实验:典型信号频谱分析

合集下载

实验二FFT实现信号频谱分析

实验二FFT实现信号频谱分析

0
2
4
6
4
2
0
-2
-4
-6
-4
-20246四、试验环节
4. 试验内容2旳程序运营成果如下图所示:
60
30
40
20
20
10
0
0
-10 -5
0
5
10
-40 -20
0
20 40
30
80
60 20
40 10
20
0
-40 -20
0
20 40
0
-40 -20
0
20 40
四、试验环节
|X(k)| x(n)
5. 试验内容 3旳程序运营成果如下图所示:
fft 计算迅速离散傅立叶变换
fftshift
ifft
调整fft函数旳输出顺序,将零频 位置移到频谱旳中心
计算离散傅立叶反变换
fft函数:调用方式如下
y=fft(x):计算信号x旳迅速傅立叶变换y。当x旳长度为 2旳幂时,用基2算法,不然采用较慢旳分裂基算法。
y=fft(x,n):计算n点FFT。当length(x)>n时,截断x,不 然补零。
【例2-11】产生一种正弦信号频率为60Hz,并用fft函数 计算并绘出其幅度谱。
fftshift函数:调用方式如下 y=fftshift(x):假如x为向量,fftshift(x)直接将x旳左右两 部分互换;假如x为矩阵(多通道信号),将x旳左上、右 下和右上、左下四个部分两两互换。 【例2-12】产生一种正弦信号频率为60Hz,采样率为1000Hz, 用fftshift将其零频位置搬到频谱中心。
以上就是按时间抽取旳迅速傅立叶变换

典型信号的频谱分析实验报告

典型信号的频谱分析实验报告



1.运行DRVI主程序,点击DRVI快捷工具条上的"联机注册"图标,选择其中的“DRVI采集仪主卡检测”或“网络在线注册”进行软件注册。
2.在DRVI软件平台的地址信息栏中输入WEB版实验指导书的地址,在实验目录中选择“典型信号频谱分析”,建立实验环境。
3.从信号图观察典型信号波形与频谱的关系,从谱图中解读信号中携带的频率信息。
1通过实验使我在课本理论学习的基础上加深了对我傅里叶级数的理解加深了对理论的认识以实际的实验操作懂得了各种信号的形状为以后的测试判断打下坚实的理论基础
贵州大学实验报告
学院:专业:班级:
姓名
学号
实验组
实验时间
指导教师
成绩
实验项目名称




1.在理论学习的基础上,通过本实验熟悉典型信号的频谱特征,并能够从信号频谱中读取所需的信息。
1.正弦波信号的频谱特性:
2.方波信号的频谱特性:
3.三角波信号的频谱特性:
4.正弦结






签名:年月日
2.了解信号频谱分析的基本原理和方法,掌握用频谱分析提取测量信号特征的方法。




1.简述实验目的和原理。
2.拷贝实验系统运行界面,插入到Word格式的实验报告中,用Winzip压缩后通过Email上交实验报告。








1.计算机1台
2. DRVI快速可重组虚拟仪器平台1套
3.打印机1台

信号的频谱实验报告(3篇)

信号的频谱实验报告(3篇)

