ASK--FSK--PSK频谱特性分析

合集下载

ASK、FSK、PSK解调实验.

ASK、FSK、PSK解调实验.

实验ASK、FSK、PSK解调实验一、实验目的1、掌握2ASK相干解调原理2、掌握2FSK过零检测解调原理。

3、掌握2DPSK相干解调原理二、实验内容1、观察2ASK 2DPSK 2FSK解调信号的波形。

2、观察2FSK过零检测解调器个点波形3、观察2DPSK相干解调器各点波形三、实验仪器1、信号源模块2、数字调制模块3、数字解调模块4、同步提取模块5、20M双踪示波器一台四、实验原理2ASK解调原理2ASK解调有非相干解调(包络检波法)和相干解调(同步检测法)两种方法,我们采用的是包络检波法。

原理框图如图。

2ASK调制信号从“ASK-IN”输入,经C04和R03组成的耦合电路至半波整流器(由D01、D02组成),半波整流后的信号经电压比较器U02与参考电位比较后送入抽样判决器进行抽样判决,最后得到解调输出的二进制信号。

标号为“ASK判决电压调节”的电位器用来调节电压比较器U02的判决电压。

判决电压过高,将会导致正确的解调结果的丢失;判决电压过低,将会导致解调结果中含有大量错码,因此,只有合理选择判决电压,才能得到正确的解调结果。

抽样判决用的时钟信号就是2ASK基带信号的位同步信号,该信号从“ASK-BS”输入,可以从信号源直接引入,也可以从同步信号恢复模块引入。

在实际应用的通信系统中,解调器的输入端都有一个带通滤波器来滤除带外的信道白噪声并确保系统的频率特性符合无码间串扰的条件。

本实验中为了简化实验设备,在调制部分的输出端没有加带通滤波器,并且假设信道是理想的,所以在解调部分的输入端也没有加带通滤波器。

图2ASK解调原理框图2FSK解调原理2FSK有多种方法解调,如包络检波法、相干解调法、鉴频法、过零检测法及差分检波法等。

这里采用的是过零检测法对2FSK调制信号进行解调。

大家知道,2FSK信号的过零点数随不同载频而异,故检出过零点数就可以得到关于频率的差异,这就是过零检测法的基本思想。

用过零检测法对FSK信号进行解调的原理框图如图所示。

数字调制(ASK、FSK、PSK)

数字调制(ASK、FSK、PSK)

数字调制(ASK、FSK、PSK)2ASK(⼆进制幅移键控)⼜称OOKfunction askdigital(s,f)% 实现ASK调制% s——输⼊⼆进制序列;f——载波的频率,即:⼀个码元周期包括f个载波周期% 调⽤举例:askdigital([1 0 1 1 0], 2)t=0:2*pi/99:2*pi; %初始化定义,1*100的矩阵cp=[];mod=[];bit=[];for n=1:length(s); % 调制过程if s(n)==0;bit1=zeros(1,100); % 100是码元周期else % s(n)==1;bit1=ones(1,100);endc=sin(f*t);mod=[mod c];bit=[bit bit1];endask=bit.*mod;subplot(2,1,1);plot(bit,'k','LineWidth',1);grid on;ylabel('Binary Signal');axis([0 100*length(s) -2.5 2.5]);subplot(2,1,2);plot(ask,'k','LineWidth',1);grid on;ylabel('ASK modulation');axis([0 100*length(s) -2.5 2.5]); 2FSK:‘1’对应频率为ω1的载波,‘0’对应频率为ω2的载波。

