多元统计分析

合集下载

多元统计分析学习心得总结5则范文(二篇)

多元统计分析学习心得总结5则范文(二篇)

多元统计分析学习心得总结5则范文多元统计分析是一门数据分析的重要方法,通过对多个变量进行联合分析,可以揭示出变量之间的关系和趋势。

在学习过程中,我深感这门课程的重要性和复杂性。

下面是我对多元统计分析学习的心得总结。

第一则:多元统计分析的基础知识多元统计分析的基础知识包括线性回归分析、相关分析、主成分分析和因子分析等。

这些方法都是在已知的统计学基础上进行推导和发展的,因此理论上是可靠的。

通过学习这些基础知识,我对多元统计分析有了初步的了解,能够理解其背后的原理和应用。

第二则:多元统计分析的应用领域多元统计分析广泛应用于各个领域,如经济学、社会学、心理学等。

在实际应用中,多元统计分析可以帮助我们寻找变量之间的关系,预测未来的趋势和结果。

例如,在经济学中,多元统计分析可以帮助我们分析经济数据,预测未来的经济发展趋势;在社会学中,多元统计分析可以帮助我们分析社会调查数据,了解人们的行为和态度。

第三则:多元统计分析的数据处理多元统计分析需要处理大量的数据,因此数据处理是十分重要的一个环节。

在数据处理过程中,我们需要进行数据清洗、数据转换和数据归一化等操作,以保证数据的质量和准确性。

同时,我们还需要进行变量选择和模型建立,以选择最合适的变量和模型来进行分析。

第四则:多元统计分析的模型解读在多元统计分析中,我们通常使用的是线性模型和非线性模型。

这些模型可以帮助我们理解变量之间的关系和趋势。

在进行模型解读时,我们需要分析模型的系数和显著性检验,以确定变量之间的影响力和有效性。

通过模型解读,我们可以得出结论和推断,并作出相应的决策。

第五则:多元统计分析的局限和不确定性多元统计分析虽然是一种强大的工具,但也存在一些局限性和不确定性。

首先,多元统计分析的结果受到样本选择和样本数量的影响,因此结果可能存在一定的误差。

其次,多元统计分析只能从观测数据中找出变量之间的关系,但不能证明因果关系。

最后,多元统计分析只能提供定量分析的结果,而不能考虑到定性因素的影响。

研究生数学教案:多元统计分析方法介绍

研究生数学教案:多元统计分析方法介绍

研究生数学教案:多元统计分析方法介绍
1. 引言
1.1 概述
研究生数学教育一直以来都是培养学生的数学思维、分析能力和解决问题的能力的重要环节之一。

多元统计分析方法作为一种强大的数学工具,被广泛应用于各个领域的研究与实践中,可以帮助研究者在面对复杂数据时提取有用信息、进行统计推断和预测模型建立等方面发挥重要作用。

1.2 文章结构
本文将从以下几个方面介绍多元统计分析方法:
(1)概述多元统计分析方法的基本概念和应用领域;
(2)介绍主成分分析法及其在数据降维和特征提取中的应用;
(3)详细讲解聚类分析方法,并探讨其在数据分类和模式识别中的应用;(4)阐述判别分析方法,并说明其在区分不同样本群体中起到的重要作用;(5)探索因子分析法并讨论其在求解变量之间关系以及数据降维方面所起到的作用。

1.3 目的
本文旨在向研究生们全面介绍多元统计分析方法的概念、原理和应用,帮助读者
了解多元统计分析方法在实际问题中的具体作用,并能够灵活运用这些方法进行数据分析与处理。

