(word完整版)新课标高中数学必修2直线与方程

合集下载

(word完整版)高中数学必修2直线与方程练习题及答案详解(2021年整理)

(word完整版)高中数学必修2直线与方程练习题及答案详解(2021年整理)

(word完整版)高中数学必修2直线与方程练习题及答案详解(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((word完整版)高中数学必修2直线与方程练习题及答案详解(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(word完整版)高中数学必修2直线与方程练习题及答案详解(word版可编辑修改)的全部内容。

直线与方程复习A一、选择题1.设直线0ax by c ++=的倾斜角为α,且sin cos 0αα+=,则,a b 满足( ) A .1=+b a B .1=-b aC .0=+b aD .0=-b a2.过点(1,3)P -且垂直于直线032=+-y x 的直线方程为( ) A .012=-+y x B .052=-+y xC .052=-+y xD .072=+-y x3.已知过点(2,)A m -和(,4)B m 的直线与直线012=-+y x 平行, 则m 的值为( )A .0B .8-C .2D .104.已知0,0ab bc <<,则直线ax by c +=通过( ) A .第一、二、三象限 B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限5.直线1x =的倾斜角和斜率分别是( ) A .045,1B .0135,1-C .090,不存在D .0180,不存在6.若方程014)()32(22=+--+-+m y m m x m m 表示一条直线,则实数m 满足( ) A .0≠mB .23-≠mC .1≠mD .1≠m ,23-≠m ,0≠m 二、填空题1.点(1,1)P - 到直线10x y -+=的距离是________________。

人教新课标版数学高一必修2课件直线的一般式方程

人教新课标版数学高一必修2课件直线的一般式方程
普通高中课程标准实验教科书 数学必修二
3.2.3 直线的一般式方程
学习目标
1.掌握直线的一般式方程; 2.理解关于x,y的二元一次方程Ax+By+C=0(A,B不同时为0)都 表示直线; 3.会进行直线方程的五种形式之间的转化.
我们共学习了哪几种直线方程的形式?
y y0 k (x x0 )
1 23 4
解析答案
课堂小结
1.根据两直线的一般式方程判定两直线平行的方法 (1)判定斜率是否存在,若存在,化成斜截式后,则k1=k2且b1≠b2;若都 不存在,则还要判定不重合. (2)可直接采用如下方法: 一般地,设直线l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0. l1∥l2⇔A1B2-A2B1=0,且B1C2-B2C1≠0,或A1C2-A2C1≠0. 这种判定方法避开了斜率存在和不存在两种情况的讨论,可以减小因考 虑不周而造成失误的可能性.
答案
问题3 当B≠0时,方程Ax+By+C=0(A,B不同时为0)表示怎样的直
线?B=0呢? 答案 当 B≠0 时,由 Ax+By+C=0 得,y=-BA x-CB, 所以该方程表示斜率为-BA, 在 y 轴上截距为-CB的直线; 当 B=0 时,A≠0,由 Ax+By+C=0 得 x=-CA, 所以该方程表示一条垂直于x轴的直线.
点斜式
y kx b
斜截式
y y1 x x1 y2 y1 x2 x1
两点式
x y 1 ab
截距式
自主学习
知识点一 直线的一般式方程
形式 条件
Ax+By+C=0 A,B 不同时为0
答案
知识点二 直线的一般式与点斜式、斜截式、两点式、截距式的关系
返回
合作探究

(word完整版)新课标高中数学必修2直线与方程

(word完整版)新课标高中数学必修2直线与方程

3.1知识表直线方程的概念及直线的倾斜角和斜率(1)直线的方程:如果以一个方程的解为坐标的点都是某条直线上的点;反之,这条直线上的点的坐标都是这个方程的解,这时,这个方程就叫做这条直线的方程,这条直线叫做这个方程的直线.(2)直线的倾斜角:一条直线向上的方向与x轴正方向所成的最小正角叫这条直线的倾斜角. 倾斜角的取值范围是0 °<a <180 ° .(3)直线的斜率:倾斜角不是90°的直线,它的倾斜角的正切值叫做这条直线的斜率. 倾斜角是90°的直线的斜率不存在.过P i( X i, yj , P2(X2, y2)(X2^X i)两点的直线的斜率芯-心特别地是,当为x2,y y2时,直线与x轴垂直,斜率k不存在;当Xi他,y i y?时,直线与y轴垂直,斜率k=0.注意:直线的倾斜角a =90。

