2020-2021学年山东省潍坊市高一上学期期中考试物理试卷
山东省潍坊市2020_2021学年高一物理上学期期中试题含解析

山东省潍坊市2020-2021学年高一物理上学期期中试题(含解析)注意事项:1。
本试卷分为选择题和非选择题两部分,考试时间90分钟,满分100分。
2。
答题前,考生务必将自己的姓名、考生号、座号等填写在答题卡指定位置。
3。
回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,请按照题号在答题卡上各题目的答题区域内作答,超出答题区域书写的答案无效。
一、单项选择题:本题共8小题,每小题3分,共24分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 伽利略的研究方法对于科学研究具有重大的启蒙作用,至今仍具有重要意义。
下列哪个是伽利略探究物体下落规律的过程()A. 猜想—问题—合理外推—数学推理—实验验证—得出结论B. 问题—猜想—实验验证—数学推理—合理外推—得出结论C. 问题—猜想—数学推理—实验验证—合理外推—得出结论D. 猜想—问题—合理外推—实验验证—数学推理—得出结论【答案】C【解析】【详解】首先由问题提出猜想,然后数学推理,再进行实验验证,去掉次要因素进行合理外推,最后得出结论。
故选C。
2. 某同学乘坐出租车回家,自己乘坐的出租车在路边停住,看到车外相邻并排同向行驶的另一出租车时,感觉自己在后退。
下列分析正确的是()A. 该同学选择的参考系是自己乘坐的出租车B. 另一出租车在向前行驶C. 若出租车行驶时速度计示数为30 km/h,这是出租车的平均速度D. 若出租车计价器显示行驶了5km,这5km一定是出租车运动过程的位移大小【答案】B【解析】【详解】AB.自己乘坐的出租车在路边停住,看到车外相邻并排同向行驶的另一出租车时,感觉自己在后退。
表面选择的参考系是另一出租车,并且另一出租车在向前行驶。
A 错误,B 正确;C .出租车行驶时速度计示数为30 km/h ,这是出租车的瞬时速度大小,C 错误;D .出租车计价器显示行驶了5km ,这5km 是出租车运动的路程,只有当出租车做单方向直线运动时才表示位移大小,D 错误。
山东省潍坊市2023-2024学年高一上学期物理期中考试试卷(含答案)

山东省潍坊市2023-2024学年高一上学期物理期中考试试卷姓名:__________ 班级:__________考号:__________1.下列说法中正确的是()A.裁判给花样滑冰运动员打分时,可以把运动员看成质点B.运动员绕周长400m的田径场跑道跑一圈,其位移是0C.物体做直线运动时,其位移的大小一定等于路程D.第一节课的上课时间为7:50,指的是时间间隔2.下列物理量中,属于矢量的是()A.时间B.路程C.速率D.加速度3.下列关于摩擦力的说法中,正确的是()A.两物体间有摩擦力,一定有弹力B.两个运动的物体之间不可能存在静摩擦力C.滑动摩擦力的方向一定与物体的运动方向相反D.两物体间的摩擦力大小一定与它们间的压力成正比4.某新能源汽车在一次测试中沿平直公路由静止开始加速,其加速度a不断减小,直至a = 0,则汽车在加速过程中()A.速度增加越来越慢,位移增加也越来越慢B.速度增加越来越快,位移增加也越来越快C.速度增加越来越慢,位移增加越来越快D.速度增加越来越快,位移增加越来越慢5.冰壶是冬奥会的一种投掷性竞赛项目。
在某次比赛中,冰壶以某一初速度被投出后做匀减速直线运动,经10s停止运动,已知冰壶停止运动前最后1s内的位移大小为0.1m,则从被投出到停止运动,冰壶滑行的距离为()A.20m B.15m C.10m D.5m6.在交警处理某次交通事故时,通过计算机对监控视频的分析,得到该汽车在水平路面上刹车过程中位移x 随刹车时间t变化的规律为x=25t−2.5t2(x的单位是m,t的单位是s)。
则该汽车刹车3s后速度的大小为()A.5m/s B.10m/s C.15m/s D.17.5m/s7.从20m高处每隔一定时间由静止释放一个小球,小球自由落下。
当第六个小球刚释放时,第一个小球恰好落地,g取10m/s2,则此时第二、三两个小球之间的距离是()A.12.8m B.7.2m C.5.6m D.2.4m8.如图所示,重为500N的沙发放在水平地面上,某同学沿水平方向推沙发,当水平推力大小为90N时沙发恰好开始运动。
2020-2021学年高一物理上学期期中试题(含解析)

高一物理上学期期中试题(含解析)一、单选题(本大题共8小题,共25.0分)1.在下述问题中,能够把研究对象看作质点的是A. 计算“和谐号”动车通过南京长江大桥所用时间B. 比较“摩拜”与“ofo”共享单车的车轮半径大小C. 利用“北斗”导航系统确定远洋海轮在大海中的位置D. 研究“蛟龙600”水陆两栖飞机水面高速滑行的机翼姿态【答案】C【解析】【分析】当物体的形状、大小对所研究的问题没有影响时,我们就可以把它看成质点,根据把物体看成质点的条件来判断即可正确解答本题。
【详解】和谐号列车的长度相对于桥梁的长度不能忽略,此时列车不能看成质点,故A 错误;比较摩拜与“ofo”共享单车车轮半径大小时,车轮的大小不可以忽略,故不可以把车轮当做质点,故B错误;“北斗”系统给远洋海轮导航时,只需要确定远洋海轮在地图上的位置,可以把远洋海轮看成质点,故C 正确;研究“蛟龙600”水陆两栖飞机水面高速滑行的机翼姿态时不能看做质点,看做质点就不能看机翼姿态了,故D错误。
所以C正确,ABD错误。
【点睛】考查学生对质点这个概念的理解,关键是知道物体能看成质点时的条件,看物体的大小体积对所研究的问题是否产生影响,物体的大小体积能否忽略。
2.下列对于运动基本概念的描述正确的是A. 顺丰速运“无人机快递”完成一次快件投递回到出发点,此运动过程的路程为零B. 微信支付交易记录中有一单的转账时间为“2018100119:49:34”,这里的时间指时刻C. “复兴号”列车在京沪高铁线运行最高时速可达350公里,这里的时速指平均速率D. 常熟市三环高架启用的“区间测速”系统,测的是汽车沿高架绕行的平均速度【答案】B【解析】【分析】掌握位移和路程的区别,明确时间和时刻的主要区别;知道平均速率等于路程与时间的比值;会区分平均速度和平均速率。
【详解】路程是轨迹的长度,顺丰速运“无人机快递”完成一次快件投递回到出发点,此运动过程的路程不为零,故A错误;查看微信支付交易记录时发现有一单的转账时间为:49:34,这对应一个瞬间,故这里的时间是时刻,故B正确;“复兴号”列车组列车在京沪高铁线按时速350公里运行,这里的时速指瞬时速率,故C错误;“区间测速”测量的是某一过程的速度,是路程与时间的比值,为平均速率,故D错误。
2020-2021学年度高一上学期期末考试物理试卷及答案

2020-2021学年度高一上学期期末考试物理试卷及答案2020-2021学年度高一上学期期末考试物理试卷及答案一、单项选择题(每小题3分,共45分,每小题只有一个答案是正确的)1.下列叙述中正确的是:A.我们所学过的物理量:速度、加速度、位移、路程都是矢量。
B.物体从静止开始的下落运动叫自由落体运动。
C.通常所说的压力、支持力和绳的拉力都是弹力。
D.任何有规则形状的物体,它的重心一定与它的几何中心重合,且也一定在物体内。
2.下列关于惯性的说法正确的是:A.速度越大的物体越难让它停止运动,故速度越大,惯性越大。
B.静止的物体惯性最大。
C.不受外力作用的物体才有惯性。
