应用MATLAB对信号进行频谱分析
matlab 信号 频谱分析实验报告

matlab 信号频谱分析实验报告实验背景:信号频谱分析是一种通过将信号在频域上进行分解和分析的方法,用于研究信号的频率成分和频率特性。
Matlab是一种常用的科学计算软件,拥有强大的信号处理和频谱分析功能。
本实验旨在通过使用Matlab对信号进行频谱分析,探索信号的频率特性。
实验目的:1. 了解信号频谱分析的基本概念和方法;2. 掌握Matlab中信号频谱分析的基本操作;3. 分析不同类型信号的频谱特性。
实验步骤:1. 生成信号:首先,我们需要生成一个待分析的信号。
可以选择不同类型的信号,如正弦信号、方波信号或噪声信号。
在Matlab中,可以使用相关函数生成这些信号。
2. 绘制时域图:使用Matlab绘制生成的信号的时域图。
时域图展示了信号在时间上的变化情况,可以帮助我们对信号有一个直观的了解。
3. 进行频谱分析:使用Matlab中的傅里叶变换函数对信号进行频谱分析。
傅里叶变换可以将信号从时域转换到频域,得到信号的频谱图。
频谱图展示了信号在不同频率上的能量分布情况。
4. 绘制频谱图:使用Matlab绘制信号的频谱图。
频谱图可以帮助我们观察信号的频率成分和频率特性。
可以选择使用不同的频谱分析方法,如快速傅里叶变换(FFT)或功率谱密度估计(PSD)。
5. 分析频谱特性:观察频谱图,分析信号的频率成分和频率特性。
可以计算信号的主要频率分量,如峰值频率或频率范围。
还可以计算信号的能量分布情况,了解信号在不同频率上的能量分布情况。
实验结果与讨论:通过对不同类型信号进行频谱分析实验,我们可以得到以下结果和讨论:1. 正弦信号的频谱特性:正弦信号在频谱上只有一个频率成分,即信号的频率。
通过频谱分析,我们可以准确地确定正弦信号的频率。
2. 方波信号的频谱特性:方波信号在频谱上存在多个频率成分,主要包括基波频率和谐波频率。
通过频谱分析,我们可以观察到方波信号频谱上的多个峰值。
3. 噪声信号的频谱特性:噪声信号在频谱上呈现较为均匀的能量分布,没有明显的峰值。
实验2利用MATLAB分析信号频谱及系统的频率特性

实验2利用MATLAB分析信号频谱及系统的频率特性引言:在信号处理和通信领域中,频谱分析是一项非常重要的技术。
频谱分析可以帮助我们了解信号的频率特性,包括频率成分和幅度。
MATLAB是一款功能强大的数学软件,提供了多种工具和函数用于信号处理和频谱分析。
本实验旨在通过MATLAB分析信号频谱及系统的频率特性,深入理解信号处理和频域分析的原理和应用。
实验步骤:1.生成一个信号并绘制其时域波形。
首先,我们可以使用MATLAB提供的函数生成一个信号。
例如,我们可以生成一个用正弦函数表示的周期信号。
```matlabt=0:0.001:1;%时间范围为0到1秒,采样率为1000Hzf=10;%信号频率为10Hzx = sin(2*pi*f*t); % 生成正弦信号plot(t,x) % 绘制信号的时域波形图title('Time domain waveform') % 添加标题```2.计算信号的频谱并绘制频谱图。
使用MATLAB中的FFT函数可以计算信号的频谱。
FFT函数将信号从时域转换为频域。
```matlabFs=1000;%采样率为1000HzL = length(x); % 信号长度NFFT = 2^nextpow2(L); % FFT长度X = fft(x,NFFT)/L; % 计算X(k)f = Fs/2*linspace(0,1,NFFT/2+1); % 计算频率轴plot(f,2*abs(X(1:NFFT/2+1))) % 绘制频谱图title('Frequency spectrum') % 添加标题```3.使用MATLAB分析系统的频率特性。
MATLAB提供了Signal Processing Toolbox,其中包含了分析系统频率特性的函数和工具。
```matlabHd = designfilt('lowpassfir', 'FilterOrder', 6,'CutoffFrequency', 0.3, 'SampleRate', Fs); % 设计一个低通滤波器fvtool(Hd) % 显示滤波器的频率响应``````matlab[W,F] = freqz(Hd); % 计算滤波器的频率响应plot(F,abs(W)) % 绘制滤波器的振幅响应title('Frequency response of lowpass filter') % 添加标题```实验结果:运行上述代码后,我们可以得到如下结果:1.时域波形图2.频谱图3.滤波器频率响应讨论与结论:本实验通过MATLAB分析信号频谱及系统的频率特性,深入理解了信号处理和频域分析的原理和应用。
