概率统计第一部分讲义
初中数学《统计与概率》讲义及练习

1. 能准确判断事件发生的等可能性以及游戏规则的公平性问题.2. 运用排列组合知识和枚举等计数方法求解概率问题.3. 理解和运用概率性质进行概率的运算知识点说明在抛掷一枚硬币时,究竟会出现什么样的结果事先是不能确定的,但是当我们在相同的条件下,大量重复地抛掷同一枚均匀硬币时,就会发现“出现正面”或“出现反面”的次数大约各占总抛掷次数的一半左右.这里的“大量重复”是指多少次呢?历史上不少统计学家,例如皮尔逊等人作过成千上万次抛掷硬币的试验,随着试验次数的增加,出现正面的频率波动越来越小,频率在0.5这个定值附近摆动的性质是出现正面这一现象的内在必然性规律的表现,0.5恰恰就是刻画出现正面可能性大小的数值,0.5就是抛掷硬币时出现正面的概率.这就是概率统计定义的思想,这一思想也给出了在实际问题中估算概率的近似值的方法,当试验次数足够大时,可将频率作为概率的近似值.在统计里,我们把所要考察对象的全体叫做总体,其中的每一个考察对象叫做个体。
从总体中所抽取的一部分个体叫做总体的一个样本。
样本中个体的数目叫做样本的容量。
总体中所有个体的平均数叫做总体平均数,把样本中所有个体的平均数叫做样本平均数。
概率的古典定义:如果一个试验满足两条: ⑴试验只有有限个基本结果:⑵试验的每个基本结果出现的可能性是一样的. 这样的试验,称为古典试验.对于古典试验中的事件A ,它的概率定义为:()mP A n=,n 表示该试验中所有可能出现的基本结果的总数目,m 表示事件A 包含的试验基本结果数.小学奥数中,所涉及的问题都属于古典概率.其中的m 和n 需要我们用枚举、加乘原理、排列组合等方法求出.相互独立事件:()()()P A B P A P B ⋅=⋅ 事件A 是否发生对事件B 发生的概率没有影响,这样的两个事件叫做相互独立事件. 公式含义:如果事件A 和B 为独立事件,那么A 和B 都发生的概率等于事件A 发生的概率与事件B 发生的概率之积.举例:⑴明天是否晴天与明天晚餐是否有煎鸡蛋相互没有影响,因此两个事件为相互独立事件.所以明天天晴,并且晚餐有煎鸡蛋的概率等于明天天晴的概率乘以明天晚餐有煎鸡蛋的概率.⑵第一次抛硬币掉下来是正面向上与第二次抛硬币是正面向上是两个相互独立事件.所以第一次、第二次抛硬币掉下来后都是正面向上的概率等于两次分别抛硬币掉下来后是正面向上的概率之积,即111224P =⨯=.⑶掷骰子,骰子是否掉在桌上和骰子的某个数字向上是两个相互独立的事件,如果骰子掉在桌上的概率为0.6,那么骰子掉在桌上且数字“n ”向上的概率为10.60.16⨯=.知识点拨教学目标8-7概率与统计例题精讲【例 1】(2007年“希望杯”二试六年级)气象台预报“本市明天降雨概率是80%”.对此信息,下列说法中正确的是.①本市明天将有80%的地区降水.②本市明天将有80%的时间降水.③明天肯定下雨.④明天降水的可能性比较大.【解析】降水概率指的是可能性的大小,并不是降水覆盖的地区或者降水的时间.80%的概率也不是指肯定下雨,100%的概率才是肯定下雨.80%的概率是说明有比较大的可能性下雨.因此④的说法正确.【巩固】一个小方木块的六个面上分别写有数字2、3、5、6、7、9,小光、小亮两人随意往桌面上扔放这个木块.规定:当小光扔时,如果朝上的一面写的是偶数,得1分.当小亮扔时,如果朝上的一面写的是奇数,得1分.每人扔100次,______得分高的可能性比较大.【解析】因为2、3、5、6、7、9中奇数有4个,偶数只有2个,所以木块向上一面写着奇数的可能性较大,即小亮得分高的可能性较大.【例 2】在多家商店中调查某商品的价格,所得的数据如下(单位:元)25 21 23 25 27 29 25 28 30 2926 24 25 27 26 22 24 25 26 28请填写下表【解析】:【例 3】在某个池塘中随机捕捞100条鱼,并给鱼作上标记后放回池塘中,过一段时间后又再次随机捕捞200尾,发现其中有25条鱼是被作过标记的,如果两次捕捞之间鱼的数量没有增加或减少,那么请你估计这个池塘中一共有鱼多少尾?【解析】200尾鱼中有25条鱼被标记过,所以池塘中鱼被标记的概率的实验得出值为252000.125÷=,所以池塘中的鱼被标记的概率可以看作是0.125,池塘中鱼的数量约为1000.125800÷=尾.【例 4】有黑桃、红桃、方块、草花这4种花色的扑克牌各2张,从这8张牌中任意取出2张。
概率论讲义_带作业

例 已知某类产品的次品率为0. 2 ,现从一大批这类产品中随机抽查2 0 件. 问恰好 有 件次品的概率是多少?
3) 泊松分布
概率论的基本概念 样本空间
样本点
事件
事件的概率
练习 1. 抛一枚骰子,观察向上一面的点数;事件表示“出现偶数点”
2. 对目标进行射击,击中后便停止射击,观察射击的次数;事件表示“射击次数不超 过5 次”
事件之间的关系与运算
事件语言
集合语言
样本空间
事件
的对立事件
事件 或者
分布律:如果记离散型随机变量 所有可能的取值为
值的概率,即事件
的概率为
, 取各个可能
上式称为离散型随机变量 的分布律. 分布律也可以直观的表示成下列表格:
根据概率的性质,分布律中的 应该满足下列条件: 1. 2. 例 某系统有两台机器独立运转. 设第一台与第二台机器发生故障的概率分别是 0. 1 ,0. 2. 以 表示系统中发生故障的机器数,求 的分布律.
随机变量的例子
掷一枚色子,用 记点数;
掷三枚色子,用 记点数之和;
掷一枚硬币,记
为“出现正面”,
为“出现反面”;
变量的取值是随机的,依赖于随机试验的结果
用随机变量来表示事件
设 为一个实数集合,则用
表示一个事件 ,即
例如,某射手射击某个目标,击中计1 分,未中计0 分,则计分 表示一个随机
变量,且“击中”这个事件可以表示为
第二章 随机变量及其分布
Hale Waihona Puke 第六讲 随机变量 离散随机变量
概率论的另一个重要概念是随机变量. 随机变量的引入, 使概率论的研究由个别的 随机事件扩大为随机变量所表征的随机现象的研究.
