人教A版数学必修二第三章第九课时导学案第三章 直线与方程章未复习
2019-2020学年新导学案同步人教A版数学必修2_第3章 直线与方程3.1.2

[思路分析] 根据所给条件求出两直线的斜率,根据斜率是否相等进行判
修 ②
断,要注意斜率不存在及两直线重合的情况.
人 教
版
返回导航
·
第三章 直线与方程
[解析] (1)由题意知,k1=-5- 3-12=-45,k2=-87-+33=-45,所以 l1 与 l2 重合
或平行.
需进一步研究 A、B、C、D 四点是否共线.
[解析] (1)当 a=-1 时,直线 l1 的斜率不存在,直线 l2 的斜率为12,l1 与 l2 既不平行,也不垂直,
当 a≠-1 时,直线 l1 的斜率为-1+1 a,直线 l2 的斜率为-a2,
数 学 必 修 ② 人 教 版
返回导航
·
第三章 直线与方程
因为 l1∥l2, 所以-1+1 a=-a2,解得 a=1 或 a=-2. 当 a=1 时,直线 l1:x+2y=0,l2:x+2y+6=0,l1 与 l2 平行, 当 a=-2 时,直线 l1 与 l2 的方程都是 x-y-3=0,此时两直线重合, 故 a=1.
人 教
版
返回导航
·
第三章 直线与方程
分类讨论思想
当直线上的点的坐标中含有未知参数时,参数取值的变化会导致直线位置 关系的变化,处理问题时要根据参数的取值作分类讨论,分别考虑直线斜率存 在与不存在两种情况.
数 学 必 修 ② 人 教 版
返回导航
·
第三章 直线与方程
典例 3 已知两条直线l1:x+(1+a)y+a-1=0,l2:ax+2y+6=0. (1)若l1∥l2,求a的值. (2)若ll⊥l2,求a的值.
(B)
A.1
B.2
数
学 必
C.3
「精品」人教版高中数学必修二导学案:第三章直线与方程复习-精品

第三章直线与方程复习三维目标1.会梳理本章的知识结构;2. 重点知识点的深化与拓展.________________________________________________________________________________ 目标三导 学做思1问题1.做以下基础练习.(1)直线30x +=的倾斜角是( )A .6πB .56πC .3πD .23π (2)直线3x-4y+5=0关于x 轴对称的直线方程是( )A.3x+4y-5=0B.3x+4y+5=0C.-3x+4y-5=0D.-3x+4y+5=0(3)若直线ax+by+c=0通过第一、二、三象限,则( )A. ab>0,bc>0B. ab>0,bc<0C. ab<0,bc>0D. ab<0,bc<0(4)直线l 过两直线02457=-+y x 和0=-y x 的交点,且点P (5,1)到直线l 的距离为10,则直线l 的方程为_________________________________.(5)两条平行线分别经过点(1,0)和(0,5),且两条直线的距离为5,它们的方程*分别是________________.问题2.梳理本章知识网络【学做思2】1.在平面直角坐标系中,过点P(4 , 1)作一直线l交x轴的正半轴、y轴的正半轴分别于A 、B 两点,求在两坐标轴上截距之和的最小值,并求出此时直线l的方程.2. 设△ABC中两条高所在直线的方程为2x-3y+1=0和x+y=0,且它的一个顶点是A(1,2).(1)求BC边所在直线的方程;(2)求△ABC的面积.3.(1)若直线y=kx+2k+1与直线y=-12x+2的交点在第一象限,则实数k的取值范围是___________________.(2)已知a ,b ∈R ,且a +b +1=0,则(a -2)2+(b -3)2的最小值是________.达标检测1. 点A(1,2)关于直线l :x + y -1=0对称点1A 的坐标为____________.2. 已知点M(x ,y)在直线20x y +-=的最小值为 __________.3. 若A(6,2),B(-3,-1),过点B 的直线l 与点A 的距离为d.(1)d 的取值范围为________________;(2)当d 取最大值时,直线l 的方程为________________.(3)当d =32时,直线l 的方程为________________.4. 过点P(2,1)作直线l 交x 、y 轴的正半轴于A 、B 两点,求使△ABC 的面积最小时直线l 的方程5. 已知△ABC 中,A(1,1),B(m ),C(4,2)(1<m<4),求m 为何值时,△ABC 的面积S 最大.。
【人教A版】高中数学必修二:第3章《直线与方程》导学案设计(含答案) 第三章 3.3.3~3.3.4

3.3.3 点到直线的距离 3.3.4 两条平行直线间的距离[学习目标] 1.掌握点到直线的距离公式,会用公式解决有关问题.2.掌握两平行线之间的距离公式,并会求两平行线之间的距离.知识点一 点到直线的距离1.概念:过一点向直线作垂线,则该点与垂足之间的距离,就是该点到直线的距离.2.公式:点P (x 0,y 0)到直线l :Ax +By +C =0的距离 d思考 在使用点到直线的距离公式时,对直线方程的形式有什么要求? 答 点到直线的距离公式只适用直线方程的一般式. 知识点二 两平行直线间的距离1.概念:夹在两条平行直线间的公垂线段的长度就是两条平行直线间的距离.2.公式:两条平行直线l1:Ax +By +C 1=0与l 2:Ax +By +C 2=0之间的距离d思考 两条平行直线间的距离公式写成d =|C 1-C 2|A 2+B 2时对两条直线应有什么要求? 答 两条平行直线的方程都是一般式,并且x ,y 的系数分别对应相等.题型一 点到直线的距离例1 求过点P (1,2)且与点A (2,3),B (4,-5)的距离相等的直线l 的方程.解 方法一 由题意知k AB =-4,线段AB 的中点为C (3,-1),所以过点P (1,2)与直线AB 平行的直线方程为y -2=-4(x -1), 即4x +y -6=0.此直线符合题意.过点P (1,2)与线段AB 中点C (3,-1)的直线方程为y -2-1-2=x -13-1,即3x +2y -7=0.此直线也符合题意.故所求直线l 的方程为4x +y -6=0或3x +2y -7=0. 方法二 显然所求直线的斜率存在,设直线方程为y =kx +b ,根据条件得⎩⎪⎨⎪⎧2=k +b ,|2k -3+b |k 2+1=|4k +5+b |k 2+1,化简得⎩⎪⎨⎪⎧k +b =2,k =-4,或⎩⎪⎨⎪⎧k +b =2,3k +b +1=0,所以⎩⎪⎨⎪⎧k =-4,b =6,或⎩⎨⎧k =-32,b =72.所以所求直线l 的方程为: y =-4x +6或y =-32x +72,即4x +y -6=0,或3x +2y -7=0.反思与感悟 1.求点到直线的距离,首先要把直线方程化成一般式方程,然后再套用点到直线的距离公式.2.当点与直线有特殊位置关系时,也可以用公式求解,但是这样会把问题变复杂了,要注意数形结合.3.几种特殊情况的点到直线的距离:(1)点P 0(x 0,y 0)到直线y =a 的距离d =|y 0-a |; (2)点P 0(x 0,y 0)到直线x =b 的距离d =|x 0-b |.跟踪训练1 若点(a ,2)到直线l :y =x -3的距离是1,则a =________. 答案 5±2解析 直线l :y =x -3可变形为x -y -3=0. 由点(a,2)到直线l 的距离为1,得|a -2-3|1+(-1)2=1,解得a =5± 2.题型二 两平行线间的距离例2 求与直线l :5x -12y +6=0平行且到l 的距离为2的直线的方程. 解 方法一 设所求直线的方程为5x -12y +m =0, ∵两直线间的距离为2, ∴|6-m |52+(-12)2=2,∴m =32或m =-20.∴所求直线的方程为5x -12y +32=0或5x -12y -20=0.方法二 设所求直线的方程为5x -12y +c =0. 在直线5x -12y +6=0上取一点P 0⎝⎛⎭⎫0,12, 点P 0到直线5x -12y +c =0的距离为:d =⎪⎪⎪⎪-12×12+c 52+(-12)2=|c -6|13,由题意得|c -6|13=2,则c =32或c =-20.∴所求直线的方程为5x -12y +32=0或5x -12y -20=0. 反思与感悟 1.针对这个类型的题目一般有两种思路:(1)利用“化归”思想将两平行直线间的距离转化为求其中一条直线上任意一点到另一条直线的距离.(2)利用两条平行直线间距离公式d =|C 1-C 2|A 2+B 2. 2.当两直线都与x 轴(或y 轴)垂直时,可利用数形结合来解决. (1)两直线都与x 轴垂直时,l 1:x =x 1,l 2:x =x 2, 则d =|x 2-x 1|;(2)两直线都与y 轴垂直时,l 1:y =y 1,l 2:y =y 2, 则d =|y 2-y 1|.跟踪训练2 直线l 1过点A (0,1),l 2过点B (5,0),如果l 1∥l 2,且l 1与l 2间的距离为5,求l 1,l 2的方程.解 若直线l 1,l 2的斜率存在,设直线l 1与l 2的斜率为k , 由斜截式得l 1的方程为y =kx +1,即kx -y +1=0; 由点斜式可得l 2的方程为y =k (x -5), 即kx -y -5k =0. 在直线l 1上取点A (0,1), 则点A 到直线l 2的距离d =|1+5k |1+k 2=5,∴25k 2+10k +1=25k 2+25,∴k =125.∴l 1的方程为12x -5y +5=0, l 2的方程为12x -5y -60=0.若直线l 1,l 2的斜率不存在,则l 1的方程为x =0,l 2的方程为x =5, 它们之间的距离为5,满足条件. 则满足条件的直线方程有以下两组:l 1:12x -5y +5=0,l 2:12x -5y -60=0; l 1:x =0,l 2:x =5.题型三 距离公式的综合应用例3 已知三条直线l 1:2x -y +a =0(a >0),l 2:-4x +2y +1=0和l 3:x +y -1=0,且l 1与l 2的距离是7510.(1)求a 的值;(2)能否找到一点P ,使P 同时满足下列三个条件:①点P 是第一象限的点;②点P 到l 1的距离是点P 到l 2的距离的12;③点P 到l 1的距离与点P 到l 3的距离之比是2∶ 5.若能,求点P 的坐标;若不能,请说明理由. 解 (1)因为l 2可化为2x -y -12=0,所以l 1与l 2的距离为d =⎪⎪⎪⎪a -⎝⎛⎭⎫-1222+12=7510.因为a >0,所以a =3.(2)设存在点P (x 0,y 0)满足②,则点P 在与l 1,l 2平行的直线l ′:2x -y +c =0上,且|c -3|5=12·⎪⎪⎪⎪c +125,即c =132或c =116.所以满足条件②的点P 满足2x 0-y 0+132=0或2x 0-y 0+116=0.若点P 满足条件③,由点到直线的距离公式,有|2x 0-y 0+3|5=25·|x 0+y 0-1|2,即|2x 0-y 0+3|=|x 0+y 0-1|. 所以x 0-2y 0+4=0或3x 0+2=0.因为点P 在第一象限,所以3x 0+2=0不可能. 联立方程2x 0-y 0+132=0和x 0-2y 0+4=0,解得⎩⎪⎨⎪⎧x 0=-3,y 0=12(舍去), 联立方程2x 0-y 0+116=0和x 0-2y 0+4=0,解得⎩⎨⎧x 0=19,y 0=3718.所以P ⎝⎛⎭⎫19,3718即为同时满足条件的点.反思与感悟 解决探究性问题时,可先假设需探究的问题存在,以此为出发点寻找满足的条件.若求出的结论符合要求,则问题有解.若求出的结论与要求不符,则说明原探究问题无解.另外,运用公式解决问题要注意适用的范围及使用特点.跟踪训练3 已知A (4,-3),B (2,-1)和直线l :4x +3y -2=0,求一点P ,使P A =PB ,且点P 到直线l 的距离等于2.解 方法一 设点P 的坐标为P (a ,b ), 由P A =PB ,得(4-a )2+(-3-b )2=(2-a )2+(-1-b )2, ① 化简,得a -b =5.由点P 到直线l 的距离等于2,得 |4a +3b -2|42+32=2. ②由①②方程联立解得⎩⎪⎨⎪⎧a =1,b =-4,或⎩⎨⎧a =277,b =-87.所以,所求的点为P (1,-4)或P (277,-87)方法二 设点P 的坐标为P (a ,b ),因为A (4,-3),B (2,-1),所以线段AB 中点M 的坐标为(3,-2).而直线AB 的斜率k AB =-3-(-1)4-2=-1,所以线段AB 的垂直平分线方程为y -(-2)=x -3, 即x -y -5=0.而点P (a ,b )在直线x -y -5=0上, 故a -b -5=0,①由已知点P 到l 的距离为2, 得|4a +3b -2|42+22,② 由①②方程联立,解得⎩⎪⎨⎪⎧a =1,b =-4或⎩⎨⎧a =277,b =-87.所以,所求的点为P (1,-4)或P (277,-87).数形结合思想例4两条互相平行的直线分别过A(6,2)和B(-3,-1)两点,如果两条平行直线间的距离为d,求:(1)d的取值范围;(2)当d取最大值时,两条直线的方程.分析由于平行线的倾斜角不同,两平行线间的距离不同,故可以利用几何图形探索d的取值变化情况.