(完整版)高中数学必修2直线与方程练习题及答案详解
高中数学第三章直线与方程3.2.2直线的两点式方程练习(含解析)新人教A版必修2

第23课时 直线的两点式方程直线的两点式方程A .2 B .-3 C .-27 D .27 答案 D解析 由两点式得直线方程为y -65-6=x +32+3,即x +5y -27=0.令y =0,得x =27.2.已知点P(3,m)在过点M(2,-1)和N(-3,4)的直线上,则m 的值是( ) A .5 B .2 C .-2 D .-6 答案 C解析 由两点式方程,得 直线MN 的方程为y --4--=x -2-3-2,化简,得x +y -1=0. 又点P(3,m)在此直线上,代入得3+m -1=0,解得m =-2.直线的截距式方程A .x 2-y 3=1 B .x 2+y3=1 C .y 3-x 2=1 D .x 2+y3=0 答案 A解析 根据截距式方程x a +yb=1,(其中a ,b 分别为x 轴和y 轴上的截距)得所求直线方程为x 2+y -3=1,即x 2-y3=1,选A .4.过点(5,2),且在y 轴上的截距是在x 轴上截距的2倍的直线方程是( ) A .x 6+y 12=1 B .x 6+y 12=1或y =25x C .x -y 2=1 D .x -y 2=1或y =25x答案 B解析 当直线过原点时满足题意,所求方程为y =25x ;当直线不过原点时,可设其截距式为x a +y 2a =1,由该直线过点(5,2),解得a =6,对应的方程为x 6+y12=1.故选B .直线方程的应用形各边所在的直线方程.解 由题意可知A(-4,0),C(4,0),B(0,-3),D(0,3),由截距式方程可知直线AB 的方程为x -4+y-3=1,即3x +4y +12=0.同理可得直线BC 的方程为3x -4y -12=0, 直线CD 的方程为3x +4y -12=0, 直线AD 的方程为3x -4y +12=0.6.已知线段BC 的中点为D3,32.若线段BC 所在直线在两坐标轴上的截距之和是9,求BC 所在直线的方程.解 由已知得直线BC 的斜率存在且不为0.设直线BC 在x 轴上的截距为a ,在y 轴上的截距为b .则直线BC 的截距式方程为x a +yb =1.由题意得a +b =9, ① 又点D3,32在直线BC 上,∴3a +32b =1,∴6b+3a =2ab , ② 由①②联立得2a 2-21a +54=0,即(2a -9)(a -6)=0,解得a =92或a =6.∴⎩⎪⎨⎪⎧a =92,b =92或⎩⎪⎨⎪⎧a =6,b =3.故直线BC 的方程为2x 9+2y 9=1或x 6+y3=1,即2x +2y -9=0或x +2y -6=0.一、选择题1.有关直线方程的两点式,有如下说法:①直线方程的两点式适用于求与两坐标轴不垂直的直线方程; ②直线方程y -y 1y 2-y 1=x -x 1x 2-x 1也可写成y -y 2y 1-y 2=x -x 2x 1-x 2;③过点P 1(x 1,y 1),P 2(x 2,y 2)的直线可以表示成(x 2-x 1)(y -y 1)=(y 2-y 1)(x -x 1). 其中正确说法的个数为( ) A .0 B .1 C .2 D .3 答案 D解析 ①正确,从两点式方程的形式看,只要x 1≠x 2,y 1≠y 2,就可以用两点式来求解直线的方程.②正确,方程y -y 1y 2-y 1=x -x 1x 2-x 1与y -y 2y 1-y 2=x -x 2x 1-x 2的形式有异,但实质相同,均表示过点(x 1,y 1)和(x 2,y 2)的直线.③显然正确.2.若直线x a +yb =1过第一、二、三象限,则( )A .a>0,b>0B .a>0,b<0C .a<0,b>0D .a<0,b<0 答案 C解析 因为直线过第一、二、三象限,所以结合图形可知a <0,b >0.3.一条光线从A ⎝ ⎛⎭⎪⎫-12,0处射到点B(0,1)后被y 轴反射,则反射光线所在直线的方程为( )A .y =2x +1B .y =-2x +1C .y =12x -12D .y =-12x -12答案 B解析 由光的反射定律可得,点A ⎝ ⎛⎭⎪⎫-12,0关于y 轴的对称点M ⎝ ⎛⎭⎪⎫12,0在反射光线所在的直线上.再由点B(0,1)也在反射光线所在的直线上,用两点式可求得反射光线所在的直线的方程为y -01-0=x -120-12,即y =-2x +1.4.过点P(2,3),并且在两坐标轴上的截距互为相反数的直线l 的方程是( ) A .x -y +1=0B .x -y +1=0或3x -2y =0C .x +y -5=0D .x +y -5=0或3x -2y =0 答案 B解析 若直线l 过原点,则方程为y =32x ,即3x -2y =0;若直线l 不过原点,则设直线方程为x a -ya =1,将(2,3)代入方程,得a =-1,故直线l 的方程为x -y +1=0.所以直线l的方程为3x -2y =0或x -y +1=0.5.若直线过点(1,1)且与两坐标轴所围成的三角形的面积为2,则这样的直线有( ) A .1条 B .2条 C .3条 D .4条 答案 C解析 设直线的方程为x a +yb=1,∵直线经过点(1,1),且与两坐标轴所围成的三角形的面积为2,∴1a +1b =1,12|ab|=2,解得⎩⎪⎨⎪⎧a =2,b =2或⎩⎨⎧a =-22-2,b =22-2或⎩⎨⎧a =22-2,b =-22-2.∴满足条件的直线有3条.二、填空题6.直线l 与两直线y =1,x -y -7=0分别交于P ,Q 两点,线段PQ 的中点是(1,-1),则l 的斜率是________.答案 -23解析 设P(m ,1),由线段PQ 的中点是(1,-1),得Q(2-m ,-3),∴2-m -(-3)-7=0,∴m=-2,∴P(-2,1),∴直线l 的斜率k =1---2-1=-23.7.