文都数学基础班概率统计 汤家凤

(4)
若 豸~Ⅳ (〃 ,σ 2),
贝刂P彻
(舀
兰钭
=尸(D)-F(四 )〓
Φ(至 宁
)-Φ (四
〃 云 )°
例题选讲
-、 选择题
1、 设 X1,X2的 审度为 /l←),尼 ←),分 布函数为 Fl←),凡 ←),下 列结论正确的是
]
∶∷
(/)Fl← )+Fz← )为 某随机变量的分布函数;
; (B)£ (jr,+尼 ←)为 某随机变量的密度函攀
ˉ
理
(一 )离 散型
整 网
惊呼 1、 二项分布一若随机变量 /的 分布律为 P(X=付 =C劳 p钅 (1-`)刀忄⑩ ≤乃兰⑷ ,
骨搬靓:
称随机变量X服 从二项分布,记 为X~刀 ⒄,p)。
2 丶
机变量
3 丶
机 变 旦里
( 1 丶
zO16考 研 数 学基础 班 概 率绕艹轱 阜 济义 称随 称随
·
@∈ Ω,总 存在唯一确定的£(@)与 之对应,称 舀为随机变量,若 乡的可能取值为有限个或
可列个,称 £为离散型随机变量,若 乡在某可区间上连续取值,称 £为连绔型随机变量。
∵
2、 分布函数一设ζ为一个随机变量,称 函数F←)=P(舀 ≤对(-∞ <艿 (+∞)为 随机
变量 豸的分布函数。 【注解 1】 分布函数的四个特征为
∴几 」 女厶 缶 2、 (1)/∪ /〓 /,/∩ Z〓 Z; :立 :1j厶 J9}∶i1厶 i厶 i1占
Lj乙
1占 :
3、 (1)Z=(Z-B)0彳 Ⅱ∴ ∶∷|∵ ∷∷《2)(犭 ˉB)0∷彳〓/-^B厶;
(3)/+B=(Ⅱ -B)∪ /′ ∪(B-Z)°
第一章 概率论的基本概念

第一章 概率论的基本概念一、随机事件其运算1.随机试验、样本点和样本空间(1)随机试验随机试验具有如下特点的试验.1、在相同的条件下,试验可以重复进行.2、试验的所有可能结果是预先知道的,并且不止一个.3、每一次试验出现那一个结果事先不能确定. (2)样本点和样本空间随机试验的每一个可能的(不可分解的)结果,称为这个随机试验的一个样本点,记为ω.随机试验的所有样本点组成的集合,称为这个随机试验的样本空间,记为. Ω2.随机事件、基本事件、必然事件和不可能事件在随机试验中,可能发生也可能不发生的事情称为该试验的随机事件,记为A ,B 等. 随机试验的随机事件可以表示为它的一些样本点组成的集合.在一次试验中,若试验结果是随机事件A 中的一个样本点,则称在一次试验中事件A 发生. 只包含一个样本点的事件称为基本事件. 在任何一次试验中都发生的事件,称为必然事件,它就是Ω所表示的事件,因而用Ω表示必然事件.在任何一次试验中都不发生的事件,称为不可能事件,它就是由φ所表示的事件,因而用φ表示不可能事件.3.事件之间的关系和运算 (1)包含关系设A ,B 为二事件,若A 发生必导致B 发生,则称事件A 包含于事件B ,或事件B 包含事件A ,记为B A ⊂.B A ⊂⇔A ∈∀ω必有B ∈ω,见图1—1. (2)相等关系设A ,B 为二事件,若B A ⊂并且A B ⊂,则称A 与B 相等,记为B A =,见图1—2.(3)事件的并设A ,B 为二事件,称事件“A ,B 至少一个发生(A 发生或B 发生)”为A ,B 的并(或和),记为.B A ∪B A ∪}|{B A ∈∈=ωωω或.见图1—3.(4)事件的交设A ,B 为二事件,称事件“A ,B 同时发生(A 发生且B 发生)”为A ,B 的交(或积).记为或B A ∩AB .AB }|{B A ∈∈=ωωω且.见图1—4. (5)事件的差设A ,B 为二事件,称事件“A 发生且B 不发生”为A 减去B 的差,记为B A −.B A − }|{B A ∉∈=ωωω且.见图1—5.(6)互不相容关系设A ,B 为二事件,若A ,B 不能同时发生,称A ,B 互不相容或互斥,记为AB φ=. A ,B 互不相容⇔AB φ=,见图1—6. (7)对立事件设A 为一事件,称事件“A 不发生”为A 的余事件或A 的对立事件,记为A .A =A −Ω,即φ=Ω=+A A A A ,,见图1—7.(8)完备事件组 构成完备事件组,若,,,,21n H H H )( 21j i H H H H H j i n ≠=Ω=++++φ, .换句话说,如果有限个或可数个事件两两不相容,并且“所有事件的和”是必然事件,则称它们构成完备事件组. ,,,,21n H H H 4.事件的运算法则对于任意事件,,有C B A ,, ,,,,21n A A A (1) 交换律 A B B A A B B A ∩∩∪∪==,.(2) 结合律 C B A C B A ∪∪∪∪)()(=;C B A C B A ∩∩∩∩)()(=.(3) 分配律 ;)()()(C A B A C B A ∩∪∩∪∩=)()()(C A B A C B A ∪∩∪∩∪=.() ∪∩∪ ∪∩ ∪∪ ∪∩)()(11n n A A A A A A A =. (4) 对偶律 ,;B A B A B A B A ∪∩∩∪==∩∩ ∩ ∪∪ ∪n n A A 11=; ∪∪ ∪ ∩∩ ∩n n A A 11=.下列关系和运算要熟记:Ω⊂⊂A φ;;B A B A B A ∪∩⊂⊂)(或B B A A B A B A ==⇒⊂∪∩且;A B A ⊂−;φ=−⇒⊂B A B A ;φφ=A ∩;A A =∪φ;φ=Ω;Ω=φ;A B B A ⊂⇒⊂;AB A B A B A −==−∩;)(A B A B A ∪∪=.【例1】写出下列随机试验的样本空间: (1)从袋中任取3个球,记录取球的结果.(2)从袋中不放回地接连取出3个球,记录取球的结果. (3)从袋中有放回地接连取出3个球,记录取球的结果.(4)从袋中不放回地一个一个地取球,直到取得白球为止录取球的结果.【例2】今有3个球、4个盒子.写出下列随机试验的样本空间:(1)将3个球任意地放入4个盒子中去、每个盒子放入的球数不限,记录放球的结果. (2)将3个球放入4个盒子中去,每个盒子至多放入1个球,记录放球的结果.【例3】写出下列随机试验的样本空间: (1)在上任取一点,记录其坐标. )1,0((2)将一尺之捶折成三段,记录三段的长度 (3)在上任取三点,记录三点的坐标.)1,0(【例4】写出下列随机试验的样本空间,用样本点的集合表示所述事件,并讨论它们之间的相互关系.(1)袋中有3个白球和2个黑球,从其中任取2个球,令A 表示 “取出的全是白球”,B 表示“取出的全是黑球”,表示“取出的球颜色相同”, (C i A 2,1=i )表示“取出的2个球中恰有i 个白球”,表示“取出的2个球中至少有1个白球”. D (2)袋中有2个正品和2个次品,从袋中有放回地接连抽取产品3次,每次任取1件,令 ()表示“第次取出的是正品”,i A 3,2,1=i i B 表示“3次都取得正品”. (3)从l,2,3,4这4个数字中,任取—数,取后放回,然后再任取一数.先后取了3次,令A 表示“3次取出的数不超过3”,B 表示“3次取出的数不超过2”,表示“3次取出的数的最大者为3”.C (4)将3个球任意地放入4个盒子中去,令A 表示“恰有3个盒子中各有1球”,B 表示“至少有2个球放入同1个盒子中”.【例5】设为3事件,试用表示下列事件: C B A ,,C B A ,,(1)至少有1个发生. C B A ,, (2)都不发生.C B A ,,(3)不都发生.C B A ,,(4)不多于1个发生. C B A ,,【例6】什么样的事件X 满足下列等式: (1)B A X A X =)()(∪∪∪. (2).B A X A ∪∪=(3). )()(C B C A X AB ∪∩∪∪=二、事件的概率及其性质1.事件概率的定义(1)古典概型满足下列条件的随机试验,称为古典概型.10 有限性:样本点的总数是有限的;20等可能性:所有基本事件是等可能的;①概率的定义:设随机试验为古典概型,样本空间为},,{1n ωω =Ω,A 是一个事件.},,{1r i i A ωω =,则事件的概率为含样本点的个数含样本点的个数Ω==A n r A P )(. ②概率的性质:对于古典概型,事件的概率具有下列性质. 10. 1)(0≤≤A P 20.1)(=ΩP 30有限可加性:若两两互不相容,则n A A A ,,,21 ∑===ni i n i i A P A P 11)()(∪.(2)几何概型满足下列条件的随机试验,称为几何概型.10有限性:样本空间是直线、二维或三维空间中度量(长度、面积或体积)有限的区间或区域.20均匀性:样本点在样本空间上是均匀分布的(可通俗地称为是等可能的) .①概率的定义:在几何概型中,Ω为样本空间,A 是一个事件,定义事件A 的概率)()()(Ω=L A L A P . 其中,分别是)(A L )(ΩL A ,的度量.Ω②概率的性质:对于几何概型,事件的概率具有下列性质. 10. 1)(0≤≤A P 20.1)(=ΩP 30若两两互不相容,则,,,,21n A A A ∑∞=∞==11)()(i i i i A P A P ∪.(3)事件的频率和性质以及概率的统计定义①事件的频率:将试验重复独立地进行次,若其中事件n A 发生了次,则称为A n A n A 在这n 次试验中出现的频数,称比值为n n A /A 在这次试验中出现的频率,记为,即.n )(A f n =)(A n f n n A /②频率的性质:事件的频率有如下性质: 101)(0≤≤A f n . 20.1)(=ΩP 30 若两两互不相容,则m A A A ,,,21 ∑===mi i n m i i n A f A f 11)()(∪.2.