解(1)如图,当两条平行直线与AB垂直时,两平行直线间的距离最大,为d=|AB|=(6+3)2+(2+1)2=310,当两条平行线各自绕点B,A逆时针旋转时,距离逐渐变小,越来越接近于0,所以0<d≤310,即所求的d的取值范围是(0,310].(2)当d取最大值310时,两条平行线都垂直于AB,它们的斜率k=-1k AB=-12-(-1)6-(-3)=-3.故所求的直线方程分别为y-2=-3(x-6)和y+1=-3(x+3),即3x+y-20=0和3x+y+10=0.解后反思通过数形结合,运用运动变化的方法,把握住题中的已知点不动,而两条平行线可以绕点转动,我们很容易直观感受到两平行线间距离的变化情况,从而求出两平行线间的距离的取值范围.忽略斜率不存在的情形致误例5求经过点A(1,2),且到原点的距离等于1的直线方程.分析当直线的斜率不存在时,直线方程为x=1,验证此直线到原点的距离是否等于1;当斜率存在时可设为y-2=k(x-1),利用点到直线的距离公式求k.解当过点A的直线垂直于x轴时,因为它到原点的距离等于1,所以满足题设条件,其方程为x-1=0;当过点A的直线不垂直于x轴时,设所求的直线方程为y-2=k(x-1),即kx -y -k +2=0.因为原点到此直线的距离等于1, 所以|-k +2|k 2+1=1.解得k =34.故所求直线的方程为y -2=34(x -1),即3x -4y +5=0.综上,所求直线的方程为x -1=0或3x -4y +5=0.解后反思 本题易出现的错误是直接利用点斜式设出方程,由点到直线的距离得方程求k ,漏掉了直线x =1.用直线的点斜式方程来解题,一定要考虑斜率不存在的情况,对于斜率不存在的特殊直线,很多情况也符合题意.1.P ,Q 分别为直线3x +4y -12=0与6x +8y +6=0上任意的点,则|PQ |的最小值为( ) A.95 B.185 C.3 D.6 答案 C解析 将6x +8y +6=0化为3x +4y +3=0,由两平行线间的距离公式得d =|3-(-12)|32+42=3,则|PQ |min =d =3.2.若点(4,a )到直线4x -3y =1的距离不大于3,则a 的取值范围是( ) A.[0,10] B.⎣⎡⎦⎤13,313C.(0,10)D.(-∞,0]∪[10,+∞)答案 A解析 d =|4×4-3a -1|42+(-3)2=|15-3a |5≤3,|3a -15|≤15,∴-15≤3a -15≤15,0≤a ≤10.3.若点P 到直线5x -12y +13=0和直线3x -4y +5=0的距离相等,则点P 的坐标应满足的方程是( )A.32x -56y +65=0或7x +4y =0B.x -4y +4=0或4x -8y +9=0C.7x +4y =0D.x -4y +4=0 答案 A解析 设点P 的坐标为(x ,y ),则根据题意得|5x -12y +13|52+(-12)2=|3x -4y +5|32+(-4)2,整理得32x -56y+65=0或7x +4y =0.4.分别过点A (-2,1)和点B (3,-5)的两条直线均垂直于x 轴,则这两条直线间的距离是________. 答案 5解析 d =|3-(-2)|=5.5.与直线l 1:3x +2y -6=0和直线l 2:6x +4y -3=0等距离的直线方程是___________. 答案 12x +8y -15=0解析 l 2:6x +4y -3=0化为3x +2y -32=0,所以l 1与l 2平行,设与l 1,l 2等距离的直线l的方程为3x +2y +c =0,则:|c +6|=|c +32|,解得c =-154,所以l 的方程为12x +8y -15=0.1.应用点P (x 0,y 0)到直线Ax +By +C =0(A 、B 不同时为零)距离公式d =|Ax 0+By 0+C |A 2+B 2的前提是直线方程为一般式.特别地,当直线方程A =0或B =0时,上述公式也适用,且可以应用数形结合思想求解.2.两条平行线间的距离处理方法有两种:一是转化为点到直线的距离,其体现了数学上的转化与化归思想. 二是直接套用公式d =|C 1-C 2|A 2+B 2,其中l 1:Ax +By +C 1=0,l 2:Ax +By +C 2=0,需注意此时直线l 1与l 2的方程为一般式且x ,y 的系数分别相同.一、选择题1.原点到直线x +2y -5=0的距离为( ) A.1 B. 3 C.2 D.5 答案 D解析 由点到直线的距离公式,得d =|-5|12+22= 5. 2.两直线x +y -2=0和2x +2y -3=0的距离等于( ) A.22 B.24 C.12D.2 答案 B解析 把2x +2y -3=0化为x +y -32=0,由两直线间的距离公式,得d =⎪⎪⎪⎪-2-⎝⎛⎭⎫-3212+12=24. 3.已知点A (a,2)(a >0)到直线l :x -y +3=0的距离为1,则a 等于( ) A. 2 B.2- 2 C.2-1 D.2+1 答案 C解析 由点到直线的距离公式,得|a -2+3|2=1,即|a +1|=2,所以a =2-1或a =-2-1. 又因为a >0,所以a =2-1.4.已知两直线3x +2y -3=0与6x +my +1=0互相平行,则它们之间的距离等于( ) A.4 B.21313 C.51326 D.71326答案 D解析 因为3x +2y -3=0与6x +my +1=0互相平行,所以-6m =-32,所以m =4.所以6x +my +1=0为6x +4y +1=0,即3x +2y +12=0.所以两平行线间的距离d =⎪⎪⎪⎪-3-1232+22=7213=71326.5.已知点A (0,2),B (2,0),若点C 在函数y =x 2的图象上,则使得△ABC 的面积为2的点C 的个数为( ) A.4 B.3 C.2 D.1 答案 A解析 设点C (t ,t 2),直线AB 的方程是x +y -2=0,|AB |=2 2.由于△ABC 的面积为2,则这个三角形中AB 边上的高h 满足方程12×22h =2,即h = 2.由点到直线的距离公式,得2=|t +t 2-2|2,即|t 2+t -2|=2,即t 2+t -2=2或t 2+t -2=-2,这两个方程各自有两个不相等的实数根,故这样的点C 有4个.6.直线2x +3y -6=0关于点(1,-1)对称的直线方程是( ) A.3x -2y -6=0 B.2x +3y +7=0 C.3x -2y -12=0 D.2x +3y +8=0答案 D解析 方法一 设所求直线的方程为2x +3y +C =0,由题意可知|2-3-6|22+32=|2-3+C |22+32.∴C =-6(舍)或C =8.故所求直线的方程为2x +3y +8=0.方法二 令(x 0,y 0)为所求直线上任意一点,则点(x 0,y 0)关于(1,-1)的对称点为(2-x 0,-2-y 0),此点在直线2x +3y -6=0上,代入可得所求直线方程为2x +3y +8=0. 7.两平行线分别经过点A (5,0),B (0,12),它们之间的距离d 满足的条件是( ) A.0<d ≤5 B.0<d ≤13 C.0<d <12 D.5≤d ≤12答案 B解析 当两平行线与AB 垂直时,两平行线间的距离最大,为|AB |=13,所以0<d ≤13. 二、填空题8.若两平行直线3x -2y -1=0与6x +ay +c =0之间的距离为21313,则c +2a 的值为______.答案 ±1解析 由3x -2y -1=0和6x +ay +c =0平行,得32=-6a ,所以a =-4.所以6x -4y +c =0化为3x -2y +c 2=0.所以⎪⎪⎪⎪c 2+132+(-2)2=21313,解得c =2或c =-6.所以c +2a =±1.9.已知在△ABC 中,A (3,2),B (-1,5),点C 在直线3x -y +3=0上.若△ABC 的面积为10,则点C 的坐标为________. 答案 (-1,0)或⎝⎛⎭⎫53,8解析 由|AB |=5,△ABC 的面积为10,得点C 到直线AB 的距离为4.设C (x,3x +3),利用点到直线的距离公式可求得x =-1或x =53.10.若点P 在直线x +y -4=0上,O 为原点,则|OP |的最小值是________. 答案 22解析 |OP |的最小值,即为点O 到直线x +y -4=0的距离. d =|0+0-4|1+1=2 2.11.若实数x ,y 满足关系式x +y +1=0,则式子S =x 2+y 2-2x -2y +2的最小值为______. 答案322解析 方法一 ∵x 2+y 2-2x -2y +2=(x -1)2+(y -1)2, ∴上式可看成是一个动点M (x ,y )到一个定点N (1,1)距离的平方.即为点N 与直线l :x +y +1=0上任意一点M (x ,y )距离的平方.∴S =|MN |的最小值应为点N 到直线l 的距离,即|MN |min =d =|1+1+1|2=322. 方法二 ∵x +y +1=0,∴y =-x -1,∴S =x 2+(-x -1)2-2x -2(-x -1)+2=2x 2+2x +5= 2(x +12)2+92,∴x =-12时,S min =92=322. 三、解答题12.当m 取何值时,直线l 1:5x -2y +3m (3m +1)=0与l 2:2x +6y -3m (9m +20)=0的交点到直线l 3:4x -3y -12=0的距离最短?这个最短距离是多少?解 设l 1与l 2的交点为M ,则由⎩⎪⎨⎪⎧5x -2y +3m (3m +1)=0,2x +6y -3m (9m +20)=0, 解得M ⎝⎛⎭⎫3m ,9m 2+18m 2.设M 到l 3的距离为d ,则d =⎪⎪⎪⎪12m -32(9m 2+18m )-1242+(-3)2=110⎣⎡⎦⎤27⎝⎛⎭⎫m +592+473. 故当m =-59时,距离最短,且d min =4730. 13.已知直线l :3x -y -1=0及点A (4,1),B (0,4),C (2,0).(1)试在l 上求一点P ,使|AP |+|CP |最小;(2)试在l 上求一点Q ,使||AQ |-|BQ ||最大.解 (1)如图①,设点C 关于l 的对称点为C ′(a ,b ),则b -0a -2=-13,且3·a +22-b +02-1=0,解得C ′(-1,1),所以直线AC ′的方程为y =1.由⎩⎪⎨⎪⎧y =1,3x -y -1=0 得l 与直线AC ′的交点P (23,1),此时|AP |+|CP |取最小值为5.(2)如图②,设点B 关于l 的对称点为B ′(m ,n ),则n -4m -0=-13,且3·m +02-n +42-1=0,解得B ′(3,3),所以直线AB ′的方程为2x +y -9=0,由⎩⎪⎨⎪⎧ 2x +y -9=0,3x -y -1=0得AB ′与l 的交点Q (2,5),此时||AQ |-|BQ ||取最大值为 5.。
人教A版高中数学必修2 第3章 直线与方程【导学案】

1§3.1直线的倾斜角与斜率1.理解直线的倾斜角的定义、范围和斜率;2.掌握过两点的直线斜率的计算公式;3.能用公式和概念解决问题.9091复习1:在直角坐标系中,只知道直线上的一点,能不能确定一条直线呢?复习2:在日常生活中,我们常说这个山坡很陡峭,有时也说坡度,这里的陡峭和坡度说的是山坡与水平面之间的一个什么关系呢?二、新课导学※学习探究新知1:当直线l 与x 轴相交时,取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角α叫做直线l 的倾斜角(angle of inclination ).关键:①直线向上方向;②x 轴的正方向;③小于平角的正角.注意:当直线与x 轴平行或重合时,我们规定它的倾斜角为0度..试试:请描出下列各直线的倾斜角.反思:直线倾斜角的范围?探究任务二:在日常生活中,我们经常用“升高量与前进量的比”表示“坡度”,则坡度的公式是怎样的?新知2:一条直线的倾斜角()2παα≠的正切值叫做这条直线的斜率(slope).记为tan k α=.试试:已知各直线倾斜角,则其斜率的值为⑴当0o α=时,则k ;⑵当090o o α<<时,则k ;⑶当90o α=时,则k ;⑷当090180oα<<时,则k .新知3:已知直线上两点111222(,),(,)P x y P x y 12()x x ≠的直线的斜率公式:2121y y k x x -=-.探究任务三:1.已知直线上两点1212(,),(,),A a a B b b 运用上述公式计算直线的斜率时,与,A B 两点坐标的顺序有关吗?2.当直线平行于y 轴时,或与y 轴重合时,上述公式还需要适用吗?为什么?※典型例题例1已知直线的倾斜角,求直线的斜率:⑴30οα=;⑵135οα=;⑶60οα=;⑷90οα=变式:已知直线的斜率,求其倾斜角.⑴0k =;⑵1k =;⑶k =;⑷k 不存在.例2求经过两点(2,3),(4,7)A B 的直线的斜率和倾斜角,并判断这条直线的倾斜角是锐角还是钝角.2※动手试试练1.求经过下列两点直线的斜率,并判断其倾斜角是锐角还是钝角.⑴(2,3),(1,4)A B -;⑵(5,0),(4,2)A B -.练2.画出斜率为0,1,1-且经过点(1,0)的直线.练3.判断(2,12),(1,3),(4,6)A B C --三点的位置关系,并说明理由.三、总结提升※学习小结1.任何一条直线都有唯一确定的倾斜角,直线斜角的范围是[0,180)︒.2.直线斜率的求法:⑴利用倾斜角的正切来求;⑵利用直线上两点111222(,),(,)P x y P x y 的坐标来求;⑶当直线的倾斜角90οα=时,直线的斜率是不存在的3.