已知直线l 经过点A(-4,-2),且点A 是直线l 被两坐标轴截得的线段中点,则直线l 的方程为________.答案 x +2y +8=0解析 设直线l 与两坐标轴的交点为(a ,0),(0,b),由题意知a +02=-4,b +02=-2,∴a=-8,b =-4.∴直线l 的方程为x -8+y-4=1,即x +2y +8=0.8.已知A(1,-2),B(5,6),经过线段AB 的中点M ,且在两坐标轴上的截距相等的直线方程为________.答案 2x -3y =0或x +y -5=0解析 点A(1,-2),B(5,6)的中点M 的坐标为(3,2).当直线过原点时,方程为y =23x ,即2x -3y =0;当直线不过原点时,设直线的方程为x +y =m ,把中点M 的坐标(3,2)代入直线的方程,得m =5,故所求直线的方程是x +y -5=0.综上,所求的直线方程为2x -3y =0或x +y -5=0.三、解答题9.已知△ABC 中,A(1,-4),B(6,6),C(-2,0).求:(1)△ABC 中平行于BC 边的中位线所在直线的方程并化为截距式方程; (2)BC 边的中线所在直线的方程并化为截距式方程.解 (1)平行于BC 边的中位线就是AB 、AC 中点的连线.因为线段AB ,AC 中点坐标为⎝ ⎛⎭⎪⎫72,1,⎝ ⎛⎭⎪⎫-12,-2, 所以这条直线的方程为y +21+2=x +1272+12,整理得,6x -8y -13=0,化为截距式方程为x 136+y-138=1.(2)因为BC 边上的中点为(2,3),所以BC 边上的中线所在直线的方程为y +43+4=x -12-1,即7x -y -11=0,化为截距式方程为x 117+y-11=1.10.已知直线l :x m +y4-m=1.(1)若直线l 的斜率等于2,求实数m 的值;(2)若直线l 分别与x 轴、y 轴的正半轴交于A ,B 两点,O 是坐标原点,求△AOB 面积的最大值及此时直线l 的方程.解 (1)直线l 过点(m ,0),(0,4-m), 则k =4-m -m =2,则m =-4.(2)由m >0,4-m >0,得0<m <4, 则S =-2=--2+42,易知当m =2时,S 有最大值2, 此时直线l 的方程为x +y -2=0.。
高中数学必修2(人教A版)第三章直线与方程3.3知识点总结含同步练习及答案

例题: 直线 3x − 2y + m = 0 和 (m 2 + 1)x + 3y − 3m = 0 的位置关系是( A.平行 B.重合 C.相交 D.不确定 解:两直线的斜率分别为 交.
3 3 m2 + 1 m2 + 1 和 − ,因为方程 − 无解,所以两直线相 = 2 3 3 2
已知直线 l 1 :ax + 2y + 6 = 0,l 2 :x + (a − 1)y + a2 − 1 = 0,求适合下列条件的 a 的取值 范围. (1)l 1 与 l 2 相交; (2)l 1 与 l 2 平行; (3)l 1 与 l 2 重合; (4)l 1 与 l 2 垂直. 解:(1)因为 l 1 与 l 2 相交,所以 A 1 B 2 − A 2 B 1 ≠ 0 ,即 a(a − 1) − 2 ≠ 0 ,所以 a ≠ −1 且 a ≠ 2,所以 a ∈ R 且 a ≠ −1 且 a ≠ 2 时,l 1 与 l 2 相交. (2)因为 l 1 与 l 2 平行,所以 A 1 B 2 − A 2 B 1 = 0 且 B 1 C2 − B 2 C1 ≠ 0,即
− − − − − − − − − − − − − − −
− − − − − − − − − −
− − − − − − − − − −
− −− − − − − − − − − − −− − − − − − − − − −− − − − − − − − − − − − y = √[x − (−1)] 2 + [0 − (−1)] 2 + √(x − 3)2 + (0 − 2)2 ,
例题: 已知点 A(−1, 2) ,B(2, √7 ) ,在 x 轴上求一点 P ,使 |P A| = |P B|,并求 |P A| 的值. 解:设所求点为 P (x, 0) ,于是有
完整版)直线与方程测试题及答案解析

完整版)直线与方程测试题及答案解析1.若过点(1,2)和(4,5)的直线的倾斜角是多少?A。
30° B。
45° C。
60° D。
90°2.如果三个点A(3,1)。
B(-2,b)。
C(8,11)在同一直线上,那么实数b等于多少?A。
2 B。
3 C。
9 D。
-93.过点(1,2),且倾斜角为30°的直线方程是什么?A。
y + 2 = (3/√3)(x + 1) B。
y - 2 = 3/2(x - 1) C。
3x - 3y + 6 - 3 = 0 D。
3x - y + 2 - 3 = 04.直线3x - 2y + 5 = 0和直线x + 3y + 10 = 0的位置关系是?A。
相交 B。
平行 C。
重合 D。
异面5.直线mx - y + 2m + 1 = 0经过一定点,则该点的坐标是多少?A。
(-2,1) B。
(2,1) C。
(1,-2) D。
(1,2)6.已知ab < 0,bc < 0,则直线ax + by + c = 0通过哪些象限?A。
第一、二、三象限 B。
第一、二、四象限 C。
第一、三、四象限 D。
第二、三、四象限7.点P(2,5)到直线y = -3x的距离d等于多少?A。
√(23/2) B。
√(2/23) C。
√(23+5) D。
√(22)8.与直线y = -2x + 3平行,且与直线y = 3x + 4交于x轴上的同一点的直线方程是什么?A。
y = -2x + 4 B。
y = (1/2)x + 4 C。
y = -2x - 3 D。
y = (2/3)x - 39.如果直线y = ax - 2和直线y = (a+2)x + 1互相垂直,则a 等于多少?A。
2 B。
1 C。
