第五章弯曲应力1
第五章习题答案

5-1 把直径1d mm =的钢丝绕在直径为2m 的卷筒上,试计算该钢丝中产生的最大应力。
设200E GPa =解:钢丝绕在直径为D 的卷筒上后产生弯曲变形,其中性层的曲率半径为22D d Dρ+=≈(因D d >>) 该钢丝中产生的最大应力为39maxmax/211020010100/22y d d E E E Pa MPa D D σρ-⨯====⨯⨯=5.4 矩形截面悬臂梁如图所示。
已知4l m =,23b h =,10/q kN m =,[]10MPa σ=,试确定此梁横截面的尺寸。
解:作梁的弯矩图如图所示。
梁的最大弯矩发生在固定端截面上。
22max 111048022M ql kN m ==⨯⨯=⋅ 由强度条件,有max maxmax 26[]z M M W bhσσ==≤ 将23b h =代入上式,得0.416416h m mm ≥=== 22773b h mm =≥ 5.5 20a 工字钢梁的支承和受力情况如图所示。
若[]160MPa σ=,试求许可载荷F 。
解:(1)求支座反力。
选整个梁为研究对象,受力分析如图所示。
列平衡方程,有0yF =∑,0A B F F F F ++-=()0AM=∑F ,6240B F F F ⨯-⨯+⨯=解得:13A F F =,13B F F =-M O212qlM O(2)作梁的弯矩图如图所示。
由图可知该梁的最大弯矩为max 23C M M F ==查表得No.20a 工字钢的抗弯截面系数为3237z W cm =,由强度条件,有max max 2/3[]z zM F W W σσ==≤ 解得663[]3237101601056.922z W F kN σ-⨯⨯⨯⨯≤==所以许可载荷56.9F kN =。
5.8 压板的尺寸和载荷情况如图所示。
材料为45钢,380s MPa σ=,取安全因数1.5n =。
试校核压板的强度。
解:由受力分析可知最大弯矩发生在m m -截面处,且其值为3max 10.0215.4100.02308M P N m =⨯=⨯⨯=⋅m m -截面的抗弯截面系数z W 为333max11302030121212156810zz I W mm y ⨯⨯-⨯⨯=== 压板的最大应力为max max 9308197156810z M MPa W σ-===⨯ 而许用应力为380[]2531.5sMPa nσσ===截面m-m因最大应力小于许用应力,所以压板的强度足够。
材料力学习题册答案-第5章 弯曲应力

第 五 章 弯 曲 应 力一、是非判断题1、设某段梁承受正弯矩的作用,则靠近顶面和靠近底面的纵向纤维分别是伸长的和缩短的。
( × )2、中性轴是梁的横截面与中性层的交线。
梁发生平面弯曲时,其横截面绕中性轴旋转。
( √ )3、 在非均质材料的等截面梁中,最大正应力maxσ不一定出现在maxM的截面上。
( × )4、等截面梁产生纯弯曲时,变形前后横截面保持为平面,且其形状、大小均保持不变。
( √ )5、梁产生纯弯曲时,过梁内任一点的任一截面上的剪应力都等于零。
( × )6、控制梁弯曲强度的主要因素是最大弯矩值。
( × )7、横力弯曲时,横截面上的最大切应力不一定发生在截面的中性轴上。
( √ )@二、填空题1、应用公式zMy I 时,必须满足的两个条件是 满足平面假设 和 线弹性 。
2、跨度较短的工字形截面梁,在横力弯曲条件下,危险点可能发生在 翼缘外边缘 、 翼缘腹板交接处 和 腹板中心 处。
3、 如图所示的矩形截面悬臂梁,其高为h 、宽为b 、长为l ,则在其中性层的水平剪力=S FbhF23 。
4、梁的三种截面形状和尺寸如图所示,则其抗弯截面系数分别为226161bH BH -、xH Bh BH 66132- 和 Hbh BH 66132- 。
三、选择题1、如图所示,铸铁梁有A ,B ,C 和D 四种截面形状可以供选取,根据正应力强度,采用( C )图的截面形状较合理。
2、 如图所示的两铸铁梁,材料相同,承受相同的载荷F。
则当F 增大时,破坏的情况是 ( C )。
A 同时破坏 ;B (a )梁先坏 ;C (b )梁先坏3、为了提高混凝土梁的抗拉强度,可在梁中配置钢筋。
