基因互作及其与环境的关系精品
第4章-基因的作用及其与环境的关系..上课讲义

体(vgvg)交配,并在常温下培育子代时,
子代个体的翅膀都是残翅的,所以在这个例
子中,用高温处理残翅个体,可使突变型个
体模写野生型的表型。
2020/6/28
12
2020/6/28
13
1、表型模写(phenocopy)
❖ 但是,这些果蝇的后代仍然是野生型的长翅。 实验说明,某些环境因素(如温度)影响生物体 幼体特定发育阶段的某些生化反应速率,这 些环境因素的变化使幼体发生了相似于突变 体表型的变化,但其基因型是不变的。
2020/6/28
10
1、表型模写(phenocopy)
❖ 表型模写存在于各种生物中。如将孵化后4— 7天的黑腹果蝇的野生型(红眼、长翅、灰体、 直刚毛)的幼虫经35—37℃处理6—24小时(正 常培养温度为25℃),获得了一些翅形、眼形 与某些突变型(如残翅vgvg)表型一样的果蝇。
2020/6/28
2020/6/28
5
第一节 环境的影响和基因的表型效应
❖ 我们所看到的表型实际上是基因型与环境相 互作用的结果。这样我们就有了一个重要的 结论:对于一个好的品种,要获得理想的结 果,还必须有合适的生活条件,那我们也就 知道了为什么在南方好的品种,在北方就可 能是一个差的品种了,因为那里的环境条件 不适合这个品种基因型的表现。
2020/6/28
6
第一节 环境的影响和基因的表型效应
❖ 例2. 有一种太阳红玉米,植物体见光部分表现为 红色,不见光部分表现不出红色而呈绿色(表)。
条 件 : 太 阳 表 型 : 红 色 结 论 : 红 色 显 性 , 绿 色 隐 性
条 件 : 无 太 阳 表 型 : 绿 色 结 论 : 绿 色 显 性 , 红 色 隐 性
第四章 基因的作用及其与环境的关系

33
图 显隐性关系相对性图解
2020/6/18
34
4、随所依据标准的不同显隐性关系 发生改变
❖ 鉴别相对性状表现完全显性或不完全显性, 也取决于观察的分析水平。
❖ 例如:豌豆种子外形的遗传
2020/6/18
35
❖ 举例:豌豆种子外形的遗传
❖ 眼观
圆粒种子 × 皱缩粒种子
❖
↓
↓
❖ 显微镜 淀粉粒持水力 淀粉粒持水力弱,
2020/6/18
21
1、不完全显性(incomplete dominance)
❖ F1表现双亲性状的中间型,称之为不完全显 性。
❖ 例如:紫茉莉的花色遗传。红花亲本(RR) 和白花亲本(rr)杂交,F1(Rr)为粉红色 (图)。
2020/6/18
22
图 紫茉莉 花色的遗
传
2020/6/18
23
2020/6/18
38
4、随所依据标准的不同显隐性关系 发生改变
❖ 在遗传上通常由一对隐性基因HbSHbS控制, 杂合体的人(HbAHbS)在表型上是完全正常的, 没有任何病症,但是将杂合体人的血液放在 显微镜下检验,不使其接触氧气,也有一部 分红细胞变成镰刀形,基因型和表型的关系 见表。
2020/6/18
31
3、超显性*
❖ 杂合体Aa的性状表现超过纯合显性AA的现象即为 超显性。例如,果蝇杂合体白眼w+/w的荧光素的 量超过白眼纯合体w/w和野生型纯合体w+/w+所 产生的量。这就是所谓的杂种优势。
❖ 下面我们用图解的方式说明各种显隐性的相对关系。
2020/6/18
32
图 显隐性关系相对性图解
2020/6/18
基因的作用及其与环境的关系

