AB=3,根据勾股定理得,AC=34,由折叠可知知,EF=DE=x,AF=AD=5,∴CF=AC-AF=34-5,在Rt△ECF中,EF2+CF2=CE2,∴x2+(34-5)2=(3-x)2,解得x=5(345)-即:DE=5(345)-b,当∠ECF=90°时,如图所示: 点F在BC上,由折叠知,EF=DE=x,AF=AD=5,在Rt△ABF中,根据勾股定理得,22AF AB-,∴CF=BC-BF=1,在Rt△ECF中,根据勾股定理得,CE2+CF2=EF2,(3-x)2+12=x2,解得x=53,即:DE=53;②当点E在DC延长线上时,CF在∠AFE内部,而∠AFE=90°,∴∠CFE<90°,∴只有∠CEF=90°或∠ECF=90°,a、当∠CEF=90°时,如图所示由折叠知,AD=AF=5,∠AFE=90°=∠D=∠CEF,∴四边形AFED是正方形,∴DE=AF=5;b、当∠ECF=90°时,如图所示:∵∠ABC=∠BCD=90°,∴点F在CB的延长线上,∴∠ABF=90°,由折叠知,EF=DE=x,AF=AD=5,在Rt△ABF中,根据勾股定理得,22AF AB-,∴CF=BC+BF=9,在Rt△ECF中,根据勾股定理得,CE2+CF2=EF2,∴(x-3)2+92=x2,解得x=15,即DE=15,故答案为345)3-、53、5、15.【点睛】本题属于相似形综合题,主要考查了相似三角形的判定和性质、折叠的性质、勾股定理等知识点,正确作出辅助线构造相似三角形和直角三角形是解答本题的关键.。
广东省肇庆市端州区2019-2020学年九年级(上)期末数学试卷含答案解析

广东省肇庆市端州区2019-2020学年九年级(上)期末数学试卷含答案解析一.选择题(共10小题)1.﹣2的绝对值是()A.﹣2 B.2 C.﹣D.2.据有关部门统计,2019年“五一小长假”期间,广东各大景点共接待游客约14400000人次,将数14400000用科学记数法表示为()A.1.44×107B.0.144×107C.1.44×108D.0.144×1083.下图中不是中心对称图形的是()A.B.C.D.4.平面直角坐标系内与点P(﹣2,3)关于原点对称的点的坐标是()A.(3,﹣2)B.(2,3)C.(2,﹣3)D.(﹣3,﹣3)5.如图,晚上小亮在路灯下散步,在小亮由A处走到B处这一过程中,他在地上的影子()A.逐渐变短B.逐渐变长C.先变短后变长D.先变长后变短6.要得到抛物线y=2(x﹣4)2+1,可以将抛物线y=2x2()A.向左平移4个单位长度,再向上平移1个单位长度B.向左平移4个单位长度,再向下平移1个单位长度C.向右平移4个单位长度,再向上平移1个单位长度D.向右平移4个单位长度,再向下平移1个单位长度7.现有四张分别标有数字﹣2,﹣1,1,3的卡片,它们除数字外完全相同,把卡片背面朝上洗匀,从中随机抽取一张卡片,记下数字后放回,洗匀,再随机抽取一张卡片,则第一次抽取的卡片上的数字大于第二次抽取的卡片上的数字的概率是()A.B.C.D.8.菱形ABCD的一条对角线长为6,边AB的长是方程x2﹣7x+12=0的一个根,则菱形ABCD 的周长为()A.16 B.12 C.16或12 D.249.如图,在平面直角坐标系中,四边形OABC为菱形,O(0,0),A(4,0),∠AOC=60°,则对角线交点E的坐标为()A.(2,)B.(,2)C.(,3)D.(3,)10.如图,在矩形ABCD中,AB=6,BC=8,过对角线交点O作EF⊥AC交AD于点E,交BC 于点F,则DE的长是()A.1 B.C.2 D.二.填空题(共7小题)11.当时,在实数范围内有意义.12.分解因式:4x3﹣9x=.13.抛物线y=﹣3(x﹣1)2+2的开口向,对称轴为,顶点坐标为.14.方程x(x﹣2)﹣x+2=0的正根为.15.方程x2﹣4x﹣6=0的两根和等于,两根积等于.16.正六边形的中心角为;当它的半径为1时,边心距为.17.圆锥的侧面展开图是一个形,设圆锥的母线长为3,底面圆的半径为2,则这个圆锥的全面积为.三.解答题(共8小题)18.先化简,再求值:,其中a=3,b=﹣2.19.如图,利用尺规,在△ABC的边AC下方作∠CAE=∠ACB,在射线AE上截取AD=BC,连接CD,并证明:CD=AB.(尺规作图要求保留作图痕迹,不写作法)20.受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,我市某汽车零部件生产企业的利润逐年提高,据统计,2014年利润为2亿元,2016年利润为2.88亿元.(1)求该企业从2014年到2016年利润的年平均增长率;(2)若2017年保持前两年利润的年平均增长率不变,该企业2017年的利润能否超过3.4亿元?21.如图,已知∠ABC=90°,点P为射线BC上任意一点(点P与点B不重合),分别以AB、AP为边在∠ABC的内部作等边△ABE和△APQ,连接QE并延长交BP于点F.