时,斜率不存在,即直线与y轴平行或者重合.当a =90°时,斜率k=0;当0 90时,斜率k 0,随着a的增大,斜率k也增大;当90 180时,斜率k 0,随着a的增大,斜率k也增大.这样,可以求解倾斜角a的范围与斜率k取值范围的一些对应问题.倾斜角斜率1. 特殊角与斜率※基础达标1 .若直线X 1的倾斜角为,则等于( ).A. 0 B . 45° C . 90 ° D .不存在2•已知直线I的斜率的绝对值等于.3,则直线的倾斜角为( ).A. 60 °B. 30 °C. 60 °或120°D. 30 °或150°3. 已知直线经过点A(0,4)和点B (1 , 2),则直线AB的斜率为_________________4. 经过两点A(4, 2y 1),B(2, 3)的直线的倾斜角为135°,则y的值等于( )5. 过点P( —2, m)和Qm4)的直线的斜率等于1,则m的值为( ).A.1B.4C.1 或3D.1 或46 .已知两点A( X , —2),耳3 , 0),并且直线AB的斜率为2,则X =7. 已知过两点A(m 2,m 3), B(3 m m,2m)的直线I的倾斜角为45°,求实数m的值.&若三点P ( 2, 3), Q( 3, a ), R4 , b)共线,那么下列成立的是()A. a 4,b 5B. b a 1C. 2a b 3D. a 2b 39. 若A(1 , 2),耳-2 , 3) , C(4 , y)在同一条直线上,则y的值是10. 已知三点A(a, 2)、B(3 , 7)、C(-2 , -9 a)在一条直线上,求实数a的值.11. 光线从点A(2,1)出发射入y轴上点Q再经y轴反射后过点B(4,3),试求点Q的坐标,以及入射光线、反射光线所在直线的斜率.※能力提高12. 已知A(2, 3),B( 3, 2)两点,直线I 过定点P(1,1)且与线段AB 相交,求直线I 的斜率k 的取值范围13. 已知两点 M 2,- 3)、N ( — 3,— 2),直线I 过点R1 , 1)且与线段MN 相交,则直线I 的斜率k 的取值 范围是(A )333B.— 4< k w C.w k w 4 D. — w k w 4444B (3, 0), 过点P (-1,2)的直线I 与线段AB 始终有公共点,求直线15.右图中的直线I 1、I 2、I 3的斜率分别为 k 1、k 2、k 3」y ( ).A . k 1< k 2< k 3B. k 3< k 1< k 2C. k 3< k 2< k 1D. k<k 3< k 2§ 3.1.2 两条直线平行与垂直的判定基础知识:1.两条不重合的直线平行或垂直,则(1) 11 // 12k 1=k 2 (2) I 1丄12 k 1 • k 2= — 1.若I 1和I 2都没有斜率,则I 1与I 2平行或重合.若I 1和I 冲有一条没有斜率而另一条斜率为0,则I 1丄I 2.【例1】四边形 ABC 啲顶点为A(2,2 2.2)、B( 2,2)、C(0,22 2)、D(4,2),试判断四边形 ABCD的形状.【例2】已知 ABC 的顶点B(2,1), C( 6,3),其垂心为H( 3,2),求顶点A 的坐标.3 5【例3】(1)已知直线I 1经过点M( -3 , 0)、N( -15,-6 ), I 2经过点R( -2 , 3 )、S (0, 5 ),试判2 2断l 1与I 2是否平行?(2) l 1的倾斜角为45°, I 2经过点P (-2 , -1 )、Q( 3, -6 ),问I 1与I 2是否垂直?【例 4】已知 A( 1, 1), B (2 , 2), C (3 , -3 ),求点 D,使直线 CDL AB 且 CB// AD点评:通过设点D 的坐标,把已知条件中的垂直与平行的两种关系、三点的坐标联系在一起,联系的 纽带是斜率公式.解题的数学思想是方程求解,方程的得到是利用平行与垂直时斜率的关系 .※基础达标1 .下列说法中正确的是( ).A. 平行的两条直线的斜率一定存在且相等B. 平行的两条直线的倾斜角一定相等3A. k > 或 k w — 4414.已知两点A (-2,- 3), 的取值范围•I 的斜率kC. 垂直的两直线的斜率之积为-1D. 只有斜率相等的两条直线才一定平行2. 若直线h、J的倾斜角分别为1、2,且l1 J,则有( ).A. 1290o B. 2190° C. | 2190oD. 12180°3. 经过点P( 2,m)和Q(m,4)的直线平行于斜率等于 1的直线,则 m的值是()A . 4 B. 1C. 1 或 3D. 1 或 44. 若 A( 4,2), B(6, 4), C(12,6),D(2,12),则下面四个结论: ①AB//CD :②AB CD :③AC // BD ; ④ACBD .其中正确的序号依次为( )A. ①③B. ①④C.②③ D.②④5.已知 ABC 的三个顶点坐标为 A(5, 1), B(1,1), C(2,3),则其形状为().A.直角三角形B.锐角三角形 C. 钝角三角形 D. 无法判断6.直线11,12的斜率是方程x 2 3x 1 0的两根,则h 与12的位置关系是.7•若过点A (2, 2),B(5,0)的直线与过点P(2m,1),Q( 1, m)的直线平行,则 m=. ※能力提高&已知矩形 ABCD 的三个顶点的分别为 A(0,1), B(1,0), C(3,2),求第四个顶点 D 的坐标. 9.ABC 的顶点A(5, 1), B(1,1), C(2,m),若 ABC 为直角三角形,求 m 的值.※探究创新10. 已知过原点 O 的一条直线与函数 y =log 8X 的图象交于 A B 两点,分别过点 A B 作y 轴的平行线 与函数y =log 次的图象交于C 、D 两点.(1) 证明:点C D 和原点O 在同一直线上.(2)当BC 平行于x 轴时,求点A 的坐标.必修二3.2知识表线段昭2中点坐标公式(宁§ 3.2.1直线的点斜式方程※基础达标1..写出下列点斜式直线方程:(1)经过点 A(2,5),斜率是 4; y 5 4(x 3) (2)经过点 B(3, 1),倾斜角是 30o. y 1 3(x 3).32. 倾斜角是135o,在y 轴上的截距是3的直线方程是 . 3. 直线y ax b ( a b = 04.已知直线l 过点P(3,4)A. y 4 2(x 3) B. y 4 x 3 C. y 40 D. x 35•过点M 2,1的直线与x 、y 轴分别交于P 、Q 若M 为线段PQ 的中点,则这条直线的方程为 __________________名称 几何条件方程 局限性点斜式 过点(x 0, y o ),斜率为k y — y 0=k(x — X 。