直线倾斜角、斜率、斜率公式三者之间的关系:直线的倾斜角α直线的斜率k直线的斜率公式定义αtan =k 1212x x y y k --=取值[0,180)︒),(+∞-∞)(21x x ≠范围※自我评价你完成本节导学案的情况为().A.很好B.较好C.一般D.较差※当堂检测(时量:5分钟满分:10分)计分:1.下列叙述中不正确的是().A .若直线的斜率存在,则必有倾斜角与之对应B .每一条直线都惟一对应一个倾斜角C .与坐标轴垂直的直线的倾斜角为0o 或90οD .若直线的倾斜角为α,则直线的斜率为tan α2.经过(2,0),(5,3)A B --两点的直线的倾斜角().A .45οB .135οC .90οD .60ο3.过点P (-2,m )和Q (m ,4)的直线的斜率等于1,则m 的值为().A.1 B.4 C.1或3 D.1或44.直线经过二、三、四象限,l 的倾斜角为α,斜率为k ,则α为角;k 的取值范围.5.已知直线l 1的倾斜角为α1,则l 1关于x 轴对称的直线l 2的倾斜角2α为________.1.已知点(2,3),(3,2)A B --,若直线l 过点(1,1)P 且与线段AB 相交,求直线l 的斜率k 的取值范围.2.已知直线l 过2211(2,(),(2,())A t B t t t-+-两点,求此直线的斜率和倾斜角.3§3.2两直线平行与垂直的判定1.熟练掌握两条直线平行与垂直的充要条件,能够根据直线的方程判断两条直线的位置关系;2.通过研究两直线平行或垂直的条件的讨论,培养学生运用已有知识解决新问题的能力以及学生的数形结合能力;3.通过对两直线平行与垂直的位置关系的研究,培养学生的成功意识,激发学生学习的兴趣.9598复习1:1.已知直线的倾斜角(90)οαα≠,则直线的斜率为;已知直线上两点1122(,),(,)A x y B x y 且12x x ≠,则直线的斜率为.2.若直线l 过(-2,3)和(6,-5)两点,则直线l 的斜率为,倾斜角为.3.斜率为2的直线经过(3,5)、(a ,7)、(-1,b )三点,则a 、b 的值分别为.4.已知12,l l 的斜率都不存在且12,l l 不重合,则两直线的位置关系.5.已知一直线经过两点(,2),(,21)A m B m m --,且直线的倾斜角为60ο,则m =.复习2:两直线平行(垂直)时它们的倾斜角之间有何关系?二、新课导学:※学习探究问题1:特殊情况下的两直线平行与垂直.当两条直线中有一条直线没有斜率时:(1)当另一条直线的斜率也不存在时,两直线的倾斜角为,两直线位置关系是.(2)当另一条直线的斜率为0时,一条直线的倾斜角为,另一条直线的倾斜角为,两直线的位置关系是.问题2:斜率存在时两直线的平行与垂直.设直线1l 和2l 的斜率为1k 和2k .⑴两条直线平行的情形.如果21//l l ,那么它们的倾斜角与斜率是怎么的关系,反过来成立吗?新知1:两条直线有斜率且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,则它们平行,即12//l l ⇔1k =2k 注意,上面的等价是在两直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不存立.⑵两条直线垂直的情形.如果12l l ⊥,那么它们的倾斜角与斜率是怎么的关系,反过来成立吗?新知2:两条直线都有斜率,如果它们互相垂直,则它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,则它们互相垂直.即12l l ⊥⇔121k k =-⇔121k k =-※典型例题例1已知(2,3),(4,0),(3,1),(1,2)A B P Q ---,试判断直线BA与PQ 的位置关系,并证明你的结论.例2已知(1,1),(2,2),(3,0)A B C -三点,求点D 的坐标,使直线CD AB ⊥,且//CB AD .4变式:已知(5,1),(1,1),(2,3)A B C -,试判断三角形ABC 的形状.※动手试试练1.试确定m 的值,使过点(,1),(1,)A m B m -的直线与过点(1,2),(5,0)P Q -的直线⑴平行;⑵垂直练2.已知点(3,4)A ,在坐标轴上有一点B ,若2AB k =,求B 点的坐标.三、总结提升:※学习小结:1.1212//l l k k ⇔=或12,l l 的斜率都不存在且不重合.2.12121l l k k ⊥⇔=-或10k =且2l 的斜率不存在,或20k =且1l 的斜率不存在.※自我评价你完成本节导学案的情况为().A.很好B.较好C.一般D.较差※当堂检测(时量:5分钟满分:10分)计分:1.下列说法正确的是().A .若12l l ⊥,则121k k =-B .若直线12//l l ,则两直线的斜率相等C .若直线1l 、2l 的斜率均不存在,则12l l ⊥D .若两直线的斜率不相等,则两直线不平行2.过点(1,2)A 和点(3,2)B -的直线与直线1y =的位置关系是().A .相交 B.平行 C.重合 D.以上都不对3.经过(,3)m 与(2,)m 的直线l 与斜率为4-的直线互助垂直,则m 值为().A .75-B .75C .145-D .1454.已知三点(,2),(5,1),(4,2)A a B C a -在同一直线上,则a 的值为.5.顺次连结(4,3),(2,5),(6,3),(3,0)A B C D --,所组成的图形是.1.若已知直线1l 上的点满足260ax y ++=,直线2l 上的点满足2(1)10(1)x a y a a +-+-=≠,试求a 为何值时,⑴12//l l ;⑵12l l ⊥.2.已知定点(1,3),(4,2)A B -,以,A B 为直径的端点,作圆与x 轴有交点C ,求交点C 的坐标.5§3.2.1直线的点斜式方程1.理解直线方程的点斜式、斜截式的形式特点和适用范围;2.能正确利用直线的点斜式、斜截式公式求直线方程;3.体会直线的斜截式方程与一次函数的关系.101104,找出疑惑之处)复习1.已知直线12,l l 都有斜率,如果12//l l ,则;如果12l l ⊥,则.2.若三点(3,1),(2,),(8,11)A B k C -在同一直线上,则k 的值为.3.已知长方形ABCD 的三个顶点的坐标分别为(0,1),(1,0),(3,2)A B C ,则第四个顶点D 的坐标.4.直线的倾斜角与斜率有何关系?什么样的直线没有斜率?二、新课导学:※学习探究问题1:在直线坐标系内确定一条直线,应知道哪些条件?新知1:已知直线l 经过点00(,)P x y ,且斜率为k ,则方程00()y y k x x -=-为直线的点斜式方程.问题2:直线的点斜式方程能否表示坐标平面上的所有直线呢?问题3:⑴x 轴所在直线的方程是,y 轴所在直线的方程是.⑵经过点000(,)P x y 且平行于x 轴(即垂直于y 轴)的直线方程是.⑶经过点000(,)P x y 且平行于y 轴(即垂直于x 轴)的直线方程是.问题4:已知直线l 的斜率为k ,且与y 轴的交点为(0,)b ,求直线l 的方程.新知2:直线l 与y 轴交点(0,)b 的纵坐标b 叫做直线l 在y 轴上的截距(intercept ).直线y kx b =+叫做直线的斜截式方程.注意:截距b 就是函数图象与y 轴交点的纵坐标.问题5:能否用斜截式表示平面内的所有直线?斜截式与我们学过的一次函数表达式比较你会得出什么结论.※典型例题例1直线过点(1,2)-,且倾斜角为135ο,求直线l 的点斜式和斜截式方程,并画出直线l .变式:⑴直线过点(1,2)-,且平行于x 轴的直线方程;⑵直线过点(1,2)-,且平行于x 轴的直线方程;⑶直线过点(1,2)-,且过原点的直线方程.例2写出下列直线的斜截式方程,并画出图形:⑴斜率是2,在y 轴上的距截是-2;⑵斜角是0135,在y 轴上的距截是06变式:已知直线的方程3260x y +-=,求直线的斜率及纵截距.※动手试试练1.求经过点(1,2),且与直线23y x =-平行的直线方程.练2.求直线48y x =+与坐标轴所围成的三角形的面积.三、总结提升:※学习小结1.直线的方程:⑴点斜式00()y y k x x -=-;⑵斜截式y kx b =+;这两个公式都只能在斜率存在的前提※自我评价你完成本节导学案的情况为().A.很好B.较好C.一般D.较差※当堂检测(时量:5分钟满分:10分)计分:1.过点(4,2)-,倾斜角为135ο的直线方程是().A20y ++-B360y +++=C.40x +-=D .40x +=2.已知直线的方程是21y x +=--,则().A .直线经过点(2,1)-,斜率为1-B .直线经过点(2,1)--,斜率为1C .直线经过点(1,2)--,斜率为1-D .直线经过点(1,2)-,斜率为1-3.直线130kx y k -+-=,当k 变化时,所有直线恒过定点().A .(0,0)B .(3,1)C .(1,3)D .(1,3)--4.直线l 的倾斜角比直线122y =+的倾斜角大45ο,且直线l 的纵截距为3,则直线的方程.5.已知点(1,2),(3,1)A B ,则线段AB 的垂直平分线的方程.1.已知三角形的三个顶点(2,2),(3,2),(3,0)A B C -,求这个三角形的三边所在的直线方程.2.直线l 过点(2,3)P -且与x 轴、y 轴分别交于,A B 两点,若P 恰为线段AB 的中点,求直线l 的方程.7§3.2.2直线的两点式方程1.掌握直线方程的两点的形式特点及适用范围;2.了解直线方程截距式的形式特点及适用范围.105106,找出疑惑之处)复习1:直线过点(2,3)-,斜率是1,则直线方程为;直线的倾斜角为60ο,纵截距为3-,则直线方程为.2.与直线21y x =+垂直且过点(1,2)的直线方程为.3.方程()331--=+x y 表示过点______,斜率是______,倾斜角是______,在y 轴上的截距是______的直线.4.已知直线l 经过两点12(1,2),(3,5)P P ,求直线l 的方程.二、新课导学:※学习探究新知1:已知直线上两点112222(,),(,)P x x P x y 且1212(,)x x y y ≠≠,则通过这两点的直线方程为1112122121(,)y y x x x x y y y y x x --=≠≠--,由于这个直线方程由两点确定,所以我们把它叫直线的两点式方程,简称两点式(two-point form ).问题1:哪些直线不能用两点式表示?例已知直线过(1,0),(0,2)A B -,求直线的方程并画出图象.新知2:已知直线l 与x 轴的交点为(,0)A a ,与y 轴的交点为(0,)B b ,其中0,0a b ≠≠,则直线l 的方程1=+bya x 叫做直线的截距式方程.注意:直线与x 轴交点(a ,0)的横坐标a 叫做直线在x 轴上的截距;直线与y 轴交点(0,b )的纵坐标b 叫做直线在y 轴上的截距.问题3:a ,b 表示截距,是不是表示直线与坐标轴的两个交点到原点的距离?问题4:到目前为止,我们所学过的直线方程的表达形式有多少种?它们之间有什么关系?※典型例题例1求过下列两点的直线的两点式方程,再化为截距式方程.⑴(2,1),(0,3)A B -;⑵(4,5),(0,0)A B --.例2已知三角形的三个顶点(5,0),(3,3)A B --,(0,2)C ,求BC 边所在直线的方程,以及该边上中线所在直线的方程.8※动手试试练1.求出下列直线的方程,并画出图形.⑴倾斜角为045,在y 轴上的截距为0;⑵在x 轴上的截距为-5,在y 轴上的截距为6;⑶在x 轴上截距是-3,与y 轴平行;⑷在y 轴上的截距是4,与x 轴平行.三、总结提升:※学习小结1.直线方程的各种形式总结为如下表格:2.中点坐标公式:已知1122(,),(,)A x y B x y ,则AB 的中点(,)M x y ,则2121,22x x y y x y ++==.※自我评价你完成本节导学案的情况为().A.很好B.较好C.一般D.较差※当堂检测(时量:5分钟满分:10分)计分:1.直线l 过点(1,1),(2,5)--两点,点(1002,)b 在l上,则b 的值为().A .2003B .2004C .2005D .20062.若直线0Ax By C ++=通过第二、三、四象限,则系数,,A B C 需满足条件()A.,,A B C 同号 B.0,0AC BC <<C.0,0C AB =< D.0,0A BC =<3.直线y ax b =+(0a b +=)的图象是()线方程.5.直线21y x =-关于x 轴对称的直线方程,关于y 轴对称的直线方程关于原点对称的方程.1.过点P (2,1)作直线l 交,x y 正半轴于AB 两点,当||||PA PB ⋅取到最小值时,求直线l 的方程.2.已知一直线被两直线1:460l x y ++=,2l :3x 560y --=截得的线段的中点恰好是坐标原点,求该直线方程.直线名称已知条件直线方程使用范围点斜式111(,),P x y k11()y y k x x -=-k 存在斜截式bk ,y kx b =+k 存在两点式),(11y x (),22y x 112121y y x x y y x x --=--12x x ≠12y y ≠截距式b a ,1x y a b+=0a ≠0b ≠§3.2.3直线的一般式方程1.明确直线方程一般式的形式特征;2.会把直线方程的一般式化为斜截式,进而求斜率和截距;3.