-1 D。
-210.已知等腰直角三角形ABC的斜边所在的直线是3x - y + 2 = 0,直角顶点是C(3,-2),则两条直角边AC,BC的方程是什么?A。
3x - y + 5 = 0.x + 2y - 7 = 0 B。
高二数学直线方程试题答案及解析

高二数学直线方程试题答案及解析1.直线和直线的交点为,则过两点,的直线方程为_____________.【答案】【解析】两直线和的交点为, 所以是直线上的点,将点的坐标代入直线方程,得到整理一下,则可看成而分别可由代入因为,即为相异的两点.两点确定一条直线,所以可以认为为所求直线方程.【考点】直线的方程.2.已知直线l经过点P(-2,1)(1)若直线l的方向向量为(-2,-1),求直线l的方程;(2)若直线l在两坐标轴上的截距相等,求此时直线l的方程.【答案】(Ⅰ)(Ⅱ)或x+y+1=0【解析】(1)已知直线的方向向量利用方向向量设方程时可设为:,然后根据直线过点P(-2,1)来得直线方程.(2)可先设直线的斜率,然后表示直线方程;根据直线方程来表示直线在两坐标轴上的截距,根据截距相等列出方程即可.试题解析:(1)直线斜率为得(2)或x+y+1=0.【考点】函数及其性质的应用.3.已知直线经过点.(1)若直线的方向向量为,求直线的方程;(2)若直线在两坐标轴上的截距相等,求此时直线的方程.【答案】(1)(2)或【解析】(1)由直线的方向向量可得直线的斜率,根据点斜式可得直线方程。
(2)注意讨论截距是否为0,当截距均为0时,直线过原点,设直线方程为,将点代入即可求得,当截距不为0时可设直线为,同样将点代入即可求得。
(1)由的方向向量为,得斜率为,所以直线的方程为:(6分)(2)当直线在两坐标轴上的截距为0时,直线的方程为;(9分)当直线在两坐标轴上的截距不为0时,设为代入点得直线的方程为.【考点】1直线的方向向量;2直线方程的点斜式和截距式。
4.(本小题满分13分)已知抛物线的焦点为,是抛物线上横坐标为4、且位于轴上方的点,到抛物线的准线的距离为5,过作垂直于轴,垂足为,的中点为.(1)求抛物线的方程;(2)过作,垂足为,求点的坐标.【答案】(1);(2).【解析】(1)根据抛物线的标准方程,先写出抛物线的准线方程,进而由抛物线的定义得到,进而可确定,从而可写出抛物线的方程;(2)由(1)先确定,,随之确定,进而写出直线的方程,进而由得到,进而写出直线的方程,最后联立直线、的方程即可求得交点的坐标.试题解析:(1)抛物线的准线为,于量,所以∴抛物线方程为(2)由(1)可得点的坐标是,由题意得又∵,∴,由可得则的方程为,的方程为解方程组,所以.【考点】1.抛物线的标准方程及其几何性质;2.直线的方程;3.两直线的交点问题.5.已知圆C:x2+y2+2x-4y+3=0.(1)若圆C的切线在x轴和y轴上的截距相等,求此切线的方程;(2)从圆C外一点P(x1,y1)向该圆引一条切线,切点为M,O为坐标原点,且有|PM|=|PO|,求使得|PM|取得最小值的点P的坐标.【答案】(1)y=(2±)x或x+y+1=0或x+y-3=0;(2).【解析】(1)圆的方程化为标准方程,求出圆心与半径,再分类讨论,设出切线方程,利用直线是切线建立方程,即可得出结论;(2)先确定P的轨迹方程,再利用要使|PM|最小,只要|PO|最小即可.试题解析:(1)将圆C配方得:(x+1)2+(y-2)2=2.①当直线在两坐标轴上的截距为零时,设直线方程为y=kx,由直线与圆相切得:y=(2±)x.②当直线在两坐标轴上的截距不为零时,设直线方程为x+y-a=0,由直线与圆相切得:x+y+1=0或x+y-3=0.故切线方程为y=(2±)x或x+y+1=0或x+y-3=0.(2)由|PO|=|PM|,得:=(x1+1)2+(y1-2)2-2⇒2x1-4y1+3=0.即点P在直线l:2x-4y+3=0上,当|PM|取最小值时即|OP|取得最小值,直线OP⊥l.∴直线OP的方程为:2x+y=0.解方程组得P点坐标为.【考点】直线和圆的方程的应用.6.已知的顶点,的平分线所在直线方程为,边上的高所在直线方程为.(1)求顶点的坐标;(2)求的面积.【答案】(1)点C的坐标为;(2)..【解析】(1)因为直线,求出,进而求出直线AC的方程,直线AC与CD联立即可求出顶点的坐标;(2)由(1)可求出,再求出B点的坐标,由点到直线的距离公式可求出的高,进而可以求出的面积.试题解析:(1)直线,则,直线AC的方程为, 2分由所以点C的坐标.. 4分(2),所以直线BC的方程为, 5分,即.. 7分, 8分点B到直线AC:的距离为. 9分则.. 10分【考点】点到直线的距离、直线方程.7.直线与两坐标轴围成的三角形面积等于__________.【答案】【解析】令,则,令,则,所以【考点】求直线的横纵截距8.光线从点射出,到轴上的点后,被轴反射,这时反射光线恰好过点,求所在直线的方程及点的坐标.【答案】直线方程为:;.【解析】试题分析:先求出点关于轴的对称点,然后根据直线两点式方程求出的直线方程为.试题解析:点关于轴的对称点.因为点在直线上,,所以的直线方程为:.化简后得到的直线方程为:.【考点】直线方程.9.过点(-1,3)且垂直于直线x-2y+3=0的直线方程是()A.x-2y+7=0B.2x+y-1=0C.x-2y-5=0D.2x+y-5=0【答案】B【解析】由两直线垂直的性质可知,所求的直线的斜率k=-2,所求直线的方程为y-3=-2(x+1)即2x+y-1=0,故选B【考点】本题考查了直线的方程及位置关系点评:如果两条直线的斜率分别是和,则这两条直线垂直的充要条件是10.(本小题满分12分)矩形ABCD的对角线AC、BD相交于点M (2,0),AB边所在直线的方程为:,若点在直线AD上.(1)求点A的坐标及矩形ABCD外接圆的方程;(2)过点的直线与ABCD外接圆相交于A、B两点,若,求直线m的方程.【答案】(1) ;(2)或。
高一数学必修2《第三章_直线与方程》基础测验(含答案)