若矩形截面梁的弯矩图如图所示,则梁内钢筋(图中虚线所示)配置最合理的是(D )ABCDHABC D?四、计算题&1、长为l 的矩形截面梁,在自由端作用一集中力F ,已知m h 18.0=,m b 12.0=,m y 06.0=,m a 2=,kN F 1=,求C 截面上K 点的正应力。
材料力学第五章 弯曲应力分析

B
D
1m
1m
1m
y2
20
120
FRA
F1=9kN FRB F2=4kN
A C
BD
1m
1m
1m
2.5 Fs
+
+
4 kN
-
6.5 2.5
M
kNm
-
+
4
解: FRA 2.5kN FRB 10.5kN
88
52
-
+
C 2.5
4 B 80
z
20
120
20
B截面
σ t max
M B y1 Iz
4 • 52 763
20
+
-
+
10
Fs
kN
10
20
30
30
25
25
M
kNm
max
M max W
[ ]
W Mmax 30 187.5cm3
[ ] 160
1)圆 W d 3 187.5
32
d 12.4cm
A d 2 121cm2
4
2)正方形
a3 W 187.5
6
3)矩形
a 10.4cm
A a2 108cm2
压,只受单向拉压. (c)同一层纤维的变形相同。 (d)不同层纤维的变形不相同。
推论:必有一层变形前后长度不变的纤维—中性层
中性轴
中性轴⊥横截面对称轴
中性层
横截面对称轴
二、变形几何关系
dx
dx
图(a)
O
O
zb
O yx b
y
图(b)
《材料力学》 第五章 弯曲内力与弯曲应力

第五章 弯曲内力与应力 §5—1 工程实例、基本概念一、实例工厂厂房的天车大梁,火车的轮轴,楼房的横梁,阳台的挑梁等。
二、弯曲的概念:受力特点——作用于杆件上的外力都垂直于杆的轴线。
变形特点——杆轴线由直线变为一条平面的曲线。
三、梁的概念:主要产生弯曲变形的杆。
四、平面弯曲的概念:受力特点——作用于杆件上的外力都垂直于杆的轴线,且都在梁的纵向对称平面内(通过或平行形心主轴且过弯曲中心)。
变形特点——杆的轴线在梁的纵向对称面内由直线变为一条平面曲线。
五、弯曲的分类:1、按杆的形状分——直杆的弯曲;曲杆的弯曲。
2、按杆的长短分——细长杆的弯曲;短粗杆的弯曲。
3、按杆的横截面有无对称轴分——有对称轴的弯曲;无对称轴的弯曲。
4、按杆的变形分——平面弯曲;斜弯曲;弹性弯曲;塑性弯曲。
5、按杆的横截面上的应力分——纯弯曲;横力弯曲。
六、梁、荷载及支座的简化(一)、简化的原则:便于计算,且符合实际要求。
(二)、梁的简化:以梁的轴线代替梁本身。
(三)、荷载的简化:1、集中力——荷载作用的范围与整个杆的长度相比非常小时。
2、分布力——荷载作用的范围与整个杆的长度相比不很小时。
3、集中力偶(分布力偶)——作用于杆的纵向对称面内的力偶。
(四)、支座的简化:1、固定端——有三个约束反力。
2、固定铰支座——有二个约束反力。
3、可动铰支座——有一个约束反力。
(五)、梁的三种基本形式:1、悬臂梁:2、简支梁:3、外伸梁:(L 称为梁的跨长) (六)、静定梁与超静定梁静定梁:由静力学方程可求出支反力,如上述三种基本形式的静定梁。
超静定梁:由静力学方程不可求出支反力或不能求出全部支反力。
§5—2 弯曲内力与内力图一、内力的确定(截面法):[举例]已知:如图,F ,a ,l 。
求:距A 端x 处截面上内力。
解:①求外力la l F Y l FaF m F X AYBY A AX)(F, 0 , 00 , 0-=∴==∴==∴=∑∑∑ F AX =0 以后可省略不求 ②求内力xF M m l a l F F F Y AY C AY s ⋅=∴=-==∴=∑∑ , 0)( , 0∴ 弯曲构件内力:剪力和弯矩1. 弯矩:M ;构件受弯时,横截面上存在垂直于截面的内力偶矩。
材料力学第五章

y
= ∫ y dA
2 A
1 1 π ⋅ d4 π ⋅ d4 I y = Iz = I ρ = ⋅ = z 2 2 32 64
1 π ⋅ (D4 − d 4 ) 对空心圆截面: 对空心圆截面: I = I = I = y z ρ 2 64
第五章 弯曲应力
§5-2 对称弯曲正应力 对称弯曲正应力
M⋅ y 二、弯曲正应力一般公式: 弯曲正应力一般公式: σ= Iz
Ip
弯曲 剪力Q 剪力
?