D.行驶车辆突然转弯时,乘客向外倾倒是由于惯性造成的。
4.在国际单位制中,力学基本单位有三个,这三个基本单位是:A.m、kg、sB.m、s、NC.m、kg、ND.XXX、s、N5.用手握住瓶子,使瓶子在竖直方向静止,如果握力加倍,则手对瓶子的摩擦力:A.握力越大,摩擦力越大。
B.只要瓶子不动,摩擦力大小与前面的因素无关。
C.方向由向下变成向上。
D.手越干越粗糙,摩擦力越大。
6.一小球从空中由静止下落,已知下落过程中小球所受阻力与速度的平方成正比,设小球离地足够高,则:A.小球先加速后匀速。
B.小球一直在做加速运动。
C.小球在做减速运动。
D.小球先加速后减速。
7.如图所示,光滑斜面的倾角为α,一个质量为m的物体放在斜面上,如果斜面以加速度a水平向左做匀加速直线运动,物体与斜面间无相对运动,则斜面对物体的支持力的大小为:A.mgcosαD.mg2+a29.红军在长征时,遇到的环境十分恶劣。
在过草地时,有的地方看上去是草,而下面可能就是淤泥,一不小心就会陷入到淤泥中,这是因为:B.地面给红军的支持力大于红军给地面的压力。
D.地面对红军的支持力等于红军受到的重力。
10.建筑工人使用定滑轮装置运送建筑材料。
一个质量为70kg的工人站在地面上,通过定滑轮将一个质量为10kg的空桶从静止开始以2m/s²的加速度降下。
2020-2021学年山东省潍坊市高一下学期期中考试数学试题 (1)

试卷类型:A2020-2021学年山东省潍坊市高一下学期期中考试数学试题2021.5本试卷共4页.满分150分.考试时间120分钟. 注意事项:1.答题前,考生务必在试题卷、答题卡规定的地方填写自己的准考证号、姓名.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效. 3.考试结束,考生必须将试题卷和答题卡一并交回.一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.2021°角的终边所在的象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限2.函数()()lg tan 1f x x =-的定义域为( ) A .ππ,2x x k k ⎧⎫≠+∈⎨⎬⎩⎭Z B .ππππ,22x k x k k ⎧⎫-<<+∈⎨⎬⎩⎭Z C .πππ,2x k x k k ⎧⎫<<+∈⎨⎬⎩⎭Z D .ππππ,42x k x k k ⎧⎫+<<+∈⎨⎬⎩⎭Z 3.在现代社会中,信号处理是非常关键的技术,而信号处理背后的“功臣”就是正弦型函数.若某种信号的波形对应的函数解析式为()1sin sin33xf x x =+,则其部分图像为( ) A . B .C .D .4.若π,02α⎛⎫∈-⎪⎝⎭1sin 2a -=( ) A .sin cos αα+B .sin cos αα--C .sin cos αα-D .cos sin αα-5.斐波那契螺旋线被誉为自然界最完美的“黄金螺旋”,它的画法是:以斐波那契数1,1,2,3,5,8…作为正方形的边长拼成长方形,然后在每个正方形中画一个圆心角为90°的圆弧,这些圆弧所连起来的弧线就是斐波那契螺旋线.如图这些圆弧所连成的弧线就是斐波那契螺旋线的前一部分,则阴影部分的面积与矩形ABCD 的面积之比为( )A .34B .14C .π4D .π86.如图,在矩形ABCD 中,AB a =,AD b =,M 为CD 的中点,BD 与AM 交于点N ,则MN =( )A .1163a b -- B .1163a b - C .1163a b + D .1163a b -+ 7.已知π02αβ<<<,()4cos 5αβ-=,2sin 2β=,则sin α=( ) A .210 B .7210C .210-D .7210-8.在日常生活中,我们常常会看到两个人共提一个行李包的情景,若行李包所受的重力为G ,两个拉力分别为1F ,2F ,且12F F =,1F与2F 夹角为θ,当两人拎起行李包时,下列结论正确的是( )A .12G F F =+B .当π2θ=时,122F =C .当θ角越大时,用力越省D .当1F G =时,π3θ= 二、多项选择题:本大题共4个小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,选对但不全的得3分,有选错的得0分. 9.下列四个三角关系式中正确的是( ) A .()cos π1cos1-=B .πsin 2cos 22⎛⎫+= ⎪⎝⎭C .tan 20tan 2511tan 20tan 25︒+-︒︒︒=-D .cos73cos 28sin 73sin 28︒︒+︒︒=10.下列命题中的真命题是( )A .若()2,5a =-,()3,4b =,则向量b 在向量a 方向上的投影的数量为145B .若(1,3a =-,则01,2a ⎛=⎝⎭是与向量a 方向相同的单位向量 C .若向量a ,b 不共线,则a b -与a 一定不共线D .若平行四边形ABCD 的三个顶点A ,B ,C 的坐标分别为()2,1-,()1,3-,()3,4,则顶点D 的坐标为()2,411.已知M ,N 是函数()()π2cos 2103f x x ωω⎛⎫=+-> ⎪⎝⎭的图像与直线1y =的两个不同的交点,若MN 的最小值是π,则( ) A .()π2cos 213f x x ⎛⎫=+- ⎪⎝⎭B .函数()f x 在区间π0,2⎛⎫⎪⎝⎭上单调递增 C .π112y f x ⎛⎫=++ ⎪⎝⎭是奇函数 D .函数()f x 的图像关于点7π,012⎛⎫⎪⎝⎭中心对称 12.如图,设()0,πα∈,且π2α≠,当xOy α∠=时,定义平面坐标系xOy 为α的斜坐标系,在α的斜坐标系中,任意一点P 的斜坐标这样定义:设1e ,2e 是分别与x 轴,y 轴正方向相同的单位向量,若12OP xe ye =+,记(),OP x y =,则下列结论中正确的是( )A .设(),a m n =,(),b s t =,若a b =,则m s =,n t =B .设(),a m n =,则22a m n =+C .设(),a m n =,(),b s t =,若//a b ,则0mt ns -=D .设()1,2a =,()2,1b =,若a 与b 的夹角为π3,则2π3α= 三、填空题:本大题共4小题,每小题5分,共20分.13.已知A ,B ,C ,D 是平面上四个点,则AB CB CD -+=______. 14.已知()()cos f x x ωϕ=+(0ω>,π02ϕ<<)的图像过点10,2⎛⎫⎪⎝⎭,要使该函数解析式为()πcos 23f x x ⎛⎫=+ ⎪⎝⎭,还应该给出的一个条件是______.15.已知函数()πsin 4f x x ω⎛⎫=+⎪⎝⎭(0ω>)满足()()122f x f x -=的12 x x -的最小值为π4,则ω=______,直线13y =与函数()y f x =在()0,π上的图像的所有交点的横坐标之和为______. 16.潍坊的传统民间工艺有着悠久的历史和深厚的文化底蕴.为弘扬民族文化,潍坊某中学开展劳动实习,学生到一个铸造厂学习铁皮裁剪技术,如图所示,铁皮原料的边界由一个半径为R 的半圆弧(点O 为圆心)和直径MN 围成,甲班学生决定将该铁皮原料裁剪成一个矩形ABCD ,则当该矩形ABCD 的周长最大时,tan α=______.