function fskdigital(s,f0,f1)% 实现 FSK 调制% s——输⼊⼆进制序列 f0,f1——两个不同频率的载波% 调⽤举例 (f0 f1 必须是整数) : fskdigital([1 0 1 1 0],1,2)t=0:2*pi/99:2*pi; %初始化定义cp=[];mod=[];bit=[];for n=1:length(s); % 调制过程if s(n)==0;cp1=ones(1,100);c=sin(f0*t);bit1=zeros(1,100);else %s(n)==1;cp1=ones(1,100);c=sin(f1*t);bit1=ones(1,100);endcp=[cp cp1];mod=[mod c];bit=[bit bit1];endfsk=cp.*mod;% fsk = mod;subplot(2,1,1);plot(bit,'k','LineWidth',1);grid on;ylabel('Binary Signal');axis([0 100*length(s) -2.5 2.5]);subplot(2,1,2);plot(fsk,'k','LineWidth',1);grid on;ylabel('FSK modulation');axis([0 100*length(s) -2.5 2.5]); 或⽤Matlab提供的函数fskmod调⽤格式 y= fskmod(x,M,freq_sep,nsamp); y=fskmod(x,M,freq_sep,nsamp,Fs);参数说明 x:消息信号 M:表⽰消息的符号数,必须是2的整数幂,M进制信号(0~M-1) freq_sep:两载波之间的频率间隔,单位Hz nsamp:输出信号的采样数,必须是⼤于1的正整数 Fs:根据奈奎斯特采样定理,(M-1)*freq_seq <= Fs M=2;freqsep=8;nsamp=8;Fs=32;x=randi([0,M-1],1000,1);y=fskmod(x,M,freqsep,nsamp,Fs);ly = length(y);%画2FSK的信号频谱freq= -Fs/2:Fs/ly : Fs/2-Fs/ly;Syy = fftshift(abs(fft(y)));plot(freq,Syy)PSKfunction bpskdigital( s, f )%实现BPSK% s:输⼊⼆进制序列,f:载波信号的频率(⼀个码元有⼏个载波周期)% 调⽤举例:bpskdigital([1 0 1 1 0], 2)t = 0:2*pi/99:2*pi;cp = [];mod = []; bit = [];for n=1:length(s)if s(n) == 0cp1 = -ones(1,100);bit1 = zeros(1,100);else %s(n)==1cp1 = ones(1,100);bit1 = ones(1,100);endc= sin(f*t);cp = [cp,cp1];mod = [mod,c];bit = [bit,bit1];endbpsk = cp .* mod;subplot(211);plot(bit,'LineWidth',1.5);grid on;ylabel('Binary Signal');axis([0 100*length(s) -2.5 2.5]);subplot(212);plot(bpsk,'LineWidth',1.5);grid on;ylabel('BPSK modulation');axis([0 100*length(s) -2.5 2.5]);endProcessing math: 100%。

ASK FSK PSK数字调制及解调

ASK FSK PSK数字调制及解调
2.信号线连接: 用专用导线将4P01、16P01;16P02、3P01;3P02、17P01连
接(注意连接铆孔的箭头指向,将输出铆孔连接输入铆孔)。
3.加电:
打开系统电源开关,底板的电源指示灯正常显示。若电源指示灯 显示不正常,请立即关闭电源,查找异常原因。
4.设置好跳线及开关: 用短路块将16K02的1-2相连。 拨码器4SW02:设置为“00000”,4P01产生2K的
16P02输出已调波
3P02信道输出端已 调波
17 P02解调恢复波
五、参考波形
调制波 ASK已调波
16P01点 调制波
17P02点 解调恢复 的波形
实验六 FSK调制解调器测试
一、实验目的
1.掌握FSK调制器的工作原理及性能测试; 2.掌握FSK锁相解调器工作原理及性能测试; 3. 学习FSK调制、解调硬件实现,掌握电路调整测试方法 二、实验仪器 1.FSK调制模块,位号A 2.FSK解调模块,位号C 3.时钟与基带数据发生模块,位号:G 4.噪声模块,位号B 5.20M双踪示波器1台 6.信号连接线3根 7.频率计1台(选用)
• 16TP03:32KHz载波信号测试点,可调节电位器16W01改变幅 度。
• 16TP04:16KHz载波信号测试点,可调节电位器16W02改变幅 度。
• 16P01: 数字基带信信号输入铆孔。
• 16P02: FSK已调信号输出铆孔,此测量点需与16P01点波形 对比测量。
• 17W01:解调载波同步调节。
7.噪声模块调节: 调节3W01,将3TP01噪声电平调为0;调节3W02,调整
3P02信号幅度为4V。 8.FSK解调参数调节: 调节17W01电位器,使压控振荡器锁定在32KHz,同时可用