第1篇一、实验目的1. 理解信号频谱的基本概念和原理。

2. 掌握傅里叶变换及其逆变换在信号频谱分析中的应用。

3. 学习利用MATLAB软件进行信号频谱分析。

4. 分析不同信号在时域和频域的特性。

二、实验原理信号的频谱分析是信号处理领域的重要方法,通过傅里叶变换可以将时域信号转换为频域信号,从而揭示信号中不同频率成分的分布情况。

傅里叶变换的基本原理是将信号分解为一系列正弦波和余弦波的线性组合,其中每个正弦波和余弦波的频率、幅度和相位代表了信号在该频率上的能量分布。

三、实验内容1. 信号的产生与观察使用MATLAB软件产生以下信号:- 基本信号:正弦波、余弦波、方波、三角波等。

- 复杂信号:叠加多个基本信号或进行调制、滤波等操作。

观察信号在时域和频域的波形,分析信号特性。

2. 傅里叶变换对上述信号进行傅里叶变换,得到其频谱。

分析频谱图,了解信号中不同频率成分的分布情况。

3. 逆傅里叶变换对信号进行逆傅里叶变换,将频域信号还原为时域信号。

观察还原后的信号,分析逆变换的效果。

4. 窗函数在进行傅里叶变换时,通常需要使用窗函数来减小频谱泄露。

比较不同窗函数(如矩形窗、汉宁窗、汉明窗等)对频谱的影响。

5. 采样定理分析信号采样过程中的采样定理,验证信号在时域和频域的特性。

四、实验结果与分析1. 基本信号- 正弦波和余弦波在时域和频域具有明显的单一频率成分。

- 方波和三角波在时域具有多个频率成分,频谱为离散谱。

- 复杂信号由多个基本信号叠加而成,频谱为连续谱。

2. 傅里叶变换傅里叶变换能够将时域信号转换为频域信号,揭示信号中不同频率成分的分布情况。

频谱图直观地展示了信号的能量分布,有助于分析信号的特性。

3. 逆傅里叶变换逆傅里叶变换能够将频域信号还原为时域信号。

实验结果表明,逆变换后的信号与原信号具有相似的特性,但可能存在一定的误差。

4. 窗函数窗函数能够减小频谱泄露,提高频谱分辨率。

不同窗函数对频谱的影响不同,应根据实际情况选择合适的窗函数。

实验报告.doc

实验报告.doc

实验一典型信号频谱分析一、实验目的1、在理论学习的基础上,通过本实验熟悉典型信号的波形和频谱特征,并能够从信号频谱中读取所需的信息。

2、了解信号频谱分析的基本方法及仪器设备。

二、实验原理本实验利用在DRVI上搭建的频谱分析仪来对信号进行频谱分析。

由虚拟信号发生器产生多种典型波形的电压信号,用频谱分析芯片对该信号进行频谱分析,得到信号的频谱特性数据。

分析结果用图形在计算机上显示出来,也可通过打印机打印出来。

三、实验仪器和设备1. 计算机 n台2. DRVI快速可重组虚拟仪器平台 1套3. 打印机 1台四、实验步骤及内容1. 启动服务器,运行DRVI主程序,开启DRVI数据采集仪电源,然后点击DRVI快捷工具条上的"联机注册"图标,选择其中的"DRVI采集仪主卡检测"进行服务器和数据采集仪之间的注册。

2. 点击"实验脚本文件"的链接,将本实验的脚本文件贴入并运行,实验截屏效果图如图2所示。

图1 典型信号频谱分析实验原理设计图图2 典型信号频谱分析实验3.点击DRVI"典型信号频谱分析"实验中的"白噪声"按钮,产生白噪声信号,分析和观察白噪声信号波形和幅值谱特性,如图3。

图3特点分析:所有频率具有相同能量的随机噪声称为白噪声。

白噪声信号的波形没有规律,它的分布是随机的、杂乱的、无序的;幅值谱特性:白噪声的幅值基本为零,因此将白噪声加到其他任意信号上不影响其他信号的幅频特性。

4.点击DRVI"典型信号频谱分析"实验中的"正弦波"按钮,产生正弦波信号,分析和观察正弦波信号波形和幅值谱特性,图4。

图4特点分析:正弦波是周期信号,从频谱图上可以看成是垂直于横坐标的一条直线。

正弦信号只在固有频率处存在一个不规则的尖脉冲,其余各频率处对应幅值为0。

5.点击DRVI"典型信号频谱分析"实验中的"方波"按钮,产生方波信号,分析和观察方波信号波形和幅值谱特性,图5。

利用FFT对信号进行频谱分析

利用FFT对信号进行频谱分析

∑-=--==101,....,0,)(1)(N k nk N N n W k X N n x (3.2) 离散傅立叶反变换与正变换的区别在于N W 变为1-N W ,并多了一个N 1的运算。

因为N W 和1-N W 对于推导按时间抽取的快速傅立叶变换算法并无实质性区别,因此可将FFT 和快速傅立叶反变换(IFFT )算法合并在同一个程序中。

2.利用FFT 进行频谱分析若信号本身是有限长的序列,计算序列的频谱就是直接对序列进行FFT 运算求得)(k X ,)(k X 就代表了序列在[]π2,0之间的频谱值。