利用Matlab进行频谱分析的方法

利用Matlab进行频谱分析的方法引言频谱分析是信号处理和电子工程领域中一项重要的技术,用于分析信号在频率域上的特征和频率成分。
在实际应用中,频谱分析广泛应用于音频处理、图像处理、通信系统等领域。
Matlab是一种强大的工具,可以提供许多功能用于频谱分析。
本文将介绍利用Matlab进行频谱分析的方法和一些常用的工具。
一、Matlab中的FFT函数Matlab中的FFT(快速傅里叶变换)函数是一种常用的频谱分析工具。
通过使用FFT函数,我们可以将时域信号转换为频域信号,并得到信号的频谱特征。
FFT 函数的使用方法如下:```Y = fft(X);```其中,X是输入信号,Y是输出的频域信号。
通过该函数,我们可以得到输入信号的幅度谱和相位谱。
二、频谱图的绘制在进行频谱分析时,频谱图是一种直观和易于理解的展示形式。
Matlab中可以使用plot函数绘制频谱图。
首先,我们需要获取频域信号的幅度谱。
然后,使用plot函数将频率与幅度谱进行绘制。
下面是一个示例:```X = 1:1000; % 时间序列Y = sin(2*pi*10*X) + sin(2*pi*50*X); % 输入信号Fs = 1000; % 采样率N = length(Y); % 信号长度Y_FFT = abs(fft(Y)); % 计算频域信号的幅度谱f = (0:N-1)*(Fs/N); % 频率坐标plot(f, Y_FFT);```通过上述代码,我们可以得到输入信号在频谱上的特征,并将其可视化为频谱图。
三、频谱分析的应用举例频谱分析可以应用于许多实际问题中。
下面将介绍两个常见的应用举例:语音信号分析和图像处理。
1. 语音信号分析语音信号分析是频谱分析的一个重要应用领域。
通过对语音信号进行频谱分析,我们可以探索声波的频率特性和信号的频率成分。
在Matlab中,可以使用wavread 函数读取音频文件,并进行频谱分析。
下面是一个示例:```[waveform, Fs] = wavread('speech.wav'); % 读取音频文件N = length(waveform); % 信号长度waveform_FFT = abs(fft(waveform)); % 计算频域信号的幅度谱f = (0:N-1)*(Fs/N); % 频率坐标plot(f, waveform_FFT);```通过上述代码,我们可以获取语音信号的频谱特征,并将其可视化为频谱图。
应用Matlab对图像信号进行频谱分析及滤波

应用Matlab对图像信号进行频谱分析及滤波选取一张彩色图片,建议把像素设置成200*200,提取图像的灰度值,并显示出灰度图像;在图像中增加正弦噪声信号(自己设置几个频率的正弦信号),画出加入噪声信号后的灰度图像;给定滤波器的性能指标,采用窗函数法或者双线性变换设计数字低通滤波器,并画出滤波器的频率响应;然后用自己设计的滤波器对含噪声图像信号进行滤波,画出滤波后图像信号的灰度图像。
利用频谱分析对原始灰度图像、加入噪声信号的灰度图像、和滤波后的灰度图像进行频谱分析和对比,分析信号的变化。
x=imread('D:\1.jpg');x1=rgb2gray(x);[M,N]=size(x1);x2=im2double(x1);figure(1);subplot(1,3,1)imshow(x2);x3=zeros(1,M*N);for i=1:Mfor j=1:N;x3(M*(i-1)+j)= x2(i,j);endendL=M*N;fs=40000;dt=1/fs;n=0:L-1;x7=(sin(2*pi*15000*n*dt)/10+sin(2*pi*18000*n*dt)/6)x4=x3+x7;for i=1:Mfor j=1:N;x5(i,j) = x4(M*(i-1)+j);endendfigure(1)subplot(132);imshow(x5)wp=0.5*pi;ws=0.75*pi;rp=3;rs=50;[n,wn]=buttord(wp/pi,ws/pi,rp,rs,'s'); [Bz,Az]=butter(n,wp/pi);%[z,p,k]=buttap(n);%[Bap,Aap]=zp2tf(z,p,k);%[B,A]=lp2lp(Bap,Aap,wn);%[Bz,Az]=bilinear(B,A,F);[h,w]=freqz(Bz,Az,L,fs);figure(3)subplot(121);plot(w,abs(h));x6=zeros(1,L);for