概率统计知讲义识点归纳

合集下载

概率与统计知识点总结

概率与统计知识点总结

概率与统计知识点总结一、概率的基本概念概率,简单来说,就是衡量某个事件发生可能性大小的一个数值。

比如抛硬币,正面朝上的概率是 05,意思是在大量重复抛硬币的实验中,正面朝上的次数大约占总次数的一半。

随机事件,就是在一定条件下,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件。

比如掷骰子得到的点数就是随机事件。

必然事件,就是在一定条件下必然会发生的事件。

比如太阳从东方升起,这就是必然事件。

不可能事件,就是在一定条件下不可能发生的事件。

比如在地球上,水往高处流就是不可能事件。

概率的取值范围在 0 到 1 之间。

0 表示事件不可能发生,1 表示事件必然发生。

二、古典概型古典概型是一种最简单、最基本的概率模型。

它具有两个特点:试验中所有可能出现的基本事件只有有限个;每个基本事件出现的可能性相等。

计算古典概型中事件 A 的概率公式为:P(A) = A 包含的基本事件个数/基本事件的总数。

例如,一个袋子里有 5 个红球和 3 个白球,从中随机摸出一个球是红球的概率,基本事件总数是 8(5 个红球+ 3 个白球),红球的个数是 5,所以摸到红球的概率就是 5/8。

