信号的频谱分析

合集下载

dft信号频谱的分析

dft信号频谱的分析

一,实验名称: DFT 的频谱分析 二,实验目的:1. 加深对 DFT 原理的理解,熟悉DFT 的性质。

2. 掌握离散傅里叶变换的有关性质,利用Matlab 实现DFT 变换3. 深刻理解利用 DFT 分析信号频谱的原理,分析实现过程中出现的现象及解决方法三,实验原理:所谓信号的频谱分析就是计算信号的傅里叶变换。

连续信号与系统的傅里叶分析显然不便于直接用计算机进行计算,使其应用受到限制,而DFT 是一种时域和频域均离散化的变换,适合数值运算,成为分析离散信号和系统的有力工具。

工程实际中,经常遇到的连续信号Xa(t),其频谱函数Xa(jW)也是连续函数。

数字计算机难于处理,因而我们采用DFT 来对连续时间信号的傅里叶变换进行逼近,进而分析连续时间信号的频谱。

离散傅里叶变换是有限长序列的傅里叶变换,它相当于把信号的傅里叶变换进行等频率间隔采样,并且有限长序列的离散傅里叶变换和周期序列的离散傅里叶级数本质是一样的。

快速傅里叶变换(FFT )并不是一种新的变换,它是离散傅里叶变换的一种快速算法,并且主要是基于这样的思路而发展起来的:(1)把长度为N 的序列的DFT 逐次分解成长度较短的序列的DFT 来计算。

(2)利用WN(nk)的周期性和对称性,在DFT 运算中适当的分类,以提高运算速度。

(对称性nkNnk NW W N-=+2,12-=NN W ;周期性nk N nk N nrN N k rN n N W W W W ---==)(,r 为任意整数,1=nrNNW ) 离散傅里叶变换的推导:离散傅里叶级数定义为 nk j N k p p ek x Nn x N21)(1)(π∑-== (1-1) 将上式两端乘以nm j Ne π2-并对n 在0~N-1求和可得 ⎥⎦⎤⎢⎣⎡==∑∑∑∑∑-=---=-=-=---=-10)(110101)(10N2N2N2)()(1)(N n m k n j N N k p N n N k m k n j pN n nm j p e k X ek XNen x πππ 因为{m k 1mk 0)(N )(1)(N 2N2N2-1-1N 11=≠---=-==∑m k j m k j N n m k n je eeNπππ所以∑∑-=-=--=11)()()(N2N k p N n nm j p m k k X en x δπ 这样∑-=-=10N2)()(N n nm j p p en x m X π用k代替m 得 ∑-=-=10N2)()(N n nk j p P e n x k X π (1-2)令N2πj N eW -=,则(1-2)成为DFS []∑-===10)()()(N n nk N p p p W n x k X n x (1-3)(1-1)成为 IDFS []∑-=-==1)(1)()(N n nkNpp p W k XNn x k X (1-4) 式(1-3)、(1-4)式构成周期序列傅里叶级数变换关系。

信号的频谱分析

信号的频谱分析

信号频谱分析
摘要:频谱分析就是将信号源发出的信号强度按频率顺序展开,使其成为频率的函数,并考察变化规律。

频谱分析的意义可以说是很明确的,就是分析信号的频率构成。

更确切地说就是用来分析信号中都含有哪几种正弦波成份。

反过来说就是,该信号可以用哪几种频率的正弦波来合成出来。

我们可以应用DFT 进行频谱分析,MATLAB编程仿真
实验原理:DSP数字信号处理器可以对实时采集到的信号进行FFT 预算以实现时域与频域的转换,FFT运算结果反映的是频域中各频率分量幅值的大小,从而使画出频谱图成为可能。

用DSP试验系统进行信号频谱分析的基本思路是:先将实时信号的采样值并送入DSP系统,DSP程序对这些采样值进行FFT变换,经运算求出对应的信号频谱数据,并将结果送到PC机屏幕上进行显示,是DSP硬件系统完成体态信号频谱分析仪的功能,如图所示。