试说明:(1)△ABP≌△AEQ;(2)EF=BF.22.某区规定学生每天户外体育活动时间不少于1小时,为了解学生参加户外体育活动的情况,对部分学生每天参加户外体育活动的时间进行了随机抽样调查,并将调查结果绘制成如图的统计图表(不完整).请根据图表中的信息,解答下列问题:(1)表中的a=,将频数分布直方图补全;(2)该区8000名学生中,每天户外体育活动的时间不足1小时的学生大约有多少名?(3)若从参加户外体育活动时间最长的3名男生和1名女生中随机抽取两名,请用画树状图或列表法求恰好抽到1名男生和1名女生的概率.组别时间(小时)频数(人数)频率A0≤t<0.5 20 0.05B0.5≤t<1 a0.3C l≤t<1.5 140 0.35D 1.5≤t<2 80 0.2E2≤t<2.5 40 0.123.如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD于点E,过点A 作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DA.(1)求证:四边形BDFG为菱形;(2)若AG=13,CF=6,求四边形BDFG的周长.24.如图,四边形ABCD中,AB=AD=CD,以AB为直径的⊙O经过点C,连接AC、OD交于点E.(1)求证:OD∥BC;(2)若AC=2BC,求证:DA与⊙O相切.25.如图,已知抛物线y=﹣x2+bx+c与y轴相交于点A(0,3),与x正半轴相交于点B,对称轴是直线x=1(1)求此抛物线的解析式以及点B的坐标.(2)动点M从点O出发,以每秒2个单位长度的速度沿x轴正方向运动,同时动点N 从点O出发,以每秒3个单位长度的速度沿y轴正方向运动,当N点到达A点时,M、N 同时停止运动.过动点M作x轴的垂线交线段AB于点Q,交抛物线于点P,设运动的时间为t秒.①当t为何值时,四边形OMPN为矩形.②当t>0时,△BOQ能否为等腰三角形?若能,求出t的值;若不能,请说明理由.参考答案与试题解析一.选择题(共10小题)1.﹣2的绝对值是()A.﹣2 B.2 C.﹣D.【分析】根据绝对值的定义,可直接得出﹣2的绝对值.【解答】解:|﹣2|=2.故选:B.2.据有关部门统计,2019年“五一小长假”期间,广东各大景点共接待游客约14400000人次,将数14400000用科学记数法表示为()A.1.44×107B.0.144×107C.1.44×108D.0.144×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将数1440 0000用科学记数法表示为1.44×107.故选:A.3.下图中不是中心对称图形的是()A.B.C.D.【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形可得答案.【解答】解:A、是中心对称图形,故此选项不合题意;B、是中心对称图形,故此选项不合题意;C、是中心对称图形,故此选项不合题意;D、不是中心对称图形,故此选项符合题意;故选:D.4.平面直角坐标系内与点P(﹣2,3)关于原点对称的点的坐标是()A.(3,﹣2)B.(2,3)C.(2,﹣3)D.(﹣3,﹣3)【分析】关于原点对称的点,横坐标与纵坐标都互为相反数.【解答】解:由题意,得点P(﹣2,3)关于原点对称的点的坐标是(2,﹣3),故选:C.5.如图,晚上小亮在路灯下散步,在小亮由A处走到B处这一过程中,他在地上的影子()A.逐渐变短B.逐渐变长C.先变短后变长D.先变长后变短【分析】根据中心投影的特点:等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.进行判断即可.【解答】解:因为小亮由A处走到B处这一过程中离光源是由远到近再到远的过程,所以他在地上的影子先变短后变长.故选:C.6.要得到抛物线y=2(x﹣4)2+1,可以将抛物线y=2x2()A.向左平移4个单位长度,再向上平移1个单位长度B.向左平移4个单位长度,再向下平移1个单位长度C.向右平移4个单位长度,再向上平移1个单位长度D.向右平移4个单位长度,再向下平移1个单位长度【分析】找到两个抛物线的顶点,根据抛物线的顶点即可判断是如何平移得到.【解答】解:∵y=2(x﹣4)2+1的顶点坐标为(4,1),y=2x2的顶点坐标为(0,0),∴将抛物线y=2x2向右平移4个单位,再向上平移1个单位,可得到抛物线y=2(x﹣4)2+1.故选:C.7.现有四张分别标有数字﹣2,﹣1,1,3的卡片,它们除数字外完全相同,把卡片背面朝上洗匀,从中随机抽取一张卡片,记下数字后放回,洗匀,再随机抽取一张卡片,则第一次抽取的卡片上的数字大于第二次抽取的卡片上的数字的概率是()A.B.C.D.【分析】画树状图得出所有等可能结果,从找找到符合条件得结果数,在根据概率公式计算可得.