张伟概率强化讲义
概率论与数理统计强化讲义_数三_

概率论与数理统计 强化讲义 (数三)
考研帮课堂配套电子讲义—概率论与数理统计
课程配套讲义是学习的必备资源,帮帮为大家精心整理了高质量的配套讲 义,确保同学们学习的方便与高效。该讲义是帮帮结合大纲考点及考研辅导名师 多年辅导经验的基础上科学整理的。 内容涵盖考研的核心考点、 复习重点、 难点。 结构明了、 脉络清晰, 并针对不同考点、 重点、 难点做了不同颜色及字体的标注, 以便同学们复习时可以快速投入、高效提升。 除课程配套讲义外, 帮帮还从学习最贴切的需求出发, 为大家提供以下服务, 打造最科学、最高效、最自由的学习平台:
I 0.94 II Cn2 0.94 0.06 III 1 0.94
B 发生 A 不发生的概率相等,求 A 发生的概率.
第 2 页
考研帮课堂配套电子讲义—概率论与数理统计
【答案】
2 3
1 1 1 , P B A , P A B ,则 P A B ___ 4 3 2
例 8. P ( A ) 【答案】
1 3
题型二 三大概型
方法点拨: 三大概型是指古典概型、几何概型、伯努利概型。古典概型就是常说的排列组合 问题,考的少,几何概型注意体积、面积的计算,伯努利概型,需要注意一下“至 多”和“至少”的问题。 例 1.在区间 -1,1 之间任取两个数 X,Y 则二次方程 t 2 Xt Y 0 有两个正根的 概率为 ___ 【答案】
P max X , Y 0 =___
3 4 , P X 0 P Y 0 , 则 7 7
【答案】
5 7
设 A,B,C 是 随 机 事 件 , 且
考研概率强化讲义(全题目)资料

考研概率与数理统计第一章 随机事件和概率第一节 基本概念例题例1.1:有5个队伍参加了甲A 联赛,两两之间进行循环赛两场,没有平局,试问总共输的场次是多少?例1.2:到美利坚去,既可以乘飞机,也可以坐轮船,其中飞机有战斗机和民航,轮船有小鹰号和Titanic 号,问有多少种走法?例1.3:到美利坚去,先乘飞机,后坐轮船,其中飞机有战斗机和民航,轮船有小鹰号和Titanic 号,问有多少种走法?例1.4:10人中有6人是男性,问组成4人组,三男一女的组合数。
例1.5:两线段MN 和PQ 不相交,线段MN 上有6个点A 1,A 2…,A 6,线段PQ 上有7 个点B 1,B 2,…,B 7。
若将每一个A i 和每一个B j 连成不作延长的线段A i B j (i=1,2,…6;j=1,2,…,7),则由这些线段 A i B j 相交而得到的交点最多有A . 315个B . 316个C . 317个D . 318个例1.6:3封不同的信,有4个信箱可供投递,共有多少种投信的方法?例1.7:某市共有10000辆自行车,其牌照号码从00001到10000,求有数字8的牌照号码的个数。
例1.8:3白球,2黑球,先后取2球,放回,至少一白的种数?(有序)151513=∙C C 2112121515=∙-∙C C C C例1.9:3白球,2黑球,先后取2球,不放回,至少一白的种数?(有序)121413=∙C C 1811121415=∙-∙C C C C例1.10:3白球,2黑球,任取2球,至少一白的种数?(无序)121413=∙C C 92225=-C C 例1.11:化简 (A+B)(A+B )(A +B)例1.12:)()()(C B C A C B A = 成立的充分条件为: (1)C A ⊂ (2) C B ⊂例1.13:3白球,2黑球,先后取2球,放回,至少一白的概率?例1.14:3白球,2黑球,先后取2球,不放回,至少一白的概率?例1.15:3白球,2黑球,任取2球,至少一白的概率?例1.16:袋中装有α个白球及β个黑球。
概率强化讲义