三、几何概型与古典概型不同,几何概型中的基本事件个数是无限的。

比如在一个时间段内等可能地到达某一地点,或者在一个区域内等可能地取点。

几何概型的概率计算公式是:P(A) =构成事件 A 的区域长度(面积或体积)/试验的全部结果所构成的区域长度(面积或体积)。

举个例子,在区间0, 10中随机取一个数,这个数小于 5 的概率就是 5/10 = 05。

四、条件概率条件概率是在已知某个事件发生的条件下,另一个事件发生的概率。

记事件 A 在事件 B 发生的条件下发生的概率为 P(A|B)。

计算公式为:P(A|B) = P(AB) / P(B) ,其中 P(AB) 表示事件 A 和事件 B 同时发生的概率。

比如说,已知今天下雨,明天也下雨的概率就是一个条件概率。

概率论与数理统计知识点总结

概率论与数理统计知识点总结

概率论与数理统计知识点总结一、概率论知识点总结:1.随机事件:随机事件是指在一次试验中,可能发生也可能不发生的事件。

例如:掷硬币的结果、抽取扑克牌的花色等。

2.概率:概率是描述随机事件发生可能性大小的数值。

概率的取值范围是[0,1],表示事件发生的可能性大小,0表示不可能发生,1表示一定会发生。

3.古典概型:古典概型是指每种可能的结果发生的概率相等的情形。

例如:掷骰子的结果、抽取彩色球的颜色等。

4.随机变量:随机变量是用来描述试验结果的数值,它的取值是根据随机事件的结果确定的。

例如:掷骰子的点数、抽取扑克牌的点数等。

5.概率分布:随机变量的概率分布描述了每个取值发生的概率。

常见的概率分布有离散概率分布和连续概率分布,如二项分布、正态分布等。

6. 期望值:期望值是衡量随机变量取值的平均值。

对于离散型随机变量,期望值=E[X]=∑[xP(X=x)];对于连续型随机变量,期望值=E[X]=∫[x f(x)dx],其中f(x)为概率密度函数。

7. 方差:方差是衡量随机变量取值与期望值之间的偏离程度。

方差=Var(X)=E[(X-E[X])^2]。

8.独立性:两个随机事件或随机变量之间的独立性表示它们的发生与否或取值无关联。

独立性的判定通常通过联合概率、条件概率等来进行推导。

二、数理统计知识点总结:1.样本与总体:在统计学中,样本是指从总体中选取的具体观测数据。

总体是指要研究的对象的全部个体或事物的集合。

2.参数与统计量:参数是描述总体特征的数值,如总体均值、总体方差等。

统计量是根据样本计算得到的参数估计值,用来估计总体参数。

3.抽样方法:抽样方法是从总体中选取样本的方法,常见的抽样方法有简单随机抽样、系统抽样、整群抽样等。

4.统计分布:统计分布是指样本统计量的分布。

常见的统计分布有t分布、F分布、x^2分布等,其中t分布适用于小样本、F分布适用于方差比较、x^2分布适用于拟合优度检验等。

5.点估计与区间估计:点估计是以样本统计量为基础,估计总体参数的数值。

统计概率知识点梳理总结

统计概率知识点梳理总结

统计概率知识点梳理总结第一章随机事件与概率一、教学要求1.理解随机事件的概念,了解随机试验、样本空间的概念,掌握事件之间的关系与运算.2.了解概率的各种定义,掌握概率的基本性质并能运用这些性质进行概率计算. 3.理解条件概率的概念,掌握概率的乘法公式、全概率公式、贝叶斯公式,并能运用这些公式进行概率计算.4.理解事件的独立性概念,掌握运用事件独立性进行概率计算.5.掌握贝努里概型及其计算,能够将实际问题归结为贝努里概型,然后用二项概率计算有关事件的概率.本章重点:随机事件的概率计算.二、知识要点1.随机试验与样本空间具有下列三个特性的试验称为随机试验:(1) 试验可以在相同的条件下重复地进行;·(2) 每次试验的可能结果不止一个,但事先知道每次试验所有可能的结果;(3) 每次试验前不能确定哪一个结果会出现.试验的所有可能结果所组成的集合为样本空间,用Ω表示,其中的每一个结果用eΩ=.表示,e称为样本空间中的样本点,记作{}e2.随机事件在随机试验中,把一次试验中可能发生也可能不发生、而在大量重复试验中却呈现某 种规律性的事情称为随机事件(简称事件).通常把必然事件(记作Ω)与不可能事件(记作φ)看作特殊的随机事件.3.**事件的关系及运算(1) 包含:若事件A 发生,一定导致事件B 发生,那么,称事件B 包含事件A ,记作A B ⊂(或B A ⊃).(2) 相等:若两事件A 与B 相互包含,即A B ⊃且B A ⊃,那么,称事件A 与B 相等,记作A B =.(3) 和事件:“事件A 与事件B 中至少有一个发生”这一事件称为A 与B 的和事件,记作A B ⋃;“n 个事件1,2,,nA A A 中至少有一事件发生”这一事件称为1,2,,nA A A 的和,记作12n A A A ⋃⋃⋃(简记为1nii A =).(4) 积事件:“事件A 与事件B 同时发生”这一事件称为A 与B 的积事件,记作A B ⋂(简记为AB );“n 个事件1,2,,nAA A 同时发生”这一事件称为1,2,,nA A A 的积事件,记作12n A A A ⋂⋂⋂(简记为12n A A A 或1nii A =).(5) 互不相容:若事件A 和B 不能同时发生,即AB φ=,那么称事件A 与B 互不相容(或互斥),若n 个事件1,2,,n A A A 中任意两个事件不能同时发生,即i j A A φ=(1≤i<j ≤几),那么,称事件1,2,,nA A A 互不相容.(6) 对立事件:若事件A 和B 互不相容、且它们中必有一事件发生,即AB φ=且A B ⋃=Ω,那么,称A 与B 是对立的.事件A 的对立事件(或逆事件)记作A . (7) 差事件:若事件A 发生且事件B 不发生,那么,称这个事件为事件A 与B 的差事件,记作A B -(或AB ) .(8) 交换律:对任意两个事件A和B 有A B B A ⋃=⋃,AB BA =.(9) 结合律:对任意事件A ,B ,C 有()()A B C A B C ⋃⋃=⋃⋃, ()()A B C A B C ⋂⋂=⋂⋂.(10) 分配律:对任意事件A ,B ,C 有()()()A B C A B A C ⋃⋂=⋃⋂⋃, ()()()A B C A B A C ⋂⋃=⋂⋃⋂.