概率的公理化定义及性质(1)概率的公理化定义设随机试验E 的样本空间为,以ΩE 的所有随机事件组成的集合(即的一些子集组成的集合)为定义域,定义一个函数(Ω)(A P A 为任意随机事件),即任意一个随机事件A 与一个实数,且满足:)(A P 10.0)(≥A P 20.1)(=ΩP 30 可列可加性:若两两互不相容,则,,,,21n A A A ∑∞=∞==11)()(i i i i A P A P ∪.(2)概率的性质 100)(=φP .20 有限可加性:若两两互不相容,则.n A A A ,,,21 ∑===ni in i iA P A P 11)()(∪30可减性:如果B A ⊂,则)()()(A P B P A B P −=−,)()(B P A P ≤⇒. (无条件等式)()()(AB P B P A B P −=−) 40对于任意事件A ,有1)(≤A P . 50一般加法公式:==)(1∪n i i A P ∑=ni i A P 1)(∑≤<≤−nj i j i A A P 1)( ++∑≤<<≤nk j i k j i A A A P 1)()()1(211n n A A A P −−+【例7】袋中有3个白球及5个黑球,(1)从袋中任取4个球,求取得2个白球及2个黑球的概率.(2)从袋中不放回地接连取出4个球,求取得2个白球及2个黑球的概率. (3)从袋中有放回地接连取出 4个球,求取得2个白球及2个黑球的概率.【例8】设有个人,每个人都等可能地被分配到个房间中的任一间(),求下列事件的概率:n N N n < 事件:某指定的间房中各有1个人. 1A n 事件:恰有间房各有1个人. 2A n 韦件:某指定的房间中有个人.3A k 事件:当4A N n =时,恰有一间房空着.【例9】编号为1,2,3,4,5,6,7,8,9的车皮随机地发往三个地区,和的各2,3和4节,求发往同一地区的车皮编号相邻的概率. 1E 2E 3E【例10】从0,1,2,…,9这10个数字中任取1个,取后放回,先后取了6个数字,求下列事件的概率:事件:6个数字全不相同. 1A 事件:不含0与9. 2A 事件:0恰好出现2次. 3A 事件:至少出现2个0.4A 事件:6个数字中最大的是6. 5A 事件:6个数字的总和是20.6A【例11】有5名插班生,其中有3名男生、2名女生.现将他们按每班1人任意地分配到编号为1—5的5个班中去,求下列事件的概率:事件:3名男生被分到班号相连的3个班中.1A 事件:至少有2个男生被分到的班号或2个女生被分到的班号相连. 2A【例12】从n 双尺码不同的鞋子中任取r 2 (n r ≤2)只,求下列事件的概率: 事件:所取1A r 2只鞋子中只有2只成双 事件:所取2A r 2只鞋子中至少有2只成双.事件:所取3A r 2只鞍子恰成r 双.【例13】在线段AB 上任取一点,该点将AB 分成两段,求下列事件的概率: 事件:其中一段大于另一段的倍. 1A m 事件:其中每一段都小于另一段的倍.2A m【例14】设只1个泊位的码头有甲、乙两艘船停靠,2船各自可能在1昼夜的任何时刻到达.设两艘船停靠的时间分别为1小时和2小时,求下列事件的概率: 事件:码头空闲超过2小时.1A 事件:一艘船要停靠必须等待一段时间. 2A【例15】在线段上任取3个点,求下列事件的概率: AC 321,,A A A 事件:位于与之间.1B 2A 1A 1A 事件:能构成1个三角形. 2B 321,,AA AA AA【例16】若,5.0)(=A P 4.0)(=B P ,3.0)(=−B A P ,求和)(B A P ∪)(B A P ∪.【例17】对于任意两个互不相容的事件A 与B ,以下等式中只有一个不正确,它是: (A) ;)()(A P B A P =−(B) )()(A P B A P =−1)(−+B A P ∪; (C) )()()(B P A P B A P −=−; (D) ; (E) )())()((A P B A B A P =−∩∪)()()(B A P A P B A P ∪−=−.三、条件概率和乘法公式1.条件概率的定义及性质(1)条件概率的定义设为两个事件,,则称B A ,0)(>B P )()()|(B P AB P B A P =为B 发生的条件下A 的条件概率.(2)条件概率的性质 条件概率满足: 10. 0)|(≥B A P 20.1)|(=ΩB P 30可列可加性:若两两互不相容,则,,,,21n A A A ∑∞=∞==11)|()|(i i i i B A P B A P ∪.2.关于条件概率的三个定理(1)乘法公式若,则0)(>A P )()()(A B P A P AB P =. 推广 若,则0)(21>n A A A P )()()()(12112121−=n n n A A A A P A A P A P A A A P .(2)全概率公式设是样本空间的一个划分(或称为完备事件组),即两两不交:n B B B ,,,21 Ωn B B B ,,,21 j i B B j i ≠=,φ,且Ω=n B B B ∪ ∪∪21.则∑==ni i i B P B A P A P 1)()|()(.(3)贝叶斯公式设是样本空间Ω的一个划分,若事件n B B B ,,,21 A 满足:,则有0)(>A P n i B P BA PB P B A P A B P nj j ji i i ,,2,1,)()|()()|()|(1==∑=.)(i B P (),通常叫先验概率.,(n i ,,2,1 =)|(A B P i n i ,,2,1 =),通常称为后验概率.如果我们把A 当作观察的“结果”,而理解为“原因”,则贝叶斯公式反映了“因果”的概率规律,并作出了“由果朔因”的推断.n B B B ,,,21【例18】在3重努利试验中,设5.0)(=A P ,若已知A 至少出现1次,求A 至少出现1次的概率.【例19】口袋个装有个白球、个黑球,一次取出球,发现都是同一颜色的球,求它们都是黑球的概率. 12−n n 2n【例20】假设一个人在一年内患感冒的次数X 服从参数为5的泊松分布;正在销售的一种药品A 对于75%的人可以将患感冒的次数平均降低到3次,而对于25%的人无效.现在有某人试用此药一年,结果在试用期患感冒两次,试求此药有效的概率α.【例21】对产品作抽样检验时,每100件为一批,逐批进行.对每批检验时,从其中任取1件作检查,如果是次品,就认为这批产品不合格;如果是合格品,则再检查下件.检验过的产品不放回.如此连续检查5件.如果检查5件产品都是合格品,则认为这批产品合格而被接受.假定一批产中有5%是次品,求这批产品被接受的概率.【例22】加工零件需要经过两道工序,第—道工序出现合格品的概率为0.9,出现次品的概今为0.1第一道工序加工出来的合格的,在第二道工序中出现合格品的概率为0.8,出现次品的概率为0.2;第一道工序加工出来的次品,在第二道工序出现次品或出现废品的概率都是0.5.分别求经过两道工序加工出来的零件是合格品、次品、废品的概率.【例23】在某工厂中有甲、乙、丙3台机器生产同样的产品,它们的产量各占25%,35%,40%,并且在各自的产品中.废品各占5%,4%,2%,从产品中任取1件,求它是废品的概率.若取出的是废品,分别求它是甲、乙、丙机器生产的概率.【例24】乒乓球盒内有12个球,其中9个是新球.第一次比赛时任取3个使用,用后放回.第二次比赛时再任取3个球,求此3个球全是新球的概率.若第二次取出的3个球全是新球,求第一次取出使用的3个球也是新球的概率.【例25】袋中装有5个白球和2个黑球,从中任取5个放入一个空袋中.再从这个袋的5个球做任取3个球放入另一个空袋个.最后从第三个袋中任取1球,求从第三个袋中取出白球的概率.若从第三个袋取出的是白球,分别求从第一个袋中取出放入第二个袋的5个球全是白球的概率、从第二个袋中取出放入第三个袋的3个球全是白球的概率.四、事件的独立性1.二事件的独立性定义 设为二事件,若B A ,)()()(B P A P AB P =,则称相互独立. B A , 性质 若,则相互独立的充要条件是)0(>A P B A ,)()|(B P A B P =. 定理 若相互独立,则B A ,A 与B ,A 与B ,A 与B 均独立. 2.三个或三个以上事件的独立性(1)三个事件相互独立 设为三个事件,若满足: C B A ,,)()()(B P A P AB P =; )()()(C P A P AC P =;)()()(C P B P BC P =;)()()()(C P B P A P ABC P =,则称相互独立,简称独立.C B A ,,C B A ,,若只满足上面的前三个式子,称两两独立.两两独立,未必相互独立. C B A ,,C B A ,,(2)个事件相互独立 如果n 个事件满足:n n A A A ,,,21 )()()(j i j i A P A P A A P =, n j i ≤<≤1, 共个等式; 2nC )()()()(k j i k j i A P A P A P A A A P =, n k j i ≤<<≤1 共个等式; 3nC … … … … … … … … … … … … … … … … … …)()()()(2121n n A P A P A P A A A P = 共个等式 nn C 这等式成立,则称相互独立,简称独立.1232−−=+++n C C C n nn n n n A A A ,,,21 n A A A ,,,21 若相互独立,是中的个事件,则相互独立.n A A A ,,,21 k i i i A A A ,,,21 n A A A ,,,21 k k i i i A A A ,,,21若相互独立,将任意n A A A ,,,21 m )1(n m ≤≤个事件换成它的对立事件后,所得个事件仍独立.n 若相互独立,则.n A A A ,,,21 ∏==−−=ni in i iA P A P 11))(1(1)(∪3.