幅度谱 )()()(22k X k X k X I R +=相位谱 )()(arctan )(k X k X k R I =ϕ 若信号是模拟信号,用FFT 进行谱分析时,首先必须对信号进行采样,使之变成离散信号,然后就可按照前面的方法用FFT 来对连续信号进行谱分析。

按采样定理,采样频率s f 应大于2倍信号的最高频率,为了满足采样定理,一般在采样之前要设置一个抗混叠低通滤波器。

用FFT 对模拟信号进行谱分析的方框图如下所示。

3.在运用DFT 进行频谱分析的过程中可能产生三种误差:(1)混叠序列的频谱是被采样信号频谱的周期延拓,当采样速率不满足Nyquist 定理时,就会发生频谱混叠,使得采样后的信号序列频谱不能真实的反映原信号的频谱。

避免混叠现象的唯一方法是保证采样速率足够高,使频谱混叠现象不致出现,即在确定采样频率之前,必须对频谱的性质有所了解。

在一般情况下,为了保证不出现频谱混叠,在采样前,先进行抗混叠滤波。

(2)泄漏实际中我们往往用截短的序列来近似很长的甚至是无限长的序列,这样可以使用较短的DFT 来对信号进行频谱分析,这种截短等价于给原信号序列乘以一个矩形窗函数,也相当于在频域将信号的频谱和矩形窗函数的频谱卷积,所得的频谱是原序列频谱的扩展。

抗混叠低通滤波器 采样T=1/f s N 点FFT泄漏不能与混叠完全分开,因为泄漏导致频谱的扩展,从而造成混叠。

实验:典型信号频谱分析

实验:典型信号频谱分析

实验:典型信号频谱分析实验3.2 典型信号频谱分析⼀、实验⽬的1. 在理论学习的基础上,通过本实验熟悉典型信号的波形和频谱特征,并能够从信号频谱中读取所需的信息。

2. 了解信号频谱分析的基本⽅法及仪器设备。

⼆、实验原理1. 典型信号及其频谱分析的作⽤正弦波、⽅波、三⾓波和⽩噪声信号是实际⼯程测试中常见的典型信号,这些信号时域、频域之间的关系很明确,并且都具有⼀定的特性,通过对这些典型信号的频谱进⾏分析,对掌握信号的特性,熟悉信号的分析⽅法⼤有益处,并且这些典型信号也可以作为实际⼯程信号分析时的参照资料。

本次实验利⽤DRVI 快速可重组虚拟仪器平台可以很⽅便的对上述典型信号作频谱分析。

2. 频谱分析的⽅法及设备信号的频谱可分为幅值谱、相位谱、功率谱、对数谱等等。

对信号作频谱分析的设备主要是频谱分析仪,它把信号按数学关系作为频率的函数显⽰出来,其⼯作⽅式有模拟式和数字式⼆种。

模拟式频谱分析仪以模拟滤波器为基础,从信号中选出各个频率成分的量值;数字式频谱分析仪以数字滤波器或快速傅⽴叶变换为基础,实现信号的时—频关系转换分析。

傅⽴叶变换是信号频谱分析中常⽤的⼀个⼯具,它把⼀些复杂的信号分解为⽆穷多个相互之间具有⼀定关系的正弦信号之和,并通过对各个正弦信号的研究来了解复杂信号的频率成分和幅值。

信号频谱分析是采⽤傅⽴叶变换将时域信号x(t)变换为频域信号X(f),从⽽帮助⼈们从另⼀个⾓度来了解信号的特征。

时域信号x(t)的傅⽒变换为:式中X(f)为信号的频域表⽰,x(t)为信号的时域表⽰,f 为频率。

3. 周期信号的频谱分析周期信号是经过⼀定时间可以重复出现的信号,满⾜条件:dt e t x f X ft j ?+∞∞--=π2)()(x ( t ) = x ( t + nT )从数学分析已知,任何周期函数在满⾜狄利克利(Dirichlet )条件下,可以展开成正交函数线性组合的⽆穷级数,如正交函数集是三⾓函数集(sinn ω0t,cosn ω0t )或复指数函数集(t jn e 0ω),则可展开成为傅⾥叶级数,通常有实数形式表达式:直流分量幅值为:各余弦分量幅值为:各正弦分量幅值为:利⽤三⾓函数的和差化积公式,周期信号的三⾓函数展开式还可写如下形式:直流分量幅值为: A 0 = a 0各频率分量幅值为:各频率分量的相位为:式中,T —周期,T=2π/ω0;ω0—基波圆频率;f 0—基波频率;n=0,±1, ……。