新课标高级中学数学必修2直线与方程

新课标高级中学数学必修2直线与方程

3.1知识表直线方程的概念及直线的倾斜角和斜率(1)直线的方程:如果以一个方程的解为坐标的点都是某条直线上的点;反之,这条直线上的点的坐标都是这个方程的解,这时,这个方程就叫做这条直线的方程,这条直线叫做这个方程的直线.(2)直线的倾斜角:一条直线向上的方向与x 轴正方向所成的最小正角叫这条直线的倾斜角.倾斜角的取值范围是0°≤α<180°.(3)直线的斜率:倾斜角不是90°的直线,它的倾斜角的正切值叫做这条直线的斜率.倾斜角是90°的直线的斜率不存在.过P 1(x 1,y 1),P 2(x 2,y 2)(x 2≠x 1)两点的直线的斜率特别地是,当12x x =,12y y ≠时,直线与x 轴垂直,斜率k 不存在;当12x x ≠,12y y =时,直线与y 轴垂直,斜率k =0.注意:直线的倾斜角α=90°时,斜率不存在,即直线与y 轴平行或者重合. 当α=90°时,斜率k =0;当090α︒<<︒时,斜率0k >,随着α的增大,斜率k 也增大;当90180α︒<<︒时,斜率0k <,随着α的增大,斜率k 也增大. 这样,可以求解倾斜角α的范围与斜率k 取值范围的一些对应问题.1.特殊角与斜率 ※基础达标1.若直线1x =的倾斜角为α,则α等于( ).A .0B .45°C .90°D .不存在2.已知直线l 3 ).A. 60°B. 30°C. 60°或120°D. 30°或150° 3. 已知直线经过点A(0,4)和点B (1,2),则直线AB 的斜率为__________4.经过两点)3,2(),12,4(-+B y A 的直线的倾斜角为1350,则y 的值等于 ( ) 5.过点P (-2,m )和Q (m ,4)的直线的斜率等于1,则m 的值为( ). A.1 B.4 C.1或3 D.1或46.已知两点A (x ,-2),B (3,0),并且直线AB 的斜率为2,则x = .7.已知过两点22(2,3)A m m +-, 2(3,2)B m m m --的直线l 的倾斜角为45°,求实数m 的值.8.若三点P (2,3),Q (3,a ),R (4,b )共线,那么下列成立的是( ) A .4,5a b == B .1b a -= C .23a b -= D .23a b -=9.若A (1,2),B (-2,3),C (4,y )在同一条直线上,则y 的值是 . 10.已知三点A (a ,2)、B (3,7)、C (-2,-9a )在一条直线上,求实数a 的值.11.光线从点(2,1)A 出发射入y 轴上点Q , 再经y 轴反射后过点(4,3)B , 试求点Q 的坐标,以及入射光线、 反射光线所在直线的斜率.倾斜角 斜率※能力提高12.已知(2,3),(3,2)A B ---两点,直线l 过定点(1,1)P 且与线段AB 相交,求直线l 的斜率k 的取值范围.13.已知两点M (2,-3)、N (-3,-2),直线l 过点P (1,1)且与线段MN 相交,则直线l 的斜率k 的取值范围是( A )A.k ≥43或k ≤-4 B.-4≤k ≤43 C. 43≤k ≤4 D.-43≤k ≤4 14.已知两点A (-2,- 3) , B (3, 0) ,过点P (-1, 2)的直线l 与线段AB 始终有公共点,求直线l 的斜率k的取值范围.15.右图中的直线l 1、l 2、l 3的斜率分别为k 1、k 2、k 3,则( ). A .k 1<k 2<k 3 B. k 3<k 1<k 2 C. k 3<k 2<k 1 D. k 1<k 3<k 2§3.1.2 两条直线平行与垂直的判定基础知识:1.两条不重合的直线平行或垂直,则(1)l 1∥l 2 ⇔k 1=k 2(2)l 1⊥l 2⇔k 1·k 2=-1. 若l 1和l 2都没有斜率,则l 1与l 2平行或重合.若l 1和l 2中有一条没有斜率而另一条斜率为0,则l 1⊥l 2. 【例1】四边形ABCD 的顶点为(2,222)A +、(2,2)B -、(0,222)C -、(4,2)D ,试判断四边形ABCD 的形状.【例2】已知ABC ∆的顶点(2,1),(6,3)B C -,其垂心为(3,2)H -,求顶点A 的坐标.【例3】(1)已知直线1l 经过点M (-3,0)、N (-15,-6),2l 经过点R (-2,32)、S (0,52),试判断1l 与2l 是否平行?(2)1l 的倾斜角为45°,2l 经过点P (-2,-1)、Q (3,-6),问1l 与2l 是否垂直?【例4】已知A (1,1),B (2,2),C (3,-3),求点D ,使直线CD ⊥AB ,且CB ∥AD .点评:通过设点D 的坐标,把已知条件中的垂直与平行的两种关系、三点的坐标联系在一起,联系的纽带是斜率公式. 解题的数学思想是方程求解,方程的得到是利用平行与垂直时斜率的关系.※基础达标1.下列说法中正确的是( ).A. 平行的两条直线的斜率一定存在且相等B. 平行的两条直线的倾斜角一定相等C. 垂直的两直线的斜率之积为-1D. 只有斜率相等的两条直线才一定平行 2.若直线12l l 、的倾斜角分别为12,αα、且12l l ⊥,则有( ).A. 1290αα-=o B. 2190αα-=o C. 2190αα-=o D. 12180αα+=o3.经过点(2,)P m -和(,4)Q m 的直线平行于斜率等于1的直线,则m 的值是( ). A .4 B .1 C .1或3 D .1或4 4.若(4,2),(6,4),(12,6),(2,12)A B C D --, 则下面四个结论:①//AB CD ;②AB CD ⊥;③//AC BD ;④AC BD ⊥. 其中正确的序号依次为( ).A. ①③B. ①④C. ②③D. ②④5.已知ABC ∆的三个顶点坐标为(5,1),(1,1),(2,3)A B C -,则其形状为( ). A. 直角三角形 B. 锐角三角形 C. 钝角三角形 D. 无法判断6.直线12,l l 的斜率是方程2310x x --=的两根,则12l l 与的位置关系是 .7.若过点(2,2),(5,0)A B -的直线与过点(2,1),(1,)P m Q m --的直线平行,则m = . ※能力提高8.已知矩形ABCD 的三个顶点的分别为(0,1),(1,0),(3,2)A B C ,求第四个顶点D 的坐标. 9. ABC ∆的顶点(5,1),(1,1),(2,)A B C m -,若ABC ∆为直角三角形,求m 的值.※探究创新10.已知过原点O 的一条直线与函数y =log 8x 的图象交于A 、B 两点,分别过点A 、B 作y 轴的平行线与函数y =log 2x 的图象交于C 、D 两点.(1) 证明:点C 、D 和原点O 在同一直线上. (2)当BC 平行于x 轴时,求点A 的坐标.必修二3.2知识表名称几何条件方程 局限性点斜式 过点(x 0,y 0),斜率为k y -y 0=k(x -x 0) 不含垂直于x 轴的直线 斜截式 斜率为k ,纵截距为by=kx +b不含垂直于x 轴的直线找要素,写方程(两点、一点一斜、两截)设方程,求系数(讨论)线段12P P 中点坐标公式1212(,)22x x y y ++ §3.2.1 直线的点斜式方程※基础达标1..写出下列点斜式直线方程:(1)经过点(2,5)A ,斜率是4; 54(3)y x -=-(2)经过点(3,1)B -,倾斜角是30o .31(3)y x +=-. 2. 倾斜角是135o ,在y 轴上的截距是3的直线方程是 . 3.直线y ax b =+(a b +=0)的图象可以是( ).4.已知直线l 过点(3,4)P ,它的倾斜角是直线1y x =+的两倍,则直线l 的方程为( ).A. 42(3)y x -=-B. 43y x -=-C. 40y -=D. 30x -=5.过点()2,1M 的直线与x 、y 轴分别交于P 、Q ,若M 为线段PQ 的中点,则这条直线的方程为_____________ 6. 将直线31y x =+绕它上面一点(1315°,得到的直线方程是 .求直线方程的方法 “先判断,后计算”,“特殊提前,通法接连”。