(11) 德摩根(De Morgan )法则:对任意事件A 和B 有A B A B ⋃=⋂, A B A B ⋂=⋂.4.频率与概率的定义 (1) 频率的定义设随机事件A 在n 次重复试验中发生了A n 次,则比值A n /n 称为随机事件A 发生的频率,记作()n f A ,即 ()An n f A n =.(2) 概率的统计定义在进行大量重复试验中,随机事件A 发生的频率具有稳定性,即当试验次数n 很大时,频率()n f A 在一个稳定的值p (0<p <1)附近摆动,规定事件A 发生的频率的稳定值p 为概率,即()P A p =. (3) **古典概率的定义具有下列两个特征的随机试验的数学模型称为古典概型: (i) 试验的样本空间Ω是个有限集,不妨记作12{,,,}n e e e Ω=;(ii) 在每次试验中,每个样本点i e (1,2,,i n =)出现的概率相同,即12({})({})({})n P e P e P e ===.在古典概型中,规定事件A 的概率为()An A P A n ==Ω中所含样本点的个数中所含样本点的个数.(4) 几何概率的定义如果随机试验的样本空间是一个区域(可以是直线上的区间、平面或空间中的区域),且样本空间中每个试验结果的出现具有等可能性,那么规定事件A的概率为()A P A =的长度(或面积、体积)样本空间的的长度(或面积、体积)·(5) 概率的公理化定义设随机试验的样本空间为Ω,随机事件A 是Ω的子集,()P A 是实值函数,若满足下列三条公理:公理1 (非负性) 对于任一随机事件A,有()P A ≥0; 公理2 (规范性) 对于必然事件Ω,有()1P Ω=;公理3 (可列可加性) 对于两两互不相容的事件1,2,,,n A A A ,有11()()i i i i P A P A ∞∞===∑,则称()P A 为随机事件A的概率. 5.**概率的性质由概率的三条公理可导出下面概率的一些重要性质 (1) ()0P φ=.(2) (有限可加性) 设n 个事件1,2,,nA A A 两两互不相容,则有121()()nn i i P A A A P A =⋃⋃⋃=∑.(3) 对于任意一个事件A :()1()P A P A =-.(4) 若事件A ,B 满足A B ⊂,则有()()()P B A P B P A -=-,()()P A P B ≤.(5) 对于任意一个事件A ,有()1P A ≤. (6) (加法公式) 对于任意两个事件A ,B ,有()()()()P A B P A P B P AB ⋃=+-.对于任意n 个事件1,2,,nA A A ,有111111()()()()(1)()nnn i i i j i j k n i i j ni j k ni P A P A P A A P A A A P A A -=≤<≤≤<<≤==-+-+-∑∑∑.6.**条件概率与乘法公式设A 与B 是两个事件.在事件B 发生的条件下事件A 发生的概率称为条件概率,记作(|)P A B .当()0P B >,规定()(|)()P AB P A B P B =.在同一条件下,条件概率具有概率的一切性质.乘法公式:对于任意两个事件A 与B ,当()0P A >,()0P B >时,有()()(|)()(|)P AB P A P B A P B P A B ==.7.*随机事件的相互独立性如果事件A 与B 满足()()()P AB P A P B =,那么,称事件A 与B 相互独立.关于事件A ,月的独立性有下列两条性质:(1) 如果()0P A >,那么,事件A 与B 相互独立的充分必要条件是(|)()P B A P B =;如果()0P B >,那么,事件A 与B 相互独立的充分必要条件是(|)()P A B P A =. 这条性质的直观意义是“事件A 与B 发生与否互不影响”. (2) 下列四个命题是等价的: (i) 事件A 与B 相互独立; (ii) 事件A 与B 相互独立; (iii) 事件A 与B 相互独立; (iv) 事件A 与B 相互独立.对于任意n 个事件1,2,,nA A A 相互独立性定义如下:对任意一个2,,k n =,任意的11k i i n ≤<<≤,若事件1,2,,nA A A 总满足11()()()k k i i i i P A A P A P A =,则称事件1,2,,nA A A 相互独立.这里实际上包含了21nn --个等式.8.*贝努里概型与二项概率设在每次试验中,随机事件A发生的概率()(01)P A p p =<<,则在n 次重复独立试验中.,事件A恰发生k 次的概率为()(1),0,1,,kn k n n P k p p k nk -⎛⎫=-= ⎪⎝⎭,称这组概率为二项概率. 9.**全概率公式与贝叶斯公式全概率公式:如果事件1,2,,nA A A 两两互不相容,且1ni i A ==Ω,()0i P A >,1,2,,i n =,则1()(|)(|),1,2,,()(|)k k k niii P A P B A P A B k nP A P B A ===∑.第二章 离散型随机变量及其分布一、教学要求1.理解离散型随机变量及其概率函数的概念并掌握其性质,掌握0-1分布、二项分布、泊松(Poisson)分布、均匀分布、几何分布及其应用.2.理解二维离散型随机变量联合概率函数的概念及性质;会利用二维概率分布计算有关事件的概率.3.理解二维离散型随机变量的边缘分布,了解二维随机变量的条件分布. 4.掌握离散型随机变量独立的条件.5. 会求离散型随机变量及简单随机变量函数的概率分布. 本章重点:离散型随机变量的分布及其概率计算.二、知识要点 1.一维随机变量若对于随机试验的样本空间Ω中的每个试验结果e ,变量X 都有一个确定的实数值与e 相对应,即()X X e =,则称X 是一个一维随机变量.概率论主要研究随机变量的统计规律,也称这个统计规律为随机变量的分布. 2.**离散型随机变量及其概率函数如果随机变量X 仅可能取有限个或可列无限多个值,则称X 为离散型随机变量. 设离散型随机变量X 的可能取值为(1,2,,,)i a i n =,(),1,2,,,.i i p P X a i n ===若11ii p∞==∑,则称(1,2,,,)i p i n =离散型随机变量X 的概率函数,概率函数也可用下列表格形式表示:X12n a a ar P12np p p3.