i=1:Mfor j=1:N;x6(M*(i-1)+j)= x5(i,j);endendx8=zeros(1,L);x8=filter(Bz,Az,x6);x3k=fft(x3,L)figure(2)subplot(131)plot(w*2,abs(x3k))x4k=fft(x4,L)figure(2)subplot(132)plot(w*2,abs(x4k))x7k=fft(x7,L)figure(3)subplot(122)plot(w*2,abs(x7k))x8k=fft(x8,L)figure(2)subplot(133)plot(w*2,abs(x8k))for i=1:Mfor j=1:N;x9(i,j) = x8(M*(i-1)+j);endendfigure(1)subplot(133);imshow(x9);。
用MATLAB对信号做频谱分析

⽤MATLAB对信号做频谱分析1.⾸先学习下傅⾥叶变换的东西。
学⾼数的时候⽼师只是将傅⾥叶变换简单的说了下,并没有深⼊的讲解。
⽽现在看来,傅⾥叶变换似乎是信号处理的⽅⾯的重点只是呢,现在就先学习学习傅⾥叶变换吧。
上⾯这幅图在知乎⼀个很著名的关于傅⾥叶变换的⽂章中的核⼼插图,我觉得这幅图很直观的就说明了傅⾥叶变换的实质。
时域上的东西直观的反应到了频域上了,很完美的结合到了⼀起,233333. ⽆数正弦波叠加,震荡的叠加的最后结果竟然是⽅波,同理,任何周期性函数竟然都能拆分为傅⾥叶级数的形式,这样的简介与优雅,真令⼈折服。
2.MATLAB对信号做频谱分析代码:(1)对 f1 = Sa(2t)的频谱分析1 clear;clc;2 hold on;3 R=0.05;4 t=-1.2:R:1.2;5 t1 = 2*t;6 f1=sinc(t1); %Sa函数7 subplot(1,2,1),plot(t,f1)8 xlabel('t'),ylabel('f1')9 axis([-2,2,-0.3,1.2]); %写出Sa函数上下限1011 N=1000;12 k=-N:N;13 W1=40;14 W=k*W1/N;15 F=f1*exp(-j*t'*W)*R; %f1的傅⾥叶变换16 F=real(F); %取F的实部17 subplot(1,2,2),plot(W,F)18 xlabel('W'),ylabel('F(jw)')View Code结果如下图:(2)对 f2 = u(t+2) - u(t-2)的频谱分析1 R=0.05;2 t=-3:R:3;3 f2=(t>=-2)-(t>=2);4 subplot(1,2,1),plot(t,f2)5 grid on;6 xlabel('t'),ylabel('f2')7 axis([-3,3,-0.5,1.5]);89 N=1000;k=-N:N;10 W1=40;11 W=k*W1/N;12 F=f2*exp(-j*t'*W)*R;13 F=real(F);14 subplot(1,2,2),plot(W,F)15 grid on;16 xlabel('W'),ylabel('F(jw)')View Code结果如下图:(3)对f3 = t[u(t+1) - u(t-1) ]的频谱分析1 R=0.05;2 h=0.001;3 t=-1.2:R:1.2;4 y=t.*(t>=-1)-t.*(t>=1);5 f4=diff(y)/h;6 subplot(1,2,1),plot(t,y)7 xlabel('t'),ylabel('y')8 axis([-1.2,1.2,-1.2,1.2]);910 N=1000;11 k=-N:N;12 W1=40;13 W=k*W1/N;14 F=y*exp(-j*t'*W)*R;15 F=real(F);16 subplot(1,2,2),plot(W,F)17 xlabel('W'),ylabel('F(jw)')18 axis([-40,40,-0.06,0.06]);View Code结果如下图:(4)对正弦波做FFT频谱分析1 %*************************************************************************%2 % FFT实践及频谱分析 %3 %*************************************************************************%4 %***************正弦波****************%5 fs=100;%设定采样频率6 N=128;7 n=0:N-1;8 t=n/fs;9 f0=10;%设定正弦信号频率10 %⽣成正弦信号11 x=sin(2*pi*f0*t);12 figure(1);13 subplot(231);14 plot(t,x);%作正弦信号的时域波形15 xlabel('t');16 ylabel('y');17 title('正弦信号y=2*pi*10t时域波形');18 grid;1920 %进⾏FFT变换并做频谱图21 y=fft(x,N);%进⾏fft变换22 mag=abs(y);%求幅值23 f=(0:length(y)-1)'*fs/length(y);%进⾏对应的频率转换24 figure(1);25 subplot(232);26 plot(f,mag);%做频谱图27 axis([0,100,0,80]);28 xlabel('频率(Hz)');29 ylabel('幅值');30 title('正弦信号y=2*pi*10t幅频谱图N=128');31 grid;3233 %求均⽅根谱34 sq=abs(y);35 figure(1);36 subplot(233);37 plot(f,sq);38 xlabel('频率(Hz)');39 ylabel('均⽅根谱');40 title('正弦信号y=2*pi*10t均⽅根谱');41 grid;4243 %求功率谱44 power=sq.^2;45 figure(1);46 subplot(234);47 plot(f,power);48 xlabel('频率(Hz)');49 ylabel('功率谱');50 title('正弦信号y=2*pi*10t功率谱');51 grid;5253 %求对数谱54 ln=log(sq);55 figure(1);56 subplot(235);57 plot(f,ln);58 xlabel('频率(Hz)');59 ylabel('对数谱');60 title('正弦信号y=2*pi*10t对数谱');61 grid;6263 %⽤IFFT恢复原始信号64 xifft=ifft(y);65 magx=real(xifft);66 ti=[0:length(xifft)-1]/fs;67 figure(1);68 subplot(236);69 plot(ti,magx);70 xlabel('t');71 ylabel('y');72 title('通过IFFT转换的正弦信号波形');73 grid;View Code执⾏结果如下图:(5)对矩形波做FFT频谱分析1 %****************2.矩形波****************%2 fs=10;%设定采样频率3 t=-5:0.1:5;4 x=rectpuls(t,2);5 x=x(1:99);6 figure(1);7 subplot(231); plot(t(1:99),x);%作矩形波的时域波形8 xlabel('t');9 ylabel('y');10 title('矩形波时域波形');11 grid;1213 %进⾏FFT变换并做频谱图14 y=fft(x);%进⾏fft变换15 mag=abs(y);%求幅值16 f=(0:length(y)-1)'*fs/length(y);%进⾏对应的频率转换17 figure(1);18 subplot(232);19 plot(f,mag);%做频谱图20 xlabel('频率(Hz)');21 ylabel('幅值');22 title('矩形波幅频谱图');23 grid;2425 %求均⽅根谱26 sq=abs(y);27 figure(1);28 subplot(233);29 plot(f,sq);30 xlabel('频率(Hz)');31 ylabel('均⽅根谱');32 title('矩形波均⽅根谱');33 grid;3435 %求功率谱36 power=sq.