高中数学 必修二 习题:第3章 直线与方程3.2.2 Word版含解析

高中数学  必修二  习题:第3章 直线与方程3.2.2 Word版含解析

第三章 3.2 3.2.2一、选择题1.直线x 2-y5=1在x 轴、y 轴上的截距分别为( )A .2,5B .2,-5C .-2,-5D .-2,5[答案] B[解析] 将x 2-y 5=1化成直线截距式的标准形式为x 2+y -5=1,故直线x 2-y5=1在x 轴、y 轴上的截距分别为2、-5.2.已知点M (1,-2)、N (m,2),若线段MN 的垂直平分线的方程是x2+y =1,则实数m 的值是( )A .-2B .-7C .3D .1 [答案] C[解析] 由中点坐标公式,得线段MN 的中点是(1+m 2,0).又点(1+m2,0)在线段MN的垂直平分线上,所以1+m4+0=1,所以m =3,选C .3.某地长途汽车客运公司规定旅客可随身携带一定质量的行李,如果超过规定,则需要购买行李,行李费用y (元)与行李质量x (kg)的关系如图所示,则旅客最多可免费携带行李的重量为( )A .20 kgB .25 kgC .30 kgD .80 kg [答案] C[解析] 由图知点A (60,6)、B (80,10),由直线方程的两点式,得直线AB 的方程是y -610-6=x -6080-60,即y =15x -6.依题意,令y =0,得x =30,即旅客最多可免费携带30千克行李.4.如右图所示,直线l 的截距式方程是x a +yb=1,则有( )A .a >0,b >0B .a >0,b <0C .a <0,b >0D .a <0,b <0[答案] B[解析] 很明显M (a,0)、N (0,b ),由图知M 在x 轴正半轴上,N 在y 轴负半轴上,则a >0,b <0.5.已知△ABC 三顶点A (1,2)、B (3,6)、C (5,2),M 为AB 中点,N 为AC 中点,则中位线MN 所在直线方程为( )A .2x +y -8=0B .2x -y +8=0C .2x +y -12=0D .2x -y -12=0[答案] A[解析] 点M 的坐标为(2,4),点N 的坐标为(3,2),由两点式方程得y -24-2=x -32-3,即2x+y -8=0.6.过两点(-1,1)和(3,9)的直线在x 轴上的截距为( )A .-32B .-23C .25D .2[答案] A[解析] 直线方程为y -91-9=x -3-1-3,化为截距式为x -32+y 3=1,则在x 轴上的截距为-32.二、填空题7.已知点P (-1,2m -1)在经过M (2,-1)、N (-3,4)两点的直线上,则m =________[答案] 32[解析] 解法一:MN 的直线方程为:y +14+1=x -2-3-2,即x +y -1=0,代入P (-1,2m -1)得m =32.解法二:M 、N 、P 三点共线, ∴4-(2m -1)-3+1=4-(-1)-3-2,解得m =32.8.过点(0,3),且在两坐标轴上截距之和等于5的直线方程是________.[答案] 3x +2y -6=0[解析] 设直线方程为x a +yb =1,则⎩⎪⎨⎪⎧b =3a +b =5,解得a =2,b =3,则直线方程为x 2+y3=1,即3x +2y -6=0. 三、解答题9.已知点A (-1,2)、B (3,4),线段AB 的中点为M ,求过点M 且平行于直线x 4-y2=1的直线l 的方程.[解析] 由题意得M (1,3),直线x 4-y 2=1的方程化为斜截式为y =12x -2,其斜率为12,所以直线l 的斜率为12.所以直线l 的方程是y -3=12(x -1),即x -2y +5=0.10.求分别满足下列条件的直线l 的方程:(1)斜率是34,且与两坐标轴围成的三角形的面积是6;(2)经过两点A (1,0)、B (m,1);(3)经过点(4,-3),且在两坐标轴上的截距的绝对值相等. [解析](1)设直线l 的方程为y =34x +b .令y =0,得x =-43b ,∴12|b ·(-43b )|=6,b =±3. ∴直线l 的方程为y =43x ±3.(2)当m ≠1时,直线l 的方程是 y -01-0=x -1m -1,即y =1m -1(x -1) 当m =1时,直线l 的方程是x =1. (3)设l 在x 轴、y 轴上的截距分别为a 、b . 当a ≠0,b ≠0时,l 的方程为x a +yb =1;∵直线过P (4,-3),∴4a -3b =1.又∵|a |=|b |,∴⎩⎪⎨⎪⎧4a -3b =1a =±b,解得⎩⎪⎨⎪⎧ a =1b =1,或⎩⎪⎨⎪⎧a =7b =-7. 当a =b =0时,直线过原点且过(4,-3), ∴l 的方程为y =-34x .综上所述,直线l 的方程为x +y =1或x 7+y -7=1或y =-34x .一、选择题1.如果直线l 过(-1,-1)、(2,5)两点,点(1 008,b )在直线l 上,那么b 的值为( )A .2 014B .2 015C .2 016D .2 017[答案] D[解析] 根据三点共线,得5-(-1)2-(-1)=b -51 008-2,得b =2 017.2.两直线x m -y n =1与x n -ym=1的图象可能是图中的哪一个( )[答案] B[解析] 直线x m -yn =1化为y =n m x -n ,直线x n -ym=1化为 y =mnx -m ,故两直线的斜率同号,故选B .3.已知A 、B 两点分别在两条互相垂直的直线y =2x 和x +ay =0上,且线段AB 的中点为P (0,10a),则直线AB 的方程为( )A .y =-34x +5B .y =34x -5C .y =34x +5D .y =-34x -5[答案] C[解析] 依题意,a =2,P (0,5).设A (x 0,2x 0)、B (-2y 0,y 0),则由中点坐标公式,得⎩⎪⎨⎪⎧ x 0-2y 0=02x 0+y 0=10,解得⎩⎪⎨⎪⎧x 0=4y 0=2,所以A (4,8)、B (-4,2).由直线的两点式方程,得直线AB 的方程是y -82-8=x -4-4-4,即y =34x +5,选C .4.过P (4,-3)且在坐标轴上截距相等的直线有( )A .1条B .2条C .3条D .4条[答案] B[解析] 解法一:设直线方程为y +3=k (x -4)(k ≠0). 令y =0得x =3+4kk ,令x =0得y =-4k -3.由题意,3+4k k =-4k -3,解得k =-34或k =-1.因而所求直线有两条,∴应选B .解法二:当直线过原点时显然符合条件,当直线不过原点时,设直线在坐标轴上截距为(a,0),(0,a ),a ≠0,则直线方程为x a +ya=1,把点P (4,-3)的坐标代入方程得a =1.∴所求直线有两条,∴应选B . 二、填空题5.直线l 过点P (-1,2),分别与x 、y 轴交于A 、B 两点,若P 为线段AB 的中点,则直线l 的方程为________.[答案] 2x -y +4=0 [解析] 设A (x,0)、B (0,y ). 由P (-1,2)为AB 的中点,∴⎩⎨⎧x +02=-10+y 2=2,∴⎩⎪⎨⎪⎧x =-2y =4.由截距式得l 的方程为 x -2+y4=1,即2x -y +4=0. 6.已知A (3,0)、B (0,4),直线AB 上一动点P (x ,y ),则xy 的最大值是________.[答案] 3[解析] 直线AB 的方程为x 3+y4=1,∴y =4-4x3,∴xy =x (4-43x )=4x -43x 2=-43(x 2-3x )=-43[(x -32)2-94]=-43(x -32)2+3,∴当x =32时,xy 取最大值3.三、解答题7.△ABC 的三个顶点分别为A (0,4)、B (-2,6)、C (-8,0).(1)分别求边AC 和AB 所在直线的方程; (2)求AC 边上的中线BD 所在直线的方程; (3)求AC 边的中垂线所在直线的方程; (4)求AC 边上的高所在直线的方程; (5)求经过两边AB 和AC 的中点的直线方程.[解析] (1)由A (0,4),C (-8,0)可得直线AC 的截距式方程为x -8+y4=1,即x -2y +8=0.由A (0,4),B (-2,6)可得直线AB 的两点式方程为y -46-4=x -0-2-0,即x +y -4=0.(2)设AC 边的中点为D (x ,y ),由中点坐标公式可得x =-4,y =2,所以直线BD 的两点式方程为y -62-6=x +2-4+2,即2x -y +10=0.(3)由直线AC 的斜率为k AC =4-00+8=12,故AC 边的中垂线的斜率为k =-2.又AC 的中点D (-4,2),所以AC 边的中垂线方程为y -2=-2(x +4), 即2x +y +6=0.(4)AC 边上的高线的斜率为-2,且过点B (-2,6),所以其点斜式方程为y -6=-2(x +2),即2x +y -2=0.(5)AB 的中点M (-1,5),AC 的中点D (-4,2), ∴直线DM 方程为y -25-2=x -(-4)-1-(-4),即x -y +6=0.8.已知抛物线y =-x 2-2x +3与x 轴交于A 、B 两点,点M 在此抛物线上,点N 在y 轴上,以A 、B 、M 、N 为顶点的四边形为平行四边形,求点M 的坐标.[解析] 容易求得抛物线与x 轴的交点分别为(-3,0)、(1,0)不妨设A (-3,0)、B (1,0),由已知,设M (a ,b )、N (0,n ),根据平行四边形两条对角线互相平分的性质,可得两条对角线的中点重合.按A 、B 、M 、N 两两连接的线段分别作为平行四边形的对角线进行分类,有以下三种情况:①若以AB 为对角线,可得a +0=-3+1,解得a =-2;②若以AN为对角线,可得a+1=-3+0,解得a=-4;③若以BN为对角线,可得a+(-3)=1+0,解得a=4.因为点M在抛物线上,将其横坐标的值分别代入抛物线的解析式,可得M(-2,3)或M(-4,-5)或M(4,-21).。