*概率函数的性质 (1) 0i p ≥, 1,2,,,;i n =(2)11ii p∞==∑.由已知的概率函数可以算得概率()i ia SP X S p ∈∈=∑,其中,S 是实数轴上的一个集合. 4.*常用离散型随机变量的分布(1) 0—1分布(1,)B p ,它的概率函数为1()(1)i i P X i p p -==-,其中,0i =或1,01p <<.(2) 二项分布(,)B n p ,它的概率函数为()(1)in in P X i p p i -⎛⎫==- ⎪⎝⎭,其中,0,1,2,,i n =,01p <<.(4) 泊松分布()P λ,它的概率函数为()!iP X i e i λλ-==,其中,0,1,2,,,i n =,0λ>.(5) 均匀分布,它的概率函数为1()i P X a n ==,其中,0,1,2,,i n =.5.二维随机变量若对于试验的样本空间Ω中的每个试验结果e ,有序变量(,)X Y 都有确定的一对实数值与e 相对应,即()X X e =, ()Y Y e =,则称(,)X Y 为二维随机变量或二维随机向量.6.*二维离散型随机变量及联合概率函数如果二维随机变量(,)X Y 仅可能取有限个或可列无限个值,那么,称(,)X Y 为二维离散型随机变量.二维离散型随机变量(,)X Y 的分布可用下列联合概率函数来表示:(,),,1,2,,i j ij P X a Y b p i j ====其中,0,,1,2,,1ij ijijp i j p≥==∑∑.7.二维离散型随机变量的边缘概率函数 设(,)X Y 为二维离散型随机变量,ijp 为其联合概率函数(,1,2,i j =),称概率()(1,2,)i P X a i ==为随机变量X 的边缘概率函数,记为i p 并有.(),1,2,i i ij jp P X a p i ====∑,称概率()(1,2,)j P Y b j ==为随机变量Y 的边缘概率函数,记为.jp ,并有.jp =(),1,2,j ij iP Y b p j ===∑.8.随机变量的相互独立性 .设(,)X Y 为二维离散型随机变量,X 与Y 相互独立的充分必要条件为,,1,2,.ij i j p p p i j ==对一切多维随机变量的相互独立性可类似定义.即多维离散型随机变量的独立性有与二维相应的结论.9.随机变量函数的分布设X 是一个随机变量,()g x 是一个已知函数,()Y g X =是随机变量X 的函数,它也是一个随机变量.对离散型随机变量X ,下面来求这个新的随机变量Y 的分布.设离散型随机变量X 的概率函数为X12n a a ar P12np p p则随机变量函数()Y g X =的概率函数可由下表求得()Y g X = 12()()()n g a g a g ar P1p 2pn p但要注意,若()i g a 的值中有相等的,则应把那些相等的值分别合并,同时把对应的概率i p 相加.第三章 连续型随机变量及其分布一、教学要求1.理解连续型随机变量及其概率密度的概念,并掌握其性质,掌握均匀分布、指数分布、正态分布及其应用.2.理解二维随机变量的联合分布的概念、性质以及连续型随机变量联合概率密度;会利用二维概率分布计算有关事件的概率.3.理解二维随机变量的边缘分布,了解二维随机变量的条件分布. 4.理解随机变量的独立性概念,掌握连续型随机变量独立的条件.5.掌握二维均匀分布;了解二维正态分布的密度函数,理解其中参数的概率意义.(不考)6.会求两个独立随机变量的简单函数的分布,会求两个独立随机变量的简单函数的分布,会求两个随机变量之和的概率分布. (不考)7.会求简单随机变量函数的概率分布.本章重点:一维及二维随机变量的分布及其概率计算,边缘分布和独立性计算.二、知识要点 1.*分布函数随机变量的分布可以用其分布函数来表示,随机变量X 取值不大于实数x 的概率()P X x ≤称为随机变量X 的分布函数,记作()F x , 即()(),F x P X x x =≤-∞<<∞.2.分布函数()F x 的性质 (1) 0()1;F x ≤≤(2) ()F x 是非减函数,即当12x x <时,有12()()F x F x ≤;(3) ()0,()1lim lim x x F x F x →-∞→+∞==;(4) ()F x 是右连续函数,即0()()lim x a F x F a →+=.由已知随机变量X 的分布函数()F x ,可算得X 落在任意区间(,]a b 内的概率()()();P a X b F b F a <≤=-也可以求得()()(0)P X a F a F a ==--.3.联合分布函数二维随机变量(,)X Y 的联合分布函数规定为随机变量X 取值不大于x 实数的概率,同时随机变量Y 取值不大于实数y 的概率,并把联合分布函数记为(,)F x y ,即(,)(,),,F x y P X x Y y x y =≤≤-∞<<+∞-∞<<+∞.4.联合分布函数的性质 (1) 0(,)1F x y ≤≤;(2) (,)F x y 是变量x (固定y )或y (固定x )的非减函数;(3)(,)0,(,)0lim lim x y F x y F x y →-∞→-∞==,(,)0,(,l i m l i mx x y y F x y Fx y→-∞→+∞→-∞→+∞==;(4) (,)F x y 是变量x (固定y )或y (固定x )的右连续函数;(5) 121222211211(,)(,)(,)(,)(,)P x X x y Y y F x y F x y F x y F x y <≤<≤=--+. 5.**连续型随机变量及其概率密度设随机变量X 的分布函数为()F x ,如果存在一个非负函数()f x ,使得对于任一实数x ,有()()xF x f x dx-∞=⎰成立,则称X 为连续型随机变量,函数()f x 称为连续型随机变量X 的概率密度. 6.