通过本文的阅读和学习,读者将能够更深入地理解多元统计分析的思想,为今后的研究工作提供有力支持。

同时,本文还将为教师们提供一份可供参考的研究生数学教案,以促进教学效果的提升。

以上就是本文引言部分的内容。

通过对多元统计分析方法展开讲解,我们将逐步深入了解其各个方面的知识和应用案例。

在剩下的部分中,我们将详细介绍主成分分析法、聚类分析法、判别分析法和因子分析法等内容。

请继续阅读后续章节以获取更多相关知识。

多元统计分析回归分析

多元统计分析回归分析

03
多元线性回归分析
多元线性回归模型的建立
确定自变量和因变量
01
在建立多元线性回归模型时,首先需要明确哪些变量是自变量
(解释变量),哪些是因变量(响应变量)。
确定模型形式
02
根据研究目的和数据特征,选择合适的多元线性回归模型形式,
如线性、多项式、逻辑回归等。
确定模型参数
03
根据选择的模型形式,确定模型中的参数,如回归系数、截距
04
多元非线性回归分析
多元非线性回归模型的建立
确定因变量和自变量
首先需要确定回归分析中的因变量和自变量, 并收集相关数据。
确定模型形式
根据理论或经验,选择合适的非线性函数形式 来表示自变量与因变量之间的关系。
确定模型参数
根据数据,使用适当的方法确定模型中的参数。
多元非线性回归模型的参数估计
01
详细描述
在社会调查中,回归分析可以帮助研究者了解不同因素对人类行为的影响,例如 教育程度、收入、性别等因素对个人幸福感的影响。通过回归分析,可以揭示变 量之间的关联和因果关系,为政策制定和社会干预提供科学依据。
生物医学数据的回归分析
总结词
生物医学数据的回归分析是多元统计分析在生命科学领域的应用,用于研究生物标志物和疾病之间的 关系。
详细描述
在经济领域,回归分析被广泛应用于股票价格、通货膨胀率 、GDP等经济指标的分析和预测。通过建立回归模型,可以 分析不同经济变量之间的因果关系,为政策制定者和投资者 提供决策依据。
社会调查数据的回归分析
总结词
社会调查数据的回归分析是多元统计分析在社会科学领域的应用,用于研究社会 现象和人类行为。
特点
多元统计分析具有多维性、复杂性和实用性。它可以处理多个变量之间的交互 作用和综合效应,广泛应用于各个领域,如经济学、社会学、生物学等。

多元统计数据分析报告(3篇)

多元统计数据分析报告(3篇)

第1篇一、引言随着大数据时代的到来,数据量急剧增加,传统的统计分析方法已无法满足复杂数据关系的挖掘需求。

多元统计分析作为一种处理多个变量之间关系的方法,在社会科学、自然科学、工程技术等领域得到了广泛应用。

本报告旨在通过对某研究项目的多元统计分析,揭示变量之间的关系,为决策提供科学依据。

二、研究背景与目的本研究以某企业员工绩效评估数据为研究对象,旨在通过多元统计分析方法,探究员工绩效与个人特质、工作环境等因素之间的关系,为企业人力资源管理部门提供决策支持。