数学必修二第三章直线与方程

数学必修二第三章直线与方程

*9.直线系过定点问题
含有一个待定系数(参数)的二元一次方程过定点问题 的解法:
(1)特殊值法,利用不论参数取何值,方程都有解, 给方程中的参数取两个特殊值,可得关于x、y的两个 方程,从中解出的x、y的值即为所求定点的坐标.
(2)分离参数法:经过将方程整理为m(A1x+B1y+ C1)+A2x+B2y+C2=0,则该方程表示 的直线一定过直线A1x+B1y+C1=0和 A2x+B2y+C2=0的交点,而交点就 是定点.
一、知识讲解
1.直线方程 (1)坐标平面内,任意一条直线的方程都 是关于x、y的二元一次方程;每一个关于 x、y的二元一次方程都表示一条直线.
特别注意x=a也是一条直线,此 直线垂直于x轴,直线上任意一 点的横坐标都是a
(2)常见表达式的几何意义 ① x2+y2表示动点 P(x,y)到原点(0,0)的距离. (x-1)2+(y+2)2 表示动点 P(x,y)到定点(1,-2)的距离 的平方. ②yx表示动点 P(x,y)与原点连线的斜率. yx+-23表示动点 P(x,y)与定点(3,-2)连线的斜率. ③|x+2y-1|表示动点 P(x,y)到直线 x+2y-1=0 的距 离的 5倍等等.
(6)与直线y=kx+b平行的直线方程可设为y=kx+b1.
(7)与 y=kx+b(k≠0)垂直的直线方程可设为 y=-1kx
+b1.
(8)过两直线l1:A1x+B1y+C1=0与l2:A2x+B2y +C2=0的交点(A1B2-A2B1≠0)的直线方程可设为 (A1x+B1y+C1)+λ(A2y+B2y+C2)=0.
4.直线的方程
方程名称
方程形式
点斜式
y-y1=k(x-x1)
斜截式 两点式 截距式 一般式