**概率密度()f x 及连续型随机变量的性质 (1)()0;f x ≥(2)()1f x dx +∞-∞=⎰;(3)连续型随机变量X 的分布函数为()F x 是连续函数,且在()F x 的连续点处有()()F x f x '=;(4)设X 为连续型随机变量,则对任意一个实数c ,()0P X c ==; (5) 设()f x 是连续型随机变量X 的概率密度,则有()()()()P a X b P a X b P a X b P a X b <<=≤<=≤≤=<≤=()baf x dx⎰.7.**常用的连续型随机变量的分布 (1) 均匀分布(,)R a b ,它的概率密度为1,;()0,a xb f x b a⎧<<⎪=-⎨⎪⎩其余. 其中,)a b -∞<<<+∞.(2) 指数分布()E λ,它的概率密度为,0;()0,x e x f x λλ-⎧>=⎨⎩其余. 其中,0λ>.(3) 正态分布2(,)N μσ,它的概率密度为22()21(),2x f x ex μσπσ--=-∞<<+∞,其中,,0μσ-∞<<+∞>,当0,1μσ==时,称(0,1)N 为标准正态分布,它的概率密度为221(),2x f x e x π-=-∞<<+∞,标准正态分布的分布函数记作()x Φ,即()x Φ221()2t xx e dt π--∞Φ=⎰,当出0x ≥时,()x Φ可查表得到;当0x <时,()x Φ可由下面性质得到()1()x x Φ-=-Φ.设2~(,)X N μσ,则有()()x F x μσ-=Φ;()()()b a P a X b μμσσ--<≤=Φ-Φ.8.**二维连续型随机变量及联合概率密度对于二维随机变量(X ,Y)的分布函数(,)F x y ,如果存在一个二元非负函数(,)f x y ,使得对于任意一对实数(,)x y 有(,)(,)xyF x y f s t dtds-∞-∞=⎰⎰成立,则(,)X Y 为二维连续型随机变量,(,)f x y 为二维连续型随机变量的联合概率密度.9.二维连续型随机变量及联合概率密度的性质 (1) (,)0,,f x y x y ≥-∞<<+∞;(2)(,)1f x y dxdy +∞+∞-∞-∞=⎰⎰;(3) 设(,)X Y 为二维连续型随机变量,则对任意一条平面曲线L ,有((,))0P X Y L ∈=; ’(4) 在(,)f x y 的连续点处有2(,)(,)F x y f x y x y ∂=∂∂;(5) 设(,)X Y 为二维连续型随机变量,则对平面上任一区域D 有((,))(,)DP X Y D f x y dxdy∈=⎰⎰.10,**二维连续型随机变量(,)X Y 的边缘概率密度设(,)f x y 为二维连续型随机变量的联合概率密度,则X 的边缘概率密度为()(,)X f x f x y dy+∞-∞=⎰;Y 的边缘概率密度为()(,)Y f y f x y dx+∞-∞=⎰.11.常用的二维连续型随机变量 (1) 均匀分布如果(,)X Y 在二维平面上某个区域G 上服从均匀分布,则它的联合概率密度为1,(,)x y f x y G ⎧∈⎪=⎨⎪⎩,()G;的面积0,其余. (2) 二维正态分布221212(,,,,)N μμσσρ 如果(,)X Y 的联合概率密度2211212222112112()()()()11(,)exp 22(1)21x x y x f x y μμμμρρσσσσπσσρ⎧⎫⎡⎤----⎪⎪=--+⎨⎬⎢⎥-⎪⎪-⎣⎦⎩⎭则称(,)X Y 服从二维正态分布,并记为221212(,)~(,,,,)X Y N μμσσρ.如果221212(,)~(,,,,)X Y N μμσσρ,则211~(,)X N μσ,222~(,)Y N μσ,即二维正态分布的边缘分布还是正态分布. 12.**随机变量的相互独立性 .如果X 与Y 的联合分布函数等于,X Y 的边缘分布函数之积,即(,)()(),,X Y F x y F x F y x y =-∞<<+∞对一切,那么,称随机变量X 与Y 相互独立.设(,)X Y 为二维连续型随机变量,则X 与Y 相互独立的充分必要条件为(,)()(),X Y f x y f x f y =在一切连续点上.如果221212(,)~(,,,,)X Y N μμσσρ.那么,X 与Y 相互独立的充分必要条件是0ρ=.多维随机变量的相互独立性可类似定义.即多维随机变量的联合分布函数等于每个随机变量的边缘分布函数之积,多维连续型随机变量的独立性有与二维相应的结论. 13.随机变量函数的分布 **一维随机变量函数的概率密度设连续型随机变量X 的概率密度为()X f x ,则随机变量()Y g X =的分布函数为()()(())()()yY y XI F y P Y y P g X y P X I fx dx=≤=≤=∈=⎰其中,{}y X I ∈与{()}g X y ≤是相等的随机事件,而{||()}y I x g x y =≤是实数轴上的某个集合.随机变量Y 的概率密度()Y f y 可由下式得到:'()()Y Y f y F y =.连续型随机变量函数有下面两条性质:(i) 设连续型随机变量的概率密度为()X f x ,()Y g X =是单调函数,且具有一阶连续导数,()x h y =是()y g x =的反函数,则()Y g X =的概率密度为()(())|'()|Y f y f h y h y =⋅.(ii) 设2~(,)X N μσ,则当0k ≠时,有22~(,)Y kX b N k b k μσ=++,特别当1,k b μσσ==-时,有~(0,1)Y kX b N =+,~(0,1)X N μσ-.特别有下面的结论:设211~(,)X N μσ,222~(,)Y N μσ,且X 与Y 相互独立,则221212~(,)X Y N μμσσ+++.第四章 随机变量的数字特征一、教学要求1.理解随机变量的数学期望、方差的概念,并会运用它们的基本性质计算具体分布的期望、方差,2.掌握二项分布、泊松分布、均匀分布、指数分布、正态分布的数学期望和方差. 3.会根据随机变量X 的概率分布计算其函数()g X 的数学期望[()]E g X ;会根据随机变量(,)X Y 的联合概率分布计算其函数(,)g X Y 的数学期望正[(,)]E g X Y .(不考)4.理解协方差、相关系数的概念,掌握它们的性质,并会利用这些性质进行计算,了解矩的概念。