小太阳英教中心高一数学《第三章 直线与方程》基础测验一、选择题(共10小题,每小题4.5分,共45分)1、若A (-2,3),B (3,-2),C (m ,21)三点共线,则m 的值为( ) A 、2 B 、-2 C 、21 D 、21-2、直线01025=--y x 与坐标轴围成的三角形的面积为( )A 、-5B 、5C 、-10D 、103、若直线04)2(=-+-y x m 的倾斜角是钝角,则m 的取值范围是( )A 、2- mB 、2 mC 、2- mD 、2 m4、如果直线04)2()52(=+-++y a x a 与直线01)3()2(=-++-y a x a 相互垂直,则a 的值等于( )A 、2B 、-2C 、2或-2D 、0或2或-25、过A (4,1)且在两坐标轴上的截距相等的直线方程是 ( )A 、05=-+y xB 、05=--y xC 、0405=-=-+y x y x 或D 、0405=+=--y x y x 或6、若A (-1,2),B (0,-1),直线A B ∥l 且l 过点 C (-2,3),则直线l 的方程为( )A 、033=-+y xB 、033=-+y xC 、033=++y xD 、033=+-y x7、点(-4,3)与直线024301032=-+=+-y x y x 和的交点的距离是( )A 、5B 、5C 、52D 、108、已知第一象限的点(a ,2)到直线03=+-y x 的距离为1,则a 为( )A 、2B 、22-C 、12+D 、12-9、若直线l :0433=-+-=y x kx y 和直线的交点位于第二象限,则直线l 的倾斜角的取值范围是( )A 、【ππ,2)B 、(ππ,2)C 、(32,2ππ)D 、(ππ,3) 10、两点A (m+2,n+2)和B (n-m ,-n )关于直线1134=+y x 对称,则m,n 的值为( )A 、m=-1,n=2B 、m=4,n=-2C 、m=2,n=4D 、m=4,n=2二、填空题(共6空,每空4分,共24分)11、若直线l与过(3-,9)与(326,-15)两点的直线平行,则l的倾斜角是0。
【精品】高中数学 必修2_直线的一般式方程及综合 讲义 知识点讲解+巩固练习(含答案) _基础

直线的一般式方程及综合【学习目标】1.掌握直线的一般式方程;2.能将直线的点斜式、两点式等方程化为直线的一般式方程,并理解这些直线的不同形式的方程在表示直线时的异同之处;3.能利用直线的一般式方程解决有关问题.【要点梳理】要点一:直线方程的一般式关于x和y的一次方程都表示一条直线.我们把方程写为Ax+By+C=0,这个方程(其中A、B不全为零)叫做直线方程的一般式.要点诠释:1.A、B不全为零才能表示一条直线,若A、B全为零则不能表示一条直线.当B≠0时,方程可变形为A Cy xB B=--,它表示过点0,CB⎛⎫-⎪⎝⎭,斜率为AB-的直线.当B=0,A≠0时,方程可变形为Ax+C=0,即CxA=-,它表示一条与x轴垂直的直线.由上可知,关于x、y的二元一次方程,它都表示一条直线.2.在平面直角坐标系中,一个关于x、y的二元一次方程对应着唯一的一条直线,反过来,一条直线可以对应着无数个关于x、y的一次方程(如斜率为2,在y轴上的截距为1的直线,其方程可以是2x―y+1=0,也可以是1122x y-+=,还可以是4x―2y+2=0等.)要点二:直线方程的不同形式间的关系直线方程的五种形式的比较如下表:要点诠释:在直线方程的各种形式中,点斜式与斜截式是两种常用的直线方程形式,要注意在这两种形式中都要求直线存在斜率,两点式是点斜式的特例,其限制条件更多(x 1≠x 2,y 1≠y 2),应用时若采用(y 2―y 1)(x ―x 1)―(x 2―x 1)(y ―y 1)=0的形式,即可消除局限性.截距式是两点式的特例,在使用截距式时,首先要判断是否满足“直线在两坐标轴上的截距存在且不为零”这一条件.直线方程的一般式包含了平面上的所有直线形式.一般式常化为斜截式与截距式.若一般式化为点斜式,两点式,由于取点不同,得到的方程也不同.要点三:直线方程的综合应用1.已知所求曲线是直线时,用待定系数法求.2.根据题目所给条件,选择适当的直线方程的形式,求出直线方程.对于两直线的平行与垂直,直线方程的形式不同,考虑的方向也不同.(1)从斜截式考虑已知直线111:b x k y l +=,222:b x k y l +=,12121212//()l l k k b b αα⇒=⇒=≠;12121211221tan cot 12l l k k k k παααα⊥⇒-=⇒=-⇒=-⇒=- 于是与直线y kx b =+平行的直线可以设为1y kx b =+;垂直的直线可以设为21y x b k=-+. (2)从一般式考虑:11112222:0,:0l A x B y C l A x B y C ++=++=1212120l l A A B B ⊥⇔+=121221//0l l A B A B ⇔-=且12210A C A C -≠或12210B C B C -≠,记忆式(111222A B C A B C =≠) 1l 与2l 重合,12210A B A B -=,12210A C A C -=,12210B C B C -=于是与直线0Ax By C ++=平行的直线可以设为0Ax By D ++=;垂直的直线可以设为0Bx Ay D -+=.【典型例题】类型一:直线的一般式方程例1.根据下列条件分别写出直线方程,并化成一般式:(1A (5,3);(2)过点B (―3,0),且垂直于x 轴;(3)斜率为4,在y 轴上的截距为―2;(4)在y 轴上的截距为3,且平行于x 轴;(5)经过C (―1,5),D (2,―1)两点;(6)在x ,y 轴上的截距分别是―3,―1.【答案】(130y -+-=(2)x+3=0(3)4x ―y ―2=0(4)4x ―y ―2=0(5)2x+y ―3=0(6)x+3y+3=0【解析】 (1)由点斜式方程得35)y x -=-30y -+-=.