^2;37 figure(1);38 subplot(234);39 plot(f,power);40 xlabel('频率(Hz)');41 ylabel('功率谱');42 title('矩形波功率谱');43 grid;4445 %求对数谱46 ln=log(sq);47 figure(1);48 subplot(235);49 plot(f,ln);50 xlabel('频率(Hz)');51 ylabel('对数谱');52 title('矩形波对数谱');53 grid;5455 %⽤IFFT恢复原始信号56 xifft=ifft(y);57 magx=real(xifft);58 ti=[0:length(xifft)-1]/fs;59 figure(1);60 subplot(236);61 plot(ti,magx);62 xlabel('t');63 ylabel('y');64 title('通过IFFT转换的矩形波波形');65 grid;View Code执⾏结果如下图:(6)对⽩噪声做频谱分析1 %****************3.⽩噪声****************%2 fs=10;%设定采样频率3 t=-5:0.1:5;4 x=zeros(1,100);5 x(50)=100000;6 figure(1);7 subplot(231);8 plot(t(1:100),x);%作⽩噪声的时域波形9 xlabel('t');10 ylabel('y');11 title('⽩噪声时域波形');12 grid;1314 %进⾏FFT变换并做频谱图15 y=fft(x); %进⾏fft变换16 mag=abs(y);%求幅值17 f=(0:length(y)-1)'*fs/length(y);%进⾏对应的频率转换18 figure(1);19 subplot(232);20 plot(f,mag);%做频谱图21 xlabel('频率(Hz)');22 ylabel('幅值');23 title('⽩噪声幅频谱图');24 grid;2526 %求均⽅根谱27 sq=abs(y);28 figure(1);29 subplot(233);30 plot(f,sq);31 xlabel('频率(Hz)');32 ylabel('均⽅根谱');33 title('⽩噪声均⽅根谱');34 grid;3536 %求功率谱37 power=sq.^2;38 figure(1);39 subplot(234);40 plot(f,power);41 xlabel('频率(Hz)');42 ylabel('功率谱');43 title('⽩噪声功率谱');44 grid;4546 %求对数谱47 ln=log(sq);48 figure(1);49 subplot(235);50 plot(f,ln);51 xlabel('频率(Hz)');52 ylabel('对数谱');53 title('⽩噪声对数谱');54 grid;5556 %⽤IFFT恢复原始信号57 xifft=ifft(y);58 magx=real(xifft);59 ti=[0:length(xifft)-1]/fs;60 figure(1);61 subplot(236);62 plot(ti,magx);63 xlabel('t');64 ylabel('y');65 title('通过IFFT转换的⽩噪声波形');66 grid;View Code执⾏结果如下:。
matlab 信号 频谱分析实验报告

matlab 信号频谱分析实验报告《Matlab 信号频谱分析实验报告》实验目的:通过Matlab软件对信号进行频谱分析,了解信号的频谱特性,并掌握频谱分析的基本方法。
实验原理:信号的频谱分析是指将信号在频域上进行分析,得到信号的频谱特性。
频谱分析可以帮助我们了解信号的频率成分,频率分布情况,以及信号的频谱密度等信息。
在Matlab中,可以使用fft函数对信号进行频谱分析,得到信号的频谱图像。
实验步骤:1. 生成信号:首先在Matlab中生成一个信号,可以是正弦信号、方波信号或者任意复杂的信号。
2. 采样信号:对生成的信号进行采样,得到离散的信号序列。
3. 频谱分析:使用fft函数对采样的信号进行频谱分析,得到信号的频谱特性。
4. 绘制频谱图像:将频谱分析得到的结果绘制成频谱图像,观察信号的频谱分布情况。
实验结果分析:通过频谱分析,我们可以得到信号的频谱图像,从图像中可以清晰地看出信号的频率成分,频率分布情况,以及信号的频谱密度等信息。
通过对信号频谱图像的观察和分析,可以更好地了解信号的频谱特性,为后续的信号处理和分析提供参考。