ASK、FSK、PSK、QAM数字调制技术

ASK、FSK、PSK、QAM数字调制技术

ASK、FSK、PSK、QAM数字调制技术1934年美国学者李佛西提出脉冲编码调制(PCM)的概念,从此之后通信数字化的时代应该说已经开始了,但是数字通信的高速发展却是20世纪70年代以来的事情。

随着时代的发展,用户不再满足于听到声音,而且还要看到图像;通信终端也不局限于单一的电话机,而且还有传真机和计算机等数据终端。

现有的传输媒介电缆、微波中继和卫星通信等将更多地采用数字传输。

而这些系统都使用到了数字调制技术,本文就数字信号的调制方法作一些详细的介绍。

一数字调制数字信号的载波调制是信道编码的一部分,我们之所以在信源编码和传输通道之间插入信道编码是因为通道及相应的设备对所要传输的数字信号有一定的限制,未经处理的数字信号源不能适应这些限制。

由于传输信道的频带资源总是有限的,因此提高传输效率是通信系统所追求的最重要的指标之一。

模拟通信很难控制传输效率,我们最常见到的单边带调幅(SSB)或残留边带调幅(VSB)可以节省近一半的传输频带。

由于数字信号只有"0"和"1"两种状态,所以数字调制完全可以理解为像报务员用开关电键控制载波的过程,因此数字信号的调制方式就显得较为单纯。

在对传输信道的各个元素进行最充分的利用时可以组合成各种不同的调制方式,并且可以清晰的描述与表达其数学模型。

所以常用的数字调制技术有2ASK、4ASK、8ASK、BPSK、QPSK、8PSK、2FSK、4FSK等,频带利用率从1bit/s/Hz~3bit/s/Hz。

更有将幅度与相位联合调制的QAM技术,目前数字微波中广泛使用的256QAM的频带利用率可达8bit/s/Hz,八倍于2ASK或BPSK。

此外,还有可减小相位跳变的MSK等特殊的调制技术,为某些专门应用环境提供了强大的工具。

近年来,四维调制等高维调制技术的研究也得到了迅速发展,并已应用于高速MODEM中,为进一步提高传输效率奠定了基础。

总之,数字通信所能够达到的传输效率远远高于模拟通信,调制技术的种类也远远多于模拟通信,大大提高了用户根据实际应用需要选择系统配置的灵活性。

ASK&FSK&PSK

ASK&FSK&PSK
M=4,θ=π/4
10
双比特码元与载波相位的关系
双比特码
00 10 11 01
π/2相移系统
0 π/2 π -π/2
π/4相移系统
-3π/4 - π/4 π/4 3π/4
多进制相对移相(MDPSK) 多进制相对移相和二进制相对移相原理相同,也 是利用码元之间的相对相位变化来表示数字信息。
n n
A cos[ 0t t ]
n
n
s (t ) cos ( 1t n ) s (t ) cos ( 2 t n )
= ) [ 0 ) 1t n ) s (tA cos(2 t nt ] 0 t t ]
1, 概率为P an 0, 概率为(1-P)
e2 PSK (t ) s(t ) cos ct
s 这里, (t ) 与2ASK及2FSK时不同,为双极性数字 基带信号,即 1, 概率为P an s(t ) an g (t nTS ) 1, 概率为(1-P) n
因此,在某一个码元持续时间 TS 内观察时,有
e2 PSK (t ) cos ct cos(ct i ) (i 0或 )
2PSK信号的典型波形
2PSK信号的产生框图
s(t) 双极性不归 零 e2PSK (t) 开关电路 cos ct 0° 180°移相 (b) s(t) e2PSK (t)
码型变换
乘法器
cos ct (a)
2DPSK方式是利用前后相邻码元的相对载波相位值 去表示数字信息的一种方式。CCITT国际标准中对 2DPSK有如下规定:
发“1”时 发“0”时
二进制相移键控(2PSK)
二进制数字信号基带码对载波进行调相分为绝对 移相(2PSK)和相对移相(2DPSK)两种形式。 绝对相移是利用载波的相位(指初相)直接表示 数字信号的相移方式。在绝对移相(PSK)中, 载波起始相位与基带码的关系是:载波0相位对 应基带信号的“1”码;载波 相位对应基带信号 的“0”码。上ห้องสมุดไป่ตู้的对应关系也可以反过来。只要 是载波信号的起始相位与基带信号的“1”码和 “0”码对应关系保持不变的调制方式通称为绝对 移相。