【解答】解:画树状图如下:由树状图知共有16种等可能结果,其中第一次抽取的卡片上的数字大于第二次抽取的卡片上的数字的有6种结果,所以第一次抽取的卡片上的数字大于第二次抽取的卡片上的数字的概率为=.故选:B.8.菱形ABCD的一条对角线长为6,边AB的长是方程x2﹣7x+12=0的一个根,则菱形ABCD 的周长为()A.16 B.12 C.16或12 D.24【分析】先利用因式分解法解方程得到x1=3,x2=4,再根据菱形的性质可确定边AB的长是4,然后计算菱形的周长.【解答】解:(x﹣3)(x﹣4)=0,x﹣3=0或x﹣4=0,所以x1=3,x2=4,∵菱形ABCD的一条对角线长为6,∴边AB的长是4,∴菱形ABCD的周长为16.故选:A.9.如图,在平面直角坐标系中,四边形OABC为菱形,O(0,0),A(4,0),∠AOC=60°,则对角线交点E的坐标为()A.(2,)B.(,2)C.(,3)D.(3,)【分析】过点E作EF⊥x轴于点F,由直角三角形的性质求出EF长和OF长即可.【解答】解:过点E作EF⊥x轴于点F,∵四边形OABC为菱形,∠AOC=60°,∴=30°,∠FAE=60°,∵A(4,0),∴OA=4,∴=2,∴,EF===,∴OF=AO﹣AF=4﹣1=3,∴.故选:D.10.如图,在矩形ABCD中,AB=6,BC=8,过对角线交点O作EF⊥AC交AD于点E,交BC 于点F,则DE的长是()A.1 B.C.2 D.【分析】连接CE,由矩形的性质得出∠ADC=90°,CD=AB=6,AD=BC=8,OA=OC,由线段垂直平分线的性质得出AE=CE,设DE=x,则CE=AE=8﹣x,在Rt△CDE中,由勾股定理得出方程,解方程即可.【解答】解:连接CE,如图所示:∵四边形ABCD是矩形,∴∠ADC=90°,CD=AB=6,AD=BC=8,OA=OC,∵EF⊥AC,∴AE=CE,设DE=x,则CE=AE=8﹣x,在Rt△CDE中,由勾股定理得:x2+62=(8﹣x)2,解得:x=,即DE=;故选:B.二.填空题(共7小题)11.当x≥0且x≠1 时,在实数范围内有意义.【分析】根据负数没有平方根,以及分母不为0确定出x的范围即可.【解答】解:当x≥0且﹣1≠0,即x≥0且x≠1时,在实数范围内有意义,故答案为:x≥0且x≠1.12.分解因式:4x3﹣9x=x(2x+3)(2x﹣3).【分析】原式提取公因式,再利用平方差公式分解即可.【解答】解:原式=x(4x2﹣9)=x(2x+3)(2x﹣3),故答案为:x(2x+3)(2x﹣3)13.抛物线y=﹣3(x﹣1)2+2的开口向下,对称轴为直线x=1 ,顶点坐标为(1,2).【分析】根据抛物线y=﹣3(x﹣1)2+2,可以直接写出该抛物线的开口方向、对称轴和顶点坐标,本题得以解决.【解答】解:∵抛物线y=﹣3(x﹣1)2+2,∴该抛物线的开口向下,对称轴是直线x=1,顶点坐标为(1,2),故答案为:下,直线x=1,(1,2).14.方程x(x﹣2)﹣x+2=0的正根为x=1或x=2 .【分析】利用因式分解法求解可得.【解答】解:∵x(x﹣2)﹣(x﹣2)=0,∴(x﹣2)(x﹣1)=0,则x﹣2=0或x﹣1=0,解得x=2或x=1,故答案为:x=1或x=2.15.方程x2﹣4x﹣6=0的两根和等于 4 ,两根积等于﹣6 .【分析】直接利用根与系数的关系求解.【解答】解:方程x2﹣4x﹣6=0的两根和等于4,两根积等于﹣6.故答案为4,﹣6.16.正六边形的中心角为60°;当它的半径为1时,边心距为.【分析】根据题意画出图形,求出∠AOB的度数,判断出△AOB的形状即可得出正六边形的半径,再作OM⊥AB于点M,利用锐角三角函数的定义求出OM的长,进而可得出结论.【解答】解:如图所示:∵六边形ABCDE是正六边形,∴∠AOB==60°,∴△AOB是等边三角形,∴OA=OB=AB=1;作OM⊥AB于点M,∵OA=2,∠OAB=60°,∴OM=OA•sin60°=1×=.17.圆锥的侧面展开图是一个扇形,设圆锥的母线长为3,底面圆的半径为2,则这个圆锥的全面积为10π.【分析】由于圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长,所以根据扇形的面积公式可求解侧面积,再求得底面积即可求得全面积.【解答】解:圆锥的侧面展开图是一个扇形,圆锥的侧面积=×3×2π×2=6π,底面积为4π,所以全面积为6π+4π=10π.故答案为:扇,10π.三.解答题(共8小题)18.先化简,再求值:,其中a=3,b=﹣2.【分析】首先计算乘除,然后通分计算减法,化简后,代入a、b的值可得答案.【解答】解:原式=﹣,=﹣,=﹣,=,=,=,当a=3,b=﹣2时,原式===.19.如图,利用尺规,在△ABC的边AC下方作∠CAE=∠ACB,在射线AE上截取AD=BC,连接CD,并证明:CD=AB.(尺规作图要求保留作图痕迹,不写作法)【分析】根据题意作出图形,根据SAS证明三角形全等即可解决问题.