实验步骤:1.先运行仿真软件MATLAB,进入分析窗口。

2.在仿真软件上分别对正弦波信号,方波信号和三角波信号进行仿真。

3.将仿真结果记录下来。

实验内容及结果
1.正弦波信号频谱分析
对正弦函数x(t)=cos(2 *50t)进行频谱分析,采样频率为10000Hz,对其进行整周期采样,非整周期采样,结果如图。

2、方波信号频谱
对方波函数x(t)=square (2 *50t)进行频谱分析,采样频率为10000Hz,对其进行整周期采样,非整周期采样,结果如图。

3、三角波信号频谱
对方波函数x(t)=sawtooth (2 *50t , 0.5)进行频谱分析,采样频率为10000Hz,对其进行整周期采样,非整周期采样,结果如图。

频谱分析实验报告

频谱分析实验报告

频谱分析实验报告频谱分析实验报告引言:频谱分析是一种用于研究信号频谱特性的方法,广泛应用于通信、音频处理、无线电等领域。

本实验旨在通过实际操作和数据分析,探索频谱分析的原理和应用。

实验设备与步骤:本次实验使用了频谱分析仪、信号发生器和电缆等设备。

具体步骤如下:1. 连接设备:将信号发生器通过电缆连接到频谱分析仪的输入端口。

2. 设置参数:根据实验要求,设置信号发生器的频率、幅度和波形等参数,并将频谱分析仪的参考电平和分辨率带宽调整到合适的范围。

3. 采集数据:启动频谱分析仪,开始采集信号数据。

可以选择连续扫描或单次扫描模式,并设置合适的时间窗口。

4. 数据分析:通过频谱分析仪提供的界面和功能,对采集到的数据进行分析和处理。

可以查看频谱图、功率谱密度图等,了解信号的频谱特性。

实验结果与讨论:通过实验操作和数据分析,我们得到了以下结果和结论。

1. 频谱分析原理:频谱分析仪通过将信号转换为频谱图来展示信号在不同频率上的能量分布情况。

频谱图通常以频率为横轴,幅度或功率为纵轴,可以直观地反映信号的频谱特性。

2. 不同信号的频谱特性:我们使用了不同频率和波形的信号进行实验,观察其在频谱图上的表现。

正弦波信号在频谱图上呈现出单个峰值,峰值的位置对应信号的频率。

方波信号在频谱图上则呈现出多个峰值,峰值的位置和幅度反映了方波的频率和谐波分量。

3. 噪声信号的频谱特性:我们还进行了噪声信号的频谱分析。

噪声信号在频谱图上呈现为连续的能量分布,没有明显的峰值。

通过分析噪声信号的功率谱密度图,可以了解噪声信号在不同频率上的能量分布情况。

4. 频谱分析的应用:频谱分析在通信和音频处理领域有着广泛的应用。

通过频谱分析,可以帮助我们了解信号的频率成分、噪声特性以及信号处理器件的性能等。

在无线电领域,频谱分析还可用于频段分配、干扰监测等工作。

结论:通过本次实验,我们深入了解了频谱分析的原理和应用。

频谱分析可以帮助我们理解信号的频谱特性,对于信号处理和通信系统设计具有重要意义。

信号的频域分析

信号的频域分析

信号的频域分析任一信号可以在时域对其进行分析和描述,利用傅立叶变换理论也可以对其进行频域分析,以便更好地对信号进行存储、传输和处理,达到提取有用信号的目的。

信号可分为四大类,与之对应存在四种类型的傅立叶变换,成为信号频谱分析的基础。

归纳如下表:四种信号的变化规律为:周期信号的频谱是离散的、互为谐波关系的;非周期信号的频谱是连续的;离散信号的频谱是为周期的;连续信号的频谱是非周期的。

所谓信号的频谱分析就是利用傅立叶变换的分析方法,找出与信号时域波形对应的频谱函数的幅度、相位以及能量或功率的分布规律等,以便在频域提取信号的特征。