人教版高中数学必修二教材用书直线与方程3.2-1直线的点斜式方程word版含答案2

人教版高中数学必修二教材用书直线与方程3.2-1直线的点斜式方程word版含答案2

3.2直线的方程3.2.1直线的点斜式方程点斜式、斜截式[提出问题]如图,过点A(1,1)作直线l.问题1:试想直线l确定吗?提示:不确定.因为过一点可画无数条直线.问题2:若直线l的倾斜角为45°,直线确定吗?提示:确定.问题3:若直线l的斜率为2,直线确定吗?提示:确定.[导入新知]1.直线的点斜式方程(1)定义:如图所示,直线l过定点P(x0,y0),斜率为k,则把方程y-y0=k(x-x0)叫做直线l的点斜式方程,简称点斜式.(2)说明:如图所示,过定点P(x0,y0),倾斜角是90°的直线没有点斜式,其方程为x-x0=0,或x=x0.2.直线的斜截式方程(1)定义:如图所示,直线l的斜率为k,且与y轴的交点为(0,b),则方程y=kx+b叫做直线l的斜截式方程,简称斜截式.(2)说明:一条直线与y轴的交点(0,b)的纵坐标b叫做直线在y轴上的截距.倾斜角是直角的直线没有斜截式方程.[化解疑难]1.关于点斜式的几点说明:(1)直线的点斜式方程的前提条件是:①已知一点P(x0,y0)和斜率k;②斜率必须存在.只有这两个条件都具备,才可以写出点斜式方程.(2)方程y -y 0=k (x -x 0)与方程k =y -y 0x -x 0不是等价的,前者是整条直线,后者表示去掉点P (x 0,y 0)的一条直线.(3)当k 取任意实数时,方程y -y 0=k (x -x 0)表示恒过定点(x 0,y 0)的无数条直线.2.斜截式与一次函数的解析式相同,都是y =kx +b 的形式,但有区别,当k ≠0时,y =kx +b 即为一次函数;当k =0时,y =b 不是一次函数,一次函数y =kx +b (k ≠0)必是一条直线的斜截式方程.截距不是距离,可正、可负也可为零.直线的点斜式方程[例1] (1)经过点(-5,2)且平行于y 轴的直线方程为________________.(2)直线y =x +1绕着其上一点P (3,4)逆时针旋转90°后得直线l ,则直线l 的点斜式方程为________________.(3)求过点P (1,2)且与直线y =2x +1平行的直线方程为________________. [答案] (1)x =-5 (2)y -4=-(x -3) (3)2x -y =0 [类题通法]已知直线上一点的坐标以及直线斜率或已知直线上两点的坐标,均可用直线方程的点斜式表示,直线方程的点斜式,应在直线斜率存在的条件下使用.当直线的斜率不存在时,直线方程为x =x 0.[活学活用]若直线l 过点(2,1),分别求l 满足下列条件时的直线方程:(1)倾斜角为135°;(2)平行于x 轴;(3)平行于y 轴;(4)过原点.解:(1)直线的斜率为k =tan 135°=-1, 所以由点斜式方程得y -1=-1×(x -2), 即方程为x +y -3=0.(2)平行于x 轴的直线的斜率k =0,故所求的直线方程为y =1. (3)过点(2,1)且平行于y 轴的直线方程为x =2. (4)过点(2,1)与点(0,0)的直线的斜率k =12,故所求的直线方程为y =12x .直线的斜截式方程[例2] (1)倾斜角为________________.(2)已知直线l 1的方程为y =-2x +3,l 2的方程为y =4x -2,直线l 与l 1平行且与l 2在y 轴上的截距相同,求直线l 的方程.[解] (1)y =-33x -3 (2)由斜截式方程知直线l 1的斜率k 1=-2,又∵l ∥l 1,∴l 的斜率k =k 1=-2.由题意知l 2在y 轴上的截距为-2,∴l 在y 轴上的截距b =-2,由斜截式可得直线l 的方程为y =-2x -2.[类题通法]1.斜截式方程的应用前提是直线的斜率存在.当b =0时,y =kx 表示过原点的直线;当k =0时,y =b 表示与x 轴平行(或重合)的直线.2.截距不同于日常生活中的距离,截距是一个点的横(纵)坐标,是一个实数,可以是正数,也可以是负数或零,而距离是一个非负数.[活学活用]写出下列直线的斜截式方程:(1)直线斜率是3,在y 轴上的截距是-3; (2)直线倾斜角是60°,在y 轴上的截距是5; (3)直线在x 轴上的截距为4,在y 轴上的截距为-2. 解:(1)y =3x -3.(2)∵k =tan 60°=3,∴y =3x +5.(3)∵直线在x 轴上的截距为4,在y 轴上的截距为-2,∴直线过点(4,0)和(0,-2), ∴k =-2-00-4=12,∴y =12x -2.两直线平行与垂直的应用[例3] 当a (1)两直线y =ax -2与y =(a +2)x +1互相垂直? (2)两直线y =-x +4a 与y =(a 2-2)x +4互相平行? [解] (1)设两直线的斜率分别为k 1,k 2,则k 1=a ,k 2=a +2. ∵两直线互相垂直,∴k 1k 2=a (a +2)=-1,解得a =-1. 故当a =-1时,两条直线互相垂直. (2)设两直线的斜率分别为k 3,k 4,则k 3=-1,k 4=a 2-2. ∵两条直线互相平行,∴⎩⎪⎨⎪⎧a 2-2=-1,4a ≠4,解得a =-1. 故当a =-1时,两条直线互相平行. [类题通法]判断两条直线位置关系的方法直线l 1:y =k 1x +b 1,直线l 2:y =k 2x +b 2. (1)若k 1≠k 2,则两直线相交. (2)若k 1=k 2,则两直线平行或重合, 当b 1≠b 2时,两直线平行; 当b 1=b 2时,两直线重合.(3)特别地,当k 1·k 2=-1时,两直线垂直. (4)对于斜率不存在的情况,应单独考虑. [活学活用]1.若直线l 1:y =(2a -1)x +3与直线l 2:y =4x -3垂直,则a =________. 答案:382.若直线ax +2y +3a =0与直线3x +(a -1)y =-7+a 平行,则实数a 的值为________. 答案:37.斜截式判断两条直线平行的误区[典例] 已知直线l 1:x +my +6=0,l 2:(m -2)·x +3y +2m =0,当l 1∥l 2时,求m 的值. [解] 由题设l 2的方程可化为y =-m -23x -23m ,则其斜率k 2=-m -23,在y 轴上的截距b 2=-23m .∵l 1∥l 2,∴l 1的斜率一定存在,即m ≠0. ∴l 1的方程为y =-1m x -6m .由l 1∥l 2,得⎩⎪⎨⎪⎧-m -23=-1m,-23m ≠-6m,解得m =-1. ∴m 的值为-1. [易错防范]1.两条直线平行时,斜率存在且相等,截距不相等.当两条直线的斜率相等时,也可能平行,也可能重合.2.解决此类问题要明确两直线平行的条件,尤其是在求参数时要考虑两直线是否重合. [成功破障]当a 为何值时,直线l 1:y =-2ax +2a 与直线l 2:y =(a 2-3)x +2平行? 解:∵l 1∥l 2,∴a 2-3=-2a 且2a ≠2, 解得a =-3.[随堂即时演练]1.直线的点斜式方程y -y 1=k (x -x 1)( ) A .可以表示任何一条直线 B .不能表示过原点的直线 C .不能表示与坐标轴垂直的直线 D .不能表示与x 轴垂直的直线 答案:D2.直线l 经过点P (2,-3),且倾斜角α=45°,则直线的点斜式方程是( ) A .y +3=x -2 B .y -3=x +2 C .y +2=x -3 D .y -2=x +3答案:A3.直线y =3x -2在y 轴上的截距为________. 答案:-24.在y 轴上的截距为2,且与直线y =-3x -4平行的直线的斜截式方程为________________. 答案:y =-3x +25.(1)求经过点(1,1),且与直线y =2x +7平行的直线的方程; (2)求经过点(-2,-2),且与直线y =3x -5垂直的直线的方程. 解:(1)2x -y -1=0 (2)x +3y +8=0[课时达标检测]一、选择题1.已知直线的方程是y +2=-x -1,则( ) A .直线经过点(-1,2),斜率为-1 B .直线经过点(2,-1),斜率为-1 C .直线经过点(-1,-2),斜率为-1 D .直线经过点(-2,-1),斜率为1 答案:C2.直线y =ax +b 和y =bx +a 在同一直角坐标系中的图形可能是( )答案:D3.与直线y =2x +1垂直,且在y 轴上的截距为4的直线的斜截式方程是( ) A .y =12x +4B .y =2x +4C .y =-2x +4D .y =-12x +4答案:D4.过点(-1,3)且垂直于直线x -2y +3=0的直线方程为( ) A .2x +y -1=0 B .2x +y -5=0 C .x +2y -5=0 D .x -2y +7=0 答案:A5.直线y =2x +3与y -2=2(x +3)的位置关系是( ) A .平行 B .垂直 C .重合 D .无法判断 答案:A 二、填空题6.过点(-3,2)且与直线y -1=23(x +5)平行的直线的点斜式方程是________________.答案:y -2=23(x +3)7.直线y =ax -3a +2(a ∈R)必过定点____________. 答案:(3,2)8.已知斜率为2的直线的方程为5ax -5y -a +3=0,此直线在y 轴上的截距为________.答案:15三、解答题9.已知三角形的顶点坐标是A (-5,0),B (3,-3),C (0,2),试求这个三角形的三条边所在直线的方程.解:直线AB 的斜率k AB =-3-03-?-5?=-38,过点A (-5,0),由点斜式得直线AB 的方程为y =-38(x +5),即3x +8y +15=0;同理,k BC =2+30-3=-53,k AC =2-00+5=25,直线BC ,AC 的方程分别为5x +3y -6=0,2x -5y +10=0.10.已知直线l 的斜率与直线3x -2y =6的斜率相等,且直线l 在x 轴上的截距比在y 轴上的截距大1,求直线l 的方程.解:由题意知,直线l 的斜率为32,故设直线l 的方程为y =32x +b ,l 在x 轴上的截距为-23b ,在y 轴上的截距为b ,所以-23b -b =1,b =-35,直线l 的方程为y =32x -35,即15x -10y -6=0.。

新人教版高中数学必修2(B)直线、圆的方程

新人教版高中数学必修2(B)直线、圆的方程

直线、圆的方程一.课标要求:1.直线与方程(1)在平面直角坐标系中,结合具体图形,探索确定直线位置的几何要素; (2)理解直线的倾斜角和斜率的概念,经历用代数方法刻画直线斜率的过程,掌握过两点的直线斜率的计算公式;(3)根据确定直线位置的几何要素,探索并掌握直线方程的几种形式(点斜式、两点式及一般式),体会斜截式与一次函数的关系;2.圆与方程回顾确定圆的几何要素,在平面直角坐标系中,探索并掌握圆的标准方程与一般方程。