四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)如图所示,在直角坐标系xOy 中,角α的顶点与坐标原点O 重合,始边落在x 轴的正半轴上,终边与单位圆的交点为04,5P y ⎛⎫-⎪⎝⎭,其中00y >. (1)求0y 和sin α,cos α,tan α的值;(2)求()()πcos cos 2π2sin cos αααα⎛⎫-++ ⎪⎝⎭--的值.18.(12分)已知向量()2,3a =-,向量()4,2b =,向量()3,c m =(其中m ∈R ),且()2a b c +⊥. (1)求a b ⋅的值和c ;(2)若2AB a b =+,BC b c λ=+,且A ,B ,C 三点共线,求实数λ的值. 19.(12分)三角函数中有许多形式简洁,含义隽永的数学等式.某学习小组在一次研究性学习中发现,以下四个式子的值都等于同一个常数:甲:22sin 67.5cos 67.5267.5cos67.5︒+︒︒; 乙:22sin 41cos 94241cos94︒+︒︒; 丙:22sin 37cos 982cos98︒+︒︒;丁:()()22sin 25cos 160225cos160-︒+︒︒-︒. (1)请从上述四个式子中任选一个,求出这个常数;(2)根据(1)的计算结果,请将结论推广为一个三角恒等式,并证明你的结论. 20.(12分)将形如11122122a a a a 的符号称为二阶行列式,现规定二阶行列式的运算如下:1112112212212122a a a a a a a a =-.已知两个不共线的向量a ,b 的夹角为θ,6a =,b t =(其中0t >),且π2sin 41π2cos13t=.(1)若θ为钝角,试探究a b +与5a b -能否垂直?若能,求出cos θ的值;若不能,请说明理由; (2)若π3θ=,当0k >时,求4a kb -的最小值并求出此时a 与4a kb -的夹角. 21.(12分)潮汐现象是发生在沿海地区的一种自然现象,是指海水在天体(主要是月球和太阳)引潮力作用下所产生的周期性运动,我们把海面垂直方向涨落称为潮汐,地球上不同的地点潮汐规律不同. 下表给出了某沿海港口在一天(24小时)中海水深度的部分统计数据: 时间t (时) 0 2 4 6 8 10 12 14 16 18 20 22 24 水深h (米)13.41413.4121086.666.68101213(1)请结合表中数据,在给出的平面直角坐标系中,选择合适的点,画出该港口在一天24小时中海水深度h 与时间t 的函数图像,并根据你所学知识,请从()()20h t at bt c a =++>,()2th t =,()()sin h t A t B ωϕ=++(0A >,0ω>,π2ϕ<),()()cos h t A t B ωϕ=++(0A >,0ω>,π2ϕ<)这四个函数解析式中,选取一个合适的函数模型描述该港口一天24小时内水深h 与时间t 的函数关系,求出其解析式;(2)现有一货轮需进港卸货,并在白天进行物资补给后且于当天晚上..离港.已知该货轮进港时的吃水深度(水面到船底的距离)为10米,卸货后吃水深度减小0.8米,根据安全航行的要求,船底至少要留出2.8米的安全间隙(船底到海底的距离),如果你是船长,请你规划货轮的进港、离港时间,并计算出货轮在该港口停留的最短时长.(参考数据:2 1.4≈,3 1.7≈)22.(12分)已知函数()22sincos 222x x xf x =+ (1)求函数()f x 的单调递增区间; (2)若不等式()3f x m -≤对任意ππ,63x ⎡⎤∈-⎢⎥⎣⎦恒成立,求整数m 的最大值; (3)若函数()π2g x f x =-⎛⎫⎪⎝⎭,将函数()g x 的图像上各点的横坐标缩短到原来的12倍(纵坐标不变),再向右平移π12个单位,得到函数()y h x =的图像,若关于x 的方程()()1sin cos 02h x k x x -+=在π5π,1212x ⎡⎤∈-⎢⎥⎣⎦上有解,求实数k 的取值范围.高一数学参考答案及评分标准2021.5一、单项选择题1-4 CDBD 5-8 CAAB 二、多项选择题9.BD 10.BC 11.AC 12.ACD 三、填空题13.AD 14.2ω=或周期πT = 15.4,9π4 16.12四、解答题17.(1)解:由题意,1OP =,所以220415y ⎛⎫-+= ⎪⎝⎭,所以035y =±, 又因为00y >, 所以035y =, 则3sin 5α=,4cos 5α=-,所以3tan 4α=-. (2)()()π3cos cos 2π1sin cos tan 11243sin cos sin cos tan 1714αααααααααα⎛⎫-++-+ ⎪++⎝⎭====-------.18.解:(1)因为()2,3a =-,()4,2b =, 所以862a b ⋅=-=,()()()24,64,28,4a b +=-+=-,因为()2a b c +⊥, 所以()()()28,43,2440a b c m m +⋅=-=⋅-=,所以6m =,故()3,6c =,936c =+=(2)因为()2,3a =-,()4,2b =,()3,6c =,所以()28,4AB a b =+=-,()43,26BC b c λλλ=+=++ 又因为A ,B ,C 三点共线, 所以AB kBC =,即()()8,443,26k λλ-=++,所以438264k k k k λλ+=⎧⎨+=-⎩解得:103815k λ⎧=⎪⎪⎨⎪=-⎪⎩,故λ的值为815-.19.解:(1)选甲时:22sin 67.5cos 67.567.5cos67.5︒+︒︒11sin13512222︒=-=-=.(2)()()221sincos 135cos 1352a ααα+︒-︒-=,证明:左边22sin αααααα⎛⎫⎛⎫=++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, 222211sin cos sin cos sin sin cos sin 22αααααααα=+-++-,22111cos sin 222αα=+=.20.解:(1)由题意得,ππcos 1143t t -=-=, 所以2t =,即2b =, 则62cos 12cos a b θθ⋅=⨯=,所以()()225453648cos 201648cos a b a b a a b b θθ+-=-⋅-=--=-, 因为θ为钝角,所以cos 0θ<, 故()()51648cos 0a ba b θ+-=->,故a b +与5a b -不可能垂直. (2)因为π3θ=,所以π62cos 63a b ⋅=⨯⨯=, 所以2222223481636486464278a kb a ka b k b k k k ⎛⎫-=-⋅+=-+=-+ ⎪⎝⎭,当38k =时,2min 427a kb -=,所以min433a kb-=,此时342a kb a b -=-,因为2333692722a a b a a b ⎛⎫⋅-=-⋅=-= ⎪⎝⎭,所以332732cos ,3226332a ab a a b a a b ⎛⎫⋅- ⎪⎝⎭-===⨯-,又因为[],30,πa a b -∈ 所以π,36a ab -=. 21.