实验结论:通过本次实验,我们成功使用Matlab对信号进行了频谱分析,得到了信号的频谱特性,并且掌握了频谱分析的基本方法。
频谱分析是信号处理和分析的重要工具,对于理解信号的频率特性和频率分布情况具有重要意义。
希望通过本次实验,能够对信号的频谱分析有更深入的了解,并且能够在实际工程中应用到相关领域。
通过本次实验,我们对Matlab信号频谱分析有了更深入的了解,对信号处理和分析有了更深入的认识,也为我们今后的学习和工作提供了更多的帮助。
希望通过不断地实践和学习,能够更加深入地掌握信号频谱分析的相关知识,为实际工程应用提供更多的帮助。
利用MATLAB软件对音频信号进行频谱分析与处理

利用MATLAB软件对音频信号进行频谱分析与处理一、简介频谱分析是通过对信号的频率成分进行分析,它允许我们了解信号的特性,计算信号的能量分布,同时还可以用来定位造成干扰的频率组件,以及检测和分析信号的变化。
MATLAB是一种编程语言和科学计算软件,它可以非常便捷地实现对音频信号的频谱分析和处理。
二、实现方法1.导入音频信号在使用MATLAB进行频谱分析时,首先需要先将音频信号导入MATLAB环境中。
可以使用audioplayer和audioread函数来完成这一步骤,示例代码如下:[audioData, fs] = audioread(‘AudioFile.wav’);player = audioplayer(audioData, fs);play(player);其中audioData表示从wav文件中读取的音频数据,fs表示采样率,player表示存储audioData和fs的audioplayer实例,play函数可以播放音频文件。
2.信号预处理针对所记录的音频信号,需要进行一些基本的信号处理操作,包括去噪、均衡、时域平均等。
去噪可以用MATLAB内置的函数完成,例如:audioData_NoiseRemoved = denoise(audioData,‘meanspectrum’);均衡是指将频谱的一些区域调整到更好的水平,可以用equalizer函数实现:audioData_Equalized = equalizer(audioData, ‘bandwidth’, 0.2);时域平均则可以使用conv函数实现:audioData_Meaned = conv(audioData, [1/N 1/N ... 1/N]);3.频谱分析频谱分析的主要工作是计算信号的谱密度,也就是每一个频率分量的能量。
实验2 用MATLAB进行信号频谱分析 2

实验报告通信工程 1101学号:********* 姓名:李*实验2 用MATLAB 进行信号频谱分析一、实验目的㈠ 初步掌握MATLAB 产生常用离散时间信号的编程方法。
㈡ 学习编写简单的FFT 算法程序,对离散信号进行幅频谱分析。
㈢ 观察离散时间信号频谱的特点。
二、实验原理㈠ 常用的离散时间信号在 MATLAB 语言主要是研究离散信号的。
常用的离散信号有: 1.单位取样序列⎩⎨⎧≠==0001)(n n n δ2.单位阶跃序列⎩⎨⎧<≥=001)(n n n u3.实指数序列R a n a n x n∈∀=;)(4.复指数序列n e n x n j ∀=+)(0)(ωσ5.正(余)弦序列)cos()(0θω+=n n x n ∀ 6.周期序列n N n x n x ∀+=)()(㈡ 离散信号的产生离散信号的图形显示使用stem 指令。
在 MATLAB 中的信号处理工具箱中,主要提供的信号是离散信号。
由于MATLAB 对下标的约定为从1开始递增,例如x=[5,4,3,2,1,0],表示x(1)=5,x(2)=4,X(3)=3…因此要表示一个下标不由1开始的数组x(n),一般应采用两个矢量,如 n=[-3,-2,-1,0,l ,2,3,4,5];x=[1,-l ,3,2,0,4,5,2,1];这表示了一个含9个采样点的矢量:X(n)={x(-3),x(-2),x(-1),x(0),x(1),x(2),x(3),x(4),x(5)}。
1.单位取样序列⎩⎨⎧≠==δ0001)(n n n 这一函数实现的方法有二:方法一:可利用MATLAB 的zeros 函数。