会把直线方程的点斜式、两点式化为一般式.一、课前准备:(预习教材P107~P109,找出疑惑之处)复习1:⑴已知直线经过原点和点(0,4),则直线的方程.⑵在x轴上截距为1-,在y轴上的截距为3的直线方程.⑶已知点(1,2),(3,1)A B,则线段AB的垂直平分线方程是.复习2:平面直角坐标系中的每一条直线都可以用一个关于,x y的二元一次方程表示吗?二、新课导学:※学习探究新知:关于,x y的二元一次方程0Ax By C++=(A,B不同时为0)叫做直线的一般式方程,简称一般式(general form).注意:直线一般式能表示平面内的任何一条直线问题1:直线方程的一般式与其他几种形式的直线方程相比,它有什么优点?问题4:在方程0Ax By C++=中,,,A B C为何值时,方程表示的直线⑴平行于x轴;⑵平行于y轴;⑶与x轴重合;⑷与y重合.※典型例题例1已知直线经过点(6,4)A-,斜率为12,求直线的点斜式和一般式方程.例2把直线l的一般式方程260x y-+=化成斜截式,求出直线l的斜率以及它在x轴与y轴上的截距,并画出图形.变式:求下列直线的斜率和在y轴上的截距,并画出图形⑴350x y+-=;⑵145x y-=;⑶20x y+=;⑷7640x y-+=;⑸270y-=.910※动手试试练1.根据下列各条件写出直线的方程,并且化成一般式:⑴斜率是12-,经过点(8,2)A -;⑵经过点(4,2)B ,平行于x 轴;⑶在x 轴和y 轴上的截距分别是3,32-;⑷经过两点12(3,2),(5,4)P P --.练2.设A 、B 是x 轴上的两点,点P 的横坐标为2,且|PA |=|PB |,若直线P A 的方程为10x y -+=,求直线PB 的方程三、总结提升:※学习小结1.通过对直线方程的四种特殊形式的复习和变形,概括出直线方程的一般形式:0Ax By C ++=(A 、B 不全为0);2.点00(,)x y 在直线0Ax By C ++=上⇔00Ax By +0C +=学习评价※自我评价你完成本节导学案的情况为().A.很好B.较好C.一般D.较差※当堂检测(时量:5分钟满分:10分)计分:1斜率为3-,在x 轴上截距为2的直线的一般式方程是().A .360x y ++=B .320x y -+=C .360x y +-=D .320x y --=2.若方程0Ax By C ++=表示一条直线,则().A .1A ≠B .0B ≠C .0AB ≠D .220A B +≠3.已知直线1l 和2l 的夹角的平分线为y x =,如果1l 的方程是0(0)ax by c ab ++=>,那么2l 的方程为().A .0bx ay c ++=B .0ax by c -+=C .0bx ay c +-=D .0bx ay c -+=4.直线270x y ++=在x 轴上的截距为a ,在y 轴上的截距为b ,则a b +=.5.直线1:2(1)40l x m y +++=与直线2:3l mx y +20-=平行,则m =.课后作业1.菱形的两条对角线长分别等于8和6,并且分别位于x 轴和y 轴上,求菱形各边所在的直线的方程.2.光线由点(1,4)A -射出,在直线:2360l x y +-=上进行反射,已知反射光线过点62(3,)13B ,求反射光线所在直线的方程.§3.1两条直线的交点坐标1.掌握判断两直线相交的方法;会求两直线交点坐标;2.体会判断两直线相交中的数形结合思想.112114,找出疑惑之处)1.经过点(1,2)A -,且与直线210x y +-+垂直的直线.2.点斜式、斜截式、两点式和截距式能否表示垂直于坐标轴的直线?3.平面直角系中两条直线的位置关系有几种?二、新课导学:※学习探究问题1:已知两直线方程1111:0l A x B y C ++=,222:l A x B y +20C +=,如何判断这两条直线的位置关系?问题2:如果两条直线相交,怎样求交点坐标?交点坐标与二元一次方程组有什关系?※典型例题例1求下列两直线1:3420l x y +-=,2:22l x y ++0=的交点坐标.变式:判断下列各对直线的位置关系.如果相交,求出交点坐标.⑴1:0l x y -=,2:33100l x y +-=;⑵1:30l x y -=,2:630l x y -=;⑶1:3450l x y +-=,2:68100l x y +-=.例2求经过两直线2330x y --=和20x y ++=的交点且与直线310x y +-=平行的直线方程.变式:求经过两直线2330x y --=和20x y ++=的交点且与直线310x y +-=垂直的直线方程.例3已知两点(2,1),(4,3)A B -,求经过两直线2310x y -+=和3210x y +-=的交点和线段AB 中点的直线l 的方程.※动手试试练1.求直线20x y --=关于直线330x y -+=对称的直线方程.练2.已知直线1l 的方程为30Ax y C ++=,直线2l 的方程为2340x y -+=,若12,l l 的交点在y 轴上,求C 的值.三、总结提升:※学习小结1.两直线的交点问题.一般地,将两条直线的方程联立,得方程组1112220A x B y C A x B y C ++=⎧⎨++=⎩,若方程组有唯一解,则两直线相交;若方程组有无数组解,则两直线重合;若方程组无解,则两直线平行.2.直线与直线的位置关系,求两直线的交点坐标,能将几何问题转化为代数问题来解决.※自我评价你完成本节导学案的情况为().A.很好B.较好C.一般D.较差※当堂检测(时量:5分钟满分:10分)计分:1.两直线12:210,:220l x y l x y ++=-++=的交点坐标为().A .13(,24B .13(,)24-C .13(,)24--D .13(,24-2.两条直线320x y n ++=和2310x y -+=的位置关系是().A .平行B .相交且垂直C .相交但不垂直D .与n 的值有关3.与直线2360x y +-=关于点(1,1)-对称的直线方程是().A .3220x y -+=B .2370x y ++=C .32120x y --=D .2380x y ++=4.光线从(2,3)M -射到x 轴上的一点(1,0)P 后被x 轴反射,则反射光线所在的直线方程.5.已知点(5,8),(4,1)A B ,则点A 关于点B 的对称点C 的坐标.1.直线54210x y m +--=与直线230x y m +-=的交点在第四象限,求m 的取值范围.2.已知a 为实数,两直线1l :10ax y ++=,2l :0x y a +-=相交于一点,求证交点不可能在第一象限及x 轴上.§3.3.2两点间的距离1.掌握直角坐标系两点间距离,用坐标法证明简单的几何问题.2.通过两点间距离公式的推导,能更充分体会数形结合的优越性.3.体会事物之间的内在联系,,能用代数方法解决几何问题.115116,找出疑惑之处)1.直线0mx y m +-=,无论m 取任意实数,它都过点.2.若直线111:1l a x b y +=与直线222:1l a x b y +=的交点为(2,1)-,则112a b -=.3.当k 为何值时,直线3y kx =+过直线2x y -10+=与5y x =+的交点?二、新课导学:※学习探究问题1:已知数轴上两点,A B ,怎么求,A B 的距离?问题2:怎么求坐标平面上,A B 两点的距离?及,A B 的中点坐标?新知:已知平面上两点111222(,),(,)P x y P x y ,则12PP =特殊地:(,)P x y与原点的距离为OP =.※典型例题例1已知点(8,10),(4,4)A B -求线段AB 的长及中点坐标.变式:已知点(1,2),A B -,在x 轴上求一点,使PA PB =,并求PA 的值.例2证明平行四边行四条边的平方和等于两条对角线的平方和.变式:证明直角三角形斜边上的中点到三个顶点的距离相等.※动手试试练1.已知点(1,2),(3,4),(5,0)A B C,求证:ABC∆是等腰三角形.练2.已知点(4,12)A,在x轴上的点P与点A的距离等于13,求点P的坐标.三、总结提升:※学习小结1.坐标法的步骤:①建立适当的平面直角坐标系,用坐标表示有关的量;②进行有关的代数运算;③把代数运算结果“翻译”成几何关系.※自我评价你完成本节导学案的情况为().A.很好B.较好C.一般D.较差※当堂检测(时量:5分钟满分:10分)计分:1.两点(1,3),(2,5)A B-之间的距离为().A.B.CD.32.以点(3,0),(3,2),(1,2)A B C---为顶点的三角形是()三角形.A.等腰B.等边C.直角D.以上都不是3.直线a x+2y+8=0,4x+3y=10和2x-y=10相交于一点,则a的值().A.2-B.2C.1D.1-4.已知点(1,2),A B-,在x轴上存在一点P,使PA PB=,则PA=. 5.光线从点M(-2,3)射到x轴上一点P(1,0)后被x轴反射,则反射光线所在的直线的方程.1.经过直线23y x=+和320x y-+=3的交点,且垂直于第一条直线.2.已知a为实数,两直线1l:01=++yax,2l:0=-+ayx相交于一点,求证交点不可能在第一象限及x轴上.§3.3点到直线的距离及两平行线距离1.理解点到直线距离公式的推导,熟练掌握点到直线的距离公式;2.会用点到直线距离公式求解两平行线距离3.认识事物之间在一定条件下的转化.用联系的观点看问题117119,找出疑惑之处)复习1.已知平面上两点(0,3),(2,1)A B -,则AB 的中点坐标为,AB 间的长度为.复习2.在平面直角坐标系中,如果已知某点P 的坐标为00(,)x y ,直线l 的方程是:0l Ax By C ++=,怎样用点的坐标和直线的方程直接求点P 到直线l 的距离呢?二、新课导学:※学习探究新知1:已知点00(,)P x y 和直线:0l Ax By C ++=,则点P 到直线l的距离为:d =.注意:⑴点到直线的距离是直线上的点与直线外一点的连线的最短距离;⑵在运用公式时,直线的方程要先化为一般式.问题2:在平面直角坐标系中,如果已知某点P 的坐标为00(,)x y ,直线方程0:=++C By Ax l 中,如果0A =,或0B =,怎样用点的坐标和直线的方程直接求点P 到直线l 的距离呢并画出图形来.例分别求出点(0,2),(1,0)A B -到直线341x y --0=的距离.问题3:求两平行线1l :2380x y +-=,2l :23x y +10-=的距离.新知2:已知两条平行线直线1l 10Ax By C ++=,2:l 20Ax By C ++=,则1l 与2l的距离为d =注意:应用此公式应注意如下两点:(1)把直线方程化为一般式方程;(2)使,x y 的系数相等.※典型例题例1已知点(1,3),(3,1),(1,0)A B C -,求三角形ABC 的面积.例2求两平行线1l :2380x y +-=,2l :46x y +10-=的距离.※动手试试练1.求过点(1,2)A -,且到原点的距离等于2的直线方程.练2.求与直线:51260l x y -+=平行且到l 的距离为2的直线方程.三、总结提升:※学习小结1.点到直线距离公式的推导过程,点到直线的距离公式,能把求两平行线的距离转化为点到直线的距离公式※自我评价你完成本节导学案的情况为().A.很好B.较好C.一般D.较差※当堂检测(时量:5分钟满分:10分)计分:1.求点(5,7)P -到直线12530x y +-=的距离()A .1B .0C .1413D .28132.过点(1,2)且与原点距离最大的直线方程是().A.250x y +-= B.240x y +-=C.370x y +-= D.350x y +-=3.到两坐标轴距离相等的点的轨迹方程是().A .0x y -=B .0x y +=C .0x y -=D .0x y -=4.两条平行线3x -2y -1=0和3x -2y +1=0的距离5.在坐标平面内,与点(1,2)A 距离为1,且与点(3,1)B 距离为2的直线共有条.1.已知正方形的中心为(1,0)G -,一边所在直线的方程为350x y +-=,求其他三边所在的直线方程.2.,A B 两个厂距一条河分别为400m 和100m ,,A B 两厂之间距离500m ,把小河看作一条直线,今在小河边上建一座提水站,供,A B 两厂用水,要使提水站到,A B 两厂铺设的水管长度之和最短,问提水站应建在什么地方?§3.3.3章未复习提高1.掌握直线的倾斜角的概念、斜率公式;2.掌握直线的方程的几种形式及其相互转化,以及直线方程知识的灵活运用;3.掌握两直线位置关系的判定,点到直线的距离公式及其公式的运用.一.直线的倾斜角与斜率1.倾斜角的定义,倾斜角α的范围,斜率公式k =,或.二.直线的方程1.点斜式:00()y y k x x -=-2.斜截式:y kx b=+3.两点式:112121y y x x y y x x --=--4.截距式:1x ya b+=5.一般式:0Ax By C ++=三.两直线的位置关系1.两直线平行2.两直线相交.⑴两直线垂直,⑵两直线相交3.两直线重合四.距离1.两点之间的距离公式,2.点线之间的距离公式,3.两平行直线之间的距离公式.二、新课导学:※典例分析例1如图菱形ABCD 的60O BAD ∠=,求菱形各边和两条对角线所在直线的倾斜角和斜率.例2已知在第一象限的ABC ∆中,(1,1),(5,1)A B ,60,45O O A B ∠=∠=.求⑴AB 边的方程;⑵AC 和BC 所在直线的方程.