实验二_应用FFT对信号进行频谱分析

实验二_应用FFT对信号进行频谱分析

1. 三、实验内容和结果:高斯序列的时域和频域特性:高斯序列的时域表达式:2(),015()0,n p q a e n x n -⎧⎪≤≤=⎨⎪⎩其它固定参数p=8,改变参数q 的值, 记录时域和频域的特性如下图。

图 1i. 结论: 从时域图中可以看到, q 参数反应的是高斯序列能量的集中程度: q 越小, 能量越集中, 序列偏离中心衰减得越快, 外观上更陡峭。

同时, 随着q 的增大, 时域序列总的能量是在增大的。

频域上, 对应的, 随着q 的增加, 由于时域序列偏离中心的衰减的缓慢, 则高频分量也就逐渐减, 带宽变小: 时域上总的能量增大, 故也可以看到低频成分的幅度都增大。

固定参数q, 改变参数p, 记录时域和频域的特性如下图 2.图 22. 结论: p 是高斯序列的对称中心, p 的变化在时域表现为序列位置的变化。

由于选取的矩形窗函数一定, p 值过大时, 会带来高斯序列的截断。

并且随着p 的增大, 截断的越来越多。

对应地, 看频域上的变化: 截断的越多, 高频的成分也在增多, 以至发生谱间干扰, 泄露现象变得严重。

从图中可以看到, 在p=13时, 已经有混叠存在。

当p=14时, 混叠进一步加大, 泄露变得更明显。

衰减正弦序列的时域和幅频特性:sin(2),015()0,n b e fn n x n απ-⎧≤≤=⎨⎩其它改变参数f, 记录时域和幅频特性如下图3.图 33. 结论: 随着f 的增大, 时域上可以看到, 序列的变化明显快多了。

从幅度谱上看, 序列的高频分量逐渐增多, 低频分量逐渐减小, 以至于发生严重的频谱混叠。

当f 增大到一定的程度, 从图中可以看到, f=0.4375和f=0.5625时的幅度谱是非常相似的, 此时已经很难看出其幅度谱的区别。

三角序列的时域表达式和对应的时域和幅频特性如图 4:c 1,03()8,470,n n x n n n n +≤≤⎧⎪=-≤≤⎨⎪⎩其它图 4结论: 随着fft 取点数的增多, 能够看到的幅度谱的频率分量变得丰富, 得到的是高密度更高的谱, 也就是减轻了栅栏效应。

信号与系统分析实验信号的频谱分析

信号与系统分析实验信号的频谱分析

实验三信号的频谱分析1方波信号的分解与合成实验1实验目的1. 了解方波的傅立叶级数展开和频谱特性。

2. 掌握方波信号在时域上进行分解与合成的方法。

3. 掌握方波谐波分量的幅值和相位对信号合成的影响。

2 实验设备PC机一台,TD-SAS系列教学实验系统一套。

3 实验原理及内容1. 信号的傅立叶级数展开与频谱分析信号的时域特性和频域特性是对信号的两种不同的描述方式。

对于一个时域的周期信号f(t),只要满足狄利克莱条件,就可以将其展开成傅立叶级数:如果将式中同频率项合并,可以写成如下形式:从式中可以看出,信号f(t)是由直流分量和许多余弦(或正弦)分量组成。

其中第一项A0/2是常数项,它是周期信号中所包含的直流分量;式中第二项A1cos(Ωt+φ1)称为基波,它的角频率与原周期信号相同,A1是基波振幅,φ1是基波初相角;式中第三项A2cos(Ωt+φ2)称为二次谐波,它的频率是基波的二倍,A2是基波振幅,φ2是基波初相角。