独立试验序列概型贝努利试验 对一个试验E ,如果只考虑两个结果A 和A ,且,p A P =)(q p A P =−=1)(,则称E 为贝努利试验.n 重贝努利试验 将贝努利试验E 重复独立地做次,称为n 重贝努利试验.n 二项概率公式 在n 重贝努利试验中,若用表示在n 次试验中k n A ,A 出现次,则k kn k k n k n q p C A P −=)(,,,n k ,,1,0 =p q −=1.【例26】设有两门高射炮,每—门击中飞机的概率都是0.6,求同时射击一发炮弹能击中飞机的概率.若欲以99%的概率击中飞机,求至少需要多少门高射炮同时射击.【例27】今有甲、乙两名射手轮流对同一目标进行射击,甲命中的概率为,乙命中的概率为,甲先射,谁先命中谁得胜,分别求甲、乙获胜的概率. 1p 2p【例28】甲、乙二人进行下棋比赛,假设每局甲胜的概率为α,乙胜的概率为β,且1=+βα,在每局比赛中谁获胜谁得1分.如果谁的积分多于对方2分,谁就获得全场的胜利,分别求甲、乙二人获得全场胜利的概率.【例29】检查产品质量时,从其中连续抽查若干件,如果废品不超过2件,则认为这批产品合格而被接收.现有一大批产品,其废品率为0.1. (1)若连续抽查10件.求这批产品被接收的概率.(2)为使这批产品被接收的概率不超过0.9.应至少抽查多少件产品.【例30】保险公司为某年龄段的人设计一项人寿保险,投保人在1月1日向保险公司交纳保险费10元,1年内若投保人死亡,家属可向保险公司领取5000元,已知在1年内该年龄段的人的死亡率为0.0005,(1)若有10000人投保,水保险公司获利不少于50000元的概率. (2)若有7000人投保,求保险公司亏损的概率.。
曹显兵.概率论讲义

第一讲 随机事件与概率考试要求1. 了解样本空间的概念, 理解随机事件的概念, 掌握事件的关系与运算.2. 理解概率、条件概率的概念, 掌握概率的基本性质, 会计算古典型概率和几何型概率, 掌握概率的加法公式、减法公式、乘法公式、全概率公式, 以及贝叶斯公式.3. 理解事件独立性的概念, 掌握用事件独立性进行概率计算;理解独立重复试验的概率, 掌握计算有关事件概率的方法. 一、古典概型与几何概型1.试验,样本空间与事件.2.古典概型:设样本空间Ω为一个有限集,且每个样本点的出现具有等可能性,则 基本事件总数中有利事件数A A P =)(3.几何概型:设Ω为欧氏空间中的一个有界区域, 样本点的出现具有等可能性,则、体积)Ω的度量(长度、面积、体积)A的度量(长度、面积=)(A P【例1】 一个盒中有4个黄球, 5个白球, 现按下列三种方式从中任取3个球, 试求取出的球中有2个黄球, 1 个白球的概率. (1) 一次取3个;(2) 一次取1 个, 取后不放回; (3) 一次取1个, 取后放回.【例2 】从 (0,1) 中随机地取两个数,试求下列概率: (1) 两数之和小于;(2) 两数之和小于1且其积小于163. 一、 事件的关系与概率的性质1. 事件之间的关系与运算律(与集合对应), 其中特别重要的关系有: (1) A 与B 互斥(互不相容) ⇔ Φ=AB (2) A 与B 互逆(对立事件) ⇔ Φ=AB ,Ω=B A Y(3) A 与B 相互独立⇔ P (AB )=P (A )P (B ).⇔ P (B|A )=P (B ) (P (A )>0). ⇔(|)(|)1P B A P B A += (0<P (A )<1).⇔P (B|A ) =P (B|A ) ( 0 < P (A ) < 1 )注: 若(0<P (B )<1),则,A B 独立⇔ P (A|B )=P (A ) (P (B )>0)⇔ 1)|()|(=+B A P B A P (0<P (B )<1). ⇔ P (A |B )=P (A |B ) (0<P (B )<1) ⇔ P (A |B )=P (A |B ) (0<P (B )<1)(4) A, B, C 两两独立 ⇔ P (AB )=P (A )P (B );P (BC )=P (B )P (C ); P (AC )=P (A )P (C ).(5) A, B, C 相互独立 ⇔ P (AB )=P (A )P (B );P (BC )=P (B )P (C ); P (AC )=P (A )P (C ); P (ABC )=P (A )P (B )P (C ).2. 重要公式 (1) )(1)(A P A P -=(2))()()(AB P A P B A P -=-(3) )()()()(AB P B P A P B A P -+=Y)()()()()()()()(ABC P AC P BC P AB P C P B P A P C B A P +---++=Y Y(4) 若A 1, A 2,…,A n 两两互斥, 则∑===ni i ni iA P AP 11)()(Y .(5) 若A 21,A , …, A n 相互独立, 则 )(1)(11in i n i iA P A P ∏==-=Y )](1[11ini A P ∏=--=.∏===ni i n i i A P A P 11)()(I .(6) 条件概率公式: )()()|(A P AB P A B P =(P (A )>0)【例3】 已知(A +B )(B A +)+B A B A +++=C, 且P ( C )=31, 试求P (B ). 【例4】 设两两相互独立的三事件A, B, C 满足条件: ABC =Φ, P (A )=P (B )=P (C )<21,且已知9()16P A B C =U U , 则P (A )= .【例5】 设三个事件A 、B 、C 满足P (AB )=P (ABC ), 且0<P (C )<1, 则 【 】(A )P (A U B|C )=P (A|C )+ P (B|C ). (B )P (A U B|C )=P (A U B ). (C )P (A U B|C )=P (A|C )+ P (B|C ). (D )P (A U B|C )=P (A U B ). 【例6】 设事件A, B, C 满足条件: P (AB )=P (AC )=P (BC )18=, P (ABC )=116, 则事件A, B, C 中至多一个发生的概率为 .【例7】 设事件A, B 满足 P (B| A )=1则【 】(A ) A 为必然事件. (B ) P (B|A )=0.(C ) A B ⊃. (D ) A B ⊂.【例8】 设A, B, C 为三个相互独立的事件, 且0<P (C )<1, 则不独立的事件为 【 】 (A )B A +与C . (B ) AC 与C(C )B A -与C (D ) AB 与C【例9】 设A ,B 为任意两个事件,试证P (A )P (B )-P (AB ) ≤ P (A -B ) P (B -A ) ≤41. 三、乘法公式,全概率公式,Bayes 公式与二项概率公式 1. 乘法公式:).|()|()|()()().|()()|()()(1212131212121212121-===n n n A A A A P A A A P A A P A P A A A P A A P A P A A P A P A A P ΛΛΛ2. 全概率公式:11()(|)(),,,.i i i j i i i P B P B A P A A A i j A ∞∞====Φ≠=Ω∑U 3.Bayes 公式:11(|)()(|),,,.(|)()j j j i j i i iii P B A P A P A B A i j A P B A P A ∞∞====Φ≠=Ω∑U A 4.二项概率公式:()(1),0,1,2,,.k kn k n n P k C P P k n -=-=L ,【例10】 10件产品中有4件次品, 6件正品, 现从中任取2件, 若已知其中有一件为次品,试求另一件也为次品的概率.【例11】设10件产品中有3件次品, 7件正品, 现每次从中任取一件, 取后不放回.试求下列事件的概率. (1) 第三次取得次品; (2) 第三次才取得次品;(3) 已知前两次没有取得次品, 第三次取得次品; (4) 不超过三次取到次品;【例12】 甲, 乙两人对同一目标进行射击,命中率分别为和, 试在下列两种情形下, 分别求事件“已知目标被命中,它是甲射中”的概率.(1)在甲, 乙两人中随机地挑选一人, 由他射击一次; ( 2)甲, 乙两人独立地各射击一次.【例13】设有来自三个地区的各10名、15名和25名考生的报名表,其中女生的报名表分别为3份,7份和5份. 随机地取一个地区的报名表,从中先后任意抽出两份. (1) 求先抽到的一份是女生表的概率p;(2)已知后抽到的一份是男生表,求先抽到的一份是女生表的概率q .第二讲 随机变量及其分布考试要求1. 理解随机变量及其概率分布的概念.理解分布函数(()()F x P X x =≤) 的概念及性质.会计算与随机变量有关的事件的概率.2. 