第五章 弯曲应力
§5-1 引言 y
梁段
M τ Q
z
σ
横截面上剪应力 横截面上正应力
横截面上内力
Q = ∫τdA
剪应力造成剪力
M = ∫σydA
正应力造成弯矩
剪应力和正应力的分布规律是什么? 剪应力和正应力的分布规律是什么?
超静定问题
第五章 弯曲应力
§5-1 引言
§5-2 对称弯曲正应力 对称弯曲正应力 §5-3 对称弯曲切应力 对称弯曲切应力 弯曲 §5-4 梁的强度条件与合理强度设计 梁的强度条件与合理强度设计 §5-5 双对称截面梁的非对称弯曲 双对称截面梁的非对称弯曲 §5-6 弯拉(压)组合 弯拉( 对称弯曲(平面弯曲): 对称弯曲(平面弯曲): 外力作用在纵向对称面内, 外力作用在纵向对称面内,梁轴线变形 后为一平面曲线,也在此纵向对称面内。 后为一平面曲线,也在此纵向对称面内。
(3)
Mz = ∫ σ ⋅ y ⋅ dA = M (5) A E 2 E 2 E (5) M z = ∫ ρ y dA = ∫ y dA = ρ I z = M
A
ρ
A
1 M = ρ EIz
第五章 弯曲应力
材料力学第5章弯曲应力

M
M
中性轴
z
m
n
y
o
o
dA
z
mn
y
dx
Mzy
Iz
max
Mz Wz
M
MZ:横截面上的弯矩
y:到中性轴的距离
IZ:截面对中性轴的惯性矩
M
中性轴
§5-2 惯性矩的计算
一、静矩 P319
y
Sz ydA
A
z dA
zc
c y
S y zdA
yc
A
o
z
分别为平面图形对z 轴和 y 轴的静矩。
ySc Az ydA
F M
F
a
B
F
Fa
5.3 梁弯曲时的正应力
若梁在某段内各横截
面上的弯矩为常量, F
F
a
a
剪力为零, 则该段梁 A 的弯曲就称为纯弯曲。
B
Fs
在 AC 和 DB 段 内 横 截 面上既有弯矩又有剪 M 力, 这种情况称为横 力弯曲或剪切弯曲。
F F
Fa
平面假设
变形前原为平面的梁的横截面变形后仍保持为 平面, 并绕垂直于纵对称面的某一轴旋转, 且仍 然垂直于变形后的梁轴线。这就是弯曲变形的 平面假设。
C y'
a
x'
xc
b
注意!C点必须为截面形心。
六、组合截面的惯性矩
Iy Iyi
Iz Izi
例2:求对倒T字型形心 轴yC和zC的惯性矩。
解:1. 取参考轴yOz 2. 求形心
2cm y(yc)
1 c1
6 cm
yc
Ai yi A
y
c 1
第五章 弯曲应力
第五章弯曲应力§5-1 梁弯曲正应力§5-2 惯性矩计算§5-3 梁弯曲剪应力*§5-4 梁弯曲时的强度计算§5-5 塑性弯曲的概念*§5-6 提高梁抗弯能力的措施§5-1 梁弯曲正应力一、梁弯曲时横截面上的应力分布一般情况下,梁受外力而弯曲时,其横截面上同时有弯矩和剪力两个内力。
弯矩由分布于横截面上的法向内力元σdA所组成,剪力由切向内力元τdA组成,故横截面上同时存在正应力和剪应力。
MσdAτdA Q当梁较长时,正应力是决定梁是否破坏的主要因素,剪应力则是次要因素。
二、弯曲分类P P a aAC DB ACD +−BC D+P PPa 梁AC 、BD 段的横截面上既有剪力又有弯矩,称为剪切弯曲(横力弯曲)。