(2)x=―3,即x+3=0.(3)y=4x ―2,即4x ―y ―2=0.(4)y=3,即y ―3=0.(5)由两点式方程得5(1)152(1)y x ---=----,整理得2x+y ―3=0. (6)由截距式方程得131x y +=--,整理得x+3y+3=0. 【总结升华】本题主要是让学生体会直线方程的各种形式,以及各种形式向一般式的转化,对于直线方程的一般式,一般作如下约定:x 的系数为正,x ,y 的系数及常数项一般不出现分数,一般按含x 项、y 项、常数项顺序排列.求直线方程的题目,无特别要求时,结果写成直线方程的一般式.举一反三:【变式1】已知直线l 经过点A (―5,6)和点B (―4,8),求直线的一般式方程和截距式方程,并画图.【答案】2x -y+16=0 1816x y +=- 【解析】 所求直线的一般式方程为2x -y+16=0,截距式方程为1816x y +=-.图形如右图所示. 【高清课堂:直线的一般式 381507 例4】例2.ABC ∆的一个顶点为(1,4)A --,B ∠、C ∠ 的平分线在直线10y +=和10x y ++=上,求直线BC 的方程.【答案】230x y +-=【解析】由角平分线的性质知,角平分线上的任意一点到角两边的距离相等,所以可得A 点关于B ∠的平分线的对称点'A 在BC 上,B 点关于C ∠的平分线的对称点'B 也在BC 上.写出直线''A B 的方程,即为直线BC 的方程.例3.已知直线1:310l ax y ++=,2:(2)0l x a y a +-+=,求满足下列条件的a 的值.(1)12//l l ;(2)12l l ⊥.【思路点拨】利用直线平行和垂直的条件去求解。
人教A高中数学必修二课时分层训练:第三章 直线与方程 33 331 332 含解析

第三章 3.3 直线的交点坐标与距离公式3.3.1 两条直线的交点坐标3.3.2 两点间的距离课时分层训练‖层级一‖……………………|学业水平达标|1.直线x +2y -2=0与直线2x +y -3=0的交点坐标是( ) A .(4,1) B .(1,4) C.⎝ ⎛⎭⎪⎫43,13 D.⎝ ⎛⎭⎪⎫13,43 解析:选C 由方程组⎩⎪⎨⎪⎧x +2y -2=0,2x +y -3=0,得⎩⎪⎨⎪⎧x =43,y =13.即直线x +2y -2=0与直线2x +y -3=0的交点坐标是⎝ ⎛⎭⎪⎫43,13.2.过点A (4,a )和点B (5,b )的直线与y =x +m 平行,则|AB |的值为( ) A .6 B. 2 C .2D .不能确定解析:选B 由k AB =1,得b -a1=1, ∴b -a =1. ∴|AB |=(5-4)2+(b -a )2=1+1= 2.3.方程(a -1)x -y +2a +1=0(a ∈R )所表示的直线( ) A .恒过定点(-2,3) B .恒过定点(2,3) C .恒过点(-2,3)和点(2,3)D .都是平行直线解析:选A (a -1)x -y +2a +1=0可化为-x -y +1+a (x +2)=0, 由⎩⎪⎨⎪⎧ -x -y +1=0,x +2=0,得⎩⎪⎨⎪⎧x =-2,y =3.4.点P (a ,b )关于直线l :x +y +1=0的对称的点仍在l 上,则a +b 等于( ) A .1 B .-1 C .2D .0解析:选B ∵点P (a ,b )关于l :x +y +1=0对称的点仍在l 上,∴点P (a ,b )在直线l 上,∴a +b +1=0,即a +b =-1.5.到A (1,3),B (-5,1)两点的距离相等的动点P 的轨迹方程是( ) A .3x -y -8=0 B .3x +y +4=0 C .3x -y +6=0D .3x +y +2=0解析:选B 解法一:设P (x ,y ), 则(x -1)2+(y -3)2=(x +5)2+(y -1)2,即3x +y +4=0.解法二:到A 、B 两点距离相等的点P 的轨迹就是线段AB 的垂直平分线,AB 中点为M (-2,2),k AB =13,∴k l =-3,l :y -2=-3(x +2),即3x +y +4=0.6.点P (2,5)关于直线x +y =1的对称点的坐标是 . 解析:设对称点坐标是(a ,b ),则⎩⎪⎨⎪⎧b -5a -2·(-1)=-1,a +22+b +52=1.解得a =-4,b=-1,即所求对称点坐标是(-4,-1).答案:(-4,-1)7.经过两直线2x -3y -3=0和x +y +2=0的交点且与直线3x +y -1=0垂直的直线l 的方程为 .解析:由方程组⎩⎪⎨⎪⎧2x -3y -3=0,x +y +2=0,得⎩⎪⎨⎪⎧x =-35,y =-75.又所求直线与直线3x +y -1=0垂直,故k =13, ∴直线方程为y +75=13⎝ ⎛⎭⎪⎫x +35,即5x -15y -18=0. 答案:5x -15y -18=08.在直线x -y +4=0上求一点P ,使它到点M (-2,-4),N (4,6)的距离相等,则点P 的坐标为 .解析:设P 点的坐标是(a ,a +4), 由题意可知|PM |=|PN |, 即(a +2)2+(a +4+4)2=(a -4)2+(a +4-6)2,解得a =-32,故P 点的坐标是⎝ ⎛⎭⎪⎫-32,52.答案:⎝ ⎛⎭⎪⎫-32,529.光线从A (-4,-2)点射出,到直线y =x 上的B 点后被直线y =x 反射到y 轴上C 点,又被y 轴反射,这时反射光线恰好过点D (-1,6),求BC 所在的直线方程.解:作出草图,如图所示,设A 关于直线y =x 的对称点为A ′,D 关于y 轴的对称点为D ′,则易得A ′(-2,-4),D ′(1,6).由入射角等于反射角可得A ′D ′所在直线经过点B 与C .故BC 所在的直线方程为y -66+4=x -11+2,即10x -3y +8=0.10.