解:(1)可选择以下6个点:()0,13.4,()2,14,()8,10,()14,6,()20,10,()24,13.4,其图像如下:选法一:设选取的函数解析式为:()()sin h t A t B ωϕ=++(0A >,0ω>,π2ϕ<), 由题意得:122T =,所以24T =,π12ω=, 又因为()()()()max min 214146h t h A B h t h A B ⎧==+=⎪⎨==-+=⎪⎩,解得4A =,10B =, 所以()π4sin 1012h t t ϕ⎛⎫=++⎪⎝⎭, 由()π24sin 106h ϕ⎛⎫=++⎪⎝⎭,得πsin 16ϕ⎛⎫+= ⎪⎝⎭, 所以π2π3k ϕ=+,k ∈Z ,又π2ϕ<,所以当0k =时,π3ϕ=, 所以()ππ4sin 10123h t t ⎛⎫=++⎪⎝⎭,[]0,24t ∈(参照解法一相应给分). 选法二:设选取的函数解析式为:()()cos h t A t B ωϕ=++(0A >,0ω>,π2ϕ<),求解过程同上,可得()ππ4cos 10126h t t ⎛⎫=-+ ⎪⎝⎭,[]0,24t ∈. (2)根据题意可知:货轮安全进港的水深至少达到12.8米,由()ππ4sin 1012.8123h t t ⎛⎫=++≥ ⎪⎝⎭, 解得:ππ4sin 2.8123t ⎛⎫+≥ ⎪⎝⎭,即ππ 1.4sin 1232t ⎛⎫+≥≈ ⎪⎝⎭所以πππ3π2π2π41234k t k +≤+≤+,k ∈Z , 故241245k t k -≤≤+,k ∈Z又因为[]0,24t ∈,所以05t ≤≤,所以可安排货轮在0时到5时之间进港.货轮安全离港的水深要求至少达到12米,根据表中数据可知最早在晚上22时后水深符合要求,可安全离港,货轮在港时间最短为17个小时.综上规划决策如下:应安排货轮最晚在凌晨5时进港,最早在晚上22时离港,在港时间最短为17个小时.22.解:(1)由题意得,()22sin cos 222x x x f x =+2sin 2cos 12x x ⎫=-⎪⎭sin x x =π2sin 3x ⎛⎫=+ ⎪⎝⎭.由πππ2π2π232k x k -+≤+≤+,k ∈Z ,得5ππ2π2π66k x k -+≤≤+,k ∈Z , 可得函数()f x 的单调递增区间为5ππ2π,2π66k k ⎡⎤-++⎢⎥⎣⎦,k ∈Z . (2)因为ππ,63x ⎡⎤∈-⎢⎥⎣⎦,所以ππ2π633x ≤+≤, 所以1πsin 123x ⎛⎫≤+≤ ⎪⎝⎭, 所以当π6x =-时,()f x 的最小值为1;当π6x =时,()f x 的最大值为2, 所以()12f x ≤≤.由题意得,()33f x m -≤-≤,所以()33m f x m -≤≤+对一切ππ,63x ⎡⎤∈-⎢⎥⎣⎦恒成立, 所以3132m m -≤⎧⎨+≥⎩,解得14m -≤≤, 所以整数m 的最大值为4.(3)由题意知,()ππππ2sin 2sin 2236g x f x x x ⎛⎫⎛⎫⎛⎫=-=-+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 将函数()g x 的图像上各点的横坐标缩短到原来的12倍(纵坐标不变), 得π2sin 26y x ⎛⎫=+ ⎪⎝⎭, 再向右平移π12个单位得()ππ2sin 22sin 2126h x x x ⎡⎤⎛⎫=-+= ⎪⎢⎥⎝⎭⎣⎦, 因为关于x 的方程()()1sin cos 02h x k x x -+=在区间π5π,1212⎡⎤-⎢⎥⎣⎦上有解,整理得: ()sin2sin cos 0x k x x -+=,即()2sin cos sin cos 0x x k x x -+=(*)在区间π5π,1212⎡⎤-⎢⎥⎣⎦上有解,令πsin cos 4t x x x ⎛⎫=+=+∈ ⎪⎝⎭⎣,(*)式可转化为:210t kt --=在2t ∈⎣内有解,所以1k t t =-,2t ∈⎣,又因为y t =和1y t =-在2t ∈⎣为增函数,所以1y t t =-在⎣为增函数,所以当2t =1k t t =-取得最小值2-t =1k t t =-取得最大值2,所以22k ⎡∈-⎢⎣⎦,综上所述:k 的取值范围为,22⎡-⎢⎣⎦.。
山东省潍坊市2020-2021学年高二上学期期中考试物理试题(含答案解析)

高二物注意事项: 1 .答题前,考生先将自己的学校、姓名、班级、座号、考号填涂在相应位置。
2 .选择题答案必须使用2B 铅笔(按填涂样例)正确填涂;非选择题答案必须使 用0.5毫米黑色签字笔书写,绘图时,可用2B 铅笔作答,字体工整、笔迹清楚。
3 .请按照题号在各题目的答题区域内作答,超出答题区域书写的答案无效;在草 稿纸、试题卷上答题无效。
保持卡面清洁,不折叠、不破损。
一、单项选择题:本题共8小题,每小题3分,共24分。
在每小题给出的四个选项中, 只有一项是符合题目要求的。
1 .我国是全球第一快递大国。
快递在运输易碎物品时,经常用泡沫塑料做填充物,这 是为了减小在搬运过程中A.物品受到的冲量B.物品的动量C.物品的动量变化量D.物品的动量变化率2 .四个定值电阻连成如图所示的电路。
此、R c 的规格为“6V6W”,A 八时的规格为“6V12W”。
将该电路接在输出电压的恒压电源上,贝IJA.乙的功率最大,为6W用 Rs r-1=3—1 R D B. % 的功率最小,为 0. 67WI -H =H 4 I-[=^~ C.七的功率最小,为L33WD. %的功率最大,为12W卜 U (> 3.甲、乙两物体质量分别为叫和“2,两物体碰撞前后运动的位移随时间变化的人一 图像如图所示,则在碰撞前 作A.乙的动能大吟 ___________ B.甲的动能大IZ C.乙的动量大 ----------- ;UcD.甲的动量大 4 .已知通电长宜导线产生的磁场中某点的磁感应强度与电流强度/成正比,与该点到直 导试卷类型:A2020. 11线的距离「成反比。
现有三根平行的通电长直导线4、C、。
,其中4、C导线中的电流大小为乙,。
导线中的电流大小为心。
与导线垂直的截面内的B点与4、C组成等腰直角三角形,。
处在4c的中点,电流方向如图,此时笈处的磁感应强度为零, 则下列说法正确的是A.27. = A I /B.@ =Z2C..4导线所受的磁场力向左D.若移走。
2020-2021学年度高一年级第一学期期中考试物理试题附解析

A. 运动的物体不可能受静摩擦力
B. 静止的物体可能受到滑动摩擦力
C. 静摩擦力方向一定与相对运动的趋势方向相反
D. 滑动摩擦力一定是物体运动的阻力
【答案】BC
10. 如图所示,一小滑块沿足够长的斜面以初速度v向上做匀减速直线运动,依次经A,B,C,D到达最高点E,已知AB=BD=6m,BC=1m,滑块从A到C和从C到D所用的时间都是2s。设滑块经C时的速度为vC,则( )
A. m/s
B. 滑块上滑过程中加速度的大小为0.5m/s2
C. DE=9m
D. 从C到E所用时间为6s
【答案】BD
11. 某汽车刹车后直至停止的位移—速度关系满足 ,其中x与v的单位分别是m和m/s。下列判断正确的是( )
A. 汽车刹车时的初速度为9m/s
B. 加速度大小为4m/s2
C. 汽车刹车后第7s初的速度大小为3m/s
A. 40mB. 80mC. 120mD. 160m
【答案】B
8. 以从塔顶由静止释放小球A的时刻为计时零点, 时刻又在与小球A等高的位置处,由静止释放小球B.若两小球都只受重力作用,设小球B下落时间为t,在两小球落地前,两小球间的高度差为 ,则 图线为( )