整理课件
10
1、表型模写(phenocopy)
❖ 但是,这些果蝇的后代仍然是野生型的长翅。 实验说明,某些环境因素(如温度)影响生物体 幼体特定发育阶段的某些生化反应速率,这 些环境因素的变化使幼体发生了相似于突变 体表型的变化,但其基因型是不变的。
28.01.2021
整理课件
11
2、外显率(penetrance)
整理课件
2
第一节 环境的影响和基因的表型效应
❖ 例1.玉米中的隐性基因a使叶内不能形成叶 绿体,造成白化苗,显性等位基因A是叶绿体 形成的必要条件。在有光照的条件下,AA, Aa个体都表现绿色,aa个体表现白色;而在 无光照的条件下,无论AA,Aa还是aa都表现 白色。
28.01.2021
整理课件
28.01.2021
整理课件
9
1、表型模写(phenocopy)
❖ 表型模写存在于各种生物中。如将孵化后4— 7天的黑腹果蝇的野生型(红眼、长翅、灰体、 直刚毛)的幼虫经35—37℃处理6—24小时(正 常培养温度为25℃),获得了一些翅形、眼形 与某些突变型(如残翅vgvg)表型一样的果蝇。
28.01.2021
28.01.2021
整理课件
15
图 一个成骨不全患者的家系图
28.01.2021essivity)
❖ 另外如人类中的短食指(第二指)是以简单的显 性遗传方式遗传的,然而具相同基因型Aa的 人第二指的短小程度有很大差异,有些人指 骨很短,而另一些人则只稍许短些。
28.01.2021
28.01.2021
整理课件
18
第二节 基因间的相互作用——孟德尔 定律的扩展
❖ 但事实上生物体内的情况并非总是如此,等 位基因间的显隐性关系是相对的,非等位基 因间会发生相互作用。虽然这些作用会使孟 德尔比率发生改变,但它并不有损于孟德尔 定律,而是对孟德尔定律的扩展。
基因作用及其与环境的关系精品PPT课件

(二) 显隐性可随所依据的标准而更改
例1 孟德尔豌豆试验:
豆粒饱满对皱缩是完全显性,即AA和Aa的表型是一致 的,都表现为饱满。但在子一代豆粒( Aa )中淀粉 粒的数目和形状却是亲代(AA和aa)的中间型。
说明从豆粒的外型来看,饱满对皱缩是完全显性,而 从淀粉粒的数目和形状来看,却是不完全显性。
(四)表型模写
表型受2类因子控制:基因型和环境。 表型模写(phenocopy):环境改变所引起的表型
改变,有时与由某基因引起的表型变化很相似, 这叫做表型模写。 短肢畸形(隐性遗传病:患者的臂和腿部分缺 失),60年代突然增多,引起人们重视,经研 究发现原因是妇女在妊娠早期服用反应停(一种 安眠药)所致。
例2 镰刀型细胞贫血症
症状:严重贫血,发育不良,关节和腹部肌肉疼痛,多 在幼年期死亡。显微镜下观察:红细胞呈镰刀状。
分析Hbs基因——HbA基因的关系
临床:
镜检
数目
Hbs Hbs HbA Hbs HbA HbA Hbs Hbs HbA Hbs Hbs Hbs HbA Hbs
患者 正常 正常 有镰刀型 有镰刀型 全部镰刀型 部分镰刀型
在同源多倍体中,一个个体上可同时存在复等位基因 的多个成员。
例如: 贫血病患者
正常人
红血球细胞镰刀形× 红血球碟形
ss
↓
SS
Ss
红血球细胞中即有碟形也有镰刀形 这种人平时不表现病症,在缺氧时才发病。
4. 镶嵌显性:F1同时在不同部位表现双亲性状. 例如:异色瓢虫鞘翅有很多颜色变异,由复等位基因控制。
SAuSAu × SESE (黑缘型) ↓ (均色型)
SAuSE (新类型) SAuSAu SAuSE SESE 1:2:1 又如: 紫花辣椒× 白花辣椒 F1 (新类型) (边缘为紫色、中央为白色)
基因的作用及其与环境的关系