实际工程中,通过积分公式求取复杂信号的频谱函数本身就比较困难,何况在许多情况下只是记录了实际信号的一段波形或数据,而没有对应的解析表达式。

若对这些信号进行频谱分析,就必须利用离散傅里叶变换(DFT)。

DFT表征一个在时域为N点有限长的序列x(n) 经过傅里叶变换到频域成为另一个N点有限长序列X (k ),即 :∑-=-=12)()(N n kn Njen x k X π=∑-=1)(N n kn Nwn x离散傅里叶反变换(IDFT )定义为∑-==102)(1)(N k kn N j e k X N n x π∑-=-=1)(1N k knNwk X N可见,由于DFT 变换对在时域、频域都是离散的,可以通过计算机实现数值 计算。

而且DFT 存在快速算法FFT ,可以高速、高效地完成DFT 运算。

Matlab 中 提供了相应函数以实现DFT 变换对的计算,调用格式为:X=fft(x)其按照基2时间抽取快速算法计算序列x (n )的傅里叶变换,当x (n) 的长度为2 的整数次幂或者x(n)为实序列时,计算的时间会大大缩短。

X=fft(x,n)其是补零或截短的n 点傅里叶变换,当x(n)的长度小于n 时,在x(n)的尾部补零使 x(n)的长度达到n 点;当x(n)的长度大于n 时,将x(n)截短使x(n)的长度成n 点; 然后对补零或截短的数据进行快速傅里叶变换。

实验 信号的频谱分析

实验 信号的频谱分析

实验三信号的频谱分析一.方波信号的分解与合成实验3.1.1实验目的1. 了解方波的傅立叶级数展开和频谱特性。

2. 掌握方波信号在时域上进行分解与合成的方法。

3. 掌握方波谐波分量的幅值和相位对信号合成的影响。

3.1.2 实验设备PC机一台,TD-SAS系列教学实验系统一套。

3.1.3 实验原理及内容1. 信号的傅立叶级数展开与频谱分析信号的时域特性和频域特性是对信号的两种不同的描述方式。

对于一个时域的周期信号f(t),只要满足狄利克莱条件,就可以将其展开成傅立叶级数:如果将式中同频率项合并,可以写成如下形式:从式中可以看出,信号f(t)是由直流分量和许多余弦(或正弦)分量组成。

其中第一项A0/2是常数项,它是周期信号中所包含的直流分量;式中第二项A1cos(Ωt+φ1)称为基波,它的角频率与原周期信号相同,A1是基波振幅,φ1是基波初相角;式中第三项A2cos(Ωt+φ2)称为二次谐波,它的频率是基波的二倍,A2是基波振幅,φ2是基波初相角。

依此类推,还有三次、四次等高次谐波分量。

2. 方波信号的频谱将方波信号展开成傅立叶级数为:n=1,3,5…此公式说明,方波信号中只含有一、三、五等奇次谐波分量,并且其各奇次谐波分量的幅值逐渐减小,初相角为零。

图3-1-1为一个周期方波信号的组成情况,由图可见,当它包含的分量越多时,波形越接近于原来的方波信号,还可以看出频率较低的谐波分量振幅较大,它们组成方波的主体,而频率较高的谐波分量振幅较小,它们主要影响波形的细节。

(a)基波(b)基波+三次谐波(c)基波+三次谐波+五次谐波(d)基波+三次谐波+五次谐波+七次谐波(e)基波+三次谐波+五次谐波+七次谐波+九次谐波图3-1-1方波的合成3. 方波信号的分解方波信号的分解的基本工作原理是采用多个带通滤波器,把它们的中心频率分别调到被测信号的各个频率分量上,当被测信号同时加到多路滤波器上,中心频率与信号所包含的某次谐波分量频率一致的滤波器便有输出。