CD 段梁的横截面上只有弯矩而无剪力,称为纯弯曲。
此处仅研究纯弯曲时梁横截面上正应力与弯矩的关系。
三、纯弯曲实验1.准备A BC DE F G H 在梁侧面画上AB 、CD 、EF 、GH 四条直线,且AB ∥CD 、EF ∥GH。
在梁两端对梁施加纯弯矩M 。
A B C D E F G H M MA BC DE F G H 2.现象•变形后横向线AB 、CD 发生了相对转动,仍为直线,但二者不再平行;仍与弧线垂直。
•纵向线EF 、GH 由直线变成曲线,且EF 变短,GH 变长;•曲线EF 、GH 间的距离几乎没有变化;•横截面上部分沿厚度方向变宽,下部分变窄。
3.假定•梁的任意一个横截面,如果在变形之前是平面,在变形后仍为平面,只是绕截面的某一轴线转过了一个角度,且与变形后的轴线垂直。
——平截面假定。
•梁上部分纤维受压而下部分纤维受拉,中间一层纤维既不受拉也不受压,这一层叫中性层或中性面。
•中性层与横截面的交线叫中性轴。
梁弯曲变形时横截面绕中性轴转动。
中性层纵向对称面中性轴•梁的纵向纤维之间无挤压力作用,故梁的纵向纤维只受拉伸或压缩作用——单向受力假设。
材料力学第五章-弯曲应力知识分享
材料力学第五章-弯曲应力注:由于本书没有标准答案,这些都是我和同学一起做的答案,其中可能会存在一些错误,仅供参考。
习 题6-1厚度mm h 5.1=的钢带,卷成直径 D=3m 的圆环,若钢带的弹性模量E=210GPa ,试求钢带横截面上的最大正应力。
解: 根据弯曲正应力公式的推导: Dy E yE 2..==ρσ MPa D h E 1053105.110210.39max =⨯⨯⨯==-σ 6—2直径为d 的钢丝,弹性模量为E ,现将它弯曲成直径为D 的圆弧。
试求钢丝中的最大应力与d /D 的关系。
并分析钢丝绳为何要用许多高强度的细钢丝组成。
解: ρσyE .= Dd E ED d .22max ==σ max σ与Dd成正比,钢丝绳易存放,而引起的最大引力很小.6—3 截面形状及尺寸完全相同的一根钢梁和一根木梁,如果所受的外力也相同,则内力是否相同?横截面上正应力的变化规律是否相同?对应点处的正应力与纵向线应变是否相同? 解: 面上的内力相同,正应力变化规律相同。
处的正应力相同,线应变不同6—4 图示截面各梁在外载作用下发生平面弯曲,试画出横截面上正应力沿高度的分布图.6—5 一矩形截面梁如图所示,已知F=1.5kN 。
试求(1) I —I 截面上A 、B 、C 、D 各点处的正应力; (2) 梁上的最大正应力,并指明其位置。
解:(1)m N F M .3002.0*10*5.12.0*3===MPa M I y M z A 11110*30*1812*10*15*.1233===--σ A B σσ-= 0=C σMPa M D 1.7410*30*1812*10*)5.15(*1233==--σ MPa W Fl z 5.16610*30*186*10*300*10*5.19233max ===--σ 位置在:固定端截面上下边缘处。
6—6 图示矩形截面简支梁,受均布载荷作用。