理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、几何分布、超几何分布、泊松(Poisson )分布及其应用.3. 了解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.4. 理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布2(,)N μσ、指数分布及其应用,其中参数为(0)λλ>的指数分布的概率密度为,0,()0,0.x e x f x x λλ-⎧>=⎨≤⎩5. 会求随机变量函数的分布. 一、分布函数1.随机变量:定义在样本空间上,取值于实数的函数称为随机变量. 2.分布函数:∞+-∞=<<),≤ ()(x x X P x FF (x )为分布函数 ⇔(1) 0≤F (x ) ≤1(2) F (x )单调不减(3) 右连续F (x+0)=F (x ) (4)1)(,0)(=+∞=-∞F F3.离散型随机变量与连续型随机变量(1) 离散型随机变量∑∞=====1i 10,≥,,,2,1,)(i i i i p p n i p x X P ΛΛ分布函数为阶梯跳跃函数.(2) 连续型随机变量⎰∞-=xtt f x F d )( )(f (x )为概率密度 ⇔ (1) f (x )≥0, (2) ⎰+∞∞- f (x )1d =x⎰=≤≤=<<bax f b X a P b X a P )()()(4.几点注意【 例1 】 设随机变量X 的分布函数为0,1,57(),11,16161, 1.x F x x x x <-⎧⎪⎪=+-≤<⎨⎪≥⎪⎩则2(1)P X== .【 例2 】 设随机变量X 的密度函数为 f (x ), 且 f (-x ) = f (x ), 记()X F x 和()X F x -分别是X 和X -的分布函数, 则对任意实数x 有 【 】 (A )()()X X F x F x -=. (B )()()X X F x F x -=-.(C )()1()X X F x F x -=-.(D )()2()1X X F x F x -=-.【 例3 】 设 随机变量X 服从参数为0λ>的指数分布, 试求随机变量 Y= min { X, 2 } 的分布函数【 例4 】设某个系统由 6 个相同的元件经两两串联再并联而成, 且各元件工作状态相互独立 每个元件正常工作时间服从参数为 0λ>的指数分布, 试求系统正常工作的时间 T 的概率分布.【 例5】设随机变量X的概率密度为⎩⎨⎧<-=.,0,1|||,|1)(其他x x x f 试求(1)X 的分布函数)(x F ; (2)概率)412(<<-X P .二、 常见的一维分布(1) 0-1分布:1,0,)1()(1 =-==-k p p k XP k k .(2) 二项分布n k p p C k X P p n B k n k k n ,,1,0,)1()(:),(Λ=-==- .(3) Poisson 分布)(λP :Λ,2,1,0,0>,e !)(===-k k k XP k λλλ.(4) 均匀分布⎪⎩⎪⎨⎧-=.,<<1)(:),(其他0,, b x a a b x f b a U(5) 正态分布N (μ,σ2):0,,eπ21)(222)(+∞<<∞->=--μσσσμ x x f(6) 指数分布⎩⎨⎧=-. ,0>0,,e )(:)(其他x x f E x λλλ >0λ.(7) 几何分布.2110,)1()(:)(1Λ,,k ,<p<p p k XP p G k =-==- (8) 超几何分布H (N,M,n ): },min{,,1,0,)(M n k C C C k X P nNkn M N k M Λ===-- . 【例6】某人向同一目标独立重复射击,每次射击命中目标的概率为p (0<p<1), 则此人第4次射击恰好第2次命中目标的概率为【 】 (A ) 2)1(3p p -.(B ) 2)1(6p p -.(C ) 22)1(3p p-. (D ) 22)1(6p p-.【例7】 设X ~N (μ, σ2), 则 P ( X ≤1+μ) 【 】 (A ) 随μ的增大而增大 . (B ) 随μ的增大而减小. (C ) 随σ的增大而不变 . (D ) 随σ的增大而减小. 【例8】 设X ~N (μ, σ2), ()F x 为其分布函数,0μ<,则对于任意实数a ,有 【 】(A ) ()() 1.F a F a -+> (B ) ()() 1.F a F a -+= (C ) ()() 1.F a F a -+< (D ) 1()().2F a F a μμ-++=【例9】 甲袋中有1个黑球,2个白球,乙袋中有3个白球,每次从两袋中各任取一球交换放入另一袋中,试求交换n 次后,黑球仍在甲袋中的概率.三、 随机变量函数的分布: 1. 离散的情形2. 连续的情形3. 一般的情形 【例10】 设随机变量X 的概率密度为⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤<<-=.,0,20,41,01,21)(其他x x x f X令),(,2y x F X Y=为二维随机变量(X, Y )的分布函数.(Ⅰ) 求Y 的概率密度)(y f Y ;(Ⅱ))4,21(-F . 第三讲 多维随机变量及其分布考试要求1. 理解多维随机变量的概念,理解多维随机变量的分布的概念和性质,理解二维离散型随机变量的概率分布、边缘分布和条件分布,理解二维连续型随机变量的概率密度、边缘密度和条件密度.会求与二维随机变量相关事件的概率.2. 理解随机变量的独立性及不相关的概念,掌握随机变量相互独立的条件.3. 掌握二维均匀分布,了解二维正态分布的概率密度,理解其中参数的概率意义 .4. 会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布. 一、 各种分布与随机变量的独立性 1. 各种分布(1)一般二维随机变量 F (x, y )=P{ X x, Y y }, x(−, +), y (−, +)的性质 F (x, y )为联合分布函数 ⇔ 1) 0 ≤F (x, y )≤1 , x(−, +),, y(−, +);2) F (−, y )= F (x, −)=0, F (+,+)=1;3) F (x, y )关于x, y 均为单调不减函数; 4) F (x, y )关于x, y 均分别右连续.(2)二维离散型随机变量的联合概率分布、边缘分布、条件分布联合概率分布律 P{X = x i , Y = y j } = p i j , i, j =1, 2 ,, p i j0,1=∑∑ijji p.边缘分布律 p i = P{X = x i }=∑jji p, i =1, 2 , ,pj= P{ Y = y j }=∑iji p, j =1, 2 , ,条件分布律 P{X = x i |Y = y j } =jj i p p •, P{ Y = y j | X = x i } =•i j i p p .二维连续型随机变量的联合概率密度、边缘密度和条件密度f (x, y )为联合概率密度 ⇔ 1f (x, y )≥0,21=⎰⎰∞+∞-∞+∞- ),(dxdy y x f .设( X, Y )~ f (x, y )则分布函数: ⎰⎰∞-∞-=xydxdy y x f y x F ),(),(;边缘概率密度:⎰∞+∞-= ),()(dy y x f x f X , ⎰∞+∞-= ),()(dx y x f x f Y .条件概率密度:)(),()|(|y f y x f y x f Y Y X =, )(),()|(|x f y x f x y f X X Y =.⎰⎰=∈Ddxdy y x f D Y X P ),(}),{(.),(),(yx y x F y x f ∂∂∂=22. 随机变量的独立性和相关性X 和Y 相互独立 F (x, y )= F X (x )F Y (y );p i j = p ipj(离散型)f (x, y )= f X (x )f Y (y ) (连续型)【注】1 X 与Y 独立, f (x ), g (x )为连续函数 f (X )与g (Y )也独立.2若X 1, , X m , Y 1, , Y n 相互独立, f , g 分别为m 元与 n 元连续函数f (X 1, , X m )与g (Y 1,, Y n )也独立.3常数与任何随机变量独立.3. 常见的二维分布(1)二维均匀分布 (X, Y )~ U (D ), D 为一平面区域. 联合概率密度为⎪⎩⎪⎨⎧∈=.,.),(,)(),(其他01D y x D S y x f (2)二维正态分布 (X, Y )~ N (μ1 , μ2, 12 ,22, ), − <μ1, μ2 < +,1>0,2> 0, | | <1. 联合概率密度为221121ρσπσϕ-=),(y x ⎥⎥⎦⎤⎢⎢⎣⎡-+------22222121212122121σμσσμμρσμρ)())(()()(y y x x e性质:( a ) X ~ N (μ1,12 ), Y ~ N (μ2,22 )( b ) X 与Y 相互独立 X Y=0 , 即 X 与Y 不相关.( c ) C 1X+C 2Y ~ N (C 1 μ1+ C 2 μ2, C 1212 + C 2222+2C 1C 2 12).