三、数据与方法1. 数据来源本研究数据来源于某企业员工绩效评估系统,包括员工的基本信息、个人特质、工作环境、绩效评分等。

2. 研究方法本研究采用以下多元统计分析方法:(1)描述性统计分析:对员工绩效、个人特质、工作环境等变量进行描述性统计分析,了解数据的分布情况。

(2)相关分析:分析变量之间的线性关系,找出相关系数较大的变量对。

(3)因子分析:将多个变量归纳为少数几个因子,揭示变量之间的内在关系。

(4)聚类分析:将员工根据绩效、个人特质、工作环境等因素进行分类,分析不同类别员工的特点。

(5)回归分析:建立员工绩效与个人特质、工作环境等因素之间的回归模型,分析各因素对绩效的影响程度。

四、数据分析结果1. 描述性统计分析通过对员工绩效、个人特质、工作环境等变量的描述性统计分析,得出以下结论:(1)员工绩效评分呈正态分布,平均绩效评分为75分。

(2)个人特质得分集中在中等水平,其中创新能力得分最高,稳定性得分最低。

(3)工作环境得分普遍较高,其中工作压力得分最低。

2. 相关分析通过对员工绩效、个人特质、工作环境等变量进行相关分析,得出以下结论:(1)绩效与创新能力、稳定性、工作环境等因素呈正相关。

(2)创新能力与稳定性呈负相关。

3. 因子分析通过对员工绩效、个人特质、工作环境等变量进行因子分析,得出以下结论:(1)提取了3个因子,分别对应创新能力、稳定性、工作环境。

多元统计分析

多元统计分析

多元统计分析在实际研究和应用中,我们经常需要处理多个变量之间的关系。

为了更好地理解变量之间的相互关系,以及变量对总体的影响程度,多元统计分析成为了一种重要的方法。

多元统计分析可以帮助我们更全面、准确地理解数据,进而得到更深入的结论。

一、多元统计分析的基本概念多元统计分析是一种研究多个变量之间关系的统计学方法。

它广泛应用于社会科学、医学、经济学等领域,帮助研究人员深入探究变量之间的相互作用。

在多元统计分析中,我们通常关注的是多个自变量对一个因变量的影响。

为了实现这一目标,我们需要构建统计模型,通过假设检验、回归分析等方法,来揭示自变量对因变量的解释程度。

二、多元统计分析的方法多元统计分析可以使用多个方法来揭示变量之间的关系。

下面介绍几种常见多元统计分析方法:1. 多元方差分析(MANOVA):多元方差分析是一种广义的方差分析方法,用于比较两个或多个组别在多个因变量上的差异。

它可以同时分析多个因变量,并考虑它们的相互关系。

2. 因子分析:因子分析是一种用于研究变量之间潜在关系的分析方法。

它可以帮助我们简化数据结构、发现潜在变量,并解释这些潜在变量对原始变量的影响。

3. 聚类分析:聚类分析是一种将样本或变量分为不同组别的方法。

通过聚类分析,我们可以发现样本或变量之间的相似性和差异性,帮助我们更好地理解数据结构。

4. 判别分析:判别分析是一种有监督的多元统计分析方法,用于预测或分类。

它可以根据已知的类别信息,来预测新的样本所属类别。

以上只是多元统计分析的一部分方法,每种方法都有其特点和应用领域。

研究人员可以根据具体的问题和数据类型选择合适的方法。

三、多元统计分析的应用多元统计分析可以应用于各个领域的研究和实践中。

以下介绍几个常见的应用领域:1. 社会科学研究:在社会科学领域,多元统计分析可以帮助研究人员揭示不同自变量对社会现象的影响程度,进而深入理解社会现象的机制。

2. 医学研究:在医学研究中,多元统计分析可以帮助医生和研究人员探究不同变量对疾病的影响,寻找治疗方案或预测疾病风险。

应用统计学课件:实用多元统计分析

应用统计学课件:实用多元统计分析

在线性回归分析中,自变量可以是连续的或离散的,因变量通常是连续的。
线性回归分析的假设包括误差项的独立性、同方差性和无偏性等。
线性回归分析的优点是简单易懂,可以用于解释自变量和因变量之间的关系,并且可以通过回归系数来度量自变量对因变量的影响程度。
非线性回归分析
非线性回归分析是指自变量和因变量之间存在非线性关系的回归分析方法。
详细描述
数据的收集与整理
总结词
描述性统计量是用来概括和描述数据分布特性的统计指标。
详细描述
描述性统计量包括均值、中位数、众数、标准差、方差等统计指标,以及偏度和峰度等统计量。这些统计量可以帮助我们了解数据的分布情况,如数据的集中趋势、离散程度和形状等。通过对这些统计量的计算和分析,可以进一步了解数据的特征和规律。
DBSCAN聚类分析
06
多元数据判别分析
基于距离度量的分类方法,通过最大化类间差异、最小化类内差异进行分类。
Fisher判别分析是一种线性判别分析方法,通过投影将高维数据降到低维空间,使得同一类别的数据尽可能接近,不同类别的数据尽可能远离。它基于距离度量,通过最大化类间差异、最小化类内差异进行分类。
数据的可视化方法
03
多元数据探索性分析
数据的相关性分析
总结词:通过计算变量间的相子分析用于探索隐藏在变量之间的潜在结构,即公共因子。
04
多元数据回归分析
线性回归分析
A
B
D
C
线性回归分析是一种常用的回归分析方法,通过建立自变量和因变量之间的线性关系,来预测因变量的取值。
01
02
03
04
05
多元统计分析的定义与特点
社会学
心理学