已知载荷集度q=20kN /m ,跨长l =3,截面高度=h 24cm ,宽度=b 8cm 。
材料力学第五章 弯曲应力
F F d F 0 N 2 N 1 S
将FN2、FN1和dFS′的表达式带入上式,可得
* M M d M * S S b d x 0 z z
I z I z
简化后可得
dM S z* dx I z b
dM F S ,代入上式得 由公式(4-2), dx
* 式中 S z
A1
y1dA ,是横截面距中性轴为 y 的横线 pq 以下的面积对中性轴的静矩。同理,
可以求得左侧面 rn 上的内力系的合力 FN 1 为
M * FN 1 S z Iz
在顶面rp上,与顶面相切的内力系的合力是
d F b d x S
根据水平方向的静平衡方程
F 0 ,可得
综上所述,对于各横截面剪力相同的梁和剪力不相同的
细长梁(l>5h),在纯弯曲情况下推导的弯曲正应力公式 (5-2)仍然适用。
例5-1
图5-10(a)所示悬臂梁,受集中力F与集中力
偶Me作用,其中F=5kN,Me=7.5kN· m,试求梁上B点左邻 面1-1上的最大弯曲正应力、该截面K点处正应力及全梁的 最大弯曲正应力。
第五章 弯曲应力
5.1 弯曲正应力 5.2 弯曲切应力简介 5.3 弯曲强度条件及其应用 5.4 提高梁弯曲强度的主要措施
5.1 弯曲正应力
上一章研究表明,一般情况下,梁横截面上同时存在
剪力FS和弯矩M。由于只有切向微内力τ dA才可能构成剪力, 也只有法向微内力σdA才可能构成弯矩,如图5-1(a)所示。 因此,在梁的横截面上将同时存在正应力σ和切应力τ(见图 5-1(b))。梁弯曲时横截面上的正应力与切应力分别称为 弯曲正应力与弯曲切应力。
材料力学教案-弯曲应力
(2)最大正应力发生在横截面上离中性轴最远的点处.
σmax M ymax Iz
引用记号 W Iz —抗弯截面系数 ymax
则公式改写为
σmax
M W
(Stresses in Beams)
(1)当中性轴为对称轴时
实心圆截面 W Iz πd 4 / 64 πd 3 d / 2 d / 2 32
且梁横截面的中性轴一般也不是对称轴,所以梁的
σtmax σcmax(两者有时并不发生在同一横截面上)
要求分别不超过材料的许用拉应力和许用压应力
σtmax [σt] σcmax [σc ]
(Stresses in Beams)
例题1 螺栓压板夹紧装置如图所示.已知板长3a=150mm,压板
材料的弯曲许用应力[]=140MP.试计算压板传给工件的最大允
将
1M
EIz
代入
σE y
得到纯弯曲时横截面上正应力的计算公式:
σ My Iz
M为梁横截面上的弯矩;
y为梁横截面上任意一点到中性轴的距离;
Iz为梁横截面对中性轴的惯性矩.
(Stresses in Beams)
讨论
(1)应用公式时,一般将 My 以绝对值代入. 根据梁变形的情
况直接判断 的正负号. 以中性轴为界,梁变形后凸出边的应 力为拉应力( 为正号).凹入边的应力为压应力( 为负号);
应力分布规律:
?
y
直梁纯弯曲时横截面上任意一点的正应力,与它到中性轴
的距离成正比.