A. B.
C. D.
【答案】B
二、多项选择题(本题共4小题,每小题4分;在每小题给出的四个选项中,有多项符合题目要求;全部选对的得4分,选对但不全的得2分,有选错的得0分)
D. 胡克首先借助实验研究和逻辑推理得出自由落体运动规律
【答案】A
5. 一架飞机水平匀速飞行,飞机上掉下一个小铁球,若不计空气阻力和风力,小铁球离开飞机直至落地的过程中,下列说法正确的是( )
山东省潍坊市2020-2021学年高一上学期期中数学试题 (1)

山东省潍坊市2020-2021学年高一上学期期中数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知全集{}1,0,1,2U =-,{} 1,1A =-,则集合UA( )A .{0,2}B .{1,0}-C .{0,1}D .{1,2}2.命题“(0,)x ∃∈+∞,13x x+≥”的否定是( ) A .(0,)x ∃∈+∞,13x x +≤ B .(0,)x ∃∈+∞,13x x +< C .(0,)x ∀∈+∞,13x x+<D .(0,)x ∀∈+∞,13x x+≤3.设x ∈R ,则“|3|1x -<”是“2x >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件4.下列各式运算正确的是( ) A .245(1)(5)a a a a ++=++ B .222249(23)a ab b a b ++=+ C .()3322()a b a b a ab b+=+-+ D .()3322()a b a b a ab b-=--+5.已知()f x 是定义在R 上的偶函数,且在(0,)+∞是增函数,设(3)a f =-,()b f π=,(1)c f =-,则a ,b ,c 的大小关系是( )A .a c b <<B .c b a <<C .b a c <<D .c a b <<6.我国的烟花名目繁多,其中“菊花”烟花是最壮观的烟花之一.制造时一般是期望在它达到最高点时爆裂.如果烟花距地面的高度h (单位:m )与时间t (单位:s )之间的关系为2() 4.914.717h t t t =-++,那么烟花冲出后在爆裂的最佳时刻距地面高度约为( )A .26米B .28米C .30米D .32米7.对x R ∀∈,不等式()2214(2)02m x m x m -+-+>+恒成立,则实数m 的取值范围是( ) A .[2,6]B .[2,6){2}⋃-C .(,2)[2,6)-∞-⋃D .[2,6)8.读书能陶冶我们的情操,给我们知识和智慧.我国古代数学名著《算法统宗》中有以下问题:毛诗春秋周易书,九十四册共无余,毛诗一册三人读,春秋一册四人呼,周易五人读一本,要分每样几多书,就见学生多少数,请君布算莫踌躇.由此可推算,学生人数为( ) A .120B .130C .150D .1809.已知a ,b 为正实数,则下列判断中正确的个数是( )①若11a b <> ②若1a b +=,则14a b+的最小值是10; ③114a b a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭; ④函数11y a a =++的最小值为1. A .1B .2C .3D .410.定义在R 上的奇函数()f x 在[0,)+∞是减函数,且(2)1f -=,则满足1(1)1f x -≤-≤的x 的取值范围是( )A .[2,2]-B .[2,1]-C .[1,3]-D .[0,2]11.关于x 的方程225(9)20x a x a a -++--=的两根分别在区间(0,1)和(1,2)内,则实数a 的取值范围是( )A .(3,1)--B .(11)(3,1--⋃+C .(2,1)(2,3)--⋃D .(2,6)12.已知函数()f x 满足(2)(2)6f x f x -++=,31()2x g x x -=-,且()f x 与()g x 的图像交点为()11,x y ,()22,x y ,…,()88,x y ,则128128x x x y y y +++++++的值为( ) A .20 B .24 C .36 D .40二、填空题13.函数(11)f x x -的定义域是_______. 14.已知函数()f x 是定义域为R 的奇函数,当0x ≥时,()(1)f x x x =-,则(2)f -=________.15.已知不等式20ax bx c ++>的解集为{|26}x x <<,则不等式20cx bx a ++<的解集为________.16.在平面直角坐标系xOy 中,对于点(,)A a b ,若函数()y f x =满足:[1,1]x a a ∀∈-+,都有[1,1]y b b ∈-+,则称这个函数是点A 的“界函数”.已知点(,)B m n 在函数212y x =-的图像上,若函数212y x =-是点B 的“界函数”,则m 的取值范围是________.三、解答题17.已知集合{|26}A x x =-≤≤,{|35}B x x =-≤≤. (1)求AB ,A B ;(2)若{|121}C x m x m =+≤≤-,()C A B ⊆,求实数m 的取值范围.18.已知函数2()(0)1x af x a x -=>+,若不等式()1f x ≥-的解集为(,1)[0,)-∞-+∞. (1)求实数a 的值;(2)证明函数()f x 在[0,)+∞上是增函数.19.已知函数223,(02)()43,(2)x x f x x x x -+≤<⎧=⎨-+≥⎩,()(||)F x f x =.(1)判断()F x 的奇偶性,在给定的平面直角坐标系中,画出函数()F x 的大致图像;并写出该函数的单调区间;(2)若函数()()H x F x t =-有两个零点,求t 的取值范围. 20.已知函数2()(1)()f x x a x a a R =+--∈. (1)解关于x 的不等式()0f x <;(2)若[1,1]a ∀∈-,()0f x ≥恒成立,求实数x 的取值范围.21.第二届中国国际进口博览会于2021年11月5日至10日在上海国家会展中心举行,来自151个国家和地区的3617家企业参展,规模和品质均超过首届.更多新产品、新技术、新服务“全球首发,中国首展”,专(业)精(品)尖(端)特(色)产品精华荟萃.某跨国公司带来了高端空调模型参展,通过展会调研,中国甲企业计划在2021年与该跨国公司合资生产此款空调.生产此款空调预计全年需投入固定成本260万元,每生产x 千台空调,需另投入资金()R x 万元,且2210,040()901945010000,40x ax x R x x x x x ⎧+<<⎪=⎨-+≥⎪⎩.经测算生产10千台空调需另投入的资金为4000万元.由调研知,每台空调售价为0.9万元时,当年内生产的空调当年能全部销售完.(1)求2021年的企业年利润()W x (万元)关于年产量x (千台)的函数关系式; (2)2021年产量为多少(千台)时,企业所获年利润最大?最大年利润是多少?注:利润=销售额–成本22.已知二次函数()y f x =满足:①x R ∀∈,有(1)(1)f x f x --=-+;②(0)3f =-;③()y f x =的图像与x 轴两交点间距离为4. (1)求()y f x =的解析式;(2)记()()5g x f x kx =++,[1,2]x ∈-. ①若()g x 为单调函数,求k 的取值范围;②记()g x 的最小值为()h k ,讨论()24h t λ-=的零点个数.