依此类推,还有三次、四次等高次谐波分量。

2. 方波信号的频谱将方波信号展开成傅立叶级数为:n=1,3,5…此公式说明,方波信号中只含有一、三、五等奇次谐波分量,并且其各奇次谐波分量的幅值逐渐减小,初相角为零。

图3-1-1为一个周期方波信号的组成情况,由图可见,当它包含的分量越多时,波形越接近于原来的方波信号,还可以看出频率较低的谐波分量振幅较大,它们组成方波的主体,而频率较高的谐波分量振幅较小,它们主要影响波形的细节。

(a)基波(b)基波+三次谐波(c)基波+三次谐波+五次谐波(d)基波+三次谐波+五次谐波+七次谐波(e)基波+三次谐波+五次谐波+七次谐波+九次谐波图3-1-1方波的合成3. 方波信号的分解方波信号的分解的基本工作原理是采用多个带通滤波器,把它们的中心频率分别调到被测信号的各个频率分量上,当被测信号同时加到多路滤波器上,中心频率与信号所包含的某次谐波分量频率一致的滤波器便有输出。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验3.2 典型信号频谱分析一、 实验目的1. 在理论学习的基础上,通过本实验熟悉典型信号的波形和频谱特征,并能够从信号频谱中读取所需的信息。

2. 了解信号频谱分析的基本方法及仪器设备。

二、 实验原理1. 典型信号及其频谱分析的作用正弦波、方波、三角波和白噪声信号是实际工程测试中常见的典型信号,这些信号时域、频域之间的关系很明确,并且都具有一定的特性,通过对这些典型信号的频谱进行分析,对掌握信号的特性,熟悉信号的分析方法大有益处,并且这些典型信号也可以作为实际工程信号分析时的参照资料。

本次实验利用DRVI 快速可重组虚拟仪器平台可以很方便的对上述典型信号作频谱分析。

2. 频谱分析的方法及设备信号的频谱可分为幅值谱、相位谱、功率谱、对数谱等等。

对信号作频谱分析的设备主要是频谱分析仪,它把信号按数学关系作为频率的函数显示出来,其工作方式有模拟式和数字式二种。

模拟式频谱分析仪以模拟滤波器为基础,从信号中选出各个频率成分的量值;数字式频谱分析仪以数字滤波器或快速傅立叶变换为基础,实现信号的时—频关系转换分析。

傅立叶变换是信号频谱分析中常用的一个工具,它把一些复杂的信号分解为无穷多个相互之间具有一定关系的正弦信号之和,并通过对各个正弦信号的研究来了解复杂信号的频率成分和幅值。

信号频谱分析是采用傅立叶变换将时域信号x(t)变换为频域信号X(f),从而帮助人们从另一个角度来了解信号的特征。

时域信号x(t)的傅氏变换为:式中X(f)为信号的频域表示,x(t)为信号的时域表示,f 为频率。

3. 周期信号的频谱分析周期信号是经过一定时间可以重复出现的信号,满足条件:dt e t x f X ft j ⎰+∞∞--=π2)()(x ( t ) = x ( t + nT )从数学分析已知,任何周期函数在满足狄利克利(Dirichlet )条件下,可以展开成正交函数线性组合的无穷级数,如正交函数集是三角函数集(sinn ω0t,cosn ω0t )或复指数函数集(t jn e 0ω),则可展开成为傅里叶级数,通常有实数形式表达式:直流分量幅值为:各余弦分量幅值为:各正弦分量幅值为:利用三角函数的和差化积公式,周期信号的三角函数展开式还可写如下形式: 直流分量幅值为: A 0 = a 0各频率分量幅值为: 各频率分量的相位为:式中,T —周期,T=2π/ω0;ω0—基波圆频率;f 0—基波频率;n=0,±1, ……。

n n n n A b a ϕ,,,为信号的傅立叶系数,表示信号在频率f n 处的成分大小。

工程上习惯将计算结果用图形方式表示,以f n 为横坐标,n n b a ,为纵坐标画图,则称为时频-虚频谱图;以f n 为横坐标,n n A ϕ,为纵坐标画图,则称为幅值-相位谱;以f n 为横坐标,A n 2为纵坐标画图,则称为功率谱,如图7所示。