二.命题走向直线方程考察的重点是直线方程的特征值(主要是直线的斜率、截距)有关问题,可与三角知识联系;圆的方程,从轨迹角度讲,可以成为解答题,尤其是参数问题,在对参数的讨论中确定圆的方程。

预测2007年对本讲的考察是:(1)2道选择或填空,解答题多与其他知识联合考察,本讲对于数形结合思想的考察也会是一个出题方向;(2)热点问题是直线的倾斜角和斜率、直线的几种方程形式和求圆的方程。

三.要点精讲1.倾斜角:一条直线L 向上的方向与X 轴的正方向所成的最小正角,叫做直线的倾斜角,范围为[)π,0。

2.斜率:当直线的倾斜角不是900时,则称其正切值为该直线的斜率,即k=t a n α;当直线的倾斜角等于900时,直线的斜率不存在。

过两点p 1(x 1,y 1),p 2(x 2,y 2)(x 1≠x 2)的直线的斜率公式:k=t a n 1212x x y y --=α(若x 1=x 2,则直线p 1p 2的斜率不存在,此时直线的倾斜角为900)。

4.直线方程的五种形式确定直线方程需要有两个互相独立的条件。

确定直截距式 a x +by=1a ——直线的横截距b ——直线的纵截距过(0,0)及与两坐标轴平行的直线不能用此式一般式 Ax +By +C =0B A -,A C -,BC-分别为斜率、横截距和纵截距A 、B 不能同时为零 直线的点斜式与斜截式不能表示斜率不存在(垂直于x 轴)的直线;两点式不能表示平行或重合两坐标轴的直线;截距式不能表示平行或重合两坐标轴的直线及过原点的直线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.1知识表直线方程的概念及直线的倾斜角和斜率(1)直线的方程:如果以一个方程的解为坐标的点都是某条直线上的点;反之,这条直线上的点的坐标都是这个方程的解,这时,这个方程就叫做这条直线的方程,这条直线叫做这个方程的直线.(2)直线的倾斜角:一条直线向上的方向与x 轴正方向所成的最小正角叫这条直线的倾斜角.倾斜角的取值范围是0°≤α<180°.(3)直线的斜率:倾斜角不是90°的直线,它的倾斜角的正切值叫做这条直线的斜率.倾斜角是90°的直线的斜率不存在.过P 1(x 1,y 1),P 2(x 2,y 2)(x 2≠x 1)两点的直线的斜率特别地是,当12x x =,12y y ≠时,直线与x 轴垂直,斜率k 不存在;当12x x ≠,12y y =时,直线与y 轴垂直,斜率k =0.注意:直线的倾斜角α=90°时,斜率不存在,即直线与y 轴平行或者重合. 当α=90°时,斜率k =0;当090α︒<<︒时,斜率0k >,随着α的增大,斜率k 也增大;当90180α︒<<︒时,斜率0k <,随着α的增大,斜率k 也增大. 这样,可以求解倾斜角α的范围与斜率k 取值范围的一些对应问题.1.特殊角与斜率 ※基础达标1.若直线1x =的倾斜角为α,则α等于( ).A .0B .45°C .90°D .不存在2.已知直线l 3 ).A. 60°B. 30°C. 60°或120°D. 30°或150° 3. 已知直线经过点A(0,4)和点B (1,2),则直线AB 的斜率为__________4.经过两点)3,2(),12,4(-+B y A 的直线的倾斜角为1350,则y 的值等于 ( ) 5.过点P (-2,m )和Q (m ,4)的直线的斜率等于1,则m 的值为( ). A.1 B.4 C.1或3 D.1或46.已知两点A (x ,-2),B (3,0),并且直线AB 的斜率为2,则x = .7.已知过两点22(2,3)A m m +-, 2(3,2)B m m m --的直线l 的倾斜角为45°,求实数m 的值.8.若三点P (2,3),Q (3,a ),R (4,b )共线,那么下列成立的是( ) A .4,5a b == B .1b a -= C .23a b -= D .23a b -=9.若A (1,2),B (-2,3),C (4,y )在同一条直线上,则y 的值是 . 10.已知三点A (a ,2)、B (3,7)、C (-2,-9a )在一条直线上,求实数a 的值.11.光线从点(2,1)A 出发射入y 轴上点Q , 再经y 轴反射后过点(4,3)B , 试求点Q 的坐标,以及入射光线、 反射光线所在直线的斜率.倾斜角 斜率※能力提高12.已知(2,3),(3,2)A B ---两点,直线l 过定点(1,1)P 且与线段AB 相交,求直线l 的斜率k 的取值范围.13.已知两点M (2,-3)、N (-3,-2),直线l 过点P (1,1)且与线段MN 相交,则直线l 的斜率k 的取值范围是( A )A.k ≥43或k ≤-4 B.-4≤k ≤43 C. 43≤k ≤4 D.-43≤k ≤4 14.已知两点A (-2,- 3) , B (3, 0) ,过点P (-1, 2)的直线l 与线段AB 始终有公共点,求直线l 的斜率k的取值范围.15.右图中的直线l 1、l 2、l 3的斜率分别为k 1、k 2、k 3,则( ). A .k 1<k 2<k 3 B. k 3<k 1<k 2 C. k 3<k 2<k 1 D. k 1<k 3<k 2§3.1.2 两条直线平行与垂直的判定基础知识:1.两条不重合的直线平行或垂直,则(1)l 1∥l 2 ⇔k 1=k 2(2)l 1⊥l 2⇔k 1·k 2=-1. 若l 1和l 2都没有斜率,则l 1与l 2平行或重合.若l 1和l 2中有一条没有斜率而另一条斜率为0,则l 1⊥l 2. 【例1】四边形ABCD 的顶点为(2,222)A +、(2,2)B -、(0,222)C -、(4,2)D ,试判断四边形ABCD 的形状.【例2】已知ABC ∆的顶点(2,1),(6,3)B C -,其垂心为(3,2)H -,求顶点A 的坐标.【例3】(1)已知直线1l 经过点M (-3,0)、N (-15,-6),2l 经过点R (-2,32)、S (0,52),试判断1l 与2l 是否平行?(2)1l 的倾斜角为45°,2l 经过点P (-2,-1)、Q (3,-6),问1l 与2l 是否垂直?【例4】已知A (1,1),B (2,2),C (3,-3),求点D ,使直线CD ⊥AB ,且CB ∥AD .点评:通过设点D 的坐标,把已知条件中的垂直与平行的两种关系、三点的坐标联系在一起,联系的纽带是斜率公式. 解题的数学思想是方程求解,方程的得到是利用平行与垂直时斜率的关系.※基础达标1.下列说法中正确的是( ).A. 平行的两条直线的斜率一定存在且相等B. 平行的两条直线的倾斜角一定相等C. 垂直的两直线的斜率之积为-1D. 只有斜率相等的两条直线才一定平行 2.若直线12l l 、的倾斜角分别为12,αα、且12l l ⊥,则有( ).A. 1290αα-=oB. 2190αα-=oC. 2190αα-=o D. 12180αα+=o3.经过点(2,)P m -和(,4)Q m 的直线平行于斜率等于1的直线,则m 的值是( ). A .4 B .1 C .1或3 D .1或4 4.若(4,2),(6,4),(12,6),(2,12)A B C D --, 则下面四个结论:①//AB CD ;②AB CD ⊥;③//AC BD ;④AC BD ⊥. 其中正确的序号依次为( ).A. ①③B. ①④C. ②③D. ②④5.已知ABC ∆的三个顶点坐标为(5,1),(1,1),(2,3)A B C -,则其形状为( ). A. 直角三角形 B. 锐角三角形 C. 钝角三角形 D. 无法判断6.直线12,l l 的斜率是方程2310x x --=的两根,则12l l 与的位置关系是 .7.若过点(2,2),(5,0)A B -的直线与过点(2,1),(1,)P m Q m --的直线平行,则m = . ※能力提高8.已知矩形ABCD 的三个顶点的分别为(0,1),(1,0),(3,2)A B C ,求第四个顶点D 的坐标. 9. ABC ∆的顶点(5,1),(1,1),(2,)A B C m -,若ABC ∆为直角三角形,求m 的值.※探究创新10.已知过原点O 的一条直线与函数y =log 8x 的图象交于A 、B 两点,分别过点A 、B 作y 轴的平行线与函数y =log 2x 的图象交于C 、D 两点.(1) 证明:点C 、D 和原点O 在同一直线上. (2)当BC 平行于x 轴时,求点A 的坐标.必修二3.2知识表名称几何条件方程 局限性点斜式 过点(x 0,y 0),斜率为k y -y 0=k(x -x 0) 不含垂直于x 轴的直线 斜截式 斜率为k ,纵截距为by=kx +b不含垂直于x 轴的直线找要素,写方程(两点、一点一斜、两截)设方程,求系数(讨论)线段12P P 中点坐标公式1212(,)22x x y y ++ §3.2.1 直线的点斜式方程※基础达标1..写出下列点斜式直线方程:(1)经过点(2,5)A ,斜率是4; 54(3)y x -=-(2)经过点(3,1)B -,倾斜角是30o .31(3)y x +=-. 2. 倾斜角是135o ,在y 轴上的截距是3的直线方程是 . 3.直线y ax b =+(a b +=0)的图象可以是( ).4.已知直线l 过点(3,4)P ,它的倾斜角是直线1y x =+的两倍,则直线l 的方程为( ).A. 42(3)y x -=-B. 43y x -=-C. 40y -=D. 30x -=5.过点()2,1M 的直线与x 、y 轴分别交于P 、Q ,若M 为线段PQ 的中点,则这条直线的方程为_____________ 6. 将直线31y x =+绕它上面一点(1315°,得到的直线方程是 .求直线方程的方法 “先判断,后计算”,“特殊提前,通法接连”。