通信原理第7版课后答案

通信原理第7版课后答案

通信原理第7版课后答案1. 信号的频谱分析。

答案,信号的频谱分析是指对信号进行频谱分解,将信号分解成不同频率分量的过程。

频谱分析可以帮助我们了解信号的频率成分,对于信号处理和通信系统设计具有重要意义。

2. 调制与解调。

答案,调制是指将低频信号(基带信号)转换成高频信号(载波信号)的过程,解调则是将高频信号还原成低频信号的过程。

调制与解调是通信系统中的重要环节,可以实现信号的传输和接收。

3. 数字通信系统。

答案,数字通信系统是指利用数字信号进行信息传输的通信系统。

数字通信系统具有抗干扰能力强、信息压缩和处理方便等优点,已经成为现代通信系统的主要形式。

4. 传输线路。

答案,传输线路是指用于信号传输的导线或光纤等物理介质。

传输线路的特性对信号的传输质量有重要影响,包括传输损耗、传输带宽等参数。

5. 信道编码与解码。

答案,信道编码是指在信道中对信息进行编码,以提高信号的可靠传输;信道解码则是对接收到的信号进行解码,恢复原始信息。

信道编码与解码是保障通信系统可靠性的重要手段。

6. 调制解调器。

答案,调制解调器是用于调制和解调的设备,可以将数字信号转换成模拟信号,或将模拟信号转换成数字信号。

调制解调器在调制解调过程中起到关键作用。

7. 通信系统性能分析。

答案,通信系统性能分析是对通信系统进行性能评估和分析的过程,包括信噪比、误码率等指标。

通过性能分析可以评估通信系统的质量和可靠性。

8. 多址技术。

答案,多址技术是指多个用户共享同一信道进行通信的技术,包括频分多址、时分多址、码分多址等多种方式。

多址技术可以提高通信系统的容量和效率。

9. 数字调制。

答案,数字调制是指将数字信号转换成模拟信号的过程,包括调幅调制、调频调制、调相调制等多种方式。

数字调制是数字通信系统中的重要环节。

10. 无线通信系统。

答案,无线通信系统是指利用无线电波进行信息传输的通信系统,包括移动通信、卫星通信等多种形式。

无线通信系统具有灵活性强、覆盖范围广等优点,已经成为现代通信的重要形式。

声学信号的频谱分析方法研究

声学信号的频谱分析方法研究

声学信号的频谱分析方法研究声学信号是指通过空气、水或其他介质传播的声波信号。

频谱分析是对声学信号进行研究和处理的一种重要方法。

频谱分析可以将声学信号转换为频域表示,从而揭示信号的频率特征和频率成分之间的关系。

本文将探讨声学信号的频谱分析方法,包括傅里叶变换、短时傅里叶变换和小波变换。

1. 傅里叶变换傅里叶变换是一种将时域信号转换为频域信号的方法。

它通过将信号分解为一系列正弦和余弦函数的和来表示信号的频率成分。

傅里叶变换可以将声学信号从时域转换为频域,得到频谱图。

频谱图显示了信号在不同频率上的能量分布情况,可以帮助我们分析信号的频率特征和频率成分之间的关系。

2. 短时傅里叶变换短时傅里叶变换是一种对时变信号进行频谱分析的方法。

与傅里叶变换不同,短时傅里叶变换将信号分成多个时间窗口,并对每个窗口进行傅里叶变换。

这样可以获得信号在不同时间段内的频谱信息,从而更好地分析信号的时变特性。

短时傅里叶变换在声学信号处理中广泛应用,例如语音信号的频谱分析和音乐信号的乐谱分析等。

3. 小波变换小波变换是一种将信号分解为不同频率的小波基函数的线性组合的方法。

与傅里叶变换和短时傅里叶变换不同,小波变换可以提供更好的时频局部化特性。

它可以将信号的局部特征和整体特征结合起来,对信号进行更精细的频谱分析。

小波变换在声学信号处理中有广泛的应用,例如音频压缩、语音识别和音乐分析等。

4. 频谱分析方法的应用频谱分析方法在声学信号处理中有着广泛的应用。

首先,频谱分析可以帮助我们理解声学信号的频率特征和频率成分之间的关系。