【解答】解:如图所示:∵AC=CA,∠ACB=∠CAD,AD=CB,∴△ACB≌△CAD(SAS),∴CD=AB.20.受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,我市某汽车零部件生产企业的利润逐年提高,据统计,2014年利润为2亿元,2016年利润为2.88亿元.(1)求该企业从2014年到2016年利润的年平均增长率;(2)若2017年保持前两年利润的年平均增长率不变,该企业2017年的利润能否超过3.4亿元?【分析】(1)设这两年该企业年利润平均增长率为x.根据题意得2(1+x)2=2.88,解方程即可;(2)根据该企业从2014年到2016年利润的年平均增长率来解答.【解答】解:(1)设这两年该企业年利润平均增长率为x.根据题意得2(1+x)2=2.88,解得x1=0.2=20%,x2=﹣2.2 (不合题意,舍去).答:这两年该企业年利润平均增长率为20%.(2)如果2017年仍保持相同的年平均增长率,那么2017年该企业年利润为:2.88(1+20%)=3.456,3.456>3.4答:该企业2017年的利润能超过3.4亿元.21.如图,已知∠ABC=90°,点P为射线BC上任意一点(点P与点B不重合),分别以AB、AP为边在∠ABC的内部作等边△ABE和△APQ,连接QE并延长交BP于点F.试说明:(1)△ABP≌△AEQ;(2)EF=BF.【分析】(1)根据等边三角形的性质可以得出AB=AE,AP=AQ,由等式的性质就可以得出∠BAP=∠EAQ,就可以得出结论;(2)由△ABP≌△AEQ就可以得出∠ABP=∠AEQ=90°,进而可以得出∠FBE=FEB=30°,就可以得出EF=BF;【解答】解:(1)∵△ABE和△APQ是等边三角形,∴AB=AE,AP=AQ,∠BAE=∠PAQ=∠ABE=∠AEB=60°,∴∠BAE﹣∠PAE=∠PAQ﹣∠PAE,∴∠BAP=∠EAQ.在△ABP和△AEQ中,,∴△QAE≌△PAB(SAS);(2)∵△QAE≌△PAB∴∠ABP=∠AEQ=90°.∴∠AEF=90°,∴∠ABP=∠AEF∴∠ABP﹣∠AEB=∠AEF﹣∠ABE,∴∠BEF=∠EBF,∴BF=EF.22.某区规定学生每天户外体育活动时间不少于1小时,为了解学生参加户外体育活动的情况,对部分学生每天参加户外体育活动的时间进行了随机抽样调查,并将调查结果绘制成如图的统计图表(不完整).请根据图表中的信息,解答下列问题:(1)表中的a=120 ,将频数分布直方图补全;(2)该区8000名学生中,每天户外体育活动的时间不足1小时的学生大约有多少名?(3)若从参加户外体育活动时间最长的3名男生和1名女生中随机抽取两名,请用画树状图或列表法求恰好抽到1名男生和1名女生的概率.组别时间(小时)频数(人数)频率A0≤t<0.5 20 0.05B0.5≤t<1 a0.3C l≤t<1.5 140 0.35D 1.5≤t<2 80 0.2E2≤t<2.5 40 0.1【分析】(1)先根据A组频数及其频率求得总人数,再用总人数乘以B组的频率即可得a的值,从而补全条形图;(2)用总人数乘以A、B组频率之和可得;(3)通过画树状图,根据概率的计算公式,即可得到抽取的两名学生刚好是1名男生和1名女生的概率.【解答】解:(1)∵被调查的学生总人数为20÷0.05=400,∴a=400×0.3=120,故答案为:120,补全图形如下:(2)每天户外体育活动的时间不足1小时的学生大约有8000×(0.05+0.3)=2800(名);(3)画树状图为:共有12种等可能的结果数,其中抽到1名男生和1名女生的可能性有6种.∴P(抽到1名男生和1名女学生)==.23.如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD于点E,过点A 作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DA.(1)求证:四边形BDFG为菱形;(2)若AG=13,CF=6,求四边形BDFG的周长.【分析】(1)根据平行四边形的判定定理得到四边形BGFD是平行四边形,根据直角三角形的性质得到BD=DF,根据菱形的判定定理证明;(2)设GF=x,根据勾股定理列出方程,解方程即可.【解答】(1)证明:∵AG∥BD,BD=FG,∴四边形BGFD是平行四边形,∵CF⊥BD,∴∠CFA=∠CED=90°,又∵点D是AC中点,∴DF=AC,∵∠ABC=90°,BD为AC的中线,∴BD=AC,∴BD=DF,∴平行四边形BGFD是菱形;(2)解:设GF=x,则AF=13﹣x,AC=2x,∵在Rt△ACF中,∠CFA=90°,∴AF2+CF2=AC2,即(13﹣x)2+62=(2x)2,解得:x=5,x=﹣(舍去),∴四边形BDFG的周长=4GF=20.24.