例3求经过直线3260x y ++=和2570x y +-=的交点,且在两坐标轴上的截距相等的直线方程.例4已知两直线1:40l ax by -+=,2:(1)l a x y -+0b +=,求分别满足下列条件的,a b 的值.⑴直线1l 过点(3,1)--,并且直线1l 与直线2l 垂直;⑵直线1l 与直线2l 平行,并且坐标原点到12,l l 的距离相等.例5过点(4,2)P 作直线l 分别交x 轴、y 轴正半轴于,A B 两点,当AOB ∆面积最小时,求直线l 的方程.※动手试试练1.设直线l 的方程为(2)3m x y m ++=,根据下列条件分别求m 的值.⑴l 在x 轴上的截距为2-;⑵斜率为1-.练2.已知直线l 经过点(2,2)-且与两坐标轴围成单位面积的三角形,求该直线的方程.三、总结提升:※学习小结1.理解直线的倾斜角和斜率的要领,掌握过两点的斜率公式;掌握由一点和斜率写出直线方程的方法,掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程.2.掌握两条直线平行和垂直的条件,点到直线的距离公式;能够根据直线方程判断两直线的位置关系.※自我评价你完成本节导学案的情况为().A.很好B.较好C.一般D.较差※当堂检测(时量:5分钟满分:10分)计分:1.点(3,9)关于直线3100x y +-=对称的点的坐标是().A .(1,3)-- B.(17,9)-C .(1,3)-D .(17,9)-2.方程(1)210()a x y a a R --++=∈所表示的直线().A .恒过定点(2,3)-B .恒过定点(2,3)C .恒过点(2,3)-和(2,3)D .都是平行直线3.已知点(3,)m到直线40x -=的距离等于1,则m =().AB.C.3D3-4.已知(3,)P a 在过(2,1)M -和(3,4)N -的直线上,则a =.5.将直线2)y x =-绕点(2,0)按顺时针方向旋转30o ,所得的直线方程是.1.已知直线12:220,:1l x ay a l ax y +--=+-a -0=.⑴若12//l l ,试求a 的值;⑵若12l l ⊥,试求a 的值2.两平行直线12,l l 分别过点1(1,0)P 和(0,5)P ,⑴若1l 与2l 的距离为5,求两直线的方程;⑵设1l 与2l 之间的距离是d ,求d 的取值范围.。
【人教A版】高中数学必修二:第3章《直线与方程》导学案设计(含答案) 第三章 3.2.3

3.2.3 直线的一般式方程[学习目标] 1.掌握直线的一般式方程.2.了解关于x 、y 的二元一次方程Ax +By +C =0(A 、B 不同时为0)都表示直线,且直线方程都可以化为Ax +By +C =0的形式.3.会进行直线方程不同形式的转化.知识点 直线的一般式方程1.在平面直角坐标系中,对于任何一条直线,都有一个表示这条直线的关于x ,y 的二元一次方程;任何关于x ,y 的二元一次方程都表示一条直线.方程Ax +By +C =0(其中A 、B 不同时为0)叫做直线方程的一般式.2.对于直线Ax +By +C =0,当B ≠0时,其斜率为-A B ,在y 轴上的截距为-C B ;当B =0时,在x 轴上的截距为-C A ;当AB ≠0时,在两轴上的截距分别为-C A ,-CB .3.直线一般式方程的结构特征 (1)方程是关于x ,y 的二元一次方程.(2)方程中等号的左侧自左向右一般按x ,y ,常数的先后顺序排列. (3)x 的系数一般不为分数和负数.(4)虽然直线方程的一般式有三个参数,但只需两个独立的条件即可求得直线的方程. 思考 (1)当A ,B 同时为零时,方程Ax +By +C =0表示什么? (2)任何一条直线的一般式方程都能与其他四种形式互化吗?答 (1)当C =0时,方程对任意的x ,y 都成立,故方程表示整个坐标平面; 当C ≠0时,方程无解,方程不表示任何图象.故方程Ax +By +C =0,不一定代表直线,只有当A ,B 不同时为零时,即A 2+B 2≠0时才代表直线.(2)不是.当一般式方程中的B =0时,直线的斜率不存在,不能化成其他形式;当C =0时,直线过原点,不能化为截距式.但其他四种形式都可以化为一般式.题型一 直线的一般形式与其他形式的转化例1 (1)下列直线中,斜率为-43,且不经过第一象限的是( )A.3x +4y +7=0B.4x +3y +7=0C.4x +3y -42=0D.3x +4y -42=0(2)直线3x -5y +9=0在x 轴上的截距等于( ) A. 3 B.-5 C.95 D.-33答案 (1)B (2)D解析 (1)将一般式化为斜截式,斜率为-43的有:B 、C 两项.又y =-43x +14过点(0,14)即直线过第一象限,所以只有B 项正确. (2)令y =0则x =-3 3.反思与感悟 1.一般式化为斜截式的步骤: ①移项得By =-Ax -C ;②当B ≠0时,得斜截式:y =-A B x -CB .2.一般式化为截距式的步骤: 方法一:①把常数项移到方程右边,得Ax +By =-C ;②当C ≠0时,方程两边同除以-C ,得Ax -C +By-C =1;③化为截距式:x -C A +y-C B =1.方法二:①令x =0求直线在y 轴上的截距b ; ②令y =0求直线在x 轴上的截距a ; ③代入截距式方程x a +yb=1.由于直线方程的斜截式和截距式是惟一的,而两点式和点斜式不惟一,因此,通常情况下,一般式不化为两点式和点斜式.跟踪训练1 一条直线经过点A (-2,2),并且与两坐标轴围成的三角形的面积为1,求此直线方程.解 设所求直线方程为x a +yb =1,∵点A (-2,2)在直线上,∴-2a +2b =1.①又∵直线与坐标轴围成的三角形面积为1, ∴12|a |·|b |=1.②由①②可得⎩⎪⎨⎪⎧ a -b =1,ab =2,或⎩⎪⎨⎪⎧a -b =-1,ab =-2. 解得⎩⎪⎨⎪⎧ a =2,b =1,或⎩⎪⎨⎪⎧a =-1,b =-2.第二个方程组无解.故所求直线方程为x 2+y 1=1或x -1+y-2=1,即x +2y -2=0或2x +y +2=0. 题型二 直线方程的应用例2 已知直线l 的方程为3x +4y -12=0,求满足下列条件的直线l ′的方程: (1)过点(-1,3),且与l 平行; (2)过点(-1,3),且与l 垂直.解 方法一 l 的方程可化为y =-34x +3,∴l 的斜率为-34.(1)∵l ′与l 平行,∴l ′的斜率为-34.又∵l ′过点(-1,3),由点斜式知方程为y -3=-34(x +1),即3x +4y -9=0.(2)∵l ′与l 垂直,∴l ′的斜率为43,又l ′过点(-1,3),由点斜式可得方程为y -3=43(x +1),即4x -3y +13=0.方法二 (1)由l ′与l 平行,可设l ′的方程为3x +4y +m =0.将点(-1,3)代入上式得m =-9.∴所求直线的方程为3x +4y -9=0.(2)由l ′与l 垂直,可设l ′的方程为4x -3y +n =0. 将(-1,3)代入上式得n =13. ∴所求直线的方程为4x -3y +13=0.反思与感悟 一般地,直线Ax +By +C =0中系数A 、B 确定直线的斜率,因此,与直线Ax +By +C =0平行的直线方程可设为Ax +By +m =0,与直线Ax +By +C =0垂直的直线方程可设为Bx -Ay +n =0.这是经常采用的解题技巧.跟踪训练2 a 为何值时,直线(a -1)x -2y +4=0与x -ay -1=0. (1)平行;(2)垂直.解 当a =0或1时,两直线既不平行,也不垂直;当a ≠0且a ≠1时,直线(a -1)x -2y +4=0的斜率为k 1=-1+a2,b 1=2;直线x -ay -1=0的斜率为k 2=1a ,b 2=-1a .(1)当两直线平行时,由k 1=k 2,b 1≠b 2, 得1a =-1+a 2,a ≠-12, 解得a =-1或a =2.所以当a =-1或2时,两直线平行. (2)当两直线垂直时,由k 1·k 2=-1, 即1a ·(-1+a )2=-1,解得a =13. 所以当a =13时,两直线垂直.题型三 由含参一般式方程求参数的值或取值范围例3 (1)若方程(m 2+5m +6)x +(m 2+3m )y +1=0表示一条直线,则实数m 满足______. (2)当实数m 为何值时,直线(2m 2+m -3)x +(m 2-m )y =4m -1. ①倾斜角为45°;②在x 轴上的截距为1. (1)答案 m ≠-3解析 若方程不能表示直线,则m 2+5m +6=0且m 2+3m =0.解方程组⎩⎪⎨⎪⎧m 2+5m +6=0,m 2+3m =0,得m =-3,所以m ≠-3时,方程表示一条直线. (2)解 ①因为已知直线的倾斜角为45°, 所以此直线的斜率是1, 所以-2m 2+m -3m 2-m=1,所以⎩⎪⎨⎪⎧m 2-m ≠0,2m 2+m -3=-(m 2-m ), 解得⎩⎪⎨⎪⎧m ≠0且m ≠1,m =-1或m =1.所以m =-1.②因为已知直线在x 轴上的截距为1, 令y =0得x =4m -12m 2+m -3,所以4m -12m 2+m -3=1,所以⎩⎪⎨⎪⎧2m 2+m -3≠0,4m -1=2m 2+m -3,解得⎩⎨⎧m ≠1且m ≠-32,m =-12或m =2.所以m =-12或m =2.反思与感悟 已知含参的直线的一般式方程求参数的值或范围的步骤跟踪训练3 已知直线l :5ax -5y -a +3=0. (1)求证:不论a 为何值,直线l 总经过第一象限; (2)为使直线l 不经过第二象限,求a 的取值范围. (1)证明 直线方程变形为y -35=a ⎝⎛⎭⎫x -15, 它表示经过点A ⎝⎛⎭⎫15,35,斜率为a 的直线. ∵点A ⎝⎛⎭⎫15,35在第一象限, ∴直线l 必过第一象限.(2)解 如图所示,直线OA 的斜率k =35-015-0=3.∵直线不过第二象限, ∴直线的斜率a ≥3. ∴a 的取值范围为[3,+∞).一般式求斜率考虑不全致误例4 设直线l 的方程为(m 2-2m -3)x +(2m 2+m -1)y -(2m -6)=0,若此直线的斜率为1,试确定实数m 的值.分析 由直线方程的一般式,可转化为斜截式,利用斜率为1,建立方程求解,但要注意分母不为0.解 由题意,得⎩⎪⎨⎪⎧-m 2-2m -32m 2+m -1=1,①2m 2+m -1≠0. ② 由①,得m =-1或m =43.当m =-1时,②式不成立,不符合题意,故应舍去; 当m =43时,②式成立,符合题意.故m =43.解后反思 本题易出现的错误是在由一般式转化为斜截式后,直接得到①式,而忽略了②式.因为本例中斜率已存在且为1,故①式应有意义,所以分母应不为0.1.若方程Ax +By +C =0表示直线,则A 、B 应满足的条件为( ) A.A ≠0 B.B ≠0 C.A ·B ≠0 D.A 2+B 2≠0答案 D解析 方程Ax +By +C =0表示直线的条件为A 、B 不能同时为0,即A 2+B 2≠0. 2.已知ab <0,bc <0,则直线ax +by =c 通过( ) A.第一、二、三象限 B.第一、二、四象限 C.第一、三、四象限 D.第二、三、四象限 答案 C解析 由ax +by =c ,得y =-a b x +c b ,∵ab <0,∴直线的斜率k =-ab >0,直线在y 轴上的截距cb<0.由此可知直线通过第一、三、四象限.3.过点(1,0)且与直线x -2y -2=0平行的直线方程是( ) A.x -2y -1=0 B.x -2y +1=0 C.2x +y -2=0D.x +2y -1=0答案 A解析 由题意,得所求直线斜率为12,且过点(1,0).故所求直线方程为y =12(x -1),即x -2y -1=0.4.若直线x -2y +5=0与直线2x +my -6=0互相垂直,则实数m 等于( ) A.-1 B.1 C.12 D.-12答案 B解析 由两直线垂直,得12×⎝⎛⎭⎫-2m =-1,解得m =1. 5.已知两条直线y =ax -2和3x -(a +2)y +1=0互相平行,则a =________. 答案 -3或1解析 两条直线y =ax -2和3x -(a +2)y +1=0互相平行,所以a 3=1a +2≠-21,解得a =-3或a =1.1.根据两直线的一般式方程判定两直线平行的方法(1)判定斜率是否存在,若存在,化成斜截式后,则k 1=k 2且b 1≠b 2;若都不存在,则还要判定不重合.(2)可直接采用如下方法:一般地,设直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0.l 1∥l 2⇔A 1B 2-A 2B 1=0,且B 1C 2-B 2C 1≠0,或A 1C 2-A 2C 1≠0.这种判定方法避开了斜率存在和不存在两种情况的讨论,可以减小因考虑不周而造成失误的可能性.2.根据两直线的一般式方程判定两直线垂直的方法(1)若一个斜率为零,另一个不存在,则垂直;若两个都存在斜率,化成斜截式后,则k 1k 2=-1.(2)一般地,设l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,l 1⊥l 2⇔A 1A 2+B 1B 2=0. 第二种方法可避免讨论,减小失误.一、选择题1.直线x +y -3=0的倾斜角的大小是( ) A.45° B.135° C.1 D.