参考答案1.A 【分析】利用集合补集的性质直接求解即可 【详解】由于{}1,0,1,2U =-,{} 1,1A =-,所以,UA {0,2}故选A 2.C 【分析】根据特称命题的否定是全称命题的知识,选出正确选项. 【详解】原命题是特称命题,其否定是全称命题,注意到要否定结论,故C 选项正确. 故选C. 【点睛】本小题主要考查特称命题的否定是全称命题,属于基础题. 3.A 【分析】求得不等式|3|1x -<的解集,由此判断出充分、必要条件. 【详解】由|3|1x -<得131x -<-<,即24x <<,所以“|3|1x -<”是“2x >” 充分不必要条件. 故选A. 【点睛】本小题主要考查充分、必要条件的判断,考查绝对值不等式的解法,属于基础题. 4.C 【分析】利用乘法分配律和立方和、立方差公式,判断出正确选项. 【详解】对于A 选项,右边265a a =++≠左边,故A 选项错误.对于B 选项,右边224129a ab b =++≠左边,故B 选项错误. 对于C 选项,根据立方和公式可知,C 选项正确.对于D 选项,根据立方差公式可知,正确的运算是()3322()a b a b a ab b -=-++,故D选项错误. 故选:C. 【点睛】本小题主要考查乘法分配律,立方和、立方差公式,考查因式分解,属于基础题. 5.D 【分析】利用函数的奇偶性化简,a c ,再根据单调性比较出三者的大小关系. 【详解】由于()f x 是偶函数,故()()()()33,11a f f c f f =-==-=.由于()f x 在(0,)+∞是增函数,所以()()()13πf f f <<,即c a b <<. 故选:D. 【点睛】本小题主要考查利用函数的奇偶性、单调性比较大小,属于基础题. 6.B 【分析】利用配方法求得()h t 的最大值,也即烟花冲出后在爆裂的最佳时刻距地面高度. 【详解】依题意2() 4.914.717h t t t =-++234.928.0252t ⎛⎫=--+ ⎪⎝⎭,故当32t =时,()max 28.02528m h t =≈.故选B. 【点睛】本小题主要考查二次函数最大值的求法,考查函数在生活中的应用,属于基础题. 7.D 【分析】对m 分成2m =和2m ≠且2m ≠-两种情况,结合一元二次不等式恒成立,求得的m 的取值范围. 【详解】当2m =时,原不等式化为104>恒成立. 当2m ≠且2m ≠-时,要使对x R ∀∈,不等式()2214(2)02m x m x m -+-+>+恒成立,则需()()22240124402m m m m ⎧->⎪⎨∆=---⋅<⎪+⎩即()()()()220260m m m m ⎧+->⎪⎨--<⎪⎩,解得26m <<. 综上所述,m 的取值范围是[2,6). 故选:D. 【点睛】本小题主要考查一元二次不等式恒成立问题的求解,考查分类讨论的数学思想方法,属于基础题. 8.A 【分析】设出3种书每本的数量,设出学生人数,根据已知条件列方程组,解方程组求得学生人数. 【详解】设毛诗x 本,春秋y 本,周易z 本,学生人数为m ,则94345x y z mxm y mz++=⎧⎪⎪=⎪⎪⎨=⎪⎪⎪=⎪⎩, 解得120403024m x y z =⎧⎪=⎪⎨=⎪⎪=⎩. 故选A. 【点睛】本小题主要考查中国古代数学文化,考查方程的思想,属于基础题. 9.B 【分析】对四个判断逐一分析,由此确定判断正确的个数.对于①,由于0,0a b >>,由11a b <,得110b a a b ab--=<,即0a b >>>以①正确.对于②,由于0,0a b >>,()14144559b a a b a b a b a b ⎛⎫+=++=++≥+= ⎪⎝⎭,当且仅当42,23b a b a a b ===时等号成立,故②错误. 对于③,由于0,0a b >>,所以112,2a b a b+≥+≥,根据不等式的性质,有114a b a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭,故③正确.对于④,由于0,0a b >>,所以1111121111y a a a a =+=++-≥=-=++,但是由于111a a +=+时,0a =或2a =-,不符合题意,故等号不成立.所以④错误.综上所述,正确的判断个数为2个. 故选B. 【点睛】本小题主要考查不等式的性质,考查基本不等式的运用,属于基础题. 10.C 【分析】根据奇函数的性质,求得不等式1(1)1f x -≤-≤的解集. 【详解】由于()f x 是奇函数,故()()221f f =--=-.由于奇函数()f x 在[0,)+∞是减函数,所以()f x 在R 上是减函数.由1(1)1f x -≤-≤得()()()212f f x f ≤-≤-,所以212x ≥-≥-,解得13x -≤≤.故选C. 【点睛】本小题主要考查利用函数的奇偶性和单调性解不等式,属于基础题.【分析】构造函数()225(9)2f x x a x a a =-++--,根据()f x 零点分布列不等式组,解不等式组求得a 的取值范围. 【详解】构造二次函数()225(9)2f x x a x a a =-++--,其开口向上.依题意,()f x 的零点分别在区间(0,1)和(1,2)内,所以()()()001020f f f ⎧>⎪<⎨⎪>⎩,即()()222205920202920a a a a a a a a ⎧-->⎪-++--<⎨⎪-++-->⎩,解得(11)(3,1a ∈-⋃+. 故选:B. 【点睛】本小题主要考查根据一元二次方程根的分布求参数的取值范围,考查一元二次不等式的解法,属于基础题. 12.D 【分析】根据已知条件判断()f x 和()g x 都关于()2,3中心对称,由此求得128128x x x y y y +++++++的值.【详解】由于()f x 满足(2)(2)6f x f x -++=,当0x =时,()23f =,所以()f x 关于()2,3中心对称.由于()325315()3222x x g x x x x -+-===+---,所以()g x 关于()2,3中心对称.故()f x 和()g x 都关于()2,3中心对称.所以()f x 与()g x 的图像交点()11,x y ,()22,x y ,…,()88,x y ,两两关于()2,3对称.所以128128x x x y y y +++++++828340=⨯+⨯=.故选:D. 【点睛】本小题主要考查函数图像的对称性,考查化归与转化的数学思想方法,属于基础题.13.[2,1)(1,)-+∞【分析】要使函数()f x 有意义,只需2010x x +⎧⎨-≠⎩,解此不等式组即可.【详解】解:要使函数()f x 有意义,须有2010x x +⎧⎨-≠⎩,解得2x -,且1x ≠,故函数()f x 的定义域为:{|2x x -,且1}x ≠, 故答案为:[2,1)(1,)x ∈-+∞.【点睛】本题考查函数定义域的求解,属基础题,若函数为偶次根式,被开放数须大于等于0;若函数为分式,分母必不为0. 14.2 【分析】根据函数的奇偶性求得()2f -的值.【详解】由于()f x 是奇函数,故()()()222122f f -=-=--=⎡⎤⎣⎦. 故答案为:2. 【点睛】本小题主要考查利用函数的奇偶性求函数值,属于基础题. 15.