已知两条直线l 1:mx +8y +n =0和l 2:2x +my -1=0,试分别确定m ,n 的值,满足下列条件:(1)l 1与l 2相交于一点P (m,1); (2)l 1∥l 2且l 1过点(3,-1); (3)l 1⊥l 2且l 1在y 轴上的截距为-1.解:(1)把P (m,1)的坐标分别代入l 1,l 2的方程得m 2+8+n =0,2m +m -1=0,解得m =13,n =-739.(2)显然m ≠0.∵l 1∥l 2且l 1过点(3,-1), ∴⎩⎪⎨⎪⎧-m 8=-2m ,3m -8+n =0,解得⎩⎨⎧ m =4,n =-4或⎩⎨⎧m =-4,n =20.(3)由l 1⊥l 2且l 1在y 轴上的截距为-1.当m =0时,l 1的方程为8y +n =0,l 2的方程为2x -1=0.∴-8+n =0,解得n =8.∴m =0,n =8.而m ≠0时,直线l 1与l 2不垂直. 综上可知,m =0,n =8.‖层级二‖………………|应试能力达标|1.直线l :x +2y -1=0关于点(1,-1)对称的直线l ′的方程为( ) A .2x -y -5=0 B .x +2y -3=0 C .x +2y +3=0D .2x -y -1=0解析:选C 由题意得l ′∥l ,故设l ′:x +2y +c =0,在l 上取点A (1,0),则点A (1,0)关于点(1,-1)的对称点是A ′(1,-2),所以1+2×(-2)+c =0,即c =3,故直线l ′的方程为x +2y +3=0,故选C.2.已知平面上两点A (x ,2-x ),B ⎝ ⎛⎭⎪⎫22,0,则|AB |的最小值为( )A .3 B.13 C .2D.12解析:选D ∵|AB |=⎝⎛⎭⎪⎫x -222+(2-x )2=2⎝⎛⎭⎪⎫x -3242+14≥12,当且仅当x =324时等号成立,∴|AB |min =12.3.无论k 为何值,直线(k +2)x +(1-k )y -4k -5=0都过一个定点,则该定点为( )A .(1,3)B .(-1,3)C .(3,1)D .(3,-1)解析:选D 直线方程可化为(2x +y -5)+k (x -y -4)=0,此直线过直线2x +y -5=0和直线x -y -4=0的交点.由⎩⎪⎨⎪⎧ 2x +y -5=0,x -y -4=0,解得⎩⎪⎨⎪⎧x =3,y =-1.因此所求定点为(3,-1).故选D.4.已知点A (3,-1),B (5,-2),点P 在直线x +y =0上,若使|P A |+|PB |取最小值,则P 点坐标是( )A .(1,-1)B .(-1,1) C.⎝ ⎛⎭⎪⎫135,-135 D .(-2,2)解析:选C 点A (3,-1)关于直线x +y =0的对称点为A ′(1,-3),直线A ′B 的方程为y =14x -134,与x +y =0联立方程组解得⎩⎪⎨⎪⎧x =135,y =-135,所以点P ⎝ ⎛⎭⎪⎫135,-135. 5.若两直线(m +2)x -y -m =0,x +y =0与x 轴围成三角形,则实数m 的取值范围是 .解析:当直线(m +2)x -y -m =0,x +y =0及x 轴两两不平行,且不共点时,必围成三角形.当m =-2时,(m +2)x -y -m =0与x 轴平行;当m =-3时,(m +2)x -y -m =0与x +y =0平行;当m =0时,三条直线都过原点,所以m 的取值范围为{m |m ≠-3,且m ≠-2,且m ≠0}.答案:{m |m ≠-3,且m ≠-2,且m ≠0}6.已知A (2,1),B (1,2),若直线y =ax 与线段AB 相交,则实数a 的取值范围是 .解析:如图,直线y =ax 的斜率为a 且经过原点O ,∵直线y =ax 与线段AB 相交,∴实数a 的最小值为OA 的斜率,最大值为OB 的斜率,OA 的斜率为12,OB 的斜率为2,故实数a 的取值范围是⎣⎢⎡⎦⎥⎤12,2.答案:⎣⎢⎡⎦⎥⎤12,27.若直线l :y =kx -3与直线2x +3y -6=0的交点位于第一象限,则实数k 的取值范围是 .解析:解法一:由题意知直线l 过定点P (0,-3), 直线2x +3y -6=0与x ,y 轴的交点分别为A (3,0),B (0,2),如图所示,要使两直线的交点在第一象限, 则直线l 在直线AP 与BP 之间, 而k AP =-3-00-3=33,∴k >33. 解法二:解方程组⎩⎪⎨⎪⎧y =kx -3,2x +3y -6=0,得⎩⎪⎨⎪⎧x =33+63k +2,y =6k -233k +2.由题意知x =33+63k +2>0且y =6k -233k +2>0.由33+63k +2>0可得3k +2>0,∴6k -23>0,解得k >33. 答案:⎝ ⎛⎭⎪⎫33,+∞8.已知△ABC 的一个顶点A (2,-4),且∠B ,∠C 的角平分线所在直线的方程依次是x +y -2=0,x -3y -6=0,求△ABC 的三边所在直线的方程.解:如图,BE ,CF 分别为∠ABC ,∠ACB 的角平分线,由角平分线的性质,知点A 关于直线BE ,CF 的对称点A ′,A ″均在直线BC 上.∵直线BE 的方程为x +y -2=0, ∴A ′(6,0).∵直线CF 的方程为x -3y -6=0,∴A ″⎝ ⎛⎭⎪⎫25,45.∴直线A ′A ″的方程是y =0-456-25(x -6),即x +7y -6=0,这也是BC 所在直线的方程. 由⎩⎨⎧ x +7y -6=0,x +y -2=0,得B ⎝ ⎛⎭⎪⎫43,23,由⎩⎨⎧x +7y -6=0,x -3y -6=0,得C (6,0), ∴AB 所在直线的方程是7x +y -10=0,AC 所在直线方程是x -y -6=0.。
2021_2022年高中数学第三章直线与方程2

特别提醒 应用斜截式方程时,应注意斜率是否存在,当斜率
不存在时,不能表示成斜截式方程.