概率 统计知识点总结

概率 统计知识点总结

概率统计知识点总结一、概率统计基本概念1. 随机事件和样本空间在概率统计中,随机事件是指在一次试验中可能发生的结果,例如抛硬币的结果可以是正面或反面。

样本空间是指所有可能的结果的集合,例如抛硬币的样本空间为{正面,反面}。

2. 概率和基本概率公式概率是指某一事件在所有可能事件中发生的频率,通常用P(A)表示。

基本概率公式是P(A)=n(A)/n(S),其中n(A)表示事件A发生的次数,n(S)表示样本空间的大小。

3. 条件概率条件概率是指在事件B已经发生的条件下,事件A发生的概率,通常表示为P(A|B)。

4. 独立事件两个事件A和B称为独立事件,意味着事件A的发生不受事件B的影响,其概率关系为P(A∩B)=P(A)×P(B)。

二、概率统计的数据分析方法1. 描述性统计描述性统计是对数据进行总结和描述的方法,包括平均数、中位数、众数、标准差、极差等指标,用来描述数据的集中趋势、离散程度和分布形状。

2. 探索性数据分析探索性数据分析是一种用图表和统计分析方法探索数据背后的规律和结构的方法,通过绘制图表和计算相关指标,发现数据之间的关系、趋势和异常值。

3. 统计推断统计推断是根据样本数据对总体参数进行推断的方法,包括点估计和区间估计,以及假设检验。

三、概率统计的应用1. 随机过程随机过程是研究随机事件随时间或空间变化的规律性的数学模型,包括马尔可夫过程、布朗运动、泊松过程等,广泛应用于金融、电信、生物等领域。