例如,通过分析音频信号的频谱图,我们可以判断音频是否存在噪音或失真。

其次,频谱分析可以用于声学信号的特征提取和分类。

例如,语音信号的频谱特征可以用于语音识别和说话人识别等应用。

最后,频谱分析可以用于音频信号的压缩和编码。

通过分析信号的频谱特征,我们可以选择合适的压缩算法和编码方式,从而实现高效的音频压缩和传输。

总结:声学信号的频谱分析方法是对声学信号进行研究和处理的重要手段。

典型信号的频谱分析

典型信号的频谱分析

典型信号的频谱分析一、试验目的在理论学习的基础上,通过本实验熟悉典型信号的频谱特征,能够从信号频谱中读取所需的信息,也就是具备读谱图的能力。

二、试验原理1. 正弦波、方波、三角波和白噪声信号是实际工程测试中常见的典型信号,这些信号时域、频域之间的关系很明确,并且都具有一定的特性,通过对这些典型信号的频谱进行分析,可以掌握信号的特性,熟悉信号的分析方法。

2. 信号的频谱可分为幅值谱、相位谱、功率谱、对数谱等。

傅立叶变换是信号频谱分析中常用的一个工具,它把一些复杂的信号分解为无穷多个相互之间具有一定关系的正弦信号之和,并通过对各个正弦信号的研究来了解复杂信号的频率成分和幅值。

3. 信号频谱分析是采用傅立叶变换将时域信号x(t)变换为频域信号X(f),从而帮助人们从另一个角度来了解信号的特征。

时域信号x(t)的傅氏变换为:x(t)=a0/2+ a1*sin(2πf0t)+b1*cos(2πf0t)+ a2*sin(2πf0t)+b2*cos(2πf0t)+.........用Cn画出信号的幅值谱曲线,从信号幅值谱判断信号特征。

三、试验内容a)白噪声信号幅值谱特性b)正弦波信号幅值谱特性c)方波信号幅值谱特性d)三角波信号幅值谱特性e)拍波信号幅值谱特性f)正弦波信号+白噪声信号幅值谱特性四、程序及波形1.%white noiset=0:0.01:1A=rand(size(t))Afft=abs(fft(A))/5122.%ssin savet=0:0.01:1y1=sin(2*pi*5*t)fs=0:1:100y2=abs(fft(y1))/512plot(fs,y2)3.%fang wavet = 0:0.0001:0.0625y = SQUARE(2*pi*30*t) fs=0:16:10000Y=abs(fft(y))/512plot(fs,Y)4.%sanjiao wavef=100width=0.3t4=0:0.001:0.1c=2*pi*f*t4y4=sawtooth(c,width)fs=0:1/0.001:10Y4=abs(fft(y4))/512plot(fs,Y4)5.%pai wavet=0:0.01:1m1=sin(2*pi*5*t)m2=sin(2*pi*6*t)M1=m1+m2fs=0:0.1:100M2=abs(fft(M1))/512plot(t,M2)6.%white +sinet=0:0.001:1;%采样周期为0.001s,即采样频率为1000Hz;%产生噪声污染的正弦波信号;x=sin(2*pi*100*t)+sin(2*pi*200*t)+rand(size(t));Y=fft(x,512);%对x进行512点的幅里叶变换;f=1000*(0:256)/512;%设置频率轴(横轴)坐标,1000为采样频率;plot(f,Y(1:257));%画出频域内的信号;五、结论1.可以从受噪声污染的信号中鉴别出有用的信号;由最后一个图知道,从受污染信号的时域形式中,很难看出正弦波的成分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验三信号的频谱分析方波信号的分解与合成实验一、任务与目的1. 了解方波的傅立叶级数展开和频谱特性。