概率论与数理统计第一章 随机事件和概率1、概念网络图⎪⎪⎪⎪⎪⎪⎪⎭⎪⎪⎪⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧-+→⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧Ω→贝努利概型贝叶斯公式/)(独立性全概公式和乘法公式条件概率减法加法五大公式几何概型古典概型随机事件样本空间基本事件随机试验BC C B C B C B A P A E ω2、重要公式和结论第二章 随机变量及其分布第一节 基本概念1、概念网络图⎭⎬⎫⎩⎨⎧-→⎭⎬⎫⎩⎨⎧≤<→⎭⎬⎫⎩⎨⎧)()()()(a F b F A P b X a A X 随机事件随机变量基本事件ωω→≤=)()(x X P x F 分布函数: 函数分布正态分布指数分布均匀分布连续型几何分布超几何分布泊松分布二项分布分布离散型八大分布→⎪⎪⎪⎪⎪⎪⎭⎪⎪⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧-102、重要公式和结论第三章 二维随机变量及其分布第一节 基本概念1、概念网络图⎪⎪⎪⎪⎪⎪⎪⎭⎪⎪⎪⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=+=⎭⎬⎫⎩⎨⎧→⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧→分布分布分布三大统计分布函数分布正态分布均匀分布常见二维分布独立性条件分布边缘分布连续型分布密度离散型分布律联合分布F t X X X Z Y X Z Y X n 221),,min(max,),(χξ2、重要公式和结论第四章 随机变量的数字特征第一节 基本概念1、概念网络图⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧→切比雪夫不等式矩方差期望一维随机变量⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧→协方差矩阵相关系数协方差方差期望二维随机变量2、重要公式和结论第五章 大数定律和中心极限定理第一节 基本概念1、概念网络图⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧→辛钦大数定律伯努利大数定律切比雪夫大数定律大数定律⎭⎬⎫⎩⎨⎧→棣莫弗-拉普拉斯定理列维-林德伯格定理中心极限定理二项定理 泊松定理2、重要公式和结论第六章 数理统计的基本概念第一节 基本概念1、概念网络图正态总体下的四大分布统计量样本函数样本个体总体数理统计的基本概念→⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧ 2、重要公式和结论第七章 参数估计第一节 基本概念1、概念网络图⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧→⎭⎬⎫⎩⎨⎧区间估计一致性有效性无偏性估计量的评选标准极大似然估计矩估计点估计从样本推断总体2、重要公式和结论。
考研概率强化讲义(全题目)资料

考研概率与数理统计第一章 随机事件和概率第一节 基本概念例题例1.1:有5个队伍参加了甲A 联赛,两两之间进行循环赛两场,没有平局,试问总共输的场次是多少?例1.2:到美利坚去,既可以乘飞机,也可以坐轮船,其中飞机有战斗机和民航,轮船有小鹰号和Titanic 号,问有多少种走法?例1.3:到美利坚去,先乘飞机,后坐轮船,其中飞机有战斗机和民航,轮船有小鹰号和Titanic 号,问有多少种走法?例1.4:10人中有6人是男性,问组成4人组,三男一女的组合数。
例1.5:两线段MN 和PQ 不相交,线段MN 上有6个点A 1,A 2…,A 6,线段PQ 上有7 个点B 1,B 2,…,B 7。
若将每一个A i 和每一个B j 连成不作延长的线段A i B j (i=1,2,…6;j=1,2,…,7),则由这些线段 A i B j 相交而得到的交点最多有A . 315个B . 316个C . 317个D . 318个例1.6:3封不同的信,有4个信箱可供投递,共有多少种投信的方法?例1.7:某市共有10000辆自行车,其牌照号码从00001到10000,求有数字8的牌照号码的个数。
例1.8:3白球,2黑球,先后取2球,放回,至少一白的种数?(有序)151513=∙C C 2112121515=∙-∙C C C C例1.9:3白球,2黑球,先后取2球,不放回,至少一白的种数?(有序)121413=∙C C 1811121415=∙-∙C C C C例1.10:3白球,2黑球,任取2球,至少一白的种数?(无序)121413=∙C C 92225=-C C 例1.11:化简 (A+B)(A+B )(A +B)例1.12:)()()(C B C A C B A = 成立的充分条件为: (1)C A ⊂ (2) C B ⊂例1.13:3白球,2黑球,先后取2球,放回,至少一白的概率?例1.14:3白球,2黑球,先后取2球,不放回,至少一白的概率?例1.15:3白球,2黑球,任取2球,至少一白的概率?例1.16:袋中装有α个白球及β个黑球。
经验贴:上岸前辈分享考研数学复习规划、名师推荐、辅导用书