2. 统计建模统计建模是根据数据建立数学模型,预测未来的趋势和规律,包括线性回归模型、时间序列模型、机器学习模型等。

3. 贝叶斯统计贝叶斯统计是一种基于贝叶斯定理的概率统计方法,它将先验信息和样本数据结合起来,进行参数估计和模型推断,常用于医学、生态学、市场营销等领域。

四、概率统计的挑战和发展1. 大数据与统计随着大数据时代的到来,传统的统计方法和模型已经无法满足大规模、高维度、非结构化数据的分析需求,需要发展新的统计方法和算法。

概率统计知识点大全

概率统计知识点大全

n
n
x2
∫ 3° P(x1 < X ≤ x2 ) = F (x2 ) − F (x1 ) = f (x)dx 。 x1
4° 若 f (x) 在 x 处连续,则有 F ′(x) = f (x) 。
容易验证,满足离散型分布率的条件。
当 n = 1时,P( X = k) = p k q1−k ,k = 0.1 ,这就是(0-1)
对于 n 个事件类似。 两两互斥→互相互斥。
间 (a, b] 的概率。也就是说,分布函数完整地描述了随机
两两独立→互相独立?
变量 X 随机取值的统计规律性。
(3)伯努利试验
定义 我们作了 n 次试验,且满足 每次试验只有两种可能结果, A 发生或 A 不发生; n 次试验是重复进行的,即 A 发生的概率每次均一
P(B | A) = P( AB) = P( A)P(B) = P(B)
P( A)
P( A)
所以这与我们所理解的独立性是一致的。
(3)条件概率和乘法公式
若事件 A 、B 相互独立,则可得到 A 与 B 、A 与 B 、
定义 设 A、B 是两个事件,且 P(A)>0,则称 P( AB) 为事件 P( A)
则称上式为离散型随机变量 X 的概率分布或分布律。有
时也用分布列的形式给出:
X
| x1, x2,Λ , xk,Λ
P( X = xk) p1, p2,Λ , pk,Λ 。
显然分布律应满足下列条件:
(1) pk ≥ 0 , k = 1,2,Λ ,

∑ pk = 1
(2) k =1

(2)分布函数
对于非离散型随机变量,通常有 P(X = x) = 0 ,不可 能用分布率表达。例如日光灯管的寿命 X ,P( X = x0) = 0 。

概率论与数理统计知识点总结免费超详细版

概率论与数理统计知识点总结免费超详细版

概率论与数理统计知识点总结免费超详细版概率论与数理统计是一门研究随机现象及其规律的数学学科,它在自然科学、工程技术、社会科学、经济金融等众多领域都有着广泛的应用。

以下是对概率论与数理统计主要知识点的详细总结。

一、随机事件与概率1、随机事件随机事件是指在一定条件下,可能出现也可能不出现的事件。

我们通常用大写字母A、B、C 等来表示。

随机事件的关系包括包含、相等、互斥(互不相容)和对立等。

2、概率的定义概率是用来度量随机事件发生可能性大小的数值。

概率的古典定义是:如果一个试验有 n 个等可能的结果,事件 A 包含其中的 m 个结果,则事件 A 发生的概率为 P(A) = m / n 。

概率的统计定义是:在大量重复试验中,事件 A 发生的频率稳定地接近于某个常数 p,就把 p 称为事件 A 的概率。

3、概率的性质概率具有非负性(0 ≤ P(A) ≤ 1)、规范性(P(Ω) = 1,其中Ω 表示样本空间)和可加性(对于互斥事件 A 和 B,有 P(A∪B) = P(A) +P(B))。

二、条件概率与乘法公式1、条件概率条件概率是指在事件 B 发生的条件下,事件 A 发生的概率,记作P(A|B)。

其计算公式为 P(A|B) = P(AB) / P(B) ,其中 P(AB) 表示事件A 和B 同时发生的概率。

2、乘法公式乘法公式有两种形式:P(AB) = P(A|B)P(B) 和 P(AB) =P(B|A)P(A) 。

三、全概率公式与贝叶斯公式1、全概率公式设 B₁,B₂,,Bₙ 是样本空间Ω 的一个划分,且 P(Bᵢ) > 0(i =1, 2,, n),则对于任意事件 A,有 P(A) =Σ P(Bᵢ)P(A|Bᵢ) 。

2、贝叶斯公式在全概率公式的基础上,如果已知 P(A) 和 P(Bᵢ)、P(A|Bᵢ)(i = 1, 2,,n),则对于任意事件 Bᵢ(i = 1, 2,, n),有 P(Bᵢ|A) = P(Bᵢ)P(A|Bᵢ)/Σ P(Bₙ)P(A|Bₙ) 。