《多元统计分析》课件

《多元统计分析》课件

采用L1正则化,通过惩罚项来选择最重要 的自变量,实现特征选择和模型简化。
比较
应用场景
岭回归适用于所有自变量都对因变量有影 响的情况,而套索回归更适用于特征选择 和模型压缩。
适用于数据集较大、自变量之间存在多重 共线性的情况,如生物信息学数据分析、 市场细分等。
主成分回归与偏最小二乘回归
主成分回归
适用于自变量之间存在多重 共线性的情况,同时要求高 预测精度,如金融市场预测 、化学计量学等。
06 多元数据的典型相关分析
典型相关分析的基本思想
01
典型相关分析是一种研究多个 随机变量之间相关性的多元统 计分析方法。
02
它通过寻找一对或多个线性组 合,使得这些线性组合之间的 相关性达到最大或最小,从而 揭示多个变量之间的关系。
原理
基于最小二乘法原理,通过最小化预 测值与实际值之间的平方误差来估计 回归系数。
应用场景
适用于因变量与自变量之间存在线性 关系的情况,如预测房价、股票价格 等。
注意事项
需对自变量进行筛选和多重共线性诊 断,以避免模型的不稳定性和误差。
岭回归与套索回归
岭回归
套索回归
是一种用于解决多重共线性的回归方法, 通过引入一个小的正则化项来稳定系数估 计。
层次聚类
01
步骤
02
1. 将每个数据点视为一个独立的集群。
2. 计算任意两个集群之间的距离或相似度。
03
层次聚类
01 3. 将最相近的两个集群合并为一个新的集群。 02 4. 重复步骤2和3,直到满足终止条件(如达到预
设的集群数量或最大距离阈值)。
03 应用:适用于探索性数据分析,帮助研究者了解 数据的分布和结构。

多元统计分析笔记附实例

多元统计分析笔记附实例

多元统计分析笔记附实例1.主成分分析,因⼦分析,对应分析可以⽤来简化数据结构⼜不会损失太多信息2.聚类分析和判别分析是对所考察的变量按相似程度进⾏分类。

3.回归分析⽤来判断⼀些变量的变化是不是依赖于另外⼀些变量的变化,如果是,建⽴变量之间的定量关系式,并⽤于预测4.典型相关分析⽤来分析两组变量之间的相互关系5.多元数据的统计推断参数估计假设检验6.参数估计:⽤样本值估计总体X中的某些参数。

点估计:区间估计:7.数学期望的置信区间分为⽅差已知和⽅差未知置信区间:估计参数的取值范围8.假设检验:对总体的分布律或分布参数作某种假设,根据抽样得到的值,俩判断假设是否成⽴。

9.假设检验分为参数检验和⾮参数检验。

参数检验是在总体分布类型已经知道情况下进⾏的,其⽬的是对总体的参数及其有关性质做出明确判断。

⾮参数检验这是总体分布类型未知的情况下进⾏的检验10.相关系数是⽤来描述两个变量间的线性相关程度的。

简单线性相关系数:Pearson11.标准化:(1)min-max标准化对原始数据进⾏线性变换适⽤于最⼤值和最⼩值已知⽬的是把所有制映射到[0,1] 区间。

(2)Z-zcore 标准化适⽤于最⼤值和最⼩值未知,或者超出取值范围的离群数据的值。

12. 聚类分析:分析-----分类—系统聚类---检验聚类分析显著性:/doc/f89672b26294dd88d0d26b9a.html/article/e8cdb32b7a2daf37052bade5.html⽤SPSS做相关分析的应⽤⽰例【例】表1是某市从1978年⾄1992年社会商品零售总额、居民收⼊和全市总⼈⼝统计数字表,试分析它们之间是否存在线性关系。

表1某市统计表第⼀步:建⽴数据⽂件。

定义变量:序号为Number,假设年份⽤y表⽰,零售总额⽤r表⽰,居民收⼊⽤i表⽰,全市总⼈⼝⽤p表⽰,输⼊数据,如下截图⽰:第⼆步:进⾏数据分析。

在数据⽂件管理窗⼝中,点击Analyze,展开下拉菜单,再点击Correlate中的Bivariate项,进⼊Bivariate Correlations对话框,请童鞋们看下图:(1)在左边的这个东东为源变量列框,右边的Variables框为待分析的变量列框,就是这个东东:(2)再看下边的Correlation Coefficients选项,也就是分析⽅法选择项,就是这个东东。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
COV ( X 1 , X 2 ) COV ( X 1 , X P ) D( X 1 ) COV ( X 2 , X P ) COV ( X 2 , X 1 ) D ( X 2 ) COV ( X , X ) COV ( X , X ) D(X P ) P 1 P 2 ( ij )
描述随机变量的最基本工具是分布函数,类似地描述 随机向量的最基本工具还是分布函数。 定义1.2 设X (x1 , x2 , 函数是 式中:
, x p )是以随机向量,它的多元分布
F ( X ) F ( x1 , x 2 , , x p ) P ( X 1 x1 , , X p x p )
cov ( X , Y ) (cov ( X i , Y j )) , i 1, , n ; j 1, , p 若 cov( X , Y ) 0, 称 X 和 Y 是 不 相 关 的 。
当A、B为常数矩阵时,由定义可推出协差阵有如下性质:
D ( AX ) AD ( X ) A ' AA ' cov( AX , BY ) A cov( X , Y ) B '