跟踪练习
写出满足下列条件的直线的方程. (1)斜率为 5,在 y 轴上截距为-1,________; (2)倾斜角 30°,在 y 轴上截距为 3,________. [答案] (1)5x-y-1=0 (2)x- 3y+3=0 [解析] (1)方程为 y=5x-1,即 5x-y-1=0. (2)方程为 y=xtan30°+ 3,即 x- 3y+3=0.
B.-1
C.3
D.-3
[答案] B
2.直线y=-2x+3的斜率是________,在y轴上的截距是
________,在x轴上的截距是________.
[答案]
-2
3
3 2
[解析] 斜率是-2;在 y 轴上的截距是 3;令 y=0 得 x=32, 即在 x 轴上的截距是32.
3.写出下列直线的点斜式方程并化成斜截式:
特别提醒 若已知含参数的两条直线平行或垂直,求参数的值
时,要注意讨论斜率是否存在,若是平行关系注意考虑b1≠b2
这个条件.
跟踪练习
(1)已知直线y=ax-2和y=(a+2)x+1互相垂直,则a=______. (2)经过点(1,1),且与直线y=2x+7平行的直线的方程为_____. [答案] (1)-1 (2)2x-y-1=0 [解析] (1)由两直线垂直可得a(a+2)=-1,即a2+2a+1=0 ,所以a=-1; (2)由y=2x+7得k1=2,由两直线平行知k2=2.∴所求直线方程 为y-1=2(x-1),即2x-y-1=0.
规律总结
①使用点斜式方程,必须注意前提条件是斜率存在. ②注意方程x=1的含义:它表示一条垂直于x轴的直线,这条
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直线与方程复习A一、选择题1.设直线0ax by c ++=的倾斜角为α,且sin cos 0αα+=,则,a b 满足( ) A .1=+b aB .1=-b aC .0=+b aD .0=-b a2.过点(1,3)P -且垂直于直线032=+-y x 的直线方程为( ) A .012=-+y x B .052=-+y x C .052=-+y x D .072=+-y x3.已知过点(2,)A m -和(,4)B m 的直线与直线012=-+y x 平行, 则m 的值为( )A .0B .8-C .2D .104.已知0,0ab bc <<,则直线ax by c +=通过( ) A .第一、二、三象限 B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限5.直线1x =的倾斜角和斜率分别是( )A .045,1 B .0135,1- C .090,不存在 D .0180,不存在 6.若方程014)()32(22=+--+-+m y m m x m m 表示一条直线,则实数m 满足( ) A .0≠m B .23-≠m C .1≠m D .1≠m ,23-≠m ,0≠m 二、填空题1.点(1,1)P - 到直线10x y -+=的距离是________________.2.已知直线,32:1+=x y l 若2l 与1l 关于y 轴对称,则2l 的方程为__________; 若3l 与1l 关于x 轴对称,则3l 的方程为_________; 若4l 与1l 关于x y =对称,则4l 的方程为___________; 3.若原点在直线l 上的射影为)1,2(-,则l 的方程为____________________。
4.点(,)P x y 在直线40x y +-=上,则22x y +的最小值是________________. 5.直线l 过原点且平分ABCD Y 的面积,若平行四边形的两个顶点为(1,4),(5,0)B D ,则直线l 的方程为________________。
三、解答题1.已知直线Ax By C ++=0,(1)系数为什么值时,方程表示通过原点的直线; (2)系数满足什么关系时与坐标轴都相交; (3)系数满足什么条件时只与x 轴相交; (4)系数满足什么条件时是x 轴;2.求经过直线0323:,0532:21=--=-+y x l y x l 的交点且平行于直线032=-+y x 的直线方程。
3.经过点(1,2)A 并且在两个坐标轴上的截距的绝对值相等的直线有几条?请求出这些直线的方程。
4.过点(5,4)A --作一直线l ,使它与两坐标轴相交且与两轴所围成的三角形面积为5.第三章 直线与方程B一、选择题1.已知点(1,2),(3,1)A B ,则线段AB 的垂直平分线的方程是( ) A .524=+y x B .524=-y x C .52=+y x D .52=-y x2.若1(2,3),(3,2),(,)2A B C m --三点共线 则m 的值为( )A.21 B.21- C.2- D.2 3.直线x a yb221-=在y 轴上的截距是( )A .bB .2b -C .b 2D .±b4.直线13kx y k -+=,当k 变动时,所有直线都通过定点( ) A .(0,0) B .(0,1)C .(3,1)D .(2,1)5.直线cos sin 0x y a θθ++=与sin cos 0x y b θθ-+=的位置关系是( ) A .平行 B .垂直 C .斜交 D .与,,a b θ的值有关 6.两直线330x y +-=与610x my ++=平行,则它们之间的距离为( )A .4BCD 7.已知点(2,3),(3,2)A B --,若直线l 过点(1,1)P 与线段AB 相交,则直线l 的 斜率k 的取值范围是( ) A .34k ≥B .324k ≤≤C .324k k ≥≤或 D .2k ≤ 二、填空题1.方程1=+y x 所表示的图形的面积为_________。
2.与直线5247=+y x 平行,并且距离等于3的直线方程是____________。
3.已知点(,)M a b 在直线1543=+y x 上,则22b a +的最小值为 4.将一张坐标纸折叠一次,使点(0,2)与点(4,0)重合,且点(7,3)与点(,)m n 重合,则n m +的值是___________________。
5.设),0(为常数k k k b a ≠=+,则直线1=+by ax 恒过定点 . 三、解答题1.求经过点(2,2)A -并且和两个坐标轴围成的三角形的面积是1的直线方程。
2.一直线被两直线0653:,064:21=--=++y x l y x l 截得线段的中点是P 点,当P 点分别为(0,0),(0,1)时,求此直线方程。
4.直线1y x =+和x 轴,y 轴分别交于点,A B ,在线段AB 为边在第一象限内作等边△ABC ,如果在第一象限内有一点1(,)2P m 使得△ABP 和△ABC 的面积相等,求m 的值。