ASK__FSK__PSK频谱特性分析

ASK__FSK__PSK频谱特性分析

ASK__FSK__PSK频谱特性分析频移键控(FSK)、频移移相键控(FSK)和相移键控(PSK)是数字调制技术中常见的几种调制方式。

它们在通信领域被广泛应用,在频谱特性方面各有不同的特点。

本文将分析FSK、ASK和PSK的频谱特性。

首先,我们来看FSK的频谱特性。

FSK是通过改变载波频率来表示数字信号的一种调制方式。

形式上,FSK可以分为连续FSK和离散FSK。

连续FSK是指在调制信号中,载波频率在两个不同的值之间连续变化。

离散FSK是指调制信号中只有两个不同的载波频率。

在频谱特性上,FSK的频谱带宽与数据速率相关。

具体而言,FSK的带宽等于数据速率的两倍加上载波频率的差值。

这是因为FSK信号在频谱中产生两个副载波,分别位于上行频率和下行频率。

因此,FSK具有宽频带的特点,适用于对频谱带宽要求比较宽松的通信系统。

接下来,我们来分析ASK的频谱特性。

ASK是通过改变载波幅度来表示数字信号的一种调制方式。

在频谱特性上,ASK的频谱主要集中在载波频率附近。

具体而言,ASK信号频谱的能量集中在载波频率附近的频率成分,而没有副载波出现。

因此,ASK具有窄频带的特点。

这使得ASK在对频谱利用率要求较高的通信系统中具有优势。

然而,ASK的主要缺点是容易受到噪声和干扰的影响,因为它不能提供相位信息。

最后,我们来分析PSK的频谱特性。

PSK是通过改变载波的相位来表示数字信号的一种调制方式。

在频谱特性上,PSK信号的频谱由两个附属副载波构成,分别位于主载波的两侧,且与主载波相位差为180度。

因此,PSK信号的频谱在载波频率打上了两个窄带的峰值,代表不同的相位状态。

这使得PSK具有窄频带的特点,并且能够提供较好的抗噪声和干扰的能力。

综上所述,FSK、ASK和PSK在频谱特性上各有不同的优势。

FSK适用于频谱带宽要求较宽松的通信系统,ASK适用于对频谱利用率要求较高的通信系统,而PSK能够提供较好的抗噪声和干扰的能力。

ask,fsk,psk调制设计原理

ask,fsk,psk调制设计原理

ask,fsk,psk调制设计原理调制是无线通信中的重要环节,用于将原始信号转换为适合于传输的调制信号。

在调制的过程中,常用的调制方式包括ask、fsk和psk。

本文将介绍这三种调制方式的设计原理和特点。

一、ASK调制ASK(Amplitude Shift Keying)调制是一种基于振幅变化的调制方式。

在ASK调制中,原始信号通过改变载波的振幅来传输信息。

当原始信号为1时,载波的振幅增加;当原始信号为0时,载波的振幅减小或者为0。

ASK调制的设计原理是通过改变载波的振幅来实现信息的传输。

ASK调制的特点是简单易实现,但抗干扰能力较差。

由于ASK调制主要通过改变振幅来传输信息,当信号受到干扰时,容易导致信号失真。

因此,在实际应用中,ASK调制常常用于传输距离较短、抗干扰要求较低的场景。

二、FSK调制FSK(Frequency Shift Keying)调制是一种基于频率变化的调制方式。

在FSK调制中,原始信号通过改变载波的频率来传输信息。

当原始信号为1时,载波的频率为一个值;当原始信号为0时,载波的频率为另一个值。

FSK调制的设计原理是通过改变载波的频率来实现信息的传输。

FSK调制的特点是抗干扰能力较强,传输距离较长。

由于FSK调制主要通过改变频率来传输信息,即使在信号受到干扰时,也不容易导致信号失真。

因此,在实际应用中,FSK调制常常用于传输距离较长、抗干扰要求较高的场景。

三、PSK调制PSK(Phase Shift Keying)调制是一种基于相位变化的调制方式。