x=zeros(1,N); %建立一个一行N 列的全零数组x(1)=1; %对X (1)赋1 方法二:可借助于关系操作符实现n=1:N;x=[n==1]; %n 等于1时逻辑关系式结果为真,x=1;n 不等于1时为假,x=0如要产生 ⎪⎩⎪⎨⎧≤<<=≤≤=-δ20210100)(10)(n n n n n n n n n n n n则可采用MATLAB 实现:n=n1:n2;x=[(n-n0)==0];%n=n0时逻辑关系式结果为真,x=1;n ≠n0时为假,x=0 2.单位阶跃序列⎩⎨⎧<≥=001)(n n n u这一函数可利用MATLAB 的ones 函数实现: x=ones(1,N);还可借助于关系操作符“>=”来实现。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字信号处理课程设计报告书
课题名称
应用MATLAB 对信号进行频谱分析
姓 名 张炜玮 学 号 20086377 院、系、部 电气系 专 业 电子信息工程 指导教师
刘鑫淼
※※※※※※※※※ ※
※ ※
※ ※
※
2008级数字信号处
理课程设计
2011年7 月1日
应用MATLAB对信号进行频谱分析
20086377 张炜玮
一、设计目的
用MATLAB语言进行编程,绘出所求波形,并且运用FFT求对连续信号进行分析。
二、设计要求
1、用Matlab产生正弦波,矩形波,并显示各自的时域波形图;
2、进行FFT变换,显示各自频谱图,其中采样率、频率、数据长度自选,要求注明;
3、绘制三种信号的均方根图谱;
4、用IFFT回复信号,并显示恢复的正弦信号时域波形图。
三、系统原理
用FFT对信号作频谱分析是学习数字信号处理的重要内容。
经常需要进行频谱分析的信号是模拟信号和时域离散信号。
频谱分辨率直接和FFT的变换区间N 有关,因为FFT能够实现频率分辨率是2π/N。
x(n)是一个长度为M的有限长序列,则x(n)的N点离散傅立叶变换为:
X(k)=DFT[x(n)]=
kn
N
W
N
n
n
x
∑
-
=
1
)
(
,k=0,1,...,N-1
N
j
e
N
Wπ2-
=
逆变换:x(n) =IDFT[X(k)]=
kn
N
W
k
X
N
n
N
-
∑
-
=
1
)
(
1
,k=0,1,...,N-1
但FFT是一种比DFT更加快速的一种算法,提高了DFT的运算速率,为数字信号处理技术应用于各种信号处理创造了条件,大大提高了数字信号处理技术的发展。
本实验就是采用FFT,IFFT对信号进行谱分析。
四、程序设计
fs=input('please input the fs:');%设定采样频率
N=input('please input the N:');%设定数据长度
t=0:0.001:1;
f=100;%设定正弦信号频率
%生成正弦信号
x=sin(2*pi*f*t);
figure(1);
subplot(211);
plot(t,x);%作正弦信号的时域波形
axis([0,0.1,-1,1]);
title('正弦信号时域波形');
z=square(50*t);
subplot(212)
plot(t,z)
axis([0,1,-2,2]);
title('方波信号时域波形');grid;
%进行FFT变换并做频谱图
y=fft(x,N);%进行fft变换
mag=abs(y);%求幅值
f=(0:N-1)*fs/N;%横坐标频率的表达式为f=(0:M-1)*Fs/M; figure(2);
subplot(211);
plot(f,mag);%做频谱图
axis([0,1000,0,200]);
title('正弦信号幅频谱图');
y1=fft(z,N);%进行fft变换
mag=abs(y1);%求幅值
f=(0:N-1)*fs/N;%横坐标频率的表达式为f=(0:M-1)*Fs/M; subplot(212);
plot(f,mag);%做频谱图
axis([0,1000,0,200]);
title('方波信号幅频谱图');grid;
%求功率谱
sq=abs(y);
power=sq.^2;
figure(3)
subplot(211);
plot(f,power);
title('正弦信号功率谱');grid;
sq1=abs(y1);
power1=sq1.^2;
subplot(212);
plot(f,power1);
title('方波信号功率谱');grid;
%用IFFT恢复原始信号
xifft=ifft(y);
magx=real(xifft);
ti=[0:length(xifft)-1]/fs;
figure(4);
subplot(211);
plot(ti,magx);
axis([0,0.1,-1,1]);