经验贴:上岸前辈分享考研数学复习规划、名师推荐、辅导用书摘要:上岸前辈分享考研数学复习规划、名师推荐、辅导用书,我们一起来看看他的数学是如何复习?考研数学的复习,选对老师,后期跟到这位老师学至关重要!一、那我们就先来聊聊老师选谁好!1、汤家凤汤老师的基础班我觉得讲得是所有老师里最负责最踏实的!因为绝大部分老师都是一个样,收着讲,而不是全局概括,往往基础班讲高数上册的前三四章就匆匆了事,汤老师是比较务实的人,他的基础班除了比较偏的几个知识点(三重积分、第二型曲线曲面积分等),从数一到数三的内容都会讲完,你要是看完高数课本,再把老汤的基础班看完,是极好的,你定会打一个不错的基础,但是(重点)!但是如果你不听他的基础课就直接奔着强化课去听,那么就会感觉比较吃力,因为老汤的强化班是建立在基础班上的,算是对基础班的一个延伸概括,当然,他老人家讲课有两个不足之处:(1)重视题量,对概念的讲解却不是特别深入!(这点和张宇正好相反)所以他的课适合基础差的同学打基础的,通过做题来深化对知识点的认识(2)口音问题,这是老汤被黑的重要原因,老汤的江苏南京人,讲话口音有点怪怪的,普通话讲得并不是太好,但是多听几节课,这也不是什么大问题。
概括:所以考研的同学可以打基础的时候看完课本直接上手老汤的基础班!权当练习!2、张宇名师简介:张宇,江湖人称宇哥,他独树一帜,是考研老师新生派的代表人物,其微博名字也为宇哥考研,为人风趣幽默,讲课就像讲故事,听起来毫不费力,如果你对数学没兴趣,听宇哥的课会激发你对数学的热情,听宇哥的课就是一个感觉,上瘾!好听!有意思!相信绝大部分同学都听过他的sin狗(广义化)的公式,宇哥的一大能力就是他能将数学抽象问题形象化,复杂问题简单化例如,二重积分大面包切切切切切、狗减sin狗等于六分之一狗三、夹逼准则哪里跑、格林闭关七天研究出格林公式、欠阿贝尔两块钱以及普京题抓住重点、毛主席题举重若轻等等,这些本来在高数课本中枯燥繁琐的东西在张宇口中变得呼之欲出、极为生动,这都能反应宇哥的特色,我有时候时常思考一个问题,如果中国的老师,都能像宇哥这样循循善诱,讲起课来娓娓动听,那么大部分人都会爱上学习这件事情。
启航2014考研数学基本功提高班--概率与数理统计2(张伟)

承载理想,启航未来
正态分布 : 若随机变量X的概率密度为
1 2 f ( x) e 2 , ( x ), 2 则称X服从参数为 , ( 0)的正态分布, ( x )2
记为X ~ N ( , 2 ). X的分布函数为 F ( x)
例12
例13 设随机变量X服从参数为的指数分布, 则P( X DX ) .
例14 设随机变量X的密度为f ( x) Ae x x , 试求常数A.
2
x
,
全国统一服务热线:400-678-1826
承载理想,启航未来
例15 若随机变量X服从均值为2, 方差为 2的正态分布,且 P2 X 4 0.3, 则PX 0 ___ .
例16 设X ~ N ( , 2 ), F ( x)为其分布函数,
0, 则对于任意实数a, 有
( A) F (a ) F (a ) 1. ( B ) F ( a ) F ( a ) 1. (C ) F (a ) F (a) 1. 1 ( D) F ( a) F ( a) . 2
承载理想,启航未来
第二讲 一维随机变量及其分布
随机变量及其概率分布主要考点 (1) 随机变量的分布函数 (2) 离散型随机变量的概率分布律 (3) 连续型随机变量的概率密度 (4) 常见随机变量的概率分布及其应用 (5) 随机变量函数的分布
随机变量的分布函数
全国统一服务热线:400-678-1826
承载理想,启航未来
例21 设随机变量X的概率密度为 1 , 1 x 0, 2 1 f x ( x) , 0 x 2, 4 其他. 0, 令Y X 2 , 试求Y的概率密度fY ( y ).
概率论基础讲义全