如图,四边形ABCD中,AB=AD=CD,以AB为直径的⊙O经过点C,连接AC、OD交于点E.(1)求证:OD∥BC;(2)若AC=2BC,求证:DA与⊙O相切.【分析】(1)连接OC,证△OAD≌△OCD得∠ADO=∠CDO,由AD=CD知DE⊥AC,再由AB 为直径知BC⊥AC,从而得OD∥BC;(2)根据AB=2BC可设BC=a、则AC=2a、AD=AB=a,证OE为中位线知OE=a、AE=CE=AC=a,进一步求得DE=2a,再在△AOD中利用勾股定理逆定理证∠OAD=90°即可得.【解答】解:(1)连接OC,在△OAD和△OCD中,,∴△OAD≌△OCD(SSS),∴∠ADO=∠CDO,又AD=CD,∴DE⊥AC,∵AB为⊙O的直径,∴∠ACB=90°,即BC⊥AC,∴OD∥BC;(2)证明:∵AB=2BC,∴设BC=a、则AC=2a,∴AD=AB===a,∵OE∥BC,且AO=BO,∴OE=BC=a,AE=CE=AC=a,在△AED中,DE===2a,在△AOD中,AO2+AD2=()2+(a)2=a2,OD2=(OE+DE)2=(a+2a)2=a2,∴AO2+AD2=OD2,∴∠OAD=90°,则DA与⊙O相切.25.如图,已知抛物线y=﹣x2+bx+c与y轴相交于点A(0,3),与x正半轴相交于点B,对称轴是直线x=1(1)求此抛物线的解析式以及点B的坐标.(2)动点M从点O出发,以每秒2个单位长度的速度沿x轴正方向运动,同时动点N 从点O出发,以每秒3个单位长度的速度沿y轴正方向运动,当N点到达A点时,M、N 同时停止运动.过动点M作x轴的垂线交线段AB于点Q,交抛物线于点P,设运动的时间为t秒.①当t为何值时,四边形OMPN为矩形.②当t>0时,△BOQ能否为等腰三角形?若能,求出t的值;若不能,请说明理由.【分析】(1)由对称轴公式可求得b,由A点坐标可求得c,则可求得抛物线解析式;再令y=0可求得B点坐标;(2)①用t可表示出ON和OM,则可表示出P点坐标,即可表示出PM的长,由矩形的性质可得ON=PM,可得到关于t的方程,可求得t的值;②由题意可知OB=OA,故当△BOQ为等腰三角形时,只能有OB=BQ或OQ=BQ,用t可表示出Q点的坐标,则可表示出OQ和BQ的长,分别得到关于t的方程,可求得t的值.【解答】解:(1)∵抛物线y=﹣x2+bx+c对称轴是直线x=1,∴﹣=1,解得b=2,∵抛物线过A(0,3),∴c=3,∴抛物线解析式为y=﹣x2+2x+3,令y=0可得﹣x2+2x+3=0,解得x=﹣1或x=3,∴B点坐标为(3,0);(2)①由题意可知ON=3t,OM=2t,∵P在抛物线上,∴P(2t,﹣4t2+4t+3),∵四边形OMPN为矩形,∴ON=PM,∴3t=﹣4t2+4t+3,解得t=1或t=﹣(舍去),∴当t的值为1时,四边形OMPN为矩形;②∵A(0,3),B(3,0),∴OA=OB=3,且可求得直线AB解析式为y=﹣x+3,∴当t>0时,OQ≠OB,∴当△BOQ为等腰三角形时,有OB=QB或OQ=BQ两种情况,由题意可知OM=2t,∴Q(2t,﹣2t+3),∴OQ==,BQ==|2t﹣3|,又由题意可知0<t<1,当OB=QB时,则有|2t﹣3|=3,解得t=(舍去)或t=;当OQ=BQ时,则有=|2t﹣3|,解得t=;综上可知当t的值为或时,△BOQ为等腰三角形.。
九年级上册肇庆数学期末试卷测试卷附答案

九年级上册肇庆数学期末试卷测试卷附答案一、选择题1.如图,等边三角形ABC 的边长为5,D 、E 分别是边AB 、AC 上的点,将△ADE 沿DE 折叠,点A 恰好落在BC 边上的点F 处,若BF =2,则BD 的长是( )A .2B .3C .218D .2472.一元二次方程x 2=9的根是( ) A .3B .±3C .9D .±93.如图,四边形ABCD 内接于⊙O ,已知∠A =80°,则∠C 的度数是( )A .40°B .80°C .100°D .120°4.如图,△ABC 内接于⊙O ,连接OA 、OB ,若∠ABO =35°,则∠C 的度数为( )A .70°B .65°C .55°D .45° 5.抛物线2y 3(x 1)1=-+的顶点坐标是( ) A .()1,1B .()1,1-C .()1,1--D .()1,1-6.如图,小正方形边长均为1,则下列图形中三角形(阴影部分)与△ABC 相似的是A .B .C .D .7.已知a 是方程x 2+3x ﹣1=0的根,则代数式a 2+3a+2019的值是( ) A .2020 B .﹣2020 C .2021 D .﹣2021 8.若两个相似三角形的相似比是1:2,则它们的面积比等于( )A .1:2B .1:2C .1:3D .1:49.已知二次函数y =ax 2+bx +c 的图像如图所示,则下列结论正确的个数有( ) ①c >0;②b 2-4ac <0;③ a -b +c >0;④当x >-1时,y 随x 的增大而减小.A .4个B .3个C .2个D .1个10.