第6章 电容式传感器.ppt
《传感器与检测技术》高教(4版) 第六章

差动变压器位移计
当铁芯处于中间位置时,输出电压: UU 21 U 220
当铁芯向右移动时,则输出电压: UU 21 U 220
当铁芯向左移动时,则输出电压: UU 21 U 220
输出电压的方向反映了铁芯的运动方向,大小反映了铁 芯的位移大小。
差动变压器位移计
输出特性如图所示。
差动变压器位移计
角度的精密测量。 光栅的基本结构
1、光栅:光栅是在透明的玻璃上刻有大量平行等宽等 距的刻线构成的,结构如图。
设其中透光的缝宽为a,不透光的缝宽为b,
一般情况下,光栅的透光缝宽等于不透光
的缝宽,即a = b。图中d = a + b 称为光
栅栅距(也称光栅节距或称光栅常数)。
光栅位移测试
2、光栅的分类
1、激光的特性
(1)方向性强
(2)单色性好
(3) 亮度高
(4) 相干性好
2、激光器
按激光器的工作物质可分为以下几类: (1)固体激光器:常用的有红宝石激光器、钕玻 璃激光器等。
(2)气体激光器:常用的为氦氖激光器、二氧化 碳激光器、一氧化碳激光器等。
激光式传感器
(3) 液体激光器:液体激光器分为无机液体激光器 和有机液体激光器等。
数小,对铜的热电势应尽可能小,常用材料有: 铜镍合金类、铜锰合金类、镍铬丝等。 2、骨架:
对骨架材料要求形状稳定表面绝缘电阻高, 有较好的散热能力。常用的有陶瓷、酚醛树脂 和工程塑料等。 3、电刷:
电刷与电阻丝材料应配合恰当、接触电势 小,并有一定的接触压力。这能使噪声降低。
电位器传感器
电位计式位移传感器
6.2.2 差动变压器位移计结构
1-测头; 2-轴套; 3-测杆; 4-铁芯;5-线圈架; 6-导线; 7-屏蔽筒;8-圆片弹簧;9-弹簧; 10-防尘罩
传感器技术课件

14
(2)灵敏度 ☆ S= y x
作用:用来描述测试系统对输入信号变化的一种反应能力。 1、对于定常线性系统,其灵敏度恒为常数。 2、实际的测试系统,灵敏度为定度曲线上该点处切线的斜率。
3、量纲:取决于输入和输出量的单位。
2021/5/24
15
(3)分辨力:测试系统所能检测出来的输入量的最小变化量。 通常是以最小单位输出量所对应的输入量来表示。 数字测试系统--输出显示系统的最后一位 模拟测试系统--输出指示标尺最小分度值的一半
31
电阻式传感器
一、变阻式传感器 1.结构:
R l
A
R kl x
S
2021/5/24
dR dx
kl
R k
dR
S d k
32
2.测量电路:
不考虑外接电路影响时:
Uy
U0 Rp
Rx
U0 xp
x
考虑外接电路影响时:
Uy
U0 x p Rp (1
x)
x R1
xp
2021/5/24
33
3.特点: (1)结构简单、使用简便、稳定性好。 (2)分辨力低,受电阻丝直径的限制。适合大位移的测量。 (3)噪声大。
若系统由n个环节并联而成,其传递函数为
系统的频率响应为
2021/5/24
n
H() Hi() i1
n
H(s) Hi(s) i1
26
3.负载效应:某系统由于后接另一系统而产生的种种现象。 实际情况下各环节相联时,后环节总是成为前环节的负载,
环节间总是存在着能量交换和相互影响,以致系统的传递函数 不再是各组成环节传递函数的叠加或相乘。
x(t)co 1 ts co 2ts,求输出 y(t),判断是否失真。
电容式传感器的等效电路

1 变压器式交流电桥
图4-6 变压器式电桥线路方框图 图4-7 变压器式电桥等效电路图
2 紧耦合比率臂交流电桥
图4-8 紧耦合电感比率臂电桥
图4-9 紧耦合电感比率臂电桥等效电路
图4-8与图4-9电路参数之间的对应关系为
Z12 Zs Z p jL
ZZps
jM
Z12
jKL KZ12
d0
d0 d0
C
S d0
C
C
C0
S
d0
很明显,这种形式的传感器其电容量C与水平位移Δx呈线性关系。
a
d
x S
b
动极板 定极板
x
变面积型电容传感器原理图 电容式角位移传感器原理图
4.2.3 变介质式电容式传感器
面积S与介电常数的位置是等价的,因此当介电常数的变化量为△ε时,电容量的变 化量为