-1 答案 B解析 直线x +y -3=0,即y =-x +3,它的斜率等于-1,故它的倾斜角为135°,故选B.2.直线(2m 2-5m +2)x -(m 2-4)y +5m =0的倾斜角为45°,则m 的值为( ) A.-2 B.2 C.-3 D.3 答案 D解析 由已知得m 2-4≠0,且2m 2-5m +2m 2-4=1,解得:m =3.3.直线l 的方程为Ax +By +C =0,若直线l 过原点和二、四象限,则( ) A.C =0,B >0 B.A >0,B >0,C =0 C.AB <0,C =0 D.AB >0,C =0答案 D解析 通过直线的斜率和截距进行判断.4.直线ax +3my +2a =0(m ≠0)过点(1,-1),则直线的斜率k 等于( ) A.-3 B.3 C.13 D.-13答案 D解析 由点(1,-1)在直线上可得a -3m +2a =0(m ≠0),解得m =a ,故直线方程为ax +3ay +2a =0(a ≠0),即x +3y +2=0,其斜率k =-13.5.直线y =mx -3m +2(m ∈R )必过定点( ) A.(3,2) B.(-3,2) C.(-3,-2) D.(3,-2) 答案 A解析 由y =mx -3m +2,得y -2=m (x -3).所以直线必过点(3,2).6.若三条直线x +y =0,x -y =0,x +ay =3构成三角形,则a 的取值范围是( ) A.a ≠±1 B.a ≠1,a ≠2 C.a ≠-1 D.a ≠±1,a ≠2 答案 A解析 因为直线x +ay =3恒过点(3,0),所以此直线只需不和x +y =0,x -y =0两直线平行就能构成三角形.所以a ≠±1.7.直线l 1:ax -y +b =0,l 2:bx -y +a =0(a ≠0,b ≠0,a ≠b )在同一坐标系中的图形大致是( )答案 C解析 将l 1与l 2的方程化为斜截式得:y =ax +b ,y =bx +a ,根据斜率和截距的符号可得选C. 二、填空题8.已知直线l 1:ax +3y -1=0与直线l 2:2x +(a -1)y +1=0垂直,则实数a =_______. 答案 35解析 由两直线垂直的条件,得2a +3(a -1)=0,解得a =35.9.若直线mx +3y -5=0经过连接点A (-1,-2),B (3,4)的线段的中点,则m =______. 答案 2解析 线段AB 的中点为(1,1),则m +3-5=0,即m =2.10.直线l :ax +(a +1)y +2=0的倾斜角大于45°,则a 的取值范围是______________. 答案 (-∞,-12)∪(0,+∞)解析 当a =-1时,直线l 的倾斜角为90°,符合要求; 当a ≠-1时,直线l 的斜率为-aa +1,只要-a a +1>1或者-aa +1<0即可,解得-1<a <-12或者a <-1或者a >0.综上可知,实数a 的取值范围是 (-∞,-12)∪(0,+∞).11.已知两条直线a 1x +b 1y +4=0和a 2x +b 2y +4=0都过点A (2,3),则过两点P 1(a 1,b 1),P 2(a 2,b 2)的直线方程为________________. 答案 2x +3y +4=0解析 由条件知⎩⎪⎨⎪⎧2a 1+3b 1+4=0,2a 2+3b 2+4=0,易知两点P 1(a 1,b 1),P 2(a 2,b 2)都在直线2x +3y +4=0上,即2x +3y +4=0为所求. 三、解答题12.设直线l 的方程为(a +1)x +y +2-a =0(a ∈R ). (1)若l 在两坐标轴上的截距相等,求l 的方程; (2)若l 不经过第二象限,求实数a 的取值范围.解 (1)当直线过原点时,该直线在x 轴和y 轴上的截距都为0,当然相等,所以a =2,方程即为3x +y =0.当a ≠2时,截距存在且均不为0,所以a -2a +1=a -2,即a +1=1.所以a =0,方程即为x +y +2=0. (2)将l 的方程化为y =-(a +1)x +a -2,所以⎩⎪⎨⎪⎧ -(a +1)>0,a -2≤0或⎩⎪⎨⎪⎧-(a +1)=0,a -2≤0,所以a ≤-1.综上,a 的取值范围是a ≤-1.13.(1)已知直线l 1:2x +(m +1)y +4=0与直线l 2:mx +3y -2=0平行,求m 的值. (2)当a 为何值时,直线l 1:(a +2)x +(1-a )y -1=0与直线l 2:(a -1)x +(2a +3)y +2=0互相垂直?解 方法一 (1)由l 1:2x +(m +1)y +4=0, l 2:mx +3y -2=0知:①当m =0时,显然l 1与l 2不平行. ②当m ≠0时,l 1∥l 2,需2m =m +13≠4-2.解得m =2或m =-3,∴m 的值为2或-3. (2)由题意知,直线l 1⊥l 2.①若1-a =0,即a =1时,直线l 1:3x -1=0与直线l 2:5y +2=0显然垂直. ②若2a +3=0,即a =-32时,直线l 1:x +5y -2=0与直线l 2:5x -4=0不垂直.③若1-a ≠0,且2a +3≠0,则直线l 1,l 2的斜率k 1,k 2都存在,k 1=-a +21-a ,k 2=-a -12a +3.当l 1⊥l 2时,k 1·k 2=-1, 即(-a +21-a )·(-a -12a +3)=-1,∴a =-1.综上可知,当a =1或a =-1时,直线l 1⊥l 2. 方法二 (1)令2×3=m (m +1), 解得m =-3或m =2.当m =-3时,l 1:x -y +2=0,l 2:3x -3y +2=0, 显然l 1与l 2不重合,∴l 1∥l 2.同理当m =2时,l 1:2x +3y +4=0,l 2:2x +3y -2=0, 显然l 1与l 2不重合,∴l 1∥l 2. ∴m 的值为2或-3. (2)由题意知直线l 1⊥l 2,∴(a+2)(a-1)+(1-a)(2a+3)=0,解得a=±1,将a=±1代入方程,均满足题意.故当a=1或a=-1时,直线l1⊥l2.第11页共11页。
2019年最新-人教版高中数学必修二导学案32(第三章《直线与方程》复习)

(1)定义:当直线l与x轴相交时,取x轴作为基准,x轴_____与直线
l_正__向______所成的角向α上叫方做向直线l的倾斜角,当直线l与x轴平行或重合时,规
定它的倾斜角为____. (2)倾斜角的取值范围:____________[__0.,π)
90°
2.直线的斜率: (1)定义: k= (tanα ),α≠倾90斜°角是90°的直线,其斜率不存在.
5 、线 已1、 段 知直 PA1P线 (2 4的, 2中x0点 )、 5MyB的(坐 61, 0标7为)0、与 C_坐 _(0_, _标__3轴 _)_,转 __则成 . 的三角形 直线的A面 B 积 的是 方_程__是_____________._________________,
从几何直观到代数表示 (建立直线的方程)
坐标 斜率
直线
二元一次方程
点斜式 两点式
一般式
本章知识结构 从代数表示到几何直观
(通过方程研究几何性质和度量)
两条直线的位置 关系
平行和垂直 的判定
相交
平行
(一个交点) (无交点)
距离
两点间的距离 点到直线的距离 两条平行线间的距离
【基础知识】
1.直线的倾斜角:
相交
k1≠k2
平行
k1=k2且b1≠b2
l1:A1x+B1y+C1=0 l2:A2x+B2y+C2=0
A1B2-A2B1 ≠ 0
A1B2-A2B1=0 B1C2-B2C1≠0(或A1C2-A2C1≠0).
重合 k1=k2且b1=b2
A1B2-A2B1=0
B1C2-B2C1=0 (且A1C2-A2C1=0)
【人教A版】高中数学必修二:第3章《直线与方程》导学案设计(含答案) 第三章

3.1.1倾斜角与斜率[学习目标] 1.理解直线的倾斜角和斜率的概念.2.掌握求直线斜率的两种方法.3.了解在平面直角坐标系中确定一条直线的几何要素.知识点一直线的倾斜角1.直线倾斜角的定义当直线l与x轴相交时,我们取x轴作为基准,x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角.2.直线倾斜角的取值范围直线的倾斜角α的取值范围是0°≤α<180°,并规定与x轴平行或重合的直线的倾斜角为0°.思考当一条直线的倾斜角为0°时,此时这条直线一定与x轴平行吗?答不一定.也可能与x轴重合.知识点二直线的斜率1.直线斜率的定义一条直线的倾斜角α的正切值叫做这条直线的斜率.斜率常用小写字母k表示,即k=tan α.思考所有直线都有斜率吗?若直线没有斜率,那么这条直线的倾斜角为多少?答不是.若直线没有斜率,那么这条直线的倾斜角应为90°.2.倾斜角α与斜率k的关系知识点三直线斜率的坐标公式经过两点P 1(x 1,y 1),P 2(x 2,y 2)(x 1≠x 2)的直线的斜率公式是k =y 2-y 1x 2-x 1.思考 在同一直线(与x 轴不重合)上任意取不同的两点的坐标计算的斜率都相等吗? 答 相等.对于一条直线来说其斜率是一个定值,与所选择点的位置无关,所以取任意不同的两点的坐标计算同一条直线的斜率一定相等.题型一 直线的倾斜角例1 设直线l 过坐标原点,它的倾斜角为α,如果将l 绕坐标原点按逆时针方向旋转45°,得到直线l 1,那么l 1的倾斜角为( ) A.α+45° B.α-135° C.135°-αD.当0°≤α<135°时,倾斜角为α+45°;当135°≤α<180°时,倾斜角为α-135° 答案 D解析 根据题意,画出图形,如图所示:因为0°≤α<180°,显然A ,B ,C 未分类讨论,均不全面, 不合题意.通过画图(如图所示)可知: 当0°≤α<135°时,l 1的倾斜角为α+45°;当135°≤α<180°时,l 1的倾斜角为45°+α-180°=α-135°.故选D.反思与感悟 1.解答本题要注意根据倾斜角的概念及倾斜角的取值范围解答.2.求直线的倾斜角主要根据定义来求,其关键是根据题意画出图形,找准倾斜角,有时要根据情况分类讨论.①任何一条直线都有惟一的倾斜角; ②一条直线的倾斜角可以为-30°; ③倾斜角为0°的直线只有一条,即x 轴;④按照倾斜角的概念,直线的倾斜角α的集合{α|0°≤α<180°}与直线集合建立了一一映射. A.1 B.2 C.3 D.4 答案 A 解析① √ 任何一条直线都有惟一的倾斜角,故①正确 ② × 倾斜角α的取值范围是0°≤α<180°,故②错误 ③ × 所有与x 轴平行或重合的直线的倾斜角都是0°,故③错误 ④×倾斜角相同的直线有无数条,不是一一映射,故④错误题型二 直线的斜率例2 已知直线l 过P (-2,-1),且与以A (-4,2),B (1,3)为端点的线段相交,求直线l 的斜率的取值范围.解 根据题中的条件可画出图形,如图所示, 又可得直线P A 的斜率k P A =-32,直线PB 的斜率k PB =43,结合图形可知当直线l 由PB 变化到与y 轴平行的位置时,它的倾斜角逐渐增大到90°,故斜率的取值范围为⎣⎡⎭⎫43,+∞, 当直线l 由与y 轴平行的位置变化到P A 位置时,它的倾斜角由90°增大到P A 的倾斜角,故斜率的变化范围是⎝⎛⎦⎤-∞,-32. 综上可知,直线l 的斜率的取值范围是⎝⎛⎦⎤-∞,-32∪⎣⎡⎭⎫43,+∞. 反思与感悟 1.由倾斜角(或范围)求斜率(或范围)利用定义式k =tan α(α≠90°)解决. 2.由两点坐标求斜率运用两点斜率公式 k =y 2-y 1x 2-x 1(x 1≠x 2)求解. 3.涉及直线与线段有交点问题常数形结合利用公式求解. 跟踪训练2 已知A (3,3),B (-4,2),C (0,-2). (1)求直线AB 和AC 的斜率;(2)当点D 在线段BC (包括端点)上移动时,求直线AD 的斜率的变化范围. 解 (1)由斜率公式,得直线AB 的斜率k AB =2-3-4-3=17; 直线AC 的斜率k AC =-2-30-3=53.故直线AB 的斜率为17,直线AC 的斜率为53.(2)如图,当点D 由点B 运动到点C 时,直线AD 的斜率由k AB 增大到k AC , 所以直线AD 的斜率的变化范围是⎣⎡⎦⎤17,53.题型三 斜率公式的应用例3 已知实数x ,y 满足y =-2x +8,且2≤x ≤3,求yx 的最大值和最小值.解 如图所示,由于点(x ,y )满足关系式2x +y =8,且2≤x ≤3,可知点P (x ,y )在线段AB 上移动,并且A ,B 两点的坐标可分别求得为(2,4),(3,2).由于yx 的几何意义是直线OP 的斜率,且k OA =2,k OB =23,所以可求得y x 的最大值为2,最小值为23.反思与感悟 若所求最值或范围的式子可化为y 2-y 1x 2-x 1的形式,则联想其几何意义,利用图形数形结合来求解.跟踪训练3 已知实数x ,y 满足y =x 2-x +2(-1≤x ≤1),试求y +3x +2的最大值和最小值.解 由y +3x +2的几何意义可知,它表示经过定点P (-2,-3)与曲线段AB上任一点(x ,y )的直线的斜率k ,由图可知k P A ≤k ≤k PB ,由已知可得A (1,2),B (-1,4). 则k P A =2-(-3)1-(-2)=53,k PB =4-(-3)-1-(-2)=7.∴53≤k ≤7,∴y +3x +2的最大值为7,最小值为53.分类讨论思想例4 设直线l 过点A (6,12),B (m,13),求直线l 的斜率k 及倾斜角α的取值范围.