2. 掌握方波信号在时域上进行分解与合成的方法。

3. 掌握方波谐波分量的幅值和相位对信号合成的影响。

二、原理(条件)PC机一台,TD-SAS系列教学实验系统一套。

1. 信号的傅立叶级数展开与频谱分析信号的时域特性和频域特性是对信号的两种不同的描述方式。

对于一个时域的周期信号f(t),只要满足狄利克莱条件,就可以将其展开成傅立叶级数:如果将式中同频率项合并,可以写成如下形式:从式中可以看出,信号f(t)是由直流分量和许多余弦(或正弦)分量组成。

其中第一项A0/2是常数项,它是周期信号中所包含的直流分量;式中第二项A1cos(Ωt+φ1)称为基波,它的角频率与原周期信号相同,A1是基波振幅,φ1是基波初相角;式中第三项A2cos(Ωt+φ2)称为二次谐波,它的频率是基波的二倍,A2是基波振幅,φ2是基波初相角。

依此类推,还有三次、四次等高次谐波分量。

2. 方波信号的频谱将方波信号展开成傅立叶级数为:n=1,3,5…此公式说明,方波信号中只含有一、三、五等奇次谐波分量,并且其各奇次谐波分量的幅值逐渐减小,初相角为零。

图3-1-1为一个周期方波信号的组成情况,由图可见,当它包含的分量越多时,波形越接近于原来的方波信号,还可以看出频率较低的谐波分量振幅较大,它们组成方波的主体,而频率较高的谐波分量振幅较小,它们主要影响波形的细节。

(a)基波(b)基波+三次谐波(c)基波+三次谐波+五次谐波(d)基波+三次谐波+五次谐波+七次谐波(e)基波+三次谐波+五次谐波+七次谐波+九次谐波图3-1-1方波的合成3. 方波信号的分解方波信号的分解的基本工作原理是采用多个带通滤波器,把它们的中心频率分别调到被测信号的各个频率分量上,当被测信号同时加到多路滤波器上,中心频率与信号所包含的某次谐波分量频率一致的滤波器便有输出。

在被测信号发生的实际时间内可以同时测得信号所包含的各频率分量。

本实验便是采用此方法,实验中共有5路滤波器,分别对应方波的一、三、五、七、九次分量。

4. 信号的合成本实验将分解出的1路基波分量和4路谐波分量通过一个加法器,合成为原输入的方波信号,信号合成电路图如图3-1-2所示。

图3-1-2三、内容与步骤本实验在方波信号的分解与合成单元完成。

1. 使信号发生器输出频率为100Hz、幅值为4V的方波信号,接入IN端。

2. 用示波器同时测量IN和OUT1端,调节该通路所对应的幅值调节电位器,使该通路输出方波的基波分量,基波分量的幅值为方波信号幅值的4/π倍,频率于方波相同并且没有相位差.(注意:出厂时波形调节电位器已调到最佳位置,其波形基本不失真,基本没有相位差。

若实验中发现存在波形失真或有相位差的现象,请适当调节波形调节电位器,使波形恢复正常。

)3. 用同样的方法分别在OUT3、OUT5、OUT7、OUT9端得到方波的三、五、七、九此谐波分量(注意其他谐波分量各参数应当满足式3-1-1所示)。

4. 完成信号的分解后,先后将OUT1与IN1、OUT3与IN2、OUT5与IN3、OUT7与IN4、OUT9与IN5连接起来,即进行谐波叠加(信号合成),分别测量(1)基波与三次谐波;(2)基波、三次谐波与五次谐波;(3)基波、三次谐波、五次谐波与七次谐波;(4)基波、三次谐波、五次谐波、七次谐波与九次谐波合成后的波形。