概率论基础知识第一章随机事件及其概率随机事件§几个概念1、随机实验:满足下列三个条件的试验称为随机试验|;(1)试验可在相同条件下重复进行;(2)试验的可能结果不止一个,且所有可能结果是已知的;(3)每次试验哪个结果出现是未知的;随机试验以后简称为试验,并常记为E。
例如:曰:掷一骰子,观察出现的总数;E2:上抛硬币两次,观察正反面出现的情况;E3:观察某电话交换台在某段时间内接到的呼唤次数2、随机事件:在试验中可能出现也可能不出现的事情称为随机事件:常记为A,B, C例如,在E i中,A表示掷出2点”,B表示掷出偶数点”均为随机事件3、必然事件与不可能事件:每次试验必发生的事情称为必然事件,记为Q。
每次试验都不可能发生的事情称为不可能事件,记为①。
例如,在E i中,掷出不大于6点”的事件便是必然事件,而掷出大于6点”的事件便是不可能事件,以后,随机事件,必然事件和不可能事件统称为事件4、基本事件:试验中直接观察到的最简单的结果称为基本事件。
例如,在曰中,掷出1点”,掷出2点”,……,掷'出6点”均为此试验的基本事件由基本事件构成的事件称为复,例如,在E i中掷出偶数点”便是复合事件5、样本空间:从集合观点看,称构成基本事件的元素为样本点,常记为e.例如,在E i中,用数字1, 2,......,6表示掷出的点数,而由它们分别构成的单点集{1}, {2}, (6)便是E i中的基本事件。
在E2中,用H表示正面,T表示反面,此试验的样本点有(H , H),( H , T),( T, H ),( T, T),其基本事件便是{ ( H, H) }, { ( H , T) }, { (T, H ) }, { (T, T) }显然,任何事件均为某些样本点构成的集合。
例如,在E i中掷出偶数点”的事件便可表为{2, 4, 6}。
试验中所有样本点构成的集合称为样本空间。
记为Qo例如,在E i 中,Q={1 , 2, 3, 4, 5, 6}在E2 中,Q={ ( H , H),( H , T),( T, H),( T, T) }在E s 中,Q={0 , 1, 2,……}例1, 一条新建铁路共10个车站,从它们所有车票中任取一张,观察取得车票的票种此试验样本空间所有样本点的个数为N Q=P 210=90.(排列:和顺序有关,如北京至天津、天津至北京)若观察的是取得车票的票价,则该试验样本空间中所有样本点的个数为10)=452(组合)例2 .随机地将15名新生平均分配到三个班级中去,观察15名新生分配的情况。
概概率初步复习辅导讲义

《概率初步》复习辅导讲义必然事件:在一定条件下,必然会发生的事件确定事件不可能事件:在一定条件下,一定不会发生的事件随机事件:在一定条件下,有可能发生,也有可能不发生的事件概率初步概率:表示随机事件发生的可能性的大小的数值叫做概率,必然事件的概率为1,不可能事件的概率为0,随机事件的概率在0和1之间用列举法求概率:用列表或画树形图把所有可能的结果一一列举出来,然后再求事件的概率的方法用频率估计概率:利用多次重复试验,通过统计试验结果去估计概率一、与概率有关的概念1.必然事件:在一定条件小必然发生的事件。
如哥哥的年纪比弟弟的大,1大于0等。
2.不了能事件:在一定条件下不了能发生的事件:如铁在常温下熔化,哥哥的年纪比弟弟小等。
3.随机事件:在一定条件可能发生,也可能不发生的事件。
如抛出的硬币人字头朝上、买彩票能中奖等。
4.概率:表示随机事件发生的可能性的大小的数值。
(1)概率的表示:概率一般用p表示,在表示多个事件的概率时,可以用p1、p2….或p A、p B…或p甲、p乙…加以区别。
(2)必然事件的概率p=1(3)不可能事件的概率p=0(4)随机事件的概率:0<p<1.(5)确定事件和随机事件的概率之间的关系:事件发生的可能性越来越小0 1 概率的值不可能发生必然发生事件发生的可能性越来越大5.概率与频率的区别与联系:(1)联系:从定义可以得到二者的联系, 可用大量重复试验中事件发生频率来估计事件发生的概率。
(2)区别:大量重复试验中事件发生的频率稳定在某个常数(事件发生的概率)附近,说明概率是个定值,而频率随不同试验次数而有所不同,是概率的近似值,二者不能简单地等同。
【基础练习】1、在一个只装有红球和白球的口袋中,摸出一个球为黑球是 ( )A.随机事件 B.必然事件 C.不可能事件 D.无法确定2、下列事件中属于随机事件的是()A、抛出的篮球会落下B、从装有黑球,白球的袋里摸出红球C、367人中有2人是同月同日出生D、买1张彩票,中500万大奖3、下列成语所描述的事件是必然发生的是()A. 水中捞月B. 拔苗助长C. 守株待免D. 瓮中捉鳖4、要了解一个城市的气温变化情况,下列观测方法最可靠的一种方法是( )A.一年中随机选中20天进行观测B.一年中随机选中一个月进行连续观测C.一年四季各随机选中一个月进行连续观测D.一年四季各随机选中一个星期进行连续观测5、下列事件中,必然事件是( )A .中秋节晚上能看到月亮B .今天考试小明能得满分 C .太阳东升西落 D .明天要降温三、概率的计算方法:(一)概率的计算公式: 1.大量重复试验某事件的概率:一般地,在大量重复试验中,如果事件A 发生的频率mn 会稳定在某个常数p 附近,那么这个常数p 就叫做事件A 的概率。