在平面直角坐标系中,将二次函数y =32x 的图象向左平移2个单位,所得图象的解析式为( ) A .y =32x −2 B .y =32x +2 C .y =3()22x -D .y =3()22x + 11.若二次函数y =x 2﹣2x +c 的图象与坐标轴只有两个公共点,则c 应满足的条件是( )A .c =0B .c =1C .c =0或c =1D .c =0或c =﹣112.如图,A ,B ,C ,D 四个点均在⊙O 上,∠AOB =40°,弦BC 的长等于半径,则∠ADC的度数等于( )A .50°B .49°C .48°D .47°二、填空题13.如图所示,在正方形ABCD 中,G 为CD 边中点,连接AG 并延长交BC 边的延长线于E 点,对角线BD 交AG 于F 点.已知FG =2,则线段AE 的长度为_____.14.如图,点A 、B 分别在y 轴和x 轴正半轴上滑动,且保持线段AB =4,点D 坐标为(4,3),点A 关于点D 的对称点为点C ,连接BC ,则BC 的最小值为_____.15.已知tan(α+15°)= 3,则锐角α的度数为______°.16.数据2,3,5,5,4的众数是____.17.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,D是以点A为圆心2为半径的圆上一点,连接BD,M为BD的中点,则线段CM长度的最小值为__________.18.数据8,8,10,6,7的众数是__________.19.两个相似三角形的面积比为9:16,其中较大的三角形的周长为64cm,则较小的三角形的周长为__________cm.20.如图,点O是△ABC的内切圆的圆心,若∠A=100°,则∠BOC为_____.21.将抛物线y=-5x2先向左平移2个单位长度,再向下平移3个单位长度后,得到新的抛物线的表达式是________.22.有4根细木棒,它们的长度分别是2cm、4cm、6cm、8cm.从中任取3根恰好能搭成一个三角形的概率是_____.23.若把一根长200cm的铁丝分成两部分,分别围成两个正方形,则这两个正方形的面积的和最小值为_____.24.如图,四边形ABCD中,∠A=∠B=90°,AB=5cm,AD=3cm,BC=2cm,P是AB 上一点,若以P、A、D为顶点的三角形与△PBC相似,则PA=_____cm.三、解答题25.如图,分别以△ABC的边AC和BC为腰向外作等腰直角△DAC和等腰直角△EBC,连接DE.(1)求证:△DAC∽△EBC;(2)求△ABC与△DEC的面积比.26.某公司研制出新产品,该产品的成本为每件2400元.在试销期间,购买不超过10件时,每件销售价为3000元;购买超过10件时,每多购买一件,所购产品的销售单价均降低5元,但最低销售单价为2600元。
广东省肇庆市九年级上学期数学期末考试试卷

广东省肇庆市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)(2018·呼和浩特) 下列运算及判断正确的是()A . ﹣5× ÷(﹣)×5=1B . 方程(x2+x﹣1)x+3=1有四个整数解C . 若a×5673=103 ,a÷103=b,则a×b=D . 有序数对(m2+1,m)在平面直角坐标系中对应的点一定在第一象限2. (2分) (2019八下·余姚月考) 已知一元二次方程的两个解恰好是等腰△ABC的底边长和腰长,则△ABC的周长为()A . 14B . 10C . 11D . 14或103. (2分)甲、乙、丙三位同学在九年级上学期的五次数学测验中,他们的成绩的平均分都是90分(总分120分),方差分别是S甲2=15.7,S乙2=10.6,S丙2=13.2,则三人中成绩最稳定的是()A . 甲B . 乙C . 丙D . 不能确定4. (2分)如图,△ABC内接于⊙O,D为线段AB的中点,延长OD交⊙O于点E,连接AE,BE,则下列论:①AB⊥DE,②AE=BE,③OD=DE,④∠AEO=∠C,⑤弧AE=弧AEB,正确结论的个数是()A . 2B . 3C . 4D . 55. (2分) (2020九上·邓州期末) 如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1.有下列结论:①b2=4ac②abc>0 ③a>c ④4a+c>2b.其中结论正确的个数是()A . 1个B . 2个C . 3个D . 4个6. (2分)如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为()A .B . 2C . 2D . 