在PSK调制中,原始信号通过改变载波的相位来传输信息。

当原始信号为1时,载波的相位发生变化;当原始信号为0时,载波的相位保持不变。

PSK调制的设计原理是通过改变载波的相位来实现信息的传输。

PSK调制的特点是传输效率高,抗干扰能力较强。

由于PSK调制主要通过改变相位来传输信息,信号在传输过程中不易受到干扰,因此能够实现较高的传输效率。

ASK、PSK、FSK

ASK、PSK、FSK
e2PSK (t)
s(t) (b)
二进制振幅键控信号时间波型
开 关 电路
乘 法 器 e2ASK (t) s(t)
cos ct
e2ASK (t)
cos ct
(a) 模拟相乘
s(t)
(b) 数字键控
二进制振幅键控信号调制器原理框图
2、二进制移频键控(2FSK)
在二进制数字调制中,若正弦载波的频率随二进 制基带信号在f1和f2两个频率点间变化,则产生二进 制移频键控信号(2FSK信号)。图6 - 6中波形g可分解 为波形e和波形f,即二进制移频键控信号可以看成是 两个不同载波的二进制振幅键控信号的叠加。
ak
1 011001
a
s(t)
t
b
s(t)
t
c
t
d
t
e
t
f
t
g 2FSK信 号
t
二进制移频键控信号的时间波形
二进制移频键控信号的产生,可以采用模拟调 频电路来实现,也可以采用数字键控的方法来实现。
பைடு நூலகம்
振 荡 器1 f1
选 通 开关
基带信 号
反相器
相 加 器 e2FSK (t)
振 荡 器2 f2
选 通 开关
1、 二进制振幅键控(2ASK)
振幅键控是正弦载波的幅度随数字基带信号而 变化的数字调制。当数字基带信号为二进制时,则 为二进制振幅键控。
2ASK信号的时间波形随二进制基带信号s(t)通断变化, 所以又称为通断键控信号(OOK信号)。
1
0
1
1
0
0
1
s(t)
Tb
t
载 波 信号 t
2A SK信 号 t
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分析ASK 、FSK 、PSK 调制信号的频谱特性ASK(Amplitude-shift Keying):幅移键控ASK 指的是振幅键控方式。

在二进制数字调制中每个符号只能表示0和1(+1或-1)。

但在许多实际的数字传输系统中却往往采用多进制的数字调制方式。

与二进制数字调制系统相比,多进制数字调制系统具有如下两个特点: 第一:在相同的信道码源调制中,每个符号可以携带log2M 比特信息,因此,当信道频带受限时可以使信息传输率增加,提高了频带利用率。

但由此付出的代价是增加信号功率和实现上的复杂性。

第二,在相同的信息速率下,由于多进制方式的信道传输速率可以比二进制的低,因而多进制信号码源的持续时间要比二进制的宽。

加宽码元宽度,就会增加信号码元的能量,也能减小由于信道特性引起的码间干扰的影响等。

ASK 这种调制方式是根据信号的不同,调节正弦波的幅度。

幅度键控可以通过乘法器和开关电路来实现。

载波在数字信号1或0的控制下通或断,在信号为1的状态载波接通,此时传输信道上有载波出现;在信号为0的状态下,载波被关断,此时传输信道上无载波传送。

那么在接收端我们就可以根据载波的有无还原出数字信号的1和0。

对于二进制幅度键控信号的频带宽度为二进制基带信号宽度的两倍。

设S(t)频谱为S(ω),S2ASK(t)频谱为:21()[()()]2ASK c c S w s w w s w w =++-2ASK 信号的频谱是将数字基带频谱中心搬移到载频处,带宽为基带带宽的两倍;又由()()n s ns t a g t nT =-∑ 可知,基带信号是由若干基本脉冲组成的,因而基带信号的带宽完全由基本脉冲带宽决定。