灵敏度为
4.1.2 基本结构 电容式传感器可分为变间隙式、 变面积式和变介电常数式三种。
图4-2 变间隙式电容传感器
图4-3变面积式电容传感器示意图
图4-4 变介电常数式电容传感器示意图
4.2 传感特性
4.2.1 变间隙型电容传感器
当εr和S为常数,初始极距为d0时
C S 0r S
d0
d0
设动极板2位移 x ,参考方向为向 x 0 上运动,即动极板2上移,
A、B两端间的等效电容为
Ce
1
C Cp
2L(C
Cp)
Ce
C
1 2L(C
Cp)
应保证激励频率的稳定性。在较高激励频率下使用电容传感器时,每当改变激励频 率或者更换传输电线时都必须对测量系统重新进行标定。
4.4 电容式传感器的信号调理
机器人技术基础课件第六章 机器人传感器

物理量
电量
目前,传感器转换后的信号大多为电信号。 因而从狭义上讲,传感器是把外界输入的非电信 号转换成电信号的装置。
6.1 机器人传感器概述
6.1.1 传感器的基本概念
2、传感器的组成
传感器一般由敏感元件、转换部分组成
基
被 测 量
敏 感 元 件
转 换 元 件
本 转 换 电
电 信 号
路
6.1 机器人传感器概述
6.2 内传感器
增量式编码器
6.2.1 位移(位置)传感器
(1)信号性质
输出信号为一串脉冲,每一个脉
冲对应一个分辨角,对脉冲进行计 数N,就是对 的累加,即,角位移 =N。
如: =0.352,脉冲N=1000,
则:
= 0.352×1000= 352
增量式编码器的信号性质
6.2 内传感器
增量式编码器
6.2 内传感器
6.2.1 位移(位置)传感器
2、光电编码器
光电编码器是角度(角速度)检测装置,通过光 电转换,将输出轴上的机械几何位移量转换成脉冲 数字量的传感器。具有体积小,精度高,工作可靠 等优点,应用广泛。
编码器
6.2 内传感器
6.2.1 位移(位置)传感器
2、光电编码器
轴式
套式
电信号
二进制编码
• 满足机器人控制的要求 • 满足机器人自身安全和机器人使用者的安全性要求
6.1 机器人传感器概述
6.1.4 机器人传感器的分类
1)按被测物理量分类 常见的被测物理量
机械量:长度,厚度,位移,速度,加速度, 旋转角,转数,质量,重量,力,力矩;
热工量:温度、热量、比热容、热流、 热 分布、压力(压强)、压差、真空度、流 量、流速、物位、 液位、界面、噪声
传感器课件

传感器:广义:传感器是一种能把特定的信息(物理、化学、生物)按一定规律转换成某种可用信号输出的器件和装置。
狭义:能把外界非电信息转换成电信号输出的器件。
国家标准:能够感受规定的被测量并按照一定规律转换成可用输出信号的器件和装置。
按使用的场合不同传感器又称为:变换器、换能器、探测器传感器的组成:敏感元件、转换元件、基本电路,敏感元件感受被测量;转换元件将响应的被测量转换成电参量(电阻、电容、电感);基本电路把电参量接入电路转换成电量;核心部分是转换元件,决定传感器的工作原理。
测量仪器一般由信号检出器件和信号处理两部分组成。
按传感器检测的范畴分类物理量传感器、化学量传感器、生物量传感器、按传感器的输出信号分类模拟传感器、数字传感器按传感器的结构分类结构型传感器、物性型传感器、复合型传感器按传感器的功能分类单功能传感器、多功能传感器、智能传感器按传感器的转换原理分类机—电传感器、光—电传感器、热—电电传感器、磁—电传感器、电化学传感器按传感器的能源分类有源传感器无源传感器物理量、化学量、生物类传感器三大门类;国标GB/T14479-93规定传感器图用图形符号表示方法:正方形表示转换元件;三角形表示敏感元件;X 表示被测量符号;* 表示转换原理。