87. (2分)在梯形ABCD中,AD∥BC,AC与BD相交于O,如果AD∶BC=1∶3,那么下列结论正确的是()A . S△COD=9S△AODB . S△ABC=9S△ACDC . S△BOC=9S△AODD . S△DBC=9S△AOD8. (2分)(2017·孝感模拟) 已知二次函数y=ax2+bx+c+2的图象如图所示,顶点为(﹣1,0),下列结论:①abc<0;②b2﹣4ac=0;③a>0;④4a﹣2b+c>0.其中正确结论的个数是()A . 1B . 2C . 3D . 4二、填空题 (共10题;共10分)9. (1分) (2018九上·楚雄期末) 已知(x、y、z均不为零),则 ________.10. (1分)在一个袋子中装有除颜色外其它均相同的2个黑球、3个红球和5个白球,从中任意摸出一个球,则摸到红球的概率是________ .11. (1分)一只蚂蚁沿着直角三角形的边爬行一周需,如果将直角三角形的边长扩大到原来的2倍,那么这只蚂蚁再沿边爬行一周需________ .12. (1分) CD为⊙O的直径,弦AB⊥CD于点E,CD=10,AB=8,则tan∠DAE=________.13. (1分)如图,分别以直角三角形的三边为直径作半圆,其中两个半圆的面积S1= π,S2=2π,则S3=________.14. (1分)(2017·南山模拟) 小明用S2= [(x1﹣3)2+(x2﹣3)2+…+(x10﹣3)3]计算一组数据的方差,那么x1+x2+x3+…+x10=________.15. (1分) (2016九上·大石桥期中) 如图,抛物线y=ax2+bx+c与x轴相交于点A、B(m+2,0)与y轴相交于点C,点D在该抛物线上,坐标为(m,c),则点A的坐标是________.16. (1分)(2016·丹阳模拟) 如图,圆锥的母线长是3,底面半径是1,A是底面圆周上一点,从A点出发绕侧面一周,再回到A点的最短的路线长是________.17. (1分)有一张矩形风景画,长为90cm,宽为60cm,现对该风景画进行装裱,得到一个新的矩形,要求其长、宽之比与原风景画的长、宽之比相同,且面积比原风景画的面积大44%.若装裱后的矩形的上、下边衬的宽都为acm,左、右边衬的宽都为bcm,那么ab=________ cm2三、解答题 (共10题;共98分)19. (5分)已知实数a满足a2-6a+9=0,求的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.图象的开口向上
B.图象与 y 轴的交点坐标为(0,2)
C.当 x>1 时,y 随 x 的增大而减小
D.图象的顶点坐标是(﹣1,2)
第1页(共7页)
8.(3 分)如图,点 D 是等边△ABC 内一点,如果△ABD 绕点 A 逆时针旋转后 能与△ACE 重合,则∠DAE 的度数是( )
A.45°
B.60°
BE 的垂线交 AB 于点 F,⊙O 是△BEF 的外接圆. (1)求证:AC 是⊙O 的切线; (2)过点 E 作 EH⊥AB 于点 H,求证:EF 平分∠AEH; (3)求证:CD=HF.
第5页(共7页)
25.(9 分)如图,正方形 ABCD 的边长为 8,E、F、G、H 分别是 AB、BC、CD、 DA 上的动点,且 AE=BF=CG=DH.
日期:2019/1/9 1 4:33:13; 用户:qgjyus er105 77;邮箱:qg jyus er10577.2195 7750;学号: 21985586
第7页(共7页)
有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金 周转,对价格经过两次下调后,决定以每平方米 7290 元的均价开盘销售.求 平均每次下调的百分率. 21.(7 分)如图 1,将一张矩形纸片 ABCD 沿着对角线 BD 向上折叠,顶点 C 落到点 E 处,BE 交 AD 于点 F. (1)求证:△BDF 是等腰三角形; (2)如图 2,过点 D 作 DG∥BE,交 BC 于点 G,连结 FG 交 BD 于点 O.判断 四边形 FBGD 的形状,并说明理由.
.
13.(4 分)在一个不透明的袋子里,装有 5 个红球,3 个白球,它们除颜色外大
小,材质都相同,从中任意摸出一个球,摸到红球的概率是
.
14.(4 分)圆锥的侧面积为 6πcm2,底面圆的半径为 2cm,则这个圆锥的母线长
为
cm.
15.(4 分)如图,⊙O 的半径为 10cm,AB 是⊙O 的弦,OC⊥AB 于 D,交⊙O
22.(7 分)某校开展校园“美德少年”评选活动,共有“助人为乐”,“自强自
立”、“孝老爱亲”,“诚实守信”四种类别,每位同学只能参评其中一类,评
选后,把最终入选的 20 位校园“美德少年”分类统计,制作了如下统计表.
类别
频数
频率
助人为乐美德少年
a
0.20
自强自立美德少年
3
b
第4页(共7页)
孝老爱亲美德少年
(1)求证:四边形 EFGH 是正方形; (2)判断直线 EG 是否经过一个定点,如有请指出该定点位置并说明理由. (3)求四边形 EFGH 面积的最小值.