a1 p x1 x a2 p 2 a pp xp
x' Ax
g [a11 ( x1 y1 ) 2 a22 ( x2 y2 ) 2 a pp ( x p y p ) 2 2a12 ( x1 y1 )( x2 y2 ) 2a13 ( x1 y1 )( x3 y3 ) 2a p 1, p ( x p 1 y p 1 )( x p y p )]
§1.1.1 随机向量
横看表1-1,记 X ( ) ( x 1 , x 2 , , x p )' , 1, 2 , n 它表示第 个样品的观测值。竖看表1-1,第 j 列的元素
X j ( x1 j , x 2 j , , x nj )' ,
j 1, 2 , p
§1.2 统计距离和马氏距离
下面先用一个一维的例子说明欧氏距离与马氏距离在概 率上的差异。
2 设有两个一维正态总体 G 1 : ( 1 , 12 ) 和 G 2 : ( 2 , 。若有 2 ) 一个样品,其值在A处,A点距离哪个总体近些呢?由 图1-2
多元统计分析
第一章 多元正态分布
§1.1 §1.2 §1.3 §1.4 多元分布的基本概念 统计距离和马氏距离 多元正态分布 均值向量和协方差阵的估计
§1.5
常用分布及抽样分布
第一章 多元正态分布



一元正态分布在统计学的理论和实际应用 中都有着重要的地位。同样,在多变量统 计学中,多元正态分布也占有相当重要的 位置。原因是: 许多随机向量确实遵从正态分布,或近似 遵从正态分布; 对于多元正态分布,已有一整套统计推断 方法,并且得到了许多完整的结果。
x R p

R
p
f ( x ) dx 1
§1.1.3 多元变量的独立性
定义1.4:两个随机向量 X 和 Y 称为是相互独立的,若
P ( X x , Y y ) P ( X x ) P (Y y )
对一切( X , Y )成立。若 F ( x , y )为( X , Y )的联合分布函 数, G ( x ) 和 H ( y ) 分别为 X 和 Y 的分布函数,则 X 与 Y 独立 (x G (g x( )x H) ( 当且仅当 F f ( ,xy,)y ) hy ()y ) 若 ( X , Y ) 有密度 f ( x , y ),用g ( x ) 和 h ( y ) 分别表示 X 和 Y 的分布密度. 注意:在上述定义中, X 和 Y 的维数一般是不同的。
j 1,
,p ,X p)
(1.12)
X ( X 1 , X 2 ,
于是 E ( X ) 0 1 R X / X n 1 D( X ) corr ( X) R 即标准化数据的协差阵正好是原指标的相关阵. (1.13)
§1.2 统计距离和马氏距离
欧氏距离 马氏距离
第一章 多元正态分布
多元正态分布是最常用的一种多元 概率分布。除此之外,还有多元对数正 态分布,多项式分布,多元超几何分布, 2 χ 多元 分布、多元 分布、多元指数 分布等。本章从多维变量及多元分布的 基本概念开始,着重介绍多元正态分布 的定义及一些重要性质。
§1.1多元分布的基本概念
§1.1.1 §1.1.2 §1.1.3 §1.1.4 随机向量 分布函数与密度函数 多元变量的独立性 随机向量的数字特征
x ( x1, x2 , , xp ) R ,并记为X F。
P
多元分布函数的有关性质此处从略。
§1.1.2 分布函数与密度函数
定义1.3:设 X ~ F ( X ) = F ( x1 , x 2 , , x p ) ,若存在一个 非负的函数 f ,使得
F (x)