国标GB7666规定,一种传感器的代号应包括以下四部分:主称(传感器)、被测量、转换元件、序号;第二章传感器的静态特性、动态特性慢变信号——输入为静态或变化极缓慢的信号时(环境温度),我们讨论研究传感器静态特性,即不随时间变化的特性;快变信号——输入量随时间(t)较快变化时(如振动),我们考虑输出的传感器动态特性,即随时间变化的特性;静态特性主要包括:线性度、灵敏度、稳定性、重复性…线性度是表征实际特性与拟合直线不吻合的程度动态特性:输入输出之间的差异就是动态与时间常数(t ) 角速度(w)阻尼比(ξ)有关灵敏度:在稳定条件下输出微小增量与输入微小增量的比值对线性传感器灵敏度是直线的斜率:S = Δy/Δx对非线性传感器灵敏度为一变量:S = dy/dx稳定性:表示传感器在一较长时间内保持性能参数的能力H(s)表示输入拉氏变换和传递函数求出输出拉氏变换根据阻尼比ξ大小可分四种情况:1.ξ=0,零阻尼,等幅振荡,产生自激永远达不到稳定;2.ξ<1,欠阻尼,衰减振荡,达到稳定时间随ξ下降加长;3.ξ=1,临界阻尼,响应时间最短;4.ξ>1,过阻尼,稳定时间较长传感器动态特性②延迟时间td:传感器输出达到稳态值的50%所需的时间。
传感器技术ppt课件

8
第一章 感应式接近开关
输出电路:(直流三线型)
NPN型
棕色(BN)
PNP型
棕色(BN)
21
目录
第三章 光电开关
第一节、简 介 第二节、漫反射型光电开关 第三节、反光板型光电开关 第四节、对射型光电开关
22
第三章 光电开关
第一节 简介 光电开关利用光强度的变化转换成电信号的变化来实现控制的
目的。
23
第三章 光电开关
基本工作原理
目标物
发射器
控制电路
1 0
1
0
接收器
信号处理电路 输出电路
第三节 热电阻 热电阻常用于低温测量(测温范围:-200-500℃)。
工作原理: 热电阻是由一种对温度非常敏感的金属材料构成。自身电阻随温度 变化而变化(电阻增加或减少),输出信号:电阻。
电气符号
39
第四章 温度传感器
第三节 热电阻 分类:
热电阻分正温度系数和负温度系数。 正温度系数:热电阻 阻值随着温度的升高而增大; 负温度系数:热电阻 阻值随着温度的升高而减小;
近开关的工作电压及输出电流需 通过计算确定串联开关的数量。
总压降 U总降= U降 * n; 额定电流Ie串= Ie - Io * n
U降----单个接近开关的电压衰减值; Ie----单个接近开关的额定电流;
n----串联接近开关数量;
13
第一章 感应式接近开关
多开关并联接线图:
《传感器技术》教学课件第6章
沿电轴方向施加作用力Fx时,在与电轴x垂直的平面上将产生电
荷, 其大小为
qx d11Fx
(6-2)
式中, d11为x方向受力的压电系数。
14
若在同一切片上,沿机械轴y方向施加作用力Fy,则电荷仍 在与x轴垂直的平面上产生,其大小为
qy
d12
a b
Fy
(6-3)
式中:d12——y轴方向受力的压电系数,根据石英晶体的对称性, 有d12=-d11;
在自然界中大多数晶体都具有压电效应,但压 电效应十分微弱。随着对材料的深入研究,发现石 英晶体、钛酸钡、锆钛酸铅等材料是性能优良的压 电材料。
7
表6-1 常用压电材料的性能参数
8
6.1.1 压电晶体
以石英晶体为例,它是单晶体中具有代表性同时也是应用 最广泛的一种压电晶体,化学式为SiO2。图6-2(a)表示了天 然结构的石英晶体外形是一个正六面体。
16
石英晶体具有压电效应与内部分子结构有关。图6-3 是一个单元组体中构成石英晶体的硅离子和氧离子,将 硅离子和氧离子在垂直于晶体z轴的xy平面上进行投影, 等效为一个正六边形排列。
当石英晶体未受外力作用时,正、负离子正好分布 在正六边形的顶角上,形成三个互成120°夹角的电偶
极矩P1、P2、P3。 如图6-4(a)所示。
29
压电材料的压电特性可以用压电方程表示,其矩阵形式是: 定义压电系数矩阵D为:
30
压电系数矩阵D是正确选择压电元件、受力状态、变形方 式、能量转换率以及晶片几何切型的重要依据。石英晶体压电 系数矩阵可表示为
式中独立的压电系数是d11和d14;压电系数矩阵可表示为:
其中独立的压电系数是d33、d31和d15三个。
传感器技术 电容式、测量电路
① 驱动电缆法
☻ 原理:驱动电缆法是一种等电位屏蔽法。使用电缆屏蔽 层电位跟踪与电缆相连的传感器电容极板电位,使两电 位的幅值和相位均相同,从而消除电缆分布电容的影响。
11