2ASK 信号的带宽取决于基带基本脉冲的带宽,是基本脉冲带宽的两倍。

设矩形脉冲:1,||/2()()()20,s s t T Tf tg t f t ≤⎧=⇒=-⎨⎩其它对其傅里叶变换得()f t 频谱为:sin(/2)()/2S wT F w W =由傅里叶变换位移性质:/2/2()[()][()]()2sin(/2)/2s s jwT s jwT S T G w F g t F f t F w wT w e e==-==功率谱:*/2/22()()()sin(/2)sin(/2)/2/2sin(/2)()/2s s G jwT jwT S S S P w G w G w wT wT w w wT W ee -===g在M 元ASK 调制中,信号序列表示为:)2cos()()(θπ+=f t x t s∑∞-∞=-=n T nnT t g at x )()( }1,...,2,1,0{-∈M a n其中)(t g T 是信号码型 若n a 是等概率分布的,则有:21][-==M a E m n a 12122-=M a σ 假设信号码型中TfTf ATf G T ππ)sin()(=则有: )}()({)41(})()(sin )()(sin {481)(222222c c c c c c S f f f f A M f f T f f T f f T f f T T A M f P ++--++++---=σσππππ在M 元ASK 传输中,符号率:M R R TR B b B 2log ,1==比特率 所以频谱利用率为:M B R Tb2log 5.0==η,当M=2是,5.0=η对于幅度调制信号,在波形上,它的幅度随基带信号规律而变化;在频谱结构上,是在基带信号频谱基础上做简单的线性搬移。

FSK(Frequency-shift keying):频移键控FSK 是频移键控调制的简写,即用不同的频率来表示不同的符号。

产生FSK 信号最简单的方法是根据输入的数据是1还是0,在两个独立的振荡器中切换。

采用这种方法产生的波形在切换时刻相位是不连续的,产生框图为:图1 2FSK 产生原理框图由于FSK 信号的复包络是调制信号m (t )的非线性函数,确定一个FSK 信号的频谱通常是相当困难的,经常采用实时平均测量的方法。

二进制FSK 信号的功谱密度由离散频率分量fc 、fc+n Δf 、fc-n Δf 组成,其中n 为整数。

相位连续的FSK 信号的功率谱密度函数最终按照频率偏移的负四次幂衰落。

如果相位不连续,功率谱密度函数按照频率偏移的负二次幂衰落。

FSK 的功率谱计算较为复杂,我们以2FSK 为例:2FSK 信号:∑∞∞=-∆++=k T n c nT t g f a t f t s )(]22cos[)(πθπ其中}1,0{∈n a ,f ∆表示数据0和1对应信号码元的频率差。

∑∑∞-∞=∞∞=-+∆++-+=k T c nk T c n nT t g t f f anT t g t f a t s )(])(2cos[)(]2cos[)('θπθπ其中'n a 是n a 的反码。

因此FSK 信号可以看成2个ASK 信号之和。

如果0和1等概率出现,则2FSK 信号的功率谱可以近似为:)}()({16})()](2sin[)()](2sin[{161)(2222c c c c c c s f f f f A f f T f f T f f T f f T T A f P ++-++++--=σσππππ)}()({16})()](2sin[)()](2sin[{222f f f f f f A f f f T f f f T f f f T f f f T c c c c c c ∆+++∆--+∆++∆+++∆--∆--σσππππFSK 的信号频谱如图2所示。