∑∞=++=+++++=1000020201010sin cos sin cos sin cos )(n n n t n b t n a a t b t a t b t a a x x ωωωωωω⎰-=2/2/0)(1T T dt t x T a ⎰⎰--==2/2/02/2/02sin )(2sin )(2T T T T n tdt nf t x T tdt n t x T b πω⎰⎰--==2/2/02/2/02cos )(2cos )(2T T T T n tdt nf t x T tdt n t x T a πω∑∞=-+=100)cos()(n n n t n A A x x ϕωn nn a b arctg =ϕ22nn n b a A +=图7 周期信号的频谱表示方法频谱是构成信号的各频率分量的集合,它完整地表示了信号的频率结构,即信号由哪些谐波组成,各谐波分量的幅值大小及初始相位,从而揭示了信号的频率信息。

4. 非周期信号的频谱分析非周期信号是在时间上不会重复出现的信号,一般为时域有限信号,具有收敛可积条件,其能量为有限值。

这种信号的频域分析手段是傅立叶变换。

其表达式为:与周期信号相似,非周期信号也可以分解为许多不同频率分量的谐波和,所不同的是,由于非周期信号的周期,基频,它包含了从零到无穷大的所有频率分量,各频率分量的幅值为,这是无穷小量,所以频谱不能再用幅值表示,而必须用幅值密度函数描述。

非周期信号x(t)的傅立叶变换X(f)是复数,所以有:式中|X(f)|为信号在频率f 处的幅值谱密度,为信号在频率f 处的相位差。

工程上习惯将计算结果用图形方式表示,以f 为横坐标,Re[X(f)]、Im[X(f)]⎰⎰⎰⎰∞∞--∞∞--∞∞-∞∞-====dt e t x f X dt e t x X df e f X t x d e X t x ft j t j ft j t j πωπωωωωπ22)()()()()()()(21)(或[][])](Re[)](Im[)()(Im )(Re )()()(22)(f X f X arctg f f X f X f X e f X f X f j =+==ϕϕ为纵为纵坐标画图,则称为时频-虚频密度谱图;以f为横坐标,|X(f)|、)(f坐标画图,则称为幅值-相位密度谱;以f为横坐标,|X(f)|2为纵坐标画图,则称为功率密度谱,如图8所示。

图8 非周期信号的频谱表示方法的各连续频率值上,与周期信号不同的是,非周期信号的谱线出现在0,fmax这种频谱称为连续谱。

5. 频谱分析的应用频谱分析主要用于识别信号中的周期分量,是信号分析中最常用的一种手段。

例如,在机床齿轮箱故障诊断中,可以通过测量齿轮箱上的振动信号,进行频谱分析,确定最大频率分量,然后根据机床转速和传动链,找出故障齿轮。

再例如,在螺旋浆设计中,可以通过频谱分析确定螺旋浆的固有频率和临界转速,确定螺旋浆转速工作范围。

本实验利用在DRVI上搭建的频谱分析仪来对信号进行频谱分析。

由虚拟信号发生器产生多种典型波形的电压信号,用频谱分析芯片对该信号进行频谱分析,得到信号的频谱特性数据。

分析结果用图形在计算机上显示出来,也可通过打印机打印出来。

三、实验仪器和设备1. 计算机n台2. DRVI快速可重组虚拟仪器平台1套3. 打印机1台四、实验步骤及内容1.启动服务器,运行DRVI主程序,开启DRVI数据采集仪电源,然后点击DRVI快捷工具条上的“联机注册”图标,选择其中的“DRVI采集仪主卡检测”进行服务器和数据采集仪之间的注册。

联机注册成功后,分别从DRVI工具栏和快捷工具条中启动“DRVI微型Web服务器”和“内置的Web服务器”,开始监听8600和8500端口。

2.打开客户端计算机,启动计算机上的DRVI客户端程序,然后点击DRVI快捷工具条上的"联机注册"图标,选择其中的“DRVI局域网服务器检测”,在弹出的对话框中输入服务器IP地址(例如:192.168.0.1),点击“发送”按钮,进行客户端和服务器之间的认证,认证完毕后即可正常运行客户端所有功能。