分析 直线的斜率存在时,首先由斜率公式求斜率k ,然后由k 确定倾斜角α的取值范围;直线的斜率不存在时,可直接下结论.解 (1)当m =6时,直线l 与x 轴垂直,斜率不存在,倾斜角α=90°.(2)当m ≠6时,k =13-12m -6=1m -6.①当m >6时,1m -6>0,即k >0,所以直线l 的倾斜角的取值范围是0°<α<90°; ②当m <6时,1m -6<0,即k <0,所以直线l 的倾斜角的取值范围是90°<α<180°.解后反思 因为直线斜率的坐标公式中有限制条件x 1≠x 2,所以当两点的横坐标有参数存在时,要注意分x 1=x 2和x 1≠x 2两类情况分别处理.A.两条不重合的直线,如果它们的倾斜角相等,那么这两条直线平行B.若一条直线的倾斜角为α,则sin α∈(0,1)C.若α,2α,3α分别为三条直线的倾斜角,则α的度数可以大于60°D.若α是直线l 的倾斜角,且tan α=22,则α=45° 答案 A解析 ∵α∈[0,180°),∴sin α∈[0,1],B 错;当α=60°时,3α=180°,∴C 错;tan 45°=1,∴D 错.2.如图,直线l 1,l 2,l 3的斜率分别为k 1,k 2,k 3,则( )A.k 1<k 2<k 3B.k 3<k 1<k 2C.k 3<k 2<k 1D.k 1<k 3<k 2答案 D解析 由图可知,直线l 2,l 3的倾斜角为锐角,直线l 1的倾斜角为钝角,故k 1最小.直线l 2的倾斜角大于直线l 3的倾斜角,由正切函数在⎣⎡⎭⎫0,π2内单调递增,得k 2>k 3.故k 1<k 3<k 2. 3.若-π2<α<0,则经过P 1(0,cos α),P 2(sin α,0)两点的直线的倾斜角为( )A.αB.-αC.π2+α D.π+α答案 C解析 由斜率的计算公式,得k =0-cos αsin α-0=-cot α=tan ⎝⎛⎭⎫π2+α,而π2+α∈⎝⎛⎭⎫0,π2.4.直线l 经过第二、四象限,则直线l 的倾斜角范围是( ) A.0°≤α<90° B.90°≤α<180° C.90°<α<180° D.0°<α<180°答案 C解析 直线倾斜角的取值范围是0°≤α<180°,又直线l 经过第二、四象限,所以直线l 的倾斜角范围是90°<α<180°.5.已知点A (1,2),若在坐标轴上有一点P ,使直线P A 的倾斜角为135°,则点P 的坐标为 . 答案 (3,0)或(0,3)解析 由题意知k P A =-1,若P 点在x 轴上,则设P (m,0),则0-2m -1=-1,解得m =3;若P在y 轴上,则设P (0,n ),则n -20-1=-1,解得n =3;故P 点的坐标为(3,0)或(0,3).1.倾斜角是一个几何概念,它直观地描述并表现了直线对于x 轴正方向的倾斜程度.2.直线的斜率和倾斜角都反映了直线的倾斜程度,二者紧密相连,如下表:0° 0°<α<90° 90° 90°<α<180°3.运用两点P 1(x 1,y 1),P 2(x 2,y 2)求直线斜率k =21x 2-x 1应注意的问题:(1)斜率公式与P 1,P 2两点的位置无关,而与两点横、纵坐标之差的顺序有关(即x 2-x 1,y 2-y 1中x 2与y 2对应,x 1与y 1对应).(2)运用斜率公式的前提条件是“x 1≠x 2”,也就是直线不与x 轴垂直,而当直线与x 轴垂直时,直线的倾斜角为90°,斜率不存在.一、选择题1.下列说法正确的是( )A.直线和x 轴的正方向所成的正角,叫做这条直线的倾斜角B.直线的倾斜角α的取值范围是0°≤α≤180°C.和x 轴平行的直线,它的倾斜角为180°D.每一条直线都存在倾斜角,但并非每一条直线都存在斜率 答案 D解析 直线的倾斜角为直线向上的方向与x 轴的正方向所成的角,故A 不正确;直线的倾斜角α的取值范围是0°≤α<180°,故B 不正确;和x 轴平行的直线,它的倾斜角为0°,故C 不正确;只有D 正确. 2.斜率为33的直线的倾斜角为( ) A.30° B.45° C.60° D.150° 答案 A解析 设直线的倾斜角为α,由题意,得tan α=33,所以α=30°,故选A. 3.若过点A (a ,-1)和B (2,a )的直线的斜率为12,则a 的值为( )A.4B.0C.-4D.1 答案 B解析 k AB =a +12-a =12,解得a =0.4.直线l 过原点(0,0),且不过第三象限,那么l 的倾斜角α的取值范围是( ) A.0°≤α≤90°B.90°≤α<180°C.90°≤α<180°或α=0°D.90°≤α≤135°答案 C解析 倾斜角的取值范围为0°≤α<180°,直线过原点且不过第三象限,切勿忽略x 轴和y 轴. 5.斜率为2的直线经过点A (3,5),B (a,7),C (-1,b )三点,则a ,b 的值分别为( ) A.4,0 B.-4,-3 C.4,-3 D.-4,3 答案 C解析 由题意,得⎩⎪⎨⎪⎧k AC =2,k AB =2,即⎩⎪⎨⎪⎧b -5-1-3=2,7-5a -3=2.解得a =4,b =-3.6.若过两点A (4,y ),B (2,-3)的直线的倾斜角为45°,则y 的值为( ) A.-32 B.32C.-1D.1答案 C解析 由已知,得y +34-2=tan 45°=1.故y =-1.7.设直线l 的方程为x +y cos θ+3=0(θ∈R ),则直线l 的倾斜角α的范围是( ) A.[0,π) B.⎣⎡⎭⎫π4,π2C.⎣⎡⎦⎤π4,3π4D.⎝⎛⎭⎫π4,π2∪⎝⎛⎦⎤π4,3π4答案 C解析 当cos θ=0时,方程为x +3=0,其倾斜角为π2.当cos θ≠0时,由直线方程可得,斜率k =-1cos θ.∵cos θ∈[-1,1],且cos θ≠0,∴k ∈(-∞,-1]∪[1,+∞),即tan α∈(-∞,-1]∪[1,+∞).又∵α∈[0,π),∴α∈⎣⎡⎭⎫π4,π2∪⎝⎛⎭⎫π2,3π4.综上可知,倾斜角的范围是[π4,3π4].二、填空题8.若直线AB 与y 轴的夹角为60°,则直线AB 的倾斜角为 ,斜率为 . 答案 30°或150°33或-33解析 因为直线AB 与y 轴的夹角为60°,所以直线AB 的倾斜角为30°或150°. 当倾斜角为30°时,斜率为tan 30°=33; 当倾斜角为150°时,斜率为tan 150°=-33. 9.已知点P (3,2),点Q 在x 轴上,若直线PQ 的倾斜角为150°,则点Q 的坐标为 . 答案 (23+3,0)解析 设点Q 的坐标为(x,0),则k =2-03-x=tan 150°=-33,解得x =23+3.10.若经过点P (1-a,1+a )和Q (3,2a )的直线的倾斜角为钝角,则实数a 的取值范围为 . 答案 (-2,1)解析 ∵k =a -1a +2且直线的倾斜角为钝角,∴a -1a +2<0,即⎩⎪⎨⎪⎧ a -b >0,a +2<0或⎩⎪⎨⎪⎧a -1<0,a +2>0.解得-2<a <1.11.直线l 过点A (1,2),且不过第四象限,则直线l 的斜率的取值范围是 .答案 [0,2]解析 如图,当直线l 在l 1位置时,k =tan 0°=0;当直线l 在l 2位置时,k =2-01-0=2.故直线l 的斜率的取值范围是[0,2].三、解答题12.已知A (-1,1),B (1,1),C (2,3+1), (1)求直线AB 和AC 的斜率;(2)若点D 在线段AB (包括端点)上移动时,求直线CD 的斜率的变化范围. 解 (1)由斜率公式得 k AB =1-11-(-1)=0,k AC =3+1-12-(-1)=33. (2)如图所示. k BC =3+1-12-1= 3.设直线CD 的斜率为k ,当斜率k 变化时,直线CD 绕C 点旋转,当直线CD 由CA 逆时针方向旋转到CB 时,直线CD 与AB 恒有交点,即D 在线段AB 上,此时k 由k CA 增大到k CB ,所以k 的取值范围为⎣⎡⎦⎤33, 3. 13.光线从点A (2,1)射到y 轴上的点Q ,经y 轴反射后过点B (4,3),试求点Q 的坐标及入射光线的斜率.解 方法一 设Q (0,y ),则由题意得k QA =-k QB . ∵k QA =1-y 2,k QB =3-y 4,∴1-y 2=-3-y4. 解得y =53,即点Q 的坐标为⎝⎛⎭⎫0,53, ∴k 入=k QA =1-y 2=-13.方法二 如图,点B (4,3)关于y 轴的对称点为B ′(-4,3), k AB ′=1-32+4=-13,由题意得,A 、Q 、B ′三点共线. 从而入射光线的斜率为k AQ =k AB ′=-13.设Q (0,y ),则k 入=k QA =1-y 2=-13.解得y =53,即点Q 的坐标为⎝⎛⎭⎫0,53.。
【人教A版】高中数学必修二:第3章《直线与方程》导学案设计(含答案) 第三章 3.2.1

3.2.1直线的点斜式方程[学习目标] 1.掌握直线的点斜式方程和直线的斜截式方程.2.结合具体实例理解直线的方程和方程的直线概念及直线在y轴上的截距的含义.3.会根据斜截式方程判断两直线的位置关系.知识点一直线的点斜式方程思考直线的点斜式方程能否表示坐标平面上的所有直线呢?答不能.有斜率的直线才能写成点斜式方程,凡是垂直于x轴的直线,其方程都不能用点斜式表示.知识点二直线的斜截式方程1.直线l在坐标轴上的截距(1)直线在y轴上的截距:直线l与y轴的交点(0,b)的纵坐标b.(2)直线在x轴上的截距:直线l与x轴的交点(a,0)的横坐标a.2.直线的斜截式方程思考直线在y轴上的截距和直线与y轴交点到原点的距离是一回事吗?答 直线在y 轴上的截距是它与y 轴交点的纵坐标,截距是一个实数,可正、可负、可为0.当截距非负时,它等于直线与y 轴交点到原点的距离;当截距为负时,它等于直线与y 轴交点到原点距离的相反数.题型一 直线的点斜式方程例1 求满足下列条件的直线的点斜式方程. (1)过点P (-4,3),斜率k =-3; (2)过点P (3,-4),且与x 轴平行; (3)过P (-2,3),Q (5,-4)两点.解 (1)∵直线过点P (-4,3),斜率k =-3, 由直线方程的点斜式得直线方程为y -3=-3(x +4).(2)与x 轴平行的直线,其斜率k =0,由直线方程的点斜式可得直线方程为y -(-4)=0×(x -3), 即y +4=0.(3)过点P (-2,3),Q (5,-4)的直线的斜率 k PQ =-4-35-(-2)=-77=-1.又∵直线过点P (-2,3).∴直线的点斜式方程为y -3=-(x +2).反思与感悟 1.求直线的点斜式方程的步骤:定点(x 0,y 0)→定斜率k →写出方程y -y 0=k (x -x 0).2.点斜式方程y -y 0=k ·(x -x 0)可表示过点P (x 0,y 0)的所有直线,但x =x 0除外. 跟踪训练1 (1)过点(-1,2),且倾斜角为135°的直线方程为 .(2)已知直线l 过点A (2,1)且与直线y -1=4x -3垂直,则直线l 的方程为 . 答案 (1)x +y -1=0 (2)x +4y -6=0 解析 (1)k =tan 135°=-1, 由直线的点斜式方程得 y -2=-(x +1),即x +y -1=0.(2)方程y -1=4x -3可化为y -1=4⎝⎛⎭⎫x -34, 由点斜式方程知其斜率k =4.又因为l 与直线y -1=4x -3垂直,所以直线l 的斜率为-14.又因为l 过点A (2,1),所以直线l 的方程为y -1=-14(x -2),即x +4y -6=0.题型二 直线的斜截式方程例2 根据条件写出下列直线的斜截式方程. (1)斜率为2,在y 轴上的截距是5; (2)倾斜角为150°,在y 轴上的截距是-2;(3)倾斜角为60°,与y 轴的交点到坐标原点的距离为3. 解 (1)由直线方程的斜截式可知, 所求直线方程为y =2x +5.(2)∵倾斜角α=150°,∴斜率k =tan 150°=-33. 由斜截式可得方程为y =-33x -2. (3)∵直线的倾斜角为60°,∴其斜率k =tan 60°=3, ∵直线与y 轴的交点到原点的距离为3, ∴直线在y 轴上的截距b =3或b =-3. ∴所求直线方程为y =3x +3或y =3x -3.反思与感悟 1.本例(3)在求解过程中,常因混淆截距与距离的概念,而漏掉解“y =3x x -3”.2.截距是直线与x 轴(或y 轴)交点的横(或纵)坐标,它是个数值,可正、可负、可为零. 跟踪训练2 已知直线l 1的方程为y =-2x +3,l 2的方程为y =4x -2,直线l 与l 1平行且与l 2在y 轴上的截距相同,求直线l 的斜截式方程. 解 由斜截式方程,知直线l 1的斜率k 1=-2, 又因为l ∥l 1,所以l 的斜率k =k 1=-2. 由题意,知l 2在y 轴上的截距为-2, 所以l 在y 轴上的截距b =-2,由斜截式,得直线l 的方程为y =-2x -2. 题型三 直线过定点问题例3 求证:不论m 为何值,直线l :y =(m -1)x +2m +1总过第二象限. 证明 方法一 直线l 的方程可化为y -3=(m -1)(x +2), ∴直线l 过定点(-2,3),由于点(-2,3)在第二象限,故直线l 总过第二象限. 方法二 直线l 的方程可化为m (x +2)-(x +y -1)=0.令⎩⎪⎨⎪⎧ x +2=0,x +y -1=0,解得⎩⎪⎨⎪⎧x =-2,y =3.∴无论m 取何值,直线l 总经过点(-2,3). ∵点(-2,3)在第二象限,∴直线l 总过第二象限.