并分别保存,与理论上的信号合成相比较。

5. 同学可以试着改变谐波分量的幅值、相位观察对方波合成的影响。

6. 用频谱分析仪观察基波、三次谐波、五次谐波、七次谐波与九次谐波合成后的波形的频谱,分析频谱所包含的意义,观察去掉某些谐波分量后频谱发生的变化。

四、数据处理(现象分析)图3.1.1 基波分量图3.1.2 3次谐波分量图3.1.3 5次谐波分量图3.1.4 7次谐波分量图3.1.5 9次谐波分量图3.1.6 基波和3次谐波图3.1.7 基波和3、5次谐波图3.1.8 基波和3、5、7次谐波图3.1.9 基波和3、5、7、9次谐波图3.1.10 基波频谱图图3.1.11 基波、3次谐波频谱图图3.1.13 基波、3、5、7次谐波频谱图图3.1.14 基波、3、5、7、9次谐波频谱图五、结论由合成图可知,方波是可以根据傅里叶级数展开成正弦信号的叠加。

频谱这表示不同相位的正弦信号的幅值。

连续周期信号与连续非周期信号的频谱实验一、任务与目的1. 掌握连续周期信号与连续非周期信号频谱的特点2. 学习使用频谱分析仪观察信号的频谱二、原理(条件)PC机一台,TD-SAS系列教学实验系统一套。

1. 连续信号的频谱一个周期信号只要满足狄里赫利条件,则可以分解为一系列谐波分量之和。

为了表征不同信号的谐波组成情况,时常画出周期信号各次谐波的分布图形,这种图形称为信号的频谱。

描述各次谐波振幅与频率关系的是振幅频谱;描述各次谐波相位与频率关系的是相位频谱。

根据周期信号展开成傅立叶级数的不同形式可分为单边频带谱和双边频带谱。

连续信号可分为连续周期信号和连续非周期信号。

其中连续周期信号可以分解为一系列正弦信号之和,即由式可见,周期信号的谱线只出现在频率为0,Ω,2Ω,…,等离散频率上,即周期信号的频谱是离散谱。

连续非周期信号可以认为信号的周期趋近无穷大,这样相邻谱线的间隔Ω趋近与无穷小,从而信号的频谱密集成为连续频谱。

例如周期脉冲信号的频谱是由基波和它的各次谐波组成,即只有在其基波频率的等倍数的频率点上有值。

脉冲时域波形与其频谱如图3-2-1所示。

若上述信号只含有脉冲信号的一个周期,则此信号的频谱中有值的频率点数将增加到无穷大,最终形成连续的谱线。

如图3-2-2所示。

图3-2-1周期脉冲信号及其频谱图3-2-2 脉冲信号及其频谱2. 频谱分析仪本实验设备提供了两种频谱分析工具。

(1)理论频谱图:该工具单独由软件算法对信号源中波形数据进行计算,生成频谱数据。

利用它可以观察信号发生器所产生的所有信号的理论振幅频谱。

(2)频谱分析仪:该工具由硬件对所测波形进行采样,再由软件算法对所采样数据进行计算,生成频谱数据。

它可以观察实际测量到的信号的单边带振幅谱。

其界面如图3-2-4所示。

两种振幅谱的坐标定义相同,其中横轴数值对应各个频率点,纵轴数值对应信号的幅值;通过对两种频谱的对比,可以了解信号频谱的理论知识和实际应用的区别。

按照此频谱分析仪的设计,FFT的点数与频谱分辨率有直接关系,采样频率为f s的点FFT频率分辨率f s/N,频谱宽度从0到f s/2。

对于周期信号,如果点恰好包括了一个或整数个周期,则信号频谱上将在对应频率点上出现尖峰,否则频谱上没有正好与信号周期/频率对应的频率点,此频率点能量将被分散到相邻的频率点上。