x1


§1.2 统计距离和马氏距离
例如,横轴 X 1代表重量(以kg为单位),纵轴 X 2 代表长度(以cm为单位)。有四个点A、B、C、D见 图1.1,它们的坐标如图1.1所示
x2
§1.2 统计距离和马氏距离
这时
AB 5 2 10 2 125 CD 10 2 12 101
显然AB比CD要长。 现在,如果 x2用mm作单位,x1 单位保持不变, 此时A坐标为(0,50),C坐标为(0,100),则
§1.2 统计距离和马氏距离
但就大部分统计问题而言,欧氏距离是不 能令人满意的。这里因为,每个坐标对欧氏距 离的贡献是同等的。当坐标轴表示测量值时, 它们往往带有大小不等的随机波动,在这种情 况下,合理的办法是对坐标加权,使得变化较 大的坐标比变化小的坐标有较小的权系数,这 就产生了各种距离。 欧氏距离还有一个缺点,这就是当各个分量 为不同性质的量时,“距离”的大小竟然与指 标的单位有关。
表示对 j 第个变量 x j 的n次观测数值。下面为表1-1
变量 序号 1 2
x np

x11 x 21
x12 x22
… … …
x1 p x2 p

n
x n1

xn 2

xnp

§1.1.1 随机向量
因此,样本资料矩阵可用矩阵语言表示为:
x11 x21 X xn1 x12 x22 xn 2 x1 p x2 p ( x1 , x 2 , xnp
§1.1.1 随机向量
假定所讨论的是多个变量的总体,所研究的数 据是同时观测 p 个指标(即变量),又进行了 n 次 观测得到的,把这 p 个指标表示为 X 1 , X 2 , , X p 常 用向量
X ( X 1 , X 2 , , X p )'
表示对同一个体观测的 p 个变量。若观测了 n 个个体,则可得到如下表1-1的数据,称每一个个 体的 p 个变量为一个样品,而全体 n个样品形成一 个样本。
AB 50 2 10 2 2600 CD 100 2 12 10001
结果CD反而比AB长!这显然是不够合理的。
§1.2 统计距离和马氏距离
因此,有必要建立一种距离,这种距离要能够 体现各个变量在变差大小上的不同,以及有时存 在着的相关性,还要求距离与各变量所用的单位 无关。看来我们选择的距离要依赖于样本方差和 协方差。因此,采用“统计距离” 这个术语,以 区别通常习惯用的欧氏距离。最常用的一种统计 距离是印度统计学家马哈拉诺比斯(Mahalanobis )于1936年引入的距离,称为“马氏距离”。
§1.2 统计距离和马氏距离
欧氏距离
在多指标统计分析中,距离的概念十分重要,样品间的不 少特征都可用距离去描述。大部分多元方法是建立在简单 的距离概念基础上的。即平时人们熟悉的欧氏距离,或称 直线距离.如几何平面上的点P=(x1,x2)到原点O=(0,0)的 欧氏距离:
2 1/2 d(,P ) ( x12 x2 )
( i 1, 2, p )
是一个p维向量,称为均值向量. 当A 、 B 为常数矩阵时,由定义可立即推出如下性质:
(1) E ( AX ) AE ( X ) ( 2) E ( AXB ) AE ( X ) B
§1.1.4 随机向量的数字特征
2、随机向量 X 自协方差阵
Σ COV ( X , X ) E ( X E X )( X E X ) / D ( X )
§1.1.4 随机向量的数字特征
1、随机向量 X的均值
设 X ( X1, X 2 , , X p )有P个分量。若 E( X i ) i 存在,我们定义随机向量X的均值为:
E ( X 1 ) 1 E ( X ) 2 2 μ E ( X) E ( X P ) P
§1.1.4 随机向量的数字特征
4、随机向量X 的相关阵 若随机向量 X ( X 1 , X 2 , , X p )' 的协差阵存在,且每 个分量的方差大于零,则X的相关阵定义为:
R (corr ( X i , X j )) ( rij ) PP rij COV ( X i , X j ) D ( X i) D ( X j ) , i, j 1,2, , p
称它为 p 维随机向量 X 的协方差阵,简称为 X 的协方差 阵,称 cov( X , X )为 X 的广义方差,是协差阵的行列式之值。
§1.1.4 随机向量的数字特征
3、随机向量X 和Y 的协差阵
设 X ( X 1 , X 2 , , X n )' 和 Y (Y1 , Y 2 , , Y p )' 分别为 n 维和 p 维随机向量,它们之间的协方差阵定义为一个 n p 矩 阵,其元素是 cov( X i , Y j ),即
相关文档
最新文档