( d ) X 关于Y=y 的条件分布为正态分布: )](),([22122111ρσμσσρμ--+y N 【 例1 】 设A ,B 为事件,且P (A )=41, P (B|A )=21, P (A|B )=12令 X =⎩⎨⎧否则发生若,0,1A , Y =⎩⎨⎧否则发生若,0B ,1(1) 试求(X, Y )的联合分布律; (2)计算Cov ( X, Y ); (3) 计算 22(2,43)Cov XY +.【 例2 】设随机变量X 与Y 相互独立,下表列出了二维随机变量(X, Y )联合分布律及关于X 和关于Y 的边缘分布律中的部分数值, 试将其余数值填入表中的空白处.YX1y2y 3y⋅==i i p x X P }{1x812x81【 例3 】设随机变量X 与Y 独立同分布, 且X 的概率分布为313221PX 记{}{}Y X V Y X U,m in ,,m ax ==.(I )求(U, V )的概率分布;(II )求(U, V )的协方差Cov (U, V ).【详解】(I )易知U, V 的可能取值均为: 1, 2. 且{}{}})1,m in ,1,(m ax )1,1(=====Y X Y X P V U P)1,1(===Y X P 94)1()1(====Y P X P , {}{}0})2,m in ,1,(m ax )2,1(======Y X Y X P V U P , {}{}})1,m in ,2,(m ax )1,2(=====Y X Y X P V U P)2,1()1,2(==+===Y X P Y X P )2()1()1()2(==+===Y P X P Y P X P 94=, {}{}})2,m in ,2,(m ax )2,2(=====Y X Y X P V U P)2()2()2,2(======Y P XP Y X P 91=, 故(U, V )的概率分布为:(II ) 9122941209411)(⨯⨯+⨯⨯++⨯⨯=UV E 916=, 而 914952941)(=⨯+⨯=U E , 910912981)(=⨯+⨯=V E . 故 814910914916)()()(),(=⨯-=-=V E U E UV E V U Cov . 【 例4】 设随机变量X 在区间(0, 1)上服从均匀分布, 在)10(<<=x x X 的条件下,随机变量Y 在区间),0(x 上服从均匀分布, 求(Ⅰ)随机变量X 和Y 的联合概率密度;(Ⅱ)Y 的概率密度; (Ⅲ)概率}1{>+Y XP .二、 二维(或两个)随机变量函数的分布 1.分布的可加性(1)若X~B (m, p ), Y~B (n, p ), 且X 与Y 相互独立,则 X+Y ~ B (m+n, p ). (2)若X~P (λ1), Y~P (λ2), 且X 与Y 相互独立,则 X+Y ~ P (λ1+λ2).(3)若X~N (211,μσ), Y~P (222,μσ), 且X 与Y 相互独立,则 X+Y ~ N (221212,μμσσ++).一般地,若X i ~N (2,i i μσ), i =1, 2, …, n, 且X 1,X 2,…,X n 相互独立,则Y=C 1X 1+C 2X 2+…+C n X n +C 仍服从正态分布,且此正态分布为2211(,),n ni i i i i i N C C Cμσ==+∑∑ 其中C 1,…,C n 为不全为零的常数.2. 两个随机变量函数的分布. 【例5】 设X 与Y 相互独立, 且~(1),~(2),X P Y P 则{max(,)0}______;P X Y ≠={min(,)0}__________.P X Y ≠=【 例6】 设X 与Y 相互独立, 其密度函数分别为:1,01,()X x f x <<⎧=⎨⎩0,其他. ,0,()y Y e y f x -⎧>=⎨⎩0,其他.求Z =2X +Y 的概率密度.【 例7】设二维随机变量(X, Y )的概率密度为2,01,01,(,)0,x y x y f x y --<<<<⎧=⎨⎩其它.(I )求{}Y X P 2>;(II )求Z =X+Y的概率密度)(z f Z .【详解】(I ){}Y X P2>⎰⎰>=yx dxdy y x f 2),(⎰⎰--=12210)2(ydx y x dy 247=. (II )方法一: 先求Z 的分布函数: ⎰⎰≤+=≤+=zy x Z dxdy y x f Z Y X P z F ),()()(当z<0时, 0)(=z F Z ; 当10<≤z 时, ⎰⎰=1),()(D Z dxdy y x f z F ⎰⎰---=yz zdx y x dy 00)2(3231z z -=;当21<≤z 时, ⎰⎰-=2),(1)(D Z dxdy y x f z F ⎰⎰-----=111)2(1yz z dx y x dy3)2(311z --=; 当2≥z时, 1)(=z F Z .故Z =X+Y的概率密度)(z f Z =)(z F Z '⎪⎩⎪⎨⎧<≤-<<-=.,0,21,)2(,10,222其他z z z z z方法二:⎰∞+∞--=dx x z x f z f Z ),()(,⎩⎨⎧<-<<<---=-.,0,10,10),(2),(其他x z x x z x x z x f ⎩⎨⎧+<<<<-=.,0,1,10,2其他x z x x z 当z ≤0 或z ≥ 2时, 0)(=z f Z ;当01z <<时, ⎰-=z Z dx z z f 0)2()()2(z z -=;当21<≤z 时, ⎰--=11)2()(z Z dx z z f 2)2(z -=;故Z =X+Y的概率密度)(z f Z ⎪⎩⎪⎨⎧<≤-<<-=.,0,21,)2(,10,222其他z z z z z【例8】 设随机变量X 与Y 相互独立, X 有密度函数f (x ), Y 的分布律为 ()i i P Y a p ==, i =1,2. 试求Z =X +Y 的概率分布.第四讲 数字特征与极限定理考试要求1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念, 会运用数字特征的基本性质, 并掌握常用分布的数字特征.2.会根据随机变量X 的概率分布求其函数)(X g 的数学期望)(X Eg ;会根据随机变量X 和Y 的联合概率分布求其函数),(Y X g 的数学期望),(Y X Eg .3.了解切比雪夫不等式.4.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量的大数定律)5.了解棣莫弗—拉普拉斯定理(二项分布以正态分布为极限分布)和列维—林德伯格定理(独立同分布的中心极限定理);(经济类还要求)会用相关定理近似计算有关随机事件的概率 一、 数学期望与方差(标准差) 1. 定义(计算公式)离散型{}i i p x X P ==, ∑=iii px X E )(连续型)(~x f X , xx xf X E d )()(⎰+∞∞-=方差:[]222)()())(()(X E X E X E X E X D -=-=标准差:)(X D ,2. 期望的性质:1° )())((,)(X E X E E C C E == 2° )()()(2121Y E C X E C Y C X C E +=+ 3° )()()(Y E X E XY E ,Y X =则独立与若4° [])()(≤)(222Y E X E XY E3. 方差的性质:1° 0))((,0))((,0)(===X D D X E D C D 2°)()()(Y D X D Y X D Y X +=±相互独立,则与3° )()(2121X D C C X C D =+ 4° 一般有 ),Cov(2)()()(Y X Y D X D Y XD ±+=±)()(2)()(Y D X D Y D X D ρ±+=5°2()()C D X E X <-, )(X E C ≠【例1】设试验成功的概率为43, 失败的概率为41, 独立重复试验直到成功两次为止. 试求试验次数的数学期望. 【例2】 n 片钥匙中只有一片能打开房门, 现从中任取一片去试开房门, 直到打开为止. 试在下列两种情况下分别求试开次数的数学期望与方差: (1)试开过的钥匙即被除去; (2)试开过的钥匙重新放回.【例3】 设随机变量X 的概率密度为⎪⎩⎪⎨⎧≤≤=.,0,0,2cos 21)(其他πx x x f 对X 独立地重复观察4次, 用Y 表示观察值大于3π的次数, 求2Y 的数学期望.【例4】 设有20人在某11层楼的底层乘电梯上楼, 电梯在中途只下不上, 每个乘客在哪一层(2-11层)下是等可能的, 且乘客之间相互独立, 试求电梯须停次数的数学期望. 二、随机变量函数的期望(或方差) 1、一维的情形 )(X g Y =离散型:{}i i P Xx p == , ∑=ii ipx g Y E )()(连续型:~()X f x x x f x g Y E d )()()(⎰+∞∞-=2、二维的情形 ),(Y X g Z =离散型{}iji i p y Y x X P Y X ===,~),(,∑∑=jij jiipy x g Z E ),()(连续型),(~),(y x f Y X , y x y x f y x g Z E d d ),(),()(⎰⎰+∞∞-+∞∞-=【例5】 设X 与Y 独立且均服从N (0,1),求Z =22Y X + 的数学期望与方差.