{1|6x x <或12x ⎫>⎬⎭.【分析】根据20ax bx c ++>的解集写出根与系数关系,由此求得不等式20cx bx a ++<的解集. 【详解】由于不等式20ax bx c ++>的解集为{|26}x x <<,所以0a <,2682612b a c a⎧-=+=⎪⎪⎨⎪=⨯=⎪⎩,即812b a c a=-⎧⎨=⎩,所以不等式20cx bx a ++<可化为21280ax ax a -+<,由于0a <,所以21280ax ax a -+<可化为212810x x -+>,即()()21610x x -->,解得16x <或12x >. 故答案为{1|6x x <或12x ⎫>⎬⎭. 【点睛】本小题主要考查一元二次不等式的解法,考查化归与转化的数学思想方法,考查运算求解能力,属于基础题.16.11,22⎡⎤-⎢⎥⎣⎦ 【分析】对m 分成1,11,1m m m ≤--<<≥三种情况,结合[1,1]x m m ∀∈-+,都有[1,1]y n n ∈-+进行分类讨论,由此求得m 的取值范围.【详解】 函数212y x =-开口向下,对称轴为y 轴.由于B 在函数212y x =-的图像上,所以212n m =-.依题意[1,1]x m m ∀∈-+,都有[1,1]y n n ∈-+,即:[1,1]x m m ∀∈-+,都有22[11122,1]y m m --∈-+. 当10m +≤,即1m ≤-时,函数212y x =-在[1,1]m m -+上递增,最小值为()2112m --,最大值为()2112m -+,所以()()2222111111211222m m m m ---<-+≤--≤+,此不等式在1m ≤-时无解.当101m m -<<+,即11m -<<时,函数212y x =-在[1,1]m m -+上,最大值为0,最小值在区间[1,1]m m -+的端点取得,故()()222222221110122111111222111111222m m m m m m m m ⎧--≤≤-+⎪⎪⎪--≤--≤-+⎨⎪⎪--≤-+≤-+⎪⎩,解得1122m -≤≤. 点10m -≥,即m 1≥时,函数212y x =-在[1,1]m m -+上递减,最小值为()2112m -+,最大值为()2112m --,所以()()2222111111211222m m m m --+<--≤--≤+,此不等式在m 1≥时无解.综上所述,m 的取值范围是11,22⎡⎤-⎢⎥⎣⎦. 故答案为11,22⎡⎤-⎢⎥⎣⎦ 【点睛】本小题主要考查新定义函数的理解,考查分类讨论的数学思想方法,考查不等式的解法,属于中档题.17.(1){|25}A B x x ⋂=-≤≤,{|36}A B x x ⋃=-≤≤(2)3m ≤【分析】(1)根据交集、并集的知识,求得A B ,A B . (2)根据(1)得到A B ,对C 分成C =∅和C ≠∅两种情况,结合()C A B ⊆进行分类讨论,由此求得m 的取值范围.【详解】(1)由已知可得{|25}A B x x ⋂=-≤≤,{|36}A B x x ⋃=-≤≤.(2)由(1)知{|25}A B x x ⋂=-≤≤.由于()C AB ⊆,①若C =∅,则121m m +>-,∴2m <;②若C ≠∅,则12112215m m m m +≤-⎧⎪+≥-⎨⎪-≤⎩,解得23m ≤≤,综上可得3m ≤.【点睛】本小题主要考查集合交集和并集的概念和运算,考查根据集合的包含关系求参数,属于基础题.18.(1)1a =;(2)证明见解析.【分析】(1)化简不等式()1f x ≥-为整式形式,根据不等式()1f x ≥-的解集,求得a 的值.(2)利用函数单调性的定义,计算()()210f x f x ->,由此证得函数()f x 在[0,)+∞上是增函数.【详解】(1)由题意211x a x -≥-+, 变形2311011x a x a x x --++=≥++, 等价于(31)(1)0x a x -++≥且10x +≠,解得1x <-或13a x -≥, 所以103a -=,解得1a =. (2)由(1)得21()1x f x x -=+, 任取12,[0,)x x ∈+∞,且12x x <,则210x x ->,那么()()()()()2121212112321211111x x x x f x f x x x x x ----=-=++++, ∵210x x ->,()()12110x x ++>,∴()()210f x f x ->,∴函数()f x 在[0,)+∞上是增函数.【点睛】本小题主要考查分式不等式的解法,考查利用函数单调性的定义证明函数单调性,属于基础题.19.(1)()F x 在R 上是偶函数,增区间为(2,0)-,(2,)+∞,递减区间为:(,2)-∞-,(0,2),图像见解析;(2)3t >或1t =-【分析】(1)利用奇偶性的定义,判断出()F x 为偶函数,根据函数()f x 的解析式以及()F x 图像的对称性,画出()F x 的图像,根据图像写出()F x 的单调区间.(2)令()()0H x F x t =-=,()F x t =,结合()F x 图像与y t =的图像有两个交点,求得t 的取值范围.【详解】(1)由题意知()F x 定义域为R ,关于原点对称,又()(||)(||)()F x f x f x F x -=-==,∴()F x 在R 上是偶函数.函数()F x 的大致图像如下图:观察图像可得:函数()F x 的单调递增区间为:(2,0)-,(2,)+∞,单调递减区间为:(,2)-∞-,(0,2).(2)当()()H x F x t =-有两个零点时,即()F x 的图像与直线y t =图像有两个交点,观察函数图像可得3t >或1t =-.【点睛】本小题主要考查函数奇偶性,考查函数图像的对称性,考查函数零点问题的求解策略,考查20.(1)当1a <-时,不等式的解集为(,1)a -;当1a =-时,不等式的解集为∅;当1a >-时,不等式的解集为(1,) a -;(2){|1x x ≤-或}1x ≥.【分析】(1)将不等式()0f x <左边因式分解,将a 分成1,1,1a a a <-=->-三种情况分类讨论,结合一元二次不等式的解法,求得不等式()0f x <的解集.(2)变换主参变量,将“[1,1]a ∀∈-,()0f x ≥恒成立”转化为一次函数在区间[]1,1-上恒大于零,列不等式组来求解得x 的取值范围.【详解】(1)不等式2(1)0x a x a +--<等价于 ()(1)0x a x -+<,当1a <-时,不等式的解集为(,1)a -;当1a =-时,不等式的解集为∅;当1a >-时,不等式的解集为(1,)a -.(2)22(1)(1)x a x a a x x x +--=-+++,设2()(1),[1,1]g a a x x x a =-+++∈-,要使()0g a ≥在[1,1]a ∈-上恒成立, 只需(1)0(1)0g g -≥⎧⎨≥⎩, 即22210,10,x x x ⎧++≥⎨-≥⎩解得1x ≥或1x ≤-,所以x 的取值范围为{|1x x ≤-或}1x ≥.【点睛】本小题主要考查一元二次不等式的解法,考查不等式恒成立问题的求解策略,考查分类讨论的数学思想方法,考查化归与转化的数学思想方法,属于中档题.21.(1)2210600260,040()919010000,40x x x W x x x x x ⎧-+-<<⎪=⎨-+-≥⎪⎩(2)2021年产量为100(千台)时,企业所获利润最大,最大利润是8990万元【分析】(1)利用()104000R =求得a 的值.