概率论与数理统计知识点总结

概率论与数理统计知识点总结

概率论与数理统计知识点总结一、概率的基本概念1.概率的定义:概率是描述事件发生可能性的数字,表示为一个介于0和1之间的数。

2.事件与样本空间:事件是可能发生的结果的集合,样本空间是所有可能结果的集合。

3.事件的运算:事件的运算包括并、交、差等,分别表示两个事件同时发生、至少一个事件发生、一个事件发生而另一个事件不发生等。

4.概率的性质:概率具有非负性、规范性、可列可加性等性质。

二、随机变量与概率分布1.随机变量的定义:随机变量是一个变量,它的值由随机事件决定。

2.离散随机变量:离散随机变量只能取有限或可数个值,其概率表示为离散概率分布函数。

3.连续随机变量:连续随机变量可以取任意实数值,其概率表示为概率密度函数。

4.分布函数:分布函数描述随机变量的概率分布情况,包括累积分布函数和概率质量函数。

三、常见概率分布1.离散分布:包括伯努利分布、二项分布、泊松分布等。

2.连续分布:包括均匀分布、正态分布、指数分布、伽玛分布等。

正态分布在自然界和社会现象中广泛存在。

3.其他分布:包括卡方分布、指数分布、F分布、t分布等。

四、抽样与统计推断1.抽样:抽样是从总体中选择一部分个体进行实验或调查的方法,常用的抽样方法包括随机抽样、分层抽样、整群抽样等。

2.统计推断:通过从样本中获得的数据,对总体做出有关参数的推断。

包括点估计和区间估计两种方法。

3.假设检验:通过对样本数据的统计量进行计算,判断总体参数是否满足其中一种假设。

包括单样本假设检验、两样本假设检验、方差分析等。

五、回归分析与相关分析1.回归分析:研究两个或多个变量之间关系的统计方法,包括一元线性回归分析、多元线性回归分析等。

2.相关分析:研究两个变量之间相关性的统计方法,常用的相关系数包括皮尔逊相关系数和斯皮尔曼相关系数。

六、贝叶斯统计学1.贝叶斯定理:根据先验概率和条件概率,计算后验概率的统计方法。

2.贝叶斯推断:根据贝叶斯定理以及样本数据,推断参数的后验分布。

概率和统计知识点总结

概率和统计知识点总结

概率和统计知识点总结1. 概率的基本概念概率是描述随机现象发生可能性的数学工具。

在概率论中,我们研究的对象是随机实验,即是某种条件下可能出现的各种可能和其相应的概率。

概率的基本概念包括样本空间、事件、概率的定义和性质等。

样本空间是指随机实验的所有可能结果的集合。

事件是样本空间的子集,即是样本空间中的某一部分。

事件的概率就是事件发生的可能性。

概率的定义有频率派和贝叶斯派的不同观点,频率派认为概率是频率的极限,贝叶斯派认为概率是主观的相信程度。

概率的性质包括非负性、规范性、可加性等。

2. 常见的概率分布在概率论中,概率分布是表示随机变量取值可能性的函数。

常见的概率分布包括离散型概率分布和连续型概率分布。

离散型概率分布包括伯努利分布、二项分布、泊松分布等。

伯努利分布描述的是一个随机变量只有两个可能取值的概率分布,二项分布表示的是n重伯努利试验的概率分布,泊松分布描述的是单位时间或单位面积内随机事件出现次数的概率分布。

连续型概率分布包括均匀分布、正态分布、指数分布等。

均匀分布描述的是在一定范围内随机变量取值均匀分布的概率分布,正态分布是一种对称的连续型概率分布,指数分布描述的是一个随机事件首次发生的时间间隔的概率分布。

3. 统计参数估计统计参数估计是利用样本数据估计总体参数的方法。

在统计学中,总体参数是描述总体特征的变量,样本是从总体中抽取的一部分数据。

参数估计包括点估计和区间估计。

点估计是用样本数据估计总体参数的具体值。

常见的点估计方法包括最大似然估计、矩估计等。

最大似然估计是通过寻找数据使得似然函数最大化的方法来估计总体参数,矩估计是利用样本矩来估计总体矩。

区间估计是用样本数据估计总体参数的区间范围。

区间估计的原理是通过置信区间来估计总体参数的范围,通常使用样本均值和标准差来构建置信区间。

4. 假设检验假设检验是统计学中用来验证总体参数的方法。

在假设检验中,我们设定一个或者两个关于总体参数的假设,然后利用样本数据进行检验。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档