【例6】设两个随机变量X 与Y 相互独立且均服从N (0,21), 试求Z =|X -Y |的数学期望与方差.三 、协方差,相关系数与随机变量的矩 1、重要公式与概念:协方差 []))()((()Cov(Y E Y X E X E X,Y --=相关系数 )()()Cov(Y D X D X,Y XY =ρ)(k X E k 阶原点矩[]kX E X E k ))((- 阶中心矩2、性质: 1°),(Cov ),(Cov X Y Y X =2° ),(Cov ),(Cov Y X ab bY aX = 3° ),(Cov ),(Cov ),(Cov 2121Y X Y X Y X X +=+4° |(,)|1X Y ρ≤5° 1)(1),(=+=⇔=b aX Y P Y X ρ )>0(a 1)(1),(=+=⇔-=b aX Y P Y X ρ )<0(a 3、下面5个条件互为充要条件:(1)0),(=Y X ρ(2)0)Cov(=X,Y (3))()()(Y E X E XY E = (4))()()(Y D X D Y X D +=+ (5))()()(Y D X D Y X D +=- 【例7】设)2(,,,21>n X X X n Λ为独立同分布的随机变量, 且均服从)1,0(N , 记∑==ni iX n X 11,.,,2,1,n i X X Y i i Λ=-= 求:(I ) i Y 的方差n iY D i ,,2,1),(Λ=;(II ) 1Y 与n Y 的协方差),(1n Y Y Cov ; (III ) }.0{1≤+n Y Y P四、极限定理1. 切比雪夫不等式{}{}()()|()|,|()|<1-22D X D X P XE X P X E X εεεε-≥≤-≥或2. 大数定律3. Poisson 定理4. 中心极限定理列维—林德伯格定理: 设随机变量X 1,X 2,…,X n ,…相互独立同分布, 且2(),(),i i E X D X μσ== 1,2,,,i n =L L, 则对任意正数x ,有2-2lim dntixnX nP x tμ-∞→∞⎧⎫-⎪⎪⎪≤=⎬⎪⎪⎪⎩⎭∑⎰棣莫弗—拉普拉斯定理: 设~(,),nB n pη(即X1,X2,…,X n,…相互独立, 同服从0一1分布)则有22lim dtxnP x t--∞→∞⎧⎫⎪≤=⎬⎪⎭⎰.【例8】银行为支付某日即将到期的债券须准备一笔现金,已知这批债券共发放了500张,每张须付本息1000元,设持券人(1人1券)到期到银行领取本息的概率为.问银行于该日应准备多少现金才能以%的把握满足客户的兑换.【分析】若X为该日到银行领取本息的总人数,则所需现金为1000X,设银行该日应准备现金x元.为使银行能以%的把握满足客户的兑换,则 P(1000X≤x)≥.【详解】设X为该日到银行领取本息的总人数,则X~B(500,)所需支付现金为1000X,为使银行能以%的把握满足客户的兑换,设银行该日应准备现金x元,则 P(1000 X≤x)≥.由棣莫弗—拉普拉斯中心极限定理知:(1000)()1000xP X x P X≤=≤5000.4xP⎛⎫-⨯⎪=≤=≤0.999(3.1).ΦΦ≈≥=即3.1,≥得 x≥ .因此银行于该日应准备234000元现金才能以%的把握满足客户的兑换.第五讲数理统计考试要求1. 理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念.其中样本方差定义为.)(11212XXnSini--=∑=2. 了解2χ分布、t分布和F分布的概念及性质,了解分位数的概念并会查表计算.3. 了解正态总体的常用抽样分布.4. 理解经验分布函数的概念和性质, 会根据样本值求经验分布函数.5. 理解参数的点估计、估计量与估计值的概念.6. 掌握矩估计法(一阶、二阶矩)和最大似然的估计法.7. 了解估计量的无偏性、有效性(最小方差性)和一致性(相合性)的概念,并会验证估计量的无偏性.8. 理解区间估计的概念,会求单个正态总体的均值和方差的置信区间,会求两个正态总体的均值差和方差比的置信区间.9. 理解显著性检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的 两类错误.10. 了解单个及两个正态总体的均值和方差的假设检验 一、样本与抽样分布1. 总体、个体与简单随机样本:2. 常用统计量:1° 样本均值 i ni X nX ∑==112° 样本方差 212)(11X X n S i ni --=∑=3° 样本标准差: S =4° 样本k 阶原点矩 11,1,2,n kk i i A X k n ===∑L5° 样本k 阶中心矩 11(),1,2,n kk i i B X X k n ==-=∑L3.分位数 4. 重要抽样分布(1)分布2χ (2) t 分布 (3) F 分布5. 正态总体的常用抽样分布:22,,,(,),n X X X N μσL 1设为来自正态总体的样本11nii X X n ==∑,2211()1ni i S X X n ==--∑, 则 (1)2~,~(0,1).X X N N n σμ⎛⎫ ⎪⎝⎭ (2)222221(1)1()~(1).ni i n S X X n χσσ=-=--∑(3)22211()~().ni i X n μχσ=-∑(4) ~(1).X t n - (5)X 与2S 相互独立, 且 μ=)(X E , 22)(σ=S E , nX D 2)(σ=.【例1】 设总体2~(,),X N μσ设12,,,n X X X L 是来自总体X 的一个样本, 且22111,()nni nii i X X S XX n====-∑∑,求21()n E X S .【例2】 设总体2~(,),X N μσ 设12,,,n X X X L 是取自总体X 的一个样本, 且221111,()1nni i i i X X S X X nn ====--∑∑,则 2()_________D S=.【例3】设随机变量~()(1),X t n n >, 则 21~________Y X=【例4】 设总体X 服从正态分布)2,0(2N , 而1521,,,X X X Λ是来自总体X 的简单随机样本, 求随机变量)(221521121021X X X X Y ++++=ΛΛ 的分布. 【例5】 设总体2~(,),X N μσ 设121,,,,n n X X X X +L 是来自总体X 的一个样本, 且*221111,()()nni i i i X X S X X nn====-∑∑,试求统计量的分布. 二、参数估计1. 矩估计2. 最大似然估计3. 区间估计4. 估计量的评选标准 【例6】设总体12~(,)X U θθ,n X X X ,,,21Λ为来自总体X 的样本,试求12,θθ的矩估计和最大似然估计.【例7】设总体X 的概率密度为⎪⎩⎪⎨⎧<≤-<<=.,0,21,1,10,),(其他x x x f θθθ其中θ是未知参数)10(<<θ, n X X X ,,2,1Λ为来自总体X 的简单随机样本, 记N 为样本值n x x x ,,2,1Λ中小于1的个数, 求:(1)θ的矩估计;(2) θ的最大似然估计.【例8】设总体X 的概率密度为36(),0,()0,xx x f x θθθ⎧-<<⎪=⎨⎪⎩其他. n X X X ,,,21Λ为来自X 的简单随机样本,(1) 求θ的矩估计量ˆθ; (2) 判断θ的无偏性; (3) 判断θ的一致性. 三、假设检验1. 假设检验的基本思想:对总体分布中的未知参数作出某种假设,根据样本在假设为真的前提下构造一个小概率事件,基于“小概率事件”在一次试验中几乎不可能发生而对假设作出拒绝或接受.2. 单个正态总体均值和方差的假设检验.3. 假设检验两类错误:第一类错误:原假设0H 为真,但拒绝了0H .第二类错误;原假设0H 为假,但接受到了0H .。
概率论与数理统计PDF版课件1-1

第一章 随机事件与概率 §1.1基本概念
5. 事件的差 事件A发生但B不发生所构成的事件称为A与B的差, 记作 AB .
即 AB = { | A但 B } .
图 1-4
图1-4表示了A与B的差事件(阴影部分).
第一章 随机事件与概率 §1.1基本概念
6. 互不相容(互斥)事件
若事件A与B不能同时发生, 即A∩B= , 则称A与B互不 相容(或互斥), 记作 A∩B= 或 AB= .
(2) ABC A B C A BC +ABC .
(3) A B C A B C A B C +A B C . (4) A B C A B C A B C A B C A B C +A B C +A B C . (5) ( A B)C .
第一章 随机事件与概率 §1.1基本概念
例4 设A, B 为两个事件, 试化简下列各式:
若有限个或可列个事件 A1, A2, , An ,, 满足:
Ai Aj = (i j ), 且 Ai = , 则称 A1, A2, , An , i 1
构成一个完全事件组或完备事件组.
第一章随机事件与概率 §1.1基本概念
事件的概念、关系、运算与集合论中相应部分对照列表:
符号
A
A
AB A=B A∪B A∩B AB A∩B=
定义3 随机试验E的样本空间 的一个子集称为E的随机事
件, 简称事件. 常用大写字母A, B, C, 表示. 基本事件: 由一个样本点组成的单点集称为基本事件. 称一个随机事件发生当且仅当它所包含的一个样本点在试验
中出现.
“事件A发生”的含义是: A 且存在某一 , 使得 A .