利用销售额减去固定成本和()R x ,求得利润()W x 的函数关系式.(2)结合二次函数的性质、基本不等式,求得当x 为何值时,()W x 取得最大值.【详解】(1)由题意2(10)1010104000R a =⨯+=,所以300a =,当040x <<时,()22()9001030026010600260W x x x x x x =-+-=-+-; 当40x ≥时, 22901945010000919010000()900260x x x x W x x x x-+-+-=--=, 所以2210600260,040()919010000,40x x x W x x x x x ⎧-+-<<⎪=⎨-+-≥⎪⎩. (2)当040x <<,2()10(30)8740W x x =--+当30x =时,max ()8740W x = 当40x ≥,29190100001000010000()91909190x x W x x x x x x -+-⎛⎫==--+=-++ ⎪⎝⎭, 因为0x >,所以10000200x x +≥=, 当且仅当10000x x=时,即100x =时等号成立, 此时()20091908990W x ≤-+=,所以max ()8990W x =万元,因为87408990<,所以2021年产量为100(千台)时,企业所获利润最大,最大利润是8990万元.【点睛】本小题主要考查分段函数在实际生活中的应用,考查分段函数求最值的方法,属于中档题.22.(1)2()23f x x x =+-(2)①0k ≥或6k ≤-;②2λ>时无零点;12λ<<时,有4个零点,1λ=时,有3个零点,2λ=或1λ<时,有2个零点【分析】(1)设出二次函数解析式,根据已知条件得到二次函数对称轴、与y 轴交点、根与系数关系,由此列方程组,解方程组求得二次函数解析式(2)①求得()g x 解析式,根据其对称轴与区间[1,2]-的位置关系,求得k 的取值范围. ②将k 分成0k ≥,60k -<<,6k ≤-三种情况,结合()g x 的单调性,求得()h k 的表达式,利用换元法:令244m t =-≥-,即()(4)h m m λ=≥-,结合()h m 的图像对λ进行分类讨论,由此求得()24h t λ-=的零点个数.【详解】(1)设2()(0)f x ax bx c a =++≠,由题意知对称轴12b x a=-=-;① (0)3f c ==-;②设()0f x =的两个根为1x ,2x ,则12b x x a +=-,12c x x a=,124x x -===;③ 由①②③解得1a =,2b =,3c =-,∴2()23f x x x =+-.(2)①2()(2)2g x x k x =+++,其对称轴22k x +=-. 由题意知:212k +-≤-或222k +-≥, ∴0k ≥或6k ≤-.② 1)当0k ≥时,对称轴212k x +=-≤-,()g x 在[1,2]-上单调递增,()(1)1h k g k =-=-+,2)当60k -<<时,对称轴2(1,2)2k x +=-∈-,2244()24k k k h k g +--+⎛⎫=-= ⎪⎝⎭, 3)当6k ≤-时,对称轴222k x +=-≥,()g x 在[1,2]-单调递减, ()(2)210h k g k ==+, ∴21,0,44(),604210, 6.k k k k h k k k k -+≥⎧⎪--+⎪=-<<⎨⎪+≤-⎪⎩, 令244m t =-≥-,即()(4)h m m λ=≥-,画出()h m 简图,i )当1λ=时,()1h m =,4m =-或0,∴244t -=-时,解得0t =,240t -=时,解得2t =±,有3个零点.ii )当1λ<时,()h m λ=有唯一解10m >,2140t m -=>,t =2个零点.iii )当12λ<<时,()h m λ=有两个不同的零点2m ,3m ,且23,(4,2)(2,0)m m ∈--⋃-,2340,40m m +>+>,∴224t m -=时,解得t =234t m -=时,解得t =4个不同的零点.iv )当2λ=时,()2h m =,224m t =-=-,∴t =有2个零点.v )当2λ>时,()h m λ=无解.综上所得:2λ>时无零点;12λ<<时,有4个零点;1λ=时,有3个零点;2λ=或1λ<时,有2个零点.【点睛】本小题主要考查根据二次函数的性质求得二次函数解析式,考查含有参数的二次函数在给定区间上的单调性讨论问题,考查函数零点问题的求解策略,考查数形结合的数学思想方法,属于中档题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021学年山东省潍坊市高一上学期期中考试物理试卷一.选择题(共12小题,满分48分)
1.下面叙述情境中的物体可以被当作质点的有()
A.拍摄在天空展翅翱翔的雄鹰
B.研究如何将足球踢出“香蕉球”
C.测量列车在平直轨道上运动的速度
D.研究内部结构的分子
【解答】解:A、拍摄在天空展翅翱翔的雄鹰时要注意雄鹰的姿态,故不能视为质点,故A错误;
B、研究如何将足球踢出“香蕉球”时,要分析球的大小和形状,故不能视为质点,故B
错误;
C、测量列车在平直轨道上运动的速度时,列车的大小和形状可以忽略,故可以视为质点,
故C正确;
D、研究内部结构的分子时,分子的大小和形状不能忽略,故不能视为质点,故D错误。
故选:C。
2.某班教室有前后两个门,一次课间活动时,该班的甲、乙两同学(均视为质点)同时出教室前门去室外各自活动,活动后又同时从后门进入教室。
则从出教室到进教室这段时间内,两同学一定相同的物理量是()
A.路程B.平均速度
C.出教室门时的速度D.进教室门时的速度
【解答】解:B、根据题目我能确定的就是初末位置相同,位移相等,时间相同,所以平均速度相等,故B正确;
A、路程为运动轨迹长度,不确定,故A错误;
CD、进出教室门时的速度为瞬时速度,不确定,故CD错误;
故选:B。
3.(4分)下列说法正确的是()
A.速度的变化量越大,则加速度就越大
B.物体在某时刻速度为零,其加速度也一定为零
C.当物体沿直线朝一个方向运动时,位移就是路程
D.速度变化率小,速度一定变化慢
【解答】解:A、根据加速度的定义式a=△v
△t,加速度等于速度的变化率。
物体的速度变
化量大,加速度不一定大,故A错误;
B、加速度等于速度的变化率,物体在某时刻速度为零,其加速度不一定为零,故B错
误;
C、位移是矢量,路程是标量,两者不能等同,不能说位移就是路程,故C错误;
D、加速度等于速度的变化率,速度变化率小,速度一定变化慢,故D正确。
故选:D。
4.(4分)在下列图象中,描述质点做匀速直线运动的是()
A.B.
C.D.
【解答】解:A、图中速度随时间不变,即匀速直线运动,故A正确;
B、图中速度随时间均匀增加,匀加速直线运动,故B错误;
C、图中速度随时间均匀减小,匀减速直线运动,故C错误;
D、图中v﹣t图线的斜率不断增大,表示加速度不断增大的直线运动,故D错误;
故选:A。
5.(4分)观察图中的烟和小旗,关于甲、乙两车相对于房子的运动情况,下列说法正确的是()
A.乙车一定向左运动且速度小于风速
B.甲车一定向左运动且速度小于风速
C.甲车一定是静止的
D.甲车可能向左运动,这时甲车的速度一定小于风。