title('通过IFFT转换的正弦信号波形');
zifft=ifft(y1);
magz=real(zifft);
ti1=[0:length(zifft)-1]/fs;
subplot(212);
plot(ti1,magz);
title('通过IFFT转换的方波信号波形');grid;
五、仿真结果及分析
由图可以看出正弦波周期T=0.01,采样点N=1024.程序为: t=0:0.001:1;f=100;%设定正弦信号频率 x=sin(2*pi*f*t);figure(1); subplot(211);
plot(t,x);%作正弦信号的时域波形 axis([0,0.1,-1,1]); title('正弦信号时域波形'); z=square(50*t); subplot(212) plot(t,z)
axis([0,1,-2,2]);
title('方波信号时域波形');grid;
01002003004005006007008009001000
50100150
200正弦信号幅频谱图
100
200
300
400
500
600
700
800
900
1000
050100150
200方波信号幅频谱图
2、对正弦波、方波信号进行FFT 变换程序: y=fft(x,N);%进行fft 变换 mag=abs(y);%求幅值
f=(0:N-1)*fs/N;%横坐标频率的表达式为f=(0:M-1)*Fs/M; figure(2); subplot(211);
plot(f,mag);%做频谱图
axis([0,1000,0,200]); title('正弦信号幅频谱图'); y1=fft(z,N);%进行fft 变换 mag=abs(y1);%求幅值
f=(0:N-1)*fs/N;%横坐标频率的表达式为f=(0:M-1)*Fs/M; subplot(212);
plot(f,mag);%做频谱图 axis([0,1000,0,200]);
title('方波信号幅频谱图');grid;
050100150200250300350400450500
5
10
15
4
正弦信号功率谱
050100150200250300350400450500
1234
5
方波信号功率谱
正弦信号、方波信号功率谱程序: sq=abs(y); power=sq.^2; figure(3) subplot(211); plot(f,power);
title('正弦信号功率谱');grid; sq1=abs(y1); power1=sq1.^2; subplot(212);
plot(f,power1);
title('方波信号功率谱');grid;
00.010.020.030.040.050.060.070.080.090.1
-1
-0.500.5
1通过IFFT 转换的正弦信号波形
0.5
1
1.5
2
2.5
-2-101
2通过IFFT 转换的方波信号波形
对两个信号进行恢复程序: xifft=ifft(y); magx=real(xifft);
ti=[0:length(xifft)-1]/fs; figure(4); subplot(211); plot(ti,magx); axis([0,0.1,-1,1]);
title('通过IFFT 转换的正弦信号波形'); zifft=ifft(y1); magz=real(zifft);
ti1=[0:length(zifft)-1]/fs; subplot(212); plot(ti1,magz);
title('通过IFFT 转换的方波信号波形');grid;
当采样频率小于2fc 或N 小于M 时恢复信号就会出现失真,频谱会发生馄叠。
六、设计总结
通过对本次应用MATLAB语言对信号进行频谱分析及滤波设计,使更加系统的理解了FFT,IFFT功能,对采样频谱分析及恢复功能掌握有了进一步提高,如果序列x(n)主值序列长度为M,最高频率为fc只有当频率采样点N≥M,采样频率fs≥2fc时,才有x(n)=IDFT[X(k)]=x(n)可有频域采样X(k)恢复原序列x(n),否则产生时域混叠失真现象。
七、参考文献
[1]丁玉美,高西全.数字信号处理.2版.西安:西安电子科技大学出版社,2001
[2] 胡广书.数字信号处理.北京:清华大学出版社,1998
[3] 刘毅成,孙祥娥.数字信号处理.北京:电子工业出版社,2004
[4] 陈亚勇等.MATLAB信号处理详解.人民邮电出版社,2001。