第6页(共7页)
广东省肇庆市端州区九年级(上)期末数学试卷
参考答案
一、选择题(本大题共 10 小题,每小题 3 分,共 30 分)在每小题列出的四个 选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑
17.
; 18.
; 19.
;
四、解答题(二)(本大题共 3 小题,每小题 7 分,共 21 分)
20.
; 21.
; 22.4;0.15;0.3;
五、解答题(三)(本大题共 3 小题,每小题 9 分,共 27 分)
23.
;网 所有,未经书 面同意,不得 复制发布
于点 C,且 CD=4cm,弦 AB 的长为
cm.
16.(4 分)如图,正方形 ABCD 和正方形 EFCG 的边长分别为 3 和 1,点 F,G
分别在边 BC,CD 上,P 为 AE 的中点,连接 PG,则 PG 的长为
.
三、解答题(一-)本大题共 3 小题,每小题 6 分,共 18 分)
17.(6 分)解方程:x(x+1)=3x+3.
C.90°
D.120°
9.(3 分)关于 x 的一元二次方程 9x2﹣6x+k=0 有两个不相等的实根,则 k 的范
围是( )
A.k<1
B.k>1
C.k≤1
D.k≥1
10.(3 分)如图,已知正方形 ABCD 的边长为 2cm,动点 P 从点 A 出发,在正
方形的边上沿 A→B→C 的方向运动到点 C 停止.设点 P 的运动路程为 (x cm),
3.(3 分)下列四个图形中是中心对称图形的为( )
A.
B.
C.
D.
4.(3 分)一元二次方程 x2﹣mx﹣2=0 的一个根为 2,则 m 的值是( )
A.1
B.2
C.3
D.4
5.(3 分)将抛物线 y=(x+2)2 先向左平移 2 个单位,再向下平移 3 个单位,
那么所得抛物线的函数关系式是( )
在下列图象中,能表示△ADP 的面积 y(cm2)与 x(cm)的函数关系的图象
是( )
A.
B.
C.
D.
二、填空题(本大题共 6 小题,每小题 4 分,共 24 分)请将下列各题的正确答 案写在答题卡相应的位置上
11.(4 分)分解因式:a2﹣a=
.
第2页(共7页)
12.(4 分)不等式组
的解集是
交 y 轴于点 C(0,3),点 C、D 是二次函数图象上的一对对称点,一次函数
的图象过点 B、D.
(1)请直接写出 D 点的坐标.
(2)求二次函数的解析式.
(3)根据图象直接写出使一次函数值大于二次函数值的 x 的取值范围.
24.(9 分)如图,在△ABC 中,∠C=90°,∠ABC 的平分线 BE 交 AC 于点 E, 过点 E 作直线
广东省肇庆市端州区九年级(上)期末数学试卷
一、选择题(本大题共 10 小题,每小题 3 分,共 30 分)在每小题列出的四个
选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑
1.(3 分)5 的倒数是( )
A.﹣5
B.5
C.
D.﹣
2.(3 分)16 平方根是( )
A.4
B.﹣4
C.±4
D.±8
18.(6 分)先化简,再求值:(
)•(x2﹣1),其中 x= .
19.(6 分)在如图所示的平面直角坐标系中,解答下列问题: (1)将△ABC 绕点 A 逆时针方向旋转 90°,画出旋转后的△A1B1C1; (2)求线段 AB 在旋转过程中所扫过的面积.
第3页(共7页)
四、解答题(二)(本大题共 3 小题,每小题 7 分,共 21 分) 20.(7 分)肇庆市某楼盘准备以每平方米 9000 元的均价对外销售,由于国务院
A.y=﹣2(x+2)2+3
B.y=x2﹣3
C.y=x2+3
D.(x+4)2﹣3
6.(3 分)如图,⊙O 是△ABC 的外接圆,连接 OA、OB,∠OBA=50°,则∠
C 的度数为( )
A.30°
B.40°
C.50°
D.80°
7.(3 分)关于 x 的二次函数 y=﹣(x﹣1)2+2,下列说法正确的是( )
1.C; 2.C; 3.A; 4.A; 5.D; 6.B; 7.C; 8.B; 9.A; 10.C; 二、填空题(本大题共 6 小题,每小题 4 分,共 24 分)请将下列各题的正确答
案写在答题卡相应的位置上 11.a(a﹣1); 12.x>2; 13. ; 14.3; 15.16; 16. ;
三、解答题(一-)本大题共 3 小题,每小题 6 分,共 18 分)
7
0.35
诚实守信美德少年
6
c
根据以上信息,解答下列问题:
(1)统计表中的 a=
,b
,c=
;
(2)校园小记者决定从 A、B、C 三位“自强自立美德少年”中,随机采访两位,
用画树状图或列表的方法,求 A,B 都被采访到的概率.
五、解答题(三)(本大题共 3 小题,每小题 9 分,共 27 分)
23.(9 分)如图,二次函数的图象与 x 轴交于 A(﹣3,0)和 B(1,0)两点,