(数学2必修)第三章 直线与方程 [提高训练C 组] 一、选择题1.如果直线l 沿x 轴负方向平移3个单位再沿y 轴正方向平移1个单位后, 又回到原来的位置,那么直线l 的斜率是( )A .-13B .3-C .13D .3 2.若()()P a b Q c d ,、,都在直线y mx k =+上,则PQ 用a c m 、、表示为( )A .()a c m ++12B .()m a c -C .a c m -+12D . a c m -+123.直线l 与两直线1y =和70x y --=分别交于,A B 两点,若线段AB 的中点为 (1,1)M -,则直线l 的斜率为( )A .23 B .32 C .32- D . 23- 4.△ABC 中,点(4,1)A -,AB 的中点为(3,2)M ,重心为(4,2)P ,则边BC 的长为( )A .5B .4C .10D .85.下列说法的正确的是 ( )A .经过定点()P x y 000,的直线都可以用方程()y y k x x -=-00表示B .经过定点()b A ,0的直线都可以用方程y kx b =+表示C .不经过原点的直线都可以用方程x a yb+=1表示 D .经过任意两个不同的点()()222111y x P y x P ,、,的直线都可以用方程()()()()y y x x x x y y --=--121121表示6.若动点P 到点(1,1)F 和直线340x y +-=的距离相等,则点P 的轨迹方程为( )A .360x y +-=B .320x y -+=C .320x y +-=D .320x y -+= 二、填空题1.已知直线,32:1+=x y l 2l 与1l 关于直线x y -=对称,直线3l ⊥2l ,则3l 的斜率是______.2.直线10x y -+=上一点P 的横坐标是3,若该直线绕点P 逆时针旋转090得直线l ,则直线l 的方程是 .3.一直线过点(3,4)M -,并且在两坐标轴上截距之和为12,这条直线方程是__________.4.若方程02222=++-y x my x 表示两条直线,则m 的取值是 .5.当210<<k 时,两条直线1-=-k y kx 、k x ky 2=-的交点在 象限. 三、解答题1.经过点(3,5)M 的所有直线中距离原点最远的直线方程是什么?2.求经过点(1,2)P 的直线,且使(2,3)A ,(0,5)B -到它的距离相等的直线方程 3.已知点(1,1)A ,(2,2)B ,点P 在直线x y 21=上,求22PB PA +取得 最小值时P 点的坐标。
4.求函数()f x =第三章 直线和方程 [基础训练A 组] 一、选择题1.D tan 1,1,1,,0ak a b a b bα=-=--=-=-= 2.A 设20,x y c ++=又过点(1,3)P -,则230,1c c -++==-,即210x y +-= 3.B 42,82m k m m -==-=-+ 4.C ,0,0a c a cy x k b b b b=-+=->< 5.C 1x =垂直于x 轴,倾斜角为090,而斜率不存在 6.C 2223,m m m m +--不能同时为0 二、填空题1.2 d ==2. 234:23,:23,:23,l y x l y x l x y =-+=--=+3.250x y --= '101,2,(1)2(2)202k k y x --==-=--=--4.8 22x y +可看成原点到直线上的点的距离的平方,垂直时最短:d ==5. 23y x =平分平行四边形ABCD 的面积,则直线过BD 的中点(3,2) 三、解答题1. 解:(1)把原点(0,0)代入Ax By C ++=0,得0C =;(2)此时斜率存在且不为零即0A ≠且0B ≠;(3)此时斜率不存在,且不与y 轴重合,即0B =且0C ≠; (4)0,A C ==且0B ≠(5)证明:()00P x y Q ,在直线Ax By C ++=0上 00000,Ax By C C Ax By ∴++==-- ()()000A x x B y y ∴-+-=。
2.解:由23503230x y x y +-=⎧⎨--=⎩,得1913913x y ⎧=⎪⎪⎨⎪=⎪⎩,再设20x y c ++=,则4713c =-472013x y +-=为所求。
3.解:当截距为0时,设y kx =,过点(1,2)A ,则得2k =,即2y x =;当截距不为0时,设1,x y a a +=或1,x y a a+=-过点(1,2)A , 则得3a =,或1a =-,即30x y +-=,或10x y -+= 这样的直线有3条:2y x =,30x y +-=,或10x y -+=。
4. 解:设直线为4(5),y k x +=+交x 轴于点4(5,0)k-,交y 轴于点(0,54)k -, 14165545,4025102S k k k k=⨯-⨯-=--= 得22530160k k -+=,或22550160k k -+=解得2,5k =或 85k = 25100x y ∴--=,或85200x y -+=为所求。
第三章 直线和方程 [综合训练B 组]一、选择题1.B 线段AB 的中点为3(2,),2垂直平分线的2k =,32(2),42502y x x y -=---= 2.A 2321,,132232AB BC m k k m --+===+-3.B 令0,x =则2y b =-4.C 由13kx y k -+=得(3)1k x y -=-对于任何k R ∈都成立,则3010x y -=⎧⎨-=⎩5.B cos sin sin (cos )0θθθθ⋅+⋅-=6.D 把330x y +-=变化为6260x y +-=,则d ==7.C 32,,4PA PB l PA l PB k k k k k k ==≥≤,或 二、填空题1.2 方程1=+y x2.724700x y ++=,或724800x y +-=设直线为7240,3,70,80x y c d c ++====-或3.3 22b a +的最小值为原点到直线1543=+y x 的距离:155d =4.445点(0,2)与点(4,0)关于12(2)y x -=-对称,则点(7,3)与点(,)m n 也关于12(2)y x -=-对称,则3712(2)223172n m n m ++⎧-=-⎪⎪⎨-⎪=-⎪-⎩,得235215m n ⎧=⎪⎪⎨⎪=⎪⎩5.11(,)k k1=+by ax 变化为()1,()10,ax k a y a x y ky +-=-+-=对于任何a R ∈都成立,则010x y ky -=⎧⎨-=⎩三、解答题1.解:设直线为2(2),y k x -=+交x 轴于点2(2,0)k--,交y 轴于点(0,22)k +,1222221,4212S k k k k=⨯+⨯+=++= 得22320k k ++=,或22520k k ++= 解得1,2k =-或 2k =-320x y ∴+-=,或220x y ++=为所求。