6
水稻穗形基因- 不完全显性
7
其它例子
• 人的卷发 • 马的毛色 • 茉莉花色
8
等位基因显性程度
9
共显性 (Codominance)
• 一对等位基因的两个成员在杂合体中都表达的遗 传现象叫共显性遗传(也叫并显性遗传)。即杂合 子表现出两种纯合子的表现型称为共显性。例如, 人类的MN血型。
累加作用是指几个非等位基因共同作用决定某 一性状的表现,每个基因只有一部分作用。
37
两对基因都是隐 性时,形成长圆 形,只有显性基 因A或B存在时, 形成圆球形,A和 B同时存在时,则 形成扁盘形。
38
重叠作用(Overlap effect)
重叠作用是指不同对基因互作时,对表现型产 生相同的影响,F2 产生15∶1的比例。这类表现 相同作用的基因,称为重叠基因。 例如将荠菜三角形蒴果与卵圆形蒴果植株杂 交,F1全是三角形蒴果。 F2分离为 15/16三角 形蒴果∶1/16卵形蒴果。
新表型 上位性(epistasis)
3. 基因与环境相互作用
2
3
不完全显性 (incomplete dominance) 部分显性 (partial dominance) 半显性 (semi-dominance)
F1表现双亲性状的中间型,称之为不完全显性。
4
金鱼草(snapdragons)
54
外显率(Penetrance)
外显率是指某一基因型个体显示其预期表型的比率,它是 基因表达的另一变异方式。
例如玉米形成叶绿素的基因型AA或Aa,在有光的条件下, 应该100%形成叶绿体,基因A的外显率是100%;而在无光的 条件下,则不能形成叶绿体,我们就可以说在无光的条件下, 基因A的外显率为0。
第三章基因作用及其与环境的关系精品PPT课件

第三节 复等位现象
一、ABO血型 复等位基因:一个基因座上存在
三个或 三个以上等位基因,这些等位 基因就叫复等位基因。如IA、IB、i。
25.10.2020 8
1、ABO血型的表型和基因型以及 它们的凝结反应
表型 (血型)
AB
基因型 IAIB
抗原 (血细胞上)
AB
抗体 (血清中)
A
IAIA
A
β
IAi
B
IBIB
B
α
IBi
O
ii
αβ
25.10.2020 9
2、输血关系
O型
↓
A型← O型→B型
↓ ↓↓
A型→AB型←B型
25.10.2020 10
二、Rh血型
1、遗传机理 Rh+ 的基因型为RR或Rr Rh-的基因型为rr
2、新生儿溶血病
25.10.2020 11
第四节、非等位基因间的相互作用
三、基因的多效性 一因多效:一个基因影响多个性
状的现象。 翻毛鸡的遗传:FF为翻毛,ff为
正常。 翻毛鸡的体温低、心跳快、心脏
扩大、生殖力降低。
25.10.2020 4
第一节 环境的影响和基因的 表型效应
四、表现度和外显率 表现度:指个体间基因表达的变
化程度。 外显率:它是某一基因型个体显
示预期表型的比率。
25.10.2020 12
1.互补作用 (Complementary effect)
不同对的两个基因相互作用,出现 了新的性状。这种基因互作的类型称为 互补,发生互补作用的基因称为互补基 因(complementary gene)。
25.10.2020 13
第四章 基因的作用及其与环境的关系