反思与感悟 证明直线过定点的基本方法:方法一点斜式的应用,方法二代数方法处理恒成立问题的基本思想.跟踪训练3 已知直线y =(3-2k )x -6不经过第一象限,求k 的取值范围.解 由题意知,需满足它在y 轴上的截距不大于零,且斜率不大于零,则⎩⎪⎨⎪⎧-6≤0,3-2k ≤0,得k ≥32. 所以,k 的取值范围是⎩⎨⎧⎭⎬⎫k ⎪⎪k ≥32.函数与方程思想例4 已知直线y =kx +b ,当-3≤x ≤4时,-8≤y ≤13.求此直线方程.分析 利用直线y =kx +b 与一次函数的关系,并借助一次函数的图象和性质解题. 解 记f (x )=kx +b (k ≠0).当k >0时,f (x )在[-3,4]上单调递增,则⎩⎪⎨⎪⎧ f (-3)=-8,f (4)=13,即⎩⎪⎨⎪⎧ -3k +b =-8,4k +b =13,解得⎩⎪⎨⎪⎧ k =3,b =1. 此时直线方程为y =3x +1.当k <0时,f (x )在[-3,4]上单调递减,则⎩⎪⎨⎪⎧ f (-3)=13,f (4)=-8,即⎩⎪⎨⎪⎧-3k +b =13,4k +b =-8,解得⎩⎪⎨⎪⎧k =-3,b =4. 此时直线方程为y =-3x +4.综上所述,所求直线方程为y =3x +1或y =-3x +4.解后反思 初中学习的一次函数y =kx +b 的图象是一条直线,其中常数k 是直线的斜率,常数b 是直线在y 轴上的截距,这恰是直线方程的斜截式,因此可以把直线方程转化为一次函数,利用函数的单调性求解.忽略点斜式使用范围致错例5 已知直线l 过点(1,2)和(a ,b ),求其方程.分析 本题可利用点斜式求直线方程,注意对字母a 进行讨论. 解 当a =1时,直线l 与x 轴垂直,直线l 的方程为x =1; 当a ≠1时,斜率k =b -2a -1,由点斜式,得直线l 的方程为y -2=b -2a -1(x -1).解后反思 本题常见的错误是没有对a 进行分类讨论,而是直接利用斜率公式求斜率,然后套用点斜式写直线方程.在利用点斜式或斜截式求直线方程时,要注意直线方程的点斜式y -y 0=k (x -x 0)的斜截式y =kx +b 都是在斜率k 存在的前提下才能使用的,要认真分析,避免漏解.1.已知直线l 的方程为2x -5y +10=0,且在x 轴上的截距为a ,在y 轴上的截距为b ,则|a +b |等于( ) A.3 B.7 C.10 D.5 答案 A解析 直线l 的方程为2x -5y +10=0,令y =0,得a =-5,令x =0,得b =2,所以|a +b |=|-5+2|=3.2.过点(-1,3)且垂直于直线x -2y +3=0的直线方程为( ) A.2x +y -1=0 B.2x +y -5=0 C.x +2y -5=0 D.x -2y +7=0答案 A解析 所求直线与已知直线垂直,因此其斜率为-2,故方程为y -3=-2(x +1),即2x +y -1=0.3.过点(1,0)且与直线x -2y -2=0平行的直线方程是( ) A.x -2y -1=0 B.x -2y +1=0 C.2x +y -2=0 D.x +2y -1=0 答案 A解析 所求直线与已知直线平行,因此其斜率为12,故方程为y =12(x -1),即x -2y -1=0.4.直线(2m 2-m +3)x +(m 2+2m )y =4m +1在x 轴上的截距为1,则m 的值是( ) A.2或12B.2或-12C.-2或-12D.-2或12答案 A解析 令y =0,解得x =4m +12m 2-m +3.由已知得4m+12m2-m+3=1,则4m+1=2m 2-m+3,即2m2-5m+2=0.解得m=2或12(符合题意).故选A.5.已知直线l的倾斜角是直线y=x+1的倾斜角的2倍,且过定点P(3,3),则直线l的方程为.答案x=3解析直线y=x+1的斜率为1,所以倾斜角为45°,又所求直线的倾斜角是已知直线倾斜角的2倍,所以所求直线的倾斜角为90°,其斜率不存在.又直线过定点P(3,3),所以直线l 的方程为x=3.1.建立点斜式方程的依据是:直线上任一点与这条直线上一个定点的连线的斜率相同,故有y-y1x-x1=k,此式是不含点P1(x1,y1)的两条反向射线的方程,必须化为y-y1=k(x-x1)才是整条直线的方程.当直线的斜率不存在时,不能用点斜式表示,此时方程为x=x1.2.斜截式方程可看作点斜式的特殊情况,表示过(0,b)点、斜率为k的直线y-b=k(x-0),即y=kx+b,其特征是方程等号的一端只是一个y,其系数是1;等号的另一端是x的一次式,而不一定是x的一次函数.如y=c是直线的斜截式方程,而2y=3x+4不是直线的斜截式方程.一、选择题1.直线方程可表示成点斜式方程的条件是()A.直线的斜率存在B.直线的斜率不存在C.直线不过原点D.直线过原点答案A解析直线的点斜式方程中,斜率必须存在.2.直线y=x-1的斜率和在y轴上的截距分别是()A.-1,1B.1,1C.-1,-1D.1,-1答案D解析直线y=x-1为斜截式方程,其中斜率为1,在y轴上的截距为-1.3.斜率为4,经过点(2,-3)的直线方程是()A.y+3=4(x-2)B.y-3=4(x-2)C.y-3=4(x+2)D.y+3=4(x+2)答案 A解析 由直线的点斜式方程,知所求直线方程为y +3=4(x -2).4.已知直线方程y -3=3(x -4),则这条直线经过的定点和倾斜角分别是( ) A.(4,3),60° B.(-3,-4),30° C.(4,3),30° D.(-4,-3),60°答案 A解析 y -3=3(x -4),得直线过定点(4,3).因为斜率k =3,所以倾斜角为60°. 5.与直线y =2x +1垂直,且在y 轴上的截距为4的直线的斜截式方程是( ) A.y =12x +4B.y =2x +4C.y =-2x +4D.y =-12x +4答案 D解析 ∵直线y =2x +1的斜率为2, ∴与其垂直的直线的斜率是-12,∴直线的斜截式方程为y =-12x +4,故选D.6.若经过原点的直线l 与直线y =33x +1的夹角为30°,则直线l 的倾斜角是( ) A.0° B.60° C.0°或60° D.60°或90° 答案 C7.方程y =ax +1a表示的直线可能是图中的( )答案 B解析 直线y =ax +1a 的斜率是a ,在y 轴上的截距1a .当a >0时,斜率a >0,在y 轴上的截距1a >0,则直线y =ax +1a 过第一、二、三象限,四个选项都不符合;当a <0时,斜率a <0,在y 轴上的截距1a <0,则直线y =ax +1a 过第二、三、四象限,仅有选项B 符合.故正确答案为B.二、填空题8.直线y =kx +2(k ∈R )不过第三象限,则斜率k 的取值范围是 . 答案 (-∞,0]解析 当k =0时,直线y =2不过第三象限; 当k >0时,直线过第三象限; 当k <0时,直线不过第三象限.9.和直线y =-34x +74垂直,且经过点(-2,0)的直线方程是 .答案 y =43x +83解析 因为y =-34x +74的斜率为-34,所以与其垂直的直线的斜率为43.故所求直线方程为y=43(x +2),即y =43x +83. 10.设点A (-1,0),B (1,0),直线2x +y -b =0与线段AB 相交,则b 的取值范围是 . 答案 [-2,2]解析 b 为直线y =-2x +b 在y 轴上的截距,如图,当直线y =-2x +b 过点A (-1,0)和点B (1,0)时b 分别取得最小值和最大值.∴b 的取值范围是[-2,2].11.已知直线y =12x x +k 与两坐标轴围成的三角形的面积不小于1,则实数k 的取值范围是 .答案 k ≥1或k ≤-1解析 令y =0,则x =-2k .令x =0,则y =k ,则直线与两坐标轴围成的三角形的面积为S =12|k |·|-2k |=k 2. 由题意知,三角形的面积不小于1,可得k 2≥1, 所以k 的取值范围是k ≥1或k ≤-1. 三、解答题12.是否存在过点(-5,-4)的直线l ,使它与两坐标轴围成的三角形的面积为5? 解 假设存在过点(-5,-4)的直线l ,使它与两坐标轴围成的三角形的面积为5. 由题意可知直线l 的斜率一定存在且不为零,设直线的斜率为k (k ≠0), 则直线方程为y +4=k (x +5),则分别令y =0,x =0, 可得直线l 与x 轴的交点为(-5k +4k ,0),与y 轴的交点为(0,5k -4).因为直线l 与两坐标轴围成的三角形的面积为5, 所以12|-5k +4k|·|5k -4|=5,所以-5k +4k·(5k -4)=±10,即25k 2-30k +16=0(无解)或25k 2-50k +16=0, 所以k =85或k =25,所以存在直线l 满足题意,直线l 的方程为y +4=85(x +5)或y +4=25(x +5),即8x -5y +20=0或2x -5y -10=0.13.已知直线l :y =kx +2k +1. (1)求证:直线l 恒过一个定点;(2)当-3<x <3时,直线上的点都在x 轴上方,求实数k 的取值范围. (1)证明 由y =kx +2k +1,得y -1=k (x +2). 由直线方程的点斜式可知,直线恒过定点(-2,1).(2)解 设函数f (x )=kx +2k +1,显然其图象是一条直线(如图所示),若使当-3<x <3时,直线上的点都在x 轴上方,需满足⎩⎪⎨⎪⎧f (-3)≥0,f (3)≥0.即⎩⎪⎨⎪⎧-3k +2k +1≥0,3k +2k +1≥0. 解得-15≤k ≤1.所以,实数k 的取值范围是-15≤k ≤1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 直线与方程章未复习
学习目标
1. 掌握直线的倾斜角的概念、斜率公式;
2. 掌握直线的方程的几种形式及其相互转化,以及直线方程知识的灵活运用;
3. 掌握两直线位置关系的判定,点到直线的距离公式及其公式的运用.
学习过程
一、课前准备
(阅读教材P 113,找出疑惑之处)
复习知识点:
(一) 直线的倾斜角与斜率
1.倾斜角的定义 ,
倾斜角α的范围 ,
斜率公式k = ,或 .
(二) 直线的方程
1. 点斜式:00()y y k x x -=-
2. 斜截式:y kx b =+
3. 两点式:112121
y y x x y y x x --=-- 4. 截距式:1x y a b
+= 5. 一般式:0Ax By C ++=
(三) 两直线的位置关系
1. 两直线平行
2. 两直线相交.⑴两直线垂直,⑵两直线相交
3. 两直线重合
(四) 距离
1. 两点之间的距离公式 ,
2. 点线之间的距离公式 ,
3. 两平行直线之间的距离公式 .
二、新课导学
※ 典例分析
例1 如图菱形ABCD 的60O BAD ∠=,求菱形各边和两条对角线所在直线的倾斜角和斜率.
例2 已知在第一象限的ABC ∆中,(1,1),(5,1)A B ,60,45O O A B ∠=∠=.求
⑴AB 边的方程;
⑵AC 和BC 所在直线的方程.
例3 求经过直线3260x y ++=和2570x y +-=的交点,且在两坐标轴上的截距相等的直线方程.
例4 已知两直线1:40l ax by -+=,2:(1)l a x y -+0b +=,求分别满足下列条件的,a b 的值.
⑴直线1l 过点(3,1)--,并且直线1l 与直线2l 垂直;
⑵直线1l 与直线2l 平行,并且坐标原点到12,l l 的距离相等.
例5 过点(4,2)P 作直线l 分别交x 轴、y 轴正半轴于,A B 两点,当AOB ∆面积最小时,求直线l 的方程.
※ 动手试试
练1. 设直线l 的方程为(2)3m x y m ++=,根据下列条件分别求m 的值.
⑴l 在x 轴上的截距为2-;
⑵斜率为1-.
练2.已知直线l 经过点(2,2)-且与两坐标轴围成单位面积的三角形,求该直线的方程.
三、总结提升
※ 学习小结
1.理解直线的倾斜角和斜率的要领,掌握过两点的斜率公式;掌握由一点和斜率写出直线方程的方法,掌握直线方程的点斜式、两点式、一般 式,并能根据条件熟练地求出直线方程.
2.掌握两条直线平行和垂直的条件,点到直线的距离公式;能够根据直线方程判断两直线的位置关系. 学习评价
※ 自我评价 你完成本节导学案的情况为( ).
A. 很好
B. 较好
C. 一般
D. 较差
※ 当堂检测(时量:5分钟 满分:10分)计分:
1. 点(3,9)关于直线3100x y +-=对称的点的坐标是( ).
A .(1,3)--
B .(17,9)-
C .(1,3)-
D .(17,9)-
2.方程(1)210()a x y a a R --++=∈所表示的直线( ).
A .恒过定点(2,3)-
B .恒过定点(2,3)
C .恒过点(2,3)-和(2,3)
D .都是平行直线
3.已知点(3,)m 到直线40x -=的距离等于1,则m =( ).
A B . C . D 4.已知(3,)P a 在过(2,1)M -和(3,4)N -的直线上,则a = .
5.将直线2)y x =-绕点(2,0)按顺时针方向旋转30o ,所得的直线方程是 . 课后作业
1.已知直线12:220,:1l x ay a l ax y +--=+-a -0=. ⑴若12//l l ,试求a 的值; ⑵若12l l ⊥,试求a 的值
2.两平行直线12,l l 分别过点1(1,0)P 和(0,5)P , ⑴若1l 与2l 的距离为5,求两直线的方程;
⑵设1l 与2l 之间的距离是d ,求d 的取值范围.。