7.方程(2)y k x =-表示( ).A. 通过点(2,0)-的所有直线B. 通过点(2,0)的所有直线C. 通过点(2,0)且不垂直于x 轴的直线D. 通过点(2,0)且除去x 轴的直线 8.直线3)2(+-=x k y 必过定点,该定点的坐标为( B )A .(3,2)B .(2,3)C .(2,–3)D .(–2,3)※能力提高9.已知△ABC 在第一象限,若(1,1),(5,1),60,45A B A B ∠=∠=o o ,求:(1)边AB 所在直线的方程; (2)边AC 和BC 所在直线的方程.10.已知直线31y kx k =++.(1)求直线恒经过的定点;(2)当33x -≤≤时,直线上的点都在x 轴上方,求实数k 的取值范围.11.光线从点A (-3,4)发出,经过x 轴反射,再经过y 轴反射,光线经过点 B (-2,6),求射入y 轴后的反射线的方程.12. 已知直线l 在y 轴上的截距为-3,且它与两坐标轴围成的三角形的面积为6,求直线l 的方程. 13.已知直线l 经过点(5,4)P --,且l 与两坐标轴围成的三角形的面积为5,求直线l 的方程.※探究创新14.国庆庆典活动的中心广场有数万名学生手持圆花组成大型图案方阵,方阵前排距观礼台120米,方阵纵列95人,每列长度192米,问第一、二排间距多大能达到满意的观礼效果?两点式 在x 轴、y 轴上的截距分别为a ,b (a,b ≠0)a ——直线的横截距b ——直线的纵截距不包括垂直于坐标轴的直线.截距式在x 轴、y 轴上的截距分别为a ,b (a,b ≠0)不包括垂直于坐标轴和过原点的直线.§3.2.2 直线的两点式方程※基础达标 1.过两点(1,2)和(3,4)的直线的方程为( ).A. 1y x =- B. 1y x =+ C. 2y x =-+ D. 2y x =--2.已知△ABC 顶点为(2,8),(4,0),(6,0)A B C -,求过点B 且将△ABC 面积平分的直线方程.3.过两点(1,1)-和(3,9)的直线在x 轴上的截距为( ). A. 32- B. 23- C. 25D. 24.已知1122234,234x y x y -=-=,则过点1122(,),(,)A x y B x y 的直线l 的方程是( ).A. 234x y -=B. 230x y -=C. 324x y -=D. 320x y -= 5.求过点(3,2)P ,并且在两轴上的截距相等的直线方程.6.经过点(-3,4)且在两个坐标轴上的截距和为12的直线方程是:____________________7..已知直线l 过点(3,-1),且与两轴围成一个等腰直角三角形,则l 的方程为 . 8.菱形的两条对角线长分别等于8和6,并且分别位于x 轴和y 轴上,求菱形各边所在的直线的方程.※能力提高9.三角形ABC 的三个顶点A (-3,0)、B (2,1)、C (-2,3),求:(1)BC 边所在直线的方程; (2)BC 边上中线AD 所在直线的方程;10.长途汽车客运公司规定旅客可随身携带一定重量的行李,如果超过规定,则需要购买行李票,行李费用y (元)是行李重量x (千克)的一次函数,直线过两点(1)求y 与x 之间的函数关系式,并说明自变量x 的取值范围; (2)如果某旅客携带了75千克的行李,则应当购买多少元行李票?11.直线l 在X 轴、Y 轴上的截距之比是2:3,且过点(4,9)A ,求直线l 的方程. 12.已知直线l 的斜率为6,且被两坐标轴所截得的线段长为37,求直线l 的方程. 13.已知直线l 过点(2,2)-,且与两坐标轴构成单位面积的三角形,求直线l 的方程. 14.与两坐标轴围成的三角形周长为9,且斜率为34-的直线l 的方程为 15.已知△ABC 的顶点A (-4,2),两条中线所在的直线方程分别为3220,35120,x y x y -+=+-=求BC 边所在的直线方程。

相关文档
最新文档