介质变化型电容传感器
☻ 原理:利用极板间介质的介电常数变化将被测量转换成电
容变化的传感器称为介质变化型电容传感器。 以电介质插
入式为例, C C1 C2
0a
[ r1(
L
x
)
r2x
]
x
L
☻
S dC
应用特性: dx
0a
(
r2
r1
)
① 变介质型电容传感器可用来测量电介质的液位或某些材 料的温度、湿度和厚度等。
② 介质变化型电容传感器常用于非导电液体液位的测量, 其灵敏度与介电常数的差值(ε2-ε1)的值成正比,(ε2-ε1)值 越大灵敏度越高。
2020/6/30
12
应用中存在的问题和改进措施
(1) 等效电路(Equivalent circuit)
☎ 考虑电容传感器在高温、高
湿及高频激励的条件下工作,
而不可忽视其附加损耗和电 效应影响时,其等效电路如
C—传感器电容;RP—低频损耗并联电 阻; RS—串联损耗电阻;L—电容器及
图。
引线电感;CP—寄生电容
☎ 在实际应用中高频激励时,每当改变激励频率或者更换 传输线缆时,会使传感器有效电阻和有效灵敏度都发生 变化,因此必须对测量系统重新进行标定。
2020/6/30
13
应用中存在的问题和改进措施
传感器及其应用PPT
问题引入
音乐茶杯:茶杯平放桌上时,无声无息,提起茶杯,茶杯边播放 悦耳的音乐,边闪烁着五彩的光芒。怎么回事
用书挡住底部(不与底部接触),音乐停止,可见音乐 茶杯受光照强度的控制。
光照变化(光强变化)光照时光敏电阻阻值减小 电路接通,音乐响起。
列举生活中的一些自动控制实例,
遥控器控制电视开关;日光控制路灯的开关 声音强弱控制走廊照明灯开关;自动门安检门等
热敏电阻能够把 温度这个热学量转换成为电阻 这个电学量
3)应用:电阻温度计、报警器等
例题2、如图是一个温度传感器的原理示意图,Rt 是一个热敏电阻器。试说明传感器是如何把温度
值转变为电信号的。
Rt
R
V
思考方向:1、两电阻采取什么连接方式? 2、转变的电信号应该是哪个电学量? 3、电压表测的是哪个电阻的电压?
两端的电压U的变化情况是(B )
A. I 变大,U 变大 B. I 变小,U 变小
C. I 变小,U 变大 D. I 变大,U 变小
a E r
b
A
R2
R1
R3
4、电容式位移传感器
电容器极板
x
电介质板
被测物体
电容式位移传感器示意图
电容式位移传感器能够把物体_位__移__这个力学量 转换为__电_容__这个电学量
现有下列器材:力电转换器、质量为 m0 的砝码、电压表、 滑动变阻器、干电池一个、电键及导线若干、待测物体(可 置于力电转换器的受压面上)。请完成对该物体的测量 m 。 (1)设计一个电路,要求力转换器的输入电压可调,并且使 电压的调节范围尽可能大,在方框中画出完整的测量电路图。
音乐茶杯的工作开关又在哪里?开启的条件是什么?
电容传感器
◆ S可以很大,实现纳米测量。
◆ 线性较差 特点: ◆灵敏度不是常数
◆测量范围小 ◆分辨力极高
8
为解决非线性和灵敏度之间的矛盾可以采用差动 式结构,如图示。
d1 d Dd
d1 △d
d
d2 d Dd
d2
d
9
C1
C0
1
1 Dd
d
C0
1
Dd d
Dd d
2
Dd d
3
C2
DC
相对灵敏度:
S'
C0 2
Dd d
非线性误差:
Dd
d3 100%
Dd 2 100%
Dd d
d
11
差动式与简单式特性比较
单电容
差动电容
输出特性
DC Dd C0 d
灵敏度
K DC C0 Dd d
非线性误差 Dd 100%
d
DC Dd
2
C0
d
K DC 2 C0 Dd d
Dd
2
100%
解:
Cm in
2 0H
ln r2
2
(8.85 pF / m) 1.2m ln 5
41.46 pF
r1
Cmax
2 0 r H
ln r2
41.46 pF 1.2 87.07 pF
r1
V d 2 H (0.5m)2 1.2m 235 .6L (体积)
4
4
K Cmax Cmin 87.07 pF 41.46 pF 0.19 pF / L
达式。
dC
d
2 rdr
r
22
r
C 0 dC C0