第一章 随机事件与概率 §1.1基本概念
人教版七年级数学上册统计与概率化简及求值讲义

人教版七年级数学上册统计与概率化简及
求值讲义
一、统计与概率概述
统计与概率是数学中重要的概念和工具,在实际生活中应用广泛。
本讲义将介绍统计与概率的基本概念和相关计算方法。
二、数据的整理和处理
1. 数据分类和整理
- 分类数据和数值数据的区别
- 数据整理的步骤和方法
- 列频数表和频数分布图
2. 数据的简化和求值
- 众数、中位数和平均数的概念和计算方法
- 五数概括和箱线图的应用
三、概率的基本概念和计算
1. 随机事件和样本空间
- 随机事件和样本空间的定义
- 事件的关系和运算法则
2. 概率的计算方法
- 频率概率和几何概率的区别
- 概率的计算方法和公式
- 事件的互斥和独立性
四、统计与概率的实际应用
1. 调查和样本
- 调查的目的和方法
- 样本的选择和处理
2. 概率在生活中的应用
- 概率可以用来预测事件的发生概率
- 概率在游戏和赌博中的应用
五、练题和考点总结
本讲义的最后将提供一些练题和相关考点总结,帮助学生巩固所学知识。
以上是《人教版七年级数学上册统计与概率化简及求值讲义》的内容概要。
希望这份讲义能够帮助学生理解和应用统计与概率的基本原理和方法,提高数学水平。
概率论知识梳理

是推导过程以及思想。
18. 贝叶斯公式: P(Bi A)
p(A Bi )P Bi
n
,贝叶斯公式主要是根据结果反求
P(A Bj )P Bj
j 1
导致这个结果的某种情形的可能性。贝叶斯公式和全概率公式复习起来光看概
念没什么用,要借助几个较难的例题和做一些往届考题,这样效率会高很多。
是它本身,而是: P(A B C) P(A) P(A B) P(A B C) 。
更加重要的是当事件数量更多的时候如何处理。一句话总结:加多了减,减多 了加。 11. 概率的减法公式: P(A-B)=P(A) -P(AB) P(A-B)=P(A)-P(AB),当 B A 时, P(A-B)=P(A)-P(B),当 A=Ω时,P( B )=1- P(B)。
19. 事件的独立性:简而言之“你关我屁事!”,更重要的是多个事件的情形。
描述性定义:
数学定义:
设 A,B 为两个事件,如果其中任何 P( AB) P( A)P(B)
一个事件发生的概率不受另外一个事 特别注意:
件发生与否的影响(我发生也好,不 概率为 1 或者 0 的事件与任何事件独立。
发生也好,都不受你任何影响,你关 考试题型:
率论的学习,因而在接触这个概念的时候就应该去努力弄懂,弄透彻它。很多书上 有这么一句话:随机变量就是其值会随机而定的变量。有些孩子一看就发宝气了, 我当然知道它是变量呀!其实是抓错了重点,关键在于“随机”二字。我们过去说 的变量往往指不固定的量,虽然不固定,但往往遵循一个确切的法则(取值在内定 义域)。这里的随机变量也是如此,它不太有规律可循,但既然是出现在概率论这个 大背景下,它也不可能算是一匹脱缰的野马。从另一个角度解读这个概念:随机试 验的结果经常是数量,或者可以数量化表示,但是这些数量与以往用来表示时间, 位移等的变量有很大的不同,这就是其取值的变化完全取决于随机试验的结果,因 而是不可以完全预言的,这种随机取值的变量就是随机变量。说白了,随机变量就 是这样的一个家伙:你无法确切的知道他是什么,但是你能知道他很可能会是什么?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015考研数学综合强化课概率论与数理统计主讲老师:方浩第一章随机事件与概率(一)随机试验和样本空间1.[随机试验]2.[样本空间]: 随机试验所有可能发生的结果组成的集合[样本点]: 随机试验的每个可能结果3.[基本事件]:样本空间中的一个样本点组成的单点集4.[随机事件]:样本空间 的子集5.[必然事件]:随机试验中必然发生的事件,记作Ω.6.[不可能事件]:每次试验中一定不发生,记为φ.(二) 事件的关系和运算1.事件间的关系(1) 包含:A B⊃(2) 相等:.=A B(3) 和:A B.(4) 积:A B(5) 差: =-A B AB(6)互斥(互不相容):ABφ=.(7)对立(互逆):A B=Ω,A Bφ=. 对立事件记为B A=.2.运算律(1)交换律:;==A B B A A B B A(2)结合律:()()=A B C A B C=()()A B C A B C(3)分配律:()()()=A B C A B A C(4)对偶律(摩根律):,==A B A B A B A B(三)概率的定义与性质 1.概率的定义(1)非负性: ()0P A ≥.(2)规范性: ()1P Ω=.(反之不成立) (3)可列可加性:12,,A A 两两互不相容 1212()()()P A A P A P A =++2.概率的性质(1)非负性: 0()1P A ≤≤.(2)规范性: ()0,()1P P ∅=Ω=.(3)有限可加性:12,,,n A A A 两两互不相容1212()()()()n n P A A A P A P A P A =+++.(4) ()1()P A P A =-.3.基本公式[加法公式]()()()()P A B P A P B P AB =+-()()()31231231,j()i i j i i P A A A P A P A A P A A A ==-+∑∑[减法公式]()()()()P A B P A P AB P AB -=-=[逆事件] ()1()P A P A =-(四)三大概型 1.古典概型()AA n P A n=Ω中基本事件的个数中基本事件总数 2.几何概型()A P A =Ω的长度(或面积、体积)的长度(或面积、体积)3.伯努利概型[定义]:随机试验只有两个可能结果:A 和A ;每次试验A 发生概率相等()P A p =[结论]:n 重伯努利试验,事件A 发生k 次的概率:(,)(1)(0,1,2,,)kkn kk nB n pC p p k n -=-= .(五)条件概率,乘法公式,独立性1.条件概率:()0P A >,A 发生条件下B 发生的概率()()()P AB P B A P A =2.条件概率的性质(1) 非负性:0(|)1P B A ≤≤ (2) 规范性:(|)1P A Ω=(3) 逆事件:(|)1(|)P A B P A B =- (4) 加法公式:121212(|)(|)(|)(|)P A A B P A B P A B P A A B =+-减法公式:12112(|)()(|)P A A B P A B P A A B -=-3.乘法公式()()()P AB P B A P A = 12121211()()()()n n n P A A A P A A A A P A A P A -=4.两个事件的独立性定义:()()()P AB P A P B =,称事件,A B 相互独立. 推论:设0()1P A <<,,A B 独立()(|)(|)P B P B A P B A ⇔==性质:,A B 独立,则A 与B ,A 与B ,A 与B 也相互独立5.三个事件的独立性1)()()()=;P AB P A P B2)()()()P AC P A P C=;3)()()()=;P BC P B P C4)()()()()=;P ABC P A P B P C满足1-3:称三个事件,,A B C两两独立. 满足1-4:称三个事件,,A B C相互独立.(六)全概率公式与贝叶斯公式 1.完备事件组:若事件1,n A A =Ω,1i j A A i j n φ=≤≠≤,称事件1,,n A A 是一个完备事件组.2.全概率公式:1()()()ni i i P B P A P B A ==∑.3.贝叶斯公式:()1()()()()j jj niii P B A P A P A B P A P B A ==∑[题型一概率的基本计算] 【例1.1】()___A B C=()()A AB C()()B A B C()()()C A B A C()()()D A B A C【P332,例1】事件,A B ,满足1()()2P A P B ==和()1P A B =则有( )(A )A B =Ω (B )AB φ= (C )()1P A B = (D )()0P A B -=【例】设事件,A B互不相容,则()()()0A P AB=()()()()=B P AB P A P B()()()=-C P A P B1()()1D P A B=【P332,例2】设,Y X 为2个随机变量,且{}30,Y 07P X ≥≥=,{}{}4007P X P Y ≥=≥=则(){}max ,0=___P X Y ≥【P328,4】设,,A B C 是随机事件,且()()()14P A P B P C ===,()()0P AB P BC ==,()18P AC =,求,,A B C 都不发生的概率【例】()()===,则P A P B P AB()0.3,0.4,0.5()___P B A B=【例】设相互独立的事件A,B都不发生的概率是1,且A发生B不发生的概率与B发生A不发生9的概率相等,求A发生的概率【例】()()111(),,432P A P B A P A B ===,则()___P A B =[题型二三大概型]【例】()0,1之间任取两个数,乘积小于12的概率____【例】区域()22:20D x y x y +≤≥内任取一点,求该点与坐标原点的连线和X 轴正方向所围成的夹角小于3π的概率【P329,7】设一厂家生产的每台仪器以概率0.7可直接出厂,以概率0.3需进一步调试,经调试后,以概率0.8出厂,以概率0.2定为不合格,不能出厂,现该厂生产了(2)台仪器(设各台n n≥生产过程相互独立).求(I)所有机器都能出厂的概率α.(II)其中恰好有两件能出厂的概率β.(III)至少有两件不能出厂的概率θ.[题型三 条件概率与独立性]【P328,例1】设,A B 是两个随机事件,()()01,0P A P B <<> ()()P B A P B A =则下列选项中正确的是___()()() A A B A B =P P ()()()B A B A B ≠P P ()()()()C AB A P B =P P ()()()()D AB P A P B ≠P【例】设0()1,0()1P A P B <<<<,(|)(|)1P A B P A B += 则( )(A )A,B 互不相容 (B )A,B 互逆 (C )A,B 相互独立 (D )A,B 不独立【P329,例3】将一枚硬币连续投掷两次,定义事件1A :第一次出现正面,2A :第二次出现正面,3A :正反面各出现一次,4A :两次都是出现正面,则下列说法正确的是( )(A )123,,A A A 相互独立(B )234,,A A A 相互独立(C )123,,A A A 两两独立(D )234,,A A A 两两独立【例】设,,A B C是三个相互独立的随机事件,且<<,则下列给定的四对事件中不一定相互0()1P C独立的是 ( )()A A B与C()B A C与C-与CC A B()D AB与C()【题型四全概率公式与贝叶斯公式】【P327,例4】在1,2,3,4中任取1个数为X,再从1,X中任取一个数为Y,则{}2___P Y==【P326,例3】设工厂A,B的产品的次品率分别为1%和2%,现在从由产品A和B的产品分别占60%和40%的一批产品中随机抽取1件(1)求该产品是次品的概率(2)已知取出为次品,求该次品属于A生产的概率【例 1.9】设有甲、乙两个箱子,甲箱中有m只白球,n个红球,乙箱中有a个白球,b个红球,现从甲箱中任意取出一只放入乙箱,再从乙箱中任取出一球,求(1)从乙中取出的是白球的概率(2)已知从乙中取出的是白球,从甲放入乙中的是白球的概率(3)已知从乙中取出的是白球,从甲放入乙中的是红球的概率【例】甲乙两名运动员进行打靶训练,每次打靶甲中靶的概率为0.5,乙中靶的概率为0.3,甲乙两人都中靶的概率为0.2,每次打靶中只要有一人中靶就称为此次打靶合格,第n次()3n>打靶α=合格恰好是第3次合格的概率___63。