3.在DRVI软件平台的地址信息栏中输入如下信息“http://服务器IP地址:8600/SensorLAB/index.htm”,打开WEB版实验指导书,在实验目录中选择“典型信号频谱分析”实验,根据实验原理和要求搭建一个典型信号频谱分析实验。

4.该实验首先需要设计一个典型信号发生器,来产生白噪声、正弦波、方波、扫频信号等各种典型信号,DRVI中提供了一个“数字信号发生器”芯片可以直接生成上述信号,可以用一片“多联开关”芯片与之联动来控制“数字信号发生器”芯片的输出信号类型;对于整个实验的启动,用一片“开/关按钮”芯片来进行控制;为计算信号幅值谱,选择一片“频谱计算”芯片;为计算信号的强度,选择一片“时域参数计算”芯片;另外选择二片“波形/频谱显示”芯片,用于显示信号的波形和频谱;选择一片“方型仪表”芯片,用于显示信号的有效值;为实现频谱的放大、展宽等操作,插入一片“波形/频谱曲线操作”芯片;最后根据连接这些芯片所需的数组型数据线数量,插入4片“内存条”芯片,扩展4条数组型数据线,用于存储动态数据;再加上一些文字显示芯片和装饰芯片,就可以搭建出一个典型信号的频谱分析实验。

所需的虚拟仪器软件芯片数量、种类、与软件总线之间的信号流动和连接关系如图9所示,根据实验原理设计图在DRVI软面包板上插入上述软件芯片,然后修改其芯片属性窗中相应的连线参数就可以完成该实验的设计和搭建过程。

图9 典型信号频谱分析实验原理设计图5.例如,从软件芯片列表中依次插入四片“软内存条”芯片,其对应的软件芯片编号分别为6000,6001,6002,6003,然后插入“多联开关”芯片、“数字信号发生器”芯片和“开关”芯片,利用“移动工具”在软面包板上完成软件芯片的布局。

然后在“数字信号发生器”芯片上用鼠标右键点击,在弹出的芯片属性对话框中修改“波形存储芯片号”为6000,将其与数组型数据总线6000即“软内存条”芯片6000连接;修改“类型线号”为2将其与多联开关连接,控制信号的输出类型;修改“开关线号”为1,将其与“开关”芯片连接,由“开关”芯片来控制信号发生器的启/停;其它参数无需修改,即可完成本实验中“数字信号发生器”芯片的设置过程,如图10所示。

相应的,设置“开关”芯片中的“开关线号”为1;“多联开关”芯片中的“开关线号”为2 (与“数字信号发生器”类型线号相联),“开关数量”为10(如图11所示),完成这组软件芯片的设置过程。

其它软件芯片的设置可参照以上芯片设置方法及实验原理设计图完成。

图10 “数字信号发生器”芯片参数设置样列图11 “多联开关”芯片参数设置样列6.也可以直接点击附录中“实验脚本文件”的链接,将本实验的脚本文件贴入并运行,实验截屏效果图如图12所示。

图12 典型信号频谱分析实验7.点击DRVI“典型信号频谱分析”实验中的“白噪声”按钮,产生白噪声信号,分析和观察白噪声信号波形和幅值谱特性。

8.点击DRVI“典型信号频谱分析”实验中的“正弦波”按钮,产生正弦波信号,分析和观察正弦波信号波形和幅值谱特性。

9.点击DRVI“典型信号频谱分析”实验中的“方波”按钮,产生方波信号,分析和观察方波信号波形和幅值谱特性。

10.点击DRVI“典型信号频谱分析”实验中的“三角波”按钮,产生三角波信号,分析和观察三角波信号波形和幅值谱特性。

11.其余依此类推,分析和观察信号波形和幅值谱特性。

五、实验报告要求1.简述实验目的和原理。

2.整理该实验的设计原理图。

3.按实验步骤整理出正弦波、方波、三角波、白噪声以及其它波形的时域和幅值谱特性图形,说明各信号频谱的特点。

相关文档
最新文档