人类中有一种隐性遗传病,叫做短肢畸形 (Phocomelia),患者的臂和腿部分缺失。妇女在妊娠早期特 别是在第3—5周时,服用一种称为反应停(thalidomide)的 安眠药,这药在这个关键时刻延缓了胎儿四肢的发育,导致 了短肢畸形。 研究拟表型的意义有下列两点: (1) 什么时候进行处理,可以引起表型改变, 由此可以推 测基因在什么时候发 生作用。 (2) 用一些什么物理条件或化学药刘处理,可以引起哪 一些表型,类似哪一类突变型。由此可以推测基因 是怎样在起作用的。
一个颅面骨发育不全症的 家系(任在镐、刘祖洞等) 因为这病是由显性基因决定的 所以,所以II-2个体—定带有这个 显性基因,这样他才能起到承前 传后的作用。但他的表型是正常 的,所以出现了越代遗传现象。 III-1, III-4等个体是否一定带有这 个致病基因却不能肯定。
四、等位基因间的相互作用 同一基因座上等位基因间的关系 。这 种相互作用可通过分析杂合体( 如:Cc ) 的表型来确定。 完全显性 孟德尔研究过的豌豆的7对性状中, 杂合体(Rr)与显性纯合体(RR)在性状的表 型上几乎完全不能区别,即两个不同的遗 传因子同时存在时,其中只有一个的表型 效应得以完全表现,这是一种最简单的等 位基因之间的相互作用即完全显性。
基因型决定着个体的反应规 范,而不是单一的表型. 即:一种基 因型 对应 一种反应规范,而不是 一种表型
环境
包括 外部环境 和 内部环境
对于某一基因而言,其他基因 就是他的环境(内部环境) 香豌豆中,有一隐性基因d影响花冠的颜色。
这是因为 dd 植株的细胞液pH比DD或Dd植株平均升 高0.6,使细胞液趋向碱性,而花青的反应一般在酸性带红 色,在碱性带蓝色。所以D/d这样的基因就可称之为修饰 基因(modifier gene), 因为它能改变另一基因的表型。
第四章 基因的作用及其与环境的关系

第四章基因的作用及其与环境的关系第一节环境的影响和基因表型效应第二节显隐关系的扩展第三节复等位基因第四节基因间的相互作用与修饰第二节显隐关系的扩展孟德尔在植物杂交实验中所观察到的7对性状都属于完全显性和隐性的关系。
但并不是所有情况都如此。
有时会遇到一些例子在显隐关系上出现各种变异。
一、不完全显性不完全显性(incomplete dominance)又叫做半显性(semidominance),其特点是杂合子表现为双亲的中间性状。
如紫茉莉,红花品系和白花品系杂交,F1代既不是红花也不是白花,而是粉红花;F1互交产生的F2代有三种表现型,红花,粉红花和白花,其比例为1:2:1。
金鱼草的花色也是这样。
安大路西亚(西班牙南部一个区域)鸡的羽毛,家蚕的体色,马的毛皮,金鱼身体的透明度等都属于此类不完全显性。
为什么会产生不完全显性现象呢?以紫茉莉为例,两个正常的R 基因产生的酶的剂量才能产生足够的红色色素。
当基因发生无效突变时,便失去功能,不能催化红色素的产生,故rr为白色。
只有一个正常R基因,其产生的酶就只能产生部分的红色素,所以RR为红色,Rr 为粉红色,rr为白色。
马毛皮的颜色是因为D基因是淡化基因,马的棕色由bb决定DD不起淡化作用,dd起很强的催化作用,使皮毛呈白色,Dd只有一个d起淡化作用,使马呈淡棕色。
同样具有剂量效应。
我国学者陈桢曾系统地研究了金鱼的起源和遗传。
发现普通金鱼(TT)能合成酪氨酸氧化酶,使酪氨酸在细胞里合成各种色素,使金鱼呈现出绚丽的色彩。
有一种突变型(tt)是酪氨酸氧化酶缺陷型,不能合成色素颗粒,所以身体透明,从外面可以看到金鱼的内脏。
普通金鱼和身体透明的金鱼的F1代是一种半透明鱼,也就是说单个T基因合成的色素量不能完全改变透明状态,所以杂合体呈半透明状态.二、共显性杂合子的一对等位基因各自都有自己的表型效应,称为共显性(codominance)。
MN血型是很好的例子。
在人类的M-N血型系统中有三种血型,M, N,MN型。