图2 FSK 的信号频谱FSK 信号的传输带宽Br ,由Carson 公式给出: Br=2Δf+2B其中B 为数字基带信号的带宽。

假设信号带宽限制在主瓣范围,矩形脉冲信号的带宽B=R 。

因此,FSK 的传输带宽变为:Br=2(Δf+R )如果采用升余弦脉冲滤波器,传输带宽减为: Br=2Δf+(1+α)R其中α为滤波器的滚降因子。

PSK(phase-shift keying):相移键控PSK 调制:产生PSK 信号的两种方法:(1)调相法,将基带信号(双极性)与载波信号直接相乘(2)选择法,用数字基带信号去对相位相差180的两个载波进行选择。

两个相位通常相差180,此时称为反向键控。

图3 2PSK 信号产生框图2PSK 信号码元的“0”和“1”分别用两个不同的初始相位0和π表示,而其振幅和频率保持不变。

2PSK 信号可表示为:0()cos()s t A t ωθ=+或者写成:由此可以将2PSK 信号看做一个特殊的2ASK 信号,其振幅分别取A 和-A 。

因此,2PSK 信号码元随机序列仍可以用2ASK 信号的表示式描述,只是其中的振幅na 为:令A=1,112P P =-=,由于12()()g t g t =,则12()()G f G f = ,利用2ASK 信号的的频谱公式,得到:2210101()()()4s c P f f G f f G f f ⎡⎤=++-⎣⎦ 将sin ()fTG f T fT ππ=带入上式得:220000sin ()sin ()4()()s f f Tf f T T P f f T f f T ππππ⎡⎤+-⎢⎥=++-⎢⎥⎣⎦2PSK 信号的功率谱密度和2ASK 信号的功率谱密度中的连续部分形状相同,因此这两种信号的带宽相同00cos ()cos()A ts t A t ωωπ⎧=⎨+⎩n A a A⎧=⎨-⎩一般情况下,M 元PSK 调制信号在时间间隔(T k t kT )1(+≤≤)中相位为:k ϕ,可以取M 个不同值,所以:∑∞-∞=-++=k T kckT t g t f t s )()2cos()(ϕθπ=)2sin()()2cos()(θπθπ+-+t f t y t f t x c c 其中)()(kT t g It x T k K-=∑∞-∞= )()(kT t g Qt y k T k-=∑∞-∞= k k I ϕcos = k k Q ϕsin =)(t g T 为信号码元波形。

在M 元PSK 信号当中,相移k ϕ可以取M 个值,一般M N a k k /)2(+=πϕ 1,...,1,0-=M a k其中N=0或者1,当N=0是,M 个相位角从0开始均匀分布在单位圆上;当N=1时,相位角从M /π开始均匀分布在单位圆上。

因为2/1][][,0][][22====k k k k Q E I E Q E I E所以})()](sin[)()](sin[{4)(222c c c c S f f T f f T f f T f f T T A f P +++--=ππππ M 元PSK 信号功率谱形状与ASK 一样,但是没有载频上的离散谱线,这意味着PSK 具有更好的功率效率,M 元PSK 的频谱利用率:M 2log 2/1=η小结幅移键控法(ASK)的载波幅度是随着调制信号而变化的,其最简单的形式是,载波在二进制调制信号控制下通断, 此时又可称作开关键控法(OOK)。

多电平MASK 调制方式是一种比较高效的传输方式,但由于它的抗噪声能力较差,尤其是抗衰落的能力不强,因而一般只适宜在恒参信道下采用。

频移键控FSK 主要优点是: 实现起来较容易,抗噪声与抗衰减的性能较好。

在中低速数据传输中得到了广泛的应用。

相移键控PSK 在某些调制解调器中用于数据传输的调制系统,在最简单的方式中,二进制调制信号产生0和1。

载波相位来表示信号占和空或者二进制1和O 。

对于有线线路上较高的数据传输速率,可能发生4个或8个不同的相移,系统要求在接收机上有精确和稳定的参考相位来分辨所使用的各种相位。

利用不同的连续的相移键控,这个参考相位被按照相位改变而进行的编码数据所取代,并且通过将相位与前面的位进行比较来检测。

相关文档
最新文档