实际的信号通常包括多种频率分量,FFT样点不可能正好是这些分量周期的整数倍,在N较小时,两个频率相近的分量可能在频谱上无法分辨,实验中应注意这些问题。

三、内容与步骤1. 周期信号频谱的观察(1)使信号发生器产生频率200Hz、幅值3V的方波信号,用示波器观察此信号波形。

观察完毕后关掉示波器窗口。

(2)在TD-SAS实验系统软件界面上点击“频谱分析仪”进入频谱分析仪界面。

用表笔测量信号发生器输出端,通过试验指导书所述方法调节各参数,使频谱达到较好的效果(频谱分析仪的采样频率一般选择为所测波形频率的10倍左右为最佳)。

(3)保存该信号的频谱图,并记录频谱中各次谐波分量的频率和幅值完成表3-2-1。

注意:实验中可以发现,所得到的频谱并非由单个的谱线组成,而是每条谱线都有一个边带。

产生此情况的原因是:周期信号是无穷的,而实际测量不可能以无穷大为单位,所以必然存在对信号的截短。

频谱分析仪是以截短后的信号作为周期信号的一个周期,所以测量信号与原始信号存在误差,最终导致边带的产生。

在此频谱分析仪中观察频谱的方法是:频谱中每个波的波峰处为一个频率点,测量时只需观察各波峰处的频率和幅值即可。

(4)上述测量完成后关掉频谱分析仪。

在信号发生器界面中,重新选取上述信号,之后点击频谱按钮,便可以进入理论频谱图界面。

此频谱图中所得到的频谱是所选择信号的理论频谱。

保存理论频谱并记录频谱中各次谐波分量的频率和幅值完成表3-2-2,与实际频谱比较比较。

(5)对比两种频谱仪得到的测量结果,理解产生差异的原因,这对以后学习数字信号处理课程又很大帮助。

(6)利用频谱分析仪观察其他信号的频谱和书中所学到的内容进行比较。

2. 非周期信号频谱的观察由于实验中的非周期信号的特殊性,所以只能提供理论的频谱进行观察。

在信号发生器界面中选择所需的非周期信号,点击频谱按钮,便可以观察其理论频谱。

四、数据处理(现象分析)图3.2.1理论频谱图表3-2-1基波三次谐波五次谐波七次谐波九次谐波频率(Hz)理论值200 600 1000 1400 1800幅值(V)理论值 3.82 1.27 0.76 0.55 0.42图3.2.2 实测频谱图表3-2-2基波三次谐波五次谐波七次谐波九次谐波频率(Hz)实测值203.13 601.56 1000 1406.25 1804.09幅值(V)实测值 3.13 1.29 0.65 0.44 0.43五、结论一个周期可以分解为一些列谐波分量之和,频谱反应的就是谐波振幅和频率的关系。

但是实测的频谱并不像理论的那样孤立的,因为理论的只是反应整数倍角频率的振幅。

周期与脉宽和脉冲信号频谱的关系实验一、任务与目的1. 进一步理解信号频谱的概念。

2. 进一步掌握脉冲信号频谱的特点。

3.掌握脉冲信号周期或脉宽变化与其频谱的关系。

二、原理(条件)PC机一台,TD-SAS系列教学实验系统一套。

周期矩形脉冲信号的傅立叶级数是:其中,τ是脉冲信号的脉冲宽度;T是脉冲信号的周期,E是脉冲信号的幅值。

从式中可以看出它的谱线离散,仅含有ω=nΩ的各分量。

相邻谱线间隔为Ω(Ω=2π/T),脉冲周期T越大,谱线间隔越小,频谱越密;反之,则越疏。

另外谱线按照Sa(ωτ/2)的规律变化。

在ω=2nπ/τ(n=1,2,…)各点处包络为零,即该点频率分量为零。

1. 脉宽与频谱关系由公式可以看出,频谱包络线的零点ω=2nπ/τ为处,所以当脉冲信号周期不变,脉冲宽度变大时,相邻谱线的间隔不变,频谱包络线的零点频率逐渐变小,反之则变大。

另外频谱中各频率点谱线的幅值与脉宽τ也有关,且当信号周期不变,脉宽越宽其频率点谱线的幅值越大,反之则越小。

其关系如图3-3-1所示。

2. 周期与频谱的关系从公式可以看出,信号的周期与频谱包络线的零点没有关系,所以当周期变化时,频谱包络线零点不变。

然而当信号的脉宽不变,信号周期变大时,相邻谱线的间隔变小,频谱变密。

相关文档
最新文档