待解决问题
? 中性轴的位置
中性层的曲率半径
(Stresses in Beams) 四、静力关系 (Static relationship)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y 变形几何关系: ε = ρ
分析: (1)纯弯曲时梁横截面上各点的正应变沿截面高 度线性分布; (2)中性轴处正应变等于零;
(3)中性轴两侧分别为拉应变和压应变;
(4)距中性轴最远处,正应变的绝对值最大。
2、物理关系 在线弹性范围内,应用胡克定律
应力为零的点的连线。 M
变形以后的轴线;横截面绕中性轴旋转了一定角度。
单向受力假设:梁内各纵向纤维仅承受轴向拉应力或压应 力。各纵向纤维之间无相互挤压。
5、推理
•
根据平面假设,横截面上各点处均无切应力;
• 根据平面假设,梁弯曲时部分“纤维”伸长,部分 “纤维”缩短,由伸长区到缩短区,其间必存在一长度 不变的过渡层,称为中性层。
2
E
M
EIz ——梁的抗弯刚度,反映梁抵抗弯曲变形的能力。
1
Mz EI z
y E
Mzy Iz
z
dA
x
dA
y
正应力公式适用条件: (1)所有外载荷作用在纵向对称面上(对称弯曲)。 (2)纯弯曲或 l / h 5 的横力弯曲,其中h为梁的高度,l 为跨度(支座间距离或外伸部分长度);
M max 67.5kN m
C
l = 3m
x
K
z y
截面惯性矩
I z 5.832 105 m 4
FBY
FS 90kN
M
max
x 90kN
M max ymax IZ 67.5 103 180 10 3 2 5.832 10 5
ql 2 / 8 67.5kN m
梁,盒形梁等,而不使用方形梁。
No
结论 : 梁的承载能力 , 不但取决于横截面面积 , 还 取决于截面的形状和如何放臵等因素。研究弯曲变形 梁横截面上的应力分布规律对于合理设计梁的结构非 常重要。
5.1 引言
在横向载荷作用下,梁内横截面上通常同时存在剪 力和弯矩。
切向微内力构成剪力 弯曲切应力
M
τ
例题
图示悬臂梁,自由端承受集中载荷F=15kN作用,计算 截 面 B 的 最 大 弯 曲 拉 应 力 与 最 大 弯 曲压 应 力 。 已 知 l=0.400m,b=0.120m,d=0.020m。
F l B
b
ddb源自BB-B解:1. 弯曲应力分析
MBy Iz
M B Fl 6000N m
M M
F
F
F
F
F
F
a
l
a
a
l
a
梁弯曲的若干定义与概念 纯弯曲: 如果梁的横截面上只有弯矩一个内力 分量,这种平面弯曲称为纯弯曲(pure bending)。在 纯弯曲情形下,由于梁的横截面上只有弯矩,因而 便只有垂直于横截面的正应力。
M M
F
F
F
F
F
F
a
l
a
a
l
a
5-2
变形
对称弯曲正应力
胡克定律
(3)梁在中性轴的两侧分别受拉或受压,正应
力的正负号(拉或压)可根据弯矩的正负及梁的 变形状态来确定。 (4)必须熟记矩形截面、圆形截面对中性轴的 惯性矩的计算式。
横向弯曲时的正应力计算公式
在横向弯曲情况下:
横截面上既有正应力,又有切应力; 横截面将发生翘曲,不再保持为平面。 尽管横力弯曲和纯弯曲存在差异,但通过分析表 明,用公式 σ = My/I z 计算横力弯曲时的正应力,并不 会引起很大的误差(在横力弯曲的情况下,对于跨长 与截面高之比大于5的梁仍使用,且误差很小。),能 满足工程问题所需精度。
矩形截面对中性轴的惯性矩及抗弯截面模量:
竖放:
z h
b
b h
1 3 1 2 I z bh , Wz bh 12 6
平放:
Iz
z´
1 1 2 3 hb , Wz hb 12 6
若h>b, 则
Wz Wz 。
竖放与横放相比,承载能力更强。
圆形截面对中性轴的惯性矩及抗弯截面模量:
(3)应力小于比例极限。
三、最大弯曲正应力
位于中性层最远处,正应力最大。
M z ymax max Iz
Iz Wz ymax
Mz max Wz
Iz ——截面的抗弯截面模量,反映了截面 Wz ymax 的几何形状、尺寸对强度的影响。
注意:弯曲正应力σ的正负号规定:拉应力为正, 压应力为负。其正负号由弯矩 M 及点的坐标y 的正负 确定。实际计算时更多用直观判断方法确定。
x
104.17 106 Pa 104.17 MPa
(4) C 截面曲率半径ρ
C 截面弯矩
q=60kN/m x
180 120
A
FAY
B
1m
C
l = 3m
K
30
M C 60kN m
z y
C 截面惯性矩
I Z 5.832 105 m4
M EI z 1
FBY
FS 90kN
第五章
弯曲应力
凌 丹 电子科技大学
本章内容
引言 对称弯曲正应力 对称弯曲切应力 梁的强度条件与合理强度设计 双对称截面梁的非对称弯曲 弯拉压组合
工程现象 现象1:工程中在安放矩形截面木梁时,一般总是将 梁竖放,使其高度h大于宽度b。
承载能力小 承载能力大
h
b
b
h
现象2:在钢结构中,经常采用型钢梁如工字形
A
dA
Mz =
y dA = M
A
y
0 N A dA
E
A
ydA
E
Sz
M
z 轴必须通过横截面的形心,为横截面的形心 轴。
0 M y A dA z
E
A
yzdA
E
z
I yz
dA
dA
x
y 轴为横截面的对称轴,该式自然满足。
y
EI z M z A dA y A y dA 1 M EI z
M
x 90kN
ql 2 / 8 67.5kN m
x
EI Z 200 109 5.832 10 5 C MC 60 103 194.4m
5-3 对称弯曲切应力
一、矩形截面梁的弯曲切应力(弯曲剪应力)
P h
b y
1、基本假设: (1)横截面上各点的切应力的方向都平行于剪力FS; (2)切应力沿截面宽度均匀分布。
x 90kN
M C ymax IZ 180 10 3 2 5.832 10 5
ql 2 / 8 67.5kN m
60 103
x
92.55 106 Pa 92.55MPa
(3) 全梁最大正应力
q=60kN/m
180 120
最大弯矩
30
A
FAY
B
1m
180 120
FAy 90kN
30
FBy 90kN
A
FAY
B
1m
C
l = 3m
K
z (1) 求C截面上K点正应力 y
M C 90 1 60 1 0.5 60kN m
FBY
FS 90kN
M
ql 2 / 8 67.5kN m
bh3 0.12 0.183 IZ 5.832 105 m 4 12 12 180 60 103 ( 30) 10 3 x M C yK 2 K 90kN IZ 5.832 10 5
中性层与中性轴 中性层与横截面的交线,称为中性轴。在对称 弯曲问题中,中性轴垂直于横截面的纵向对称轴。
中性轴
中性轴
中性层
中性层上无正应变发生,弯曲正应力为零。 每一横截面中性轴弯曲正应力为零。
纵向对称面
对称轴 轴线
中性层
中性轴
纯弯曲时梁的所有横截面仍保持为平面,并 绕中性轴作相对转动,而所有纵向“纤维”均处 于单向受力状态。
61.7 106 Pa 61.7MPa
x
(压应力)
(2)C 截面最大正应力
q=60kN/m
180
120
C 截面弯矩
30
A
FAY
B
1m
C
l = 3m
x
K
z y
M C 60kN m
FBY
C 截面惯性矩
I Z 5.832 105 m4
FS 90kN
M
Cmax
M
d
M
dx
实验观察结果: (1)梁表面的横线仍为直线,仍与纵线正交(无切应 变),只是横线间作相对转动;
(2)纵线变为曲线,而且靠近梁顶面的纵线缩短,靠 近梁底面的纵线伸长;
(3)在纵线伸长区,梁的宽度减小,而在纵线缩短区, 梁的宽度则增加,情况与轴向拉压的变形相似。
4、基本假设
弯曲平面假设:变形后,横截面仍保持为平面,仍然垂直于
例题
已知简支梁的尺寸及载荷如图所示,弹性模量E= 200GPa。 求: (1)C 截面上K点正应力; (2)C 截面上的最大正应力; (3)全梁上的最大正应力; (4)C 截面的曲率半径ρ。
q=60kN/m
x
180 120
A
1m
B C
l = 3m
K
30
z y
解: 求支座反力,并绘制内力图。