确定信号的频谱分析
信号与系统分析实验信号的频谱分析

实验三信号的频谱分析1方波信号的分解与合成实验1实验目的1. 了解方波的傅立叶级数展开和频谱特性。
2. 掌握方波信号在时域上进行分解与合成的方法。
3. 掌握方波谐波分量的幅值和相位对信号合成的影响。
2 实验设备PC机一台,TD-SAS系列教学实验系统一套。
3 实验原理及内容1. 信号的傅立叶级数展开与频谱分析信号的时域特性和频域特性是对信号的两种不同的描述方式。
对于一个时域的周期信号f(t),只要满足狄利克莱条件,就可以将其展开成傅立叶级数:如果将式中同频率项合并,可以写成如下形式:从式中可以看出,信号f(t)是由直流分量和许多余弦(或正弦)分量组成。
其中第一项A0/2是常数项,它是周期信号中所包含的直流分量;式中第二项A1cos(Ωt+φ1)称为基波,它的角频率与原周期信号相同,A1是基波振幅,φ1是基波初相角;式中第三项A2cos(Ωt+φ2)称为二次谐波,它的频率是基波的二倍,A2是基波振幅,φ2是基波初相角。
依此类推,还有三次、四次等高次谐波分量。
2. 方波信号的频谱将方波信号展开成傅立叶级数为:n=1,3,5…此公式说明,方波信号中只含有一、三、五等奇次谐波分量,并且其各奇次谐波分量的幅值逐渐减小,初相角为零。
图3-1-1为一个周期方波信号的组成情况,由图可见,当它包含的分量越多时,波形越接近于原来的方波信号,还可以看出频率较低的谐波分量振幅较大,它们组成方波的主体,而频率较高的谐波分量振幅较小,它们主要影响波形的细节。
(a)基波(b)基波+三次谐波(c)基波+三次谐波+五次谐波(d)基波+三次谐波+五次谐波+七次谐波(e)基波+三次谐波+五次谐波+七次谐波+九次谐波图3-1-1方波的合成3. 方波信号的分解方波信号的分解的基本工作原理是采用多个带通滤波器,把它们的中心频率分别调到被测信号的各个频率分量上,当被测信号同时加到多路滤波器上,中心频率与信号所包含的某次谐波分量频率一致的滤波器便有输出。
信号的频谱分析

实验三信号的频谱分析方波信号的分解与合成实验一、任务与目的1. 了解方波的傅立叶级数展开和频谱特性。
2. 掌握方波信号在时域上进行分解与合成的方法。
3. 掌握方波谐波分量的幅值和相位对信号合成的影响。
二、原理(条件)PC机一台,TD-SAS系列教学实验系统一套。
1. 信号的傅立叶级数展开与频谱分析信号的时域特性和频域特性是对信号的两种不同的描述方式。
对于一个时域的周期信号f(t),只要满足狄利克莱条件,就可以将其展开成傅立叶级数:如果将式中同频率项合并,可以写成如下形式:从式中可以看出,信号f(t)是由直流分量和许多余弦(或正弦)分量组成。
其中第一项A0/2是常数项,它是周期信号中所包含的直流分量;式中第二项A1cos(Ωt+φ1)称为基波,它的角频率与原周期信号相同,A1是基波振幅,φ1是基波初相角;式中第三项A2cos(Ωt+φ2)称为二次谐波,它的频率是基波的二倍,A2是基波振幅,φ2是基波初相角。
依此类推,还有三次、四次等高次谐波分量。
2. 方波信号的频谱将方波信号展开成傅立叶级数为:n=1,3,5…此公式说明,方波信号中只含有一、三、五等奇次谐波分量,并且其各奇次谐波分量的幅值逐渐减小,初相角为零。
图3-1-1为一个周期方波信号的组成情况,由图可见,当它包含的分量越多时,波形越接近于原来的方波信号,还可以看出频率较低的谐波分量振幅较大,它们组成方波的主体,而频率较高的谐波分量振幅较小,它们主要影响波形的细节。
(a)基波(b)基波+三次谐波(c)基波+三次谐波+五次谐波(d)基波+三次谐波+五次谐波+七次谐波(e)基波+三次谐波+五次谐波+七次谐波+九次谐波图3-1-1方波的合成3. 方波信号的分解方波信号的分解的基本工作原理是采用多个带通滤波器,把它们的中心频率分别调到被测信号的各个频率分量上,当被测信号同时加到多路滤波器上,中心频率与信号所包含的某次谐波分量频率一致的滤波器便有输出。
编程实现任意确定信号的频谱分析算法

广西科技大学学生姓名:指导教师:目录摘要 (3)一、设计内容 (3)4779212133353636摘要:随着计算机和信息科学的飞速发展,信号处理逐渐发展成为一门独立的学科,成为信息科学的重要组成部分,在语音处理、雷达、图像处理、通信、生物医学工程等众多领域中得到广泛应应用。
Matlab语言是一种广泛应用于工程计算及数值分析领域的新型高级语言,Matlab功能强大、简单易学、编程效率高,深受广大科技设(1)对给定的CEG和弦音音频文件取合适长度的采样记录点,然后进行频谱分析(信号的时域及幅频特性曲线要画出)。
(2)分析CEG和弦音频谱特点,对该信号频谱能量相对较为集中的频带(分低、中、高频)实现滤波(分别使用低通,带通及高通),显示滤波后信号的时域和频域曲线,并对滤波后的信号与原信号的音频进行声音回放比较。
(3)在低、中、高三个频带中,各滤出三个能量最集中的频簇,显示滤波后信号的时域和频域曲线。
(4)任意选择几个滤出的频带(或频簇)进行时域信号重建(合成),与原信号的音频进行声音回放比较。
.线性相位FIR滤波器通常采用窗函数法设计。
窗函数法设计FIR 滤波器的基本思想是:根据给定的滤波器技术指标,选择滤波器长度N和窗函数ω(n),使其具有最窄宽度的主瓣和最小的旁瓣。
其核心是从给定的频率特性,通过加窗确定有限长单位脉冲响应序列h(n)。
工程中常用的窗函数共有6种,即矩形窗、巴特利特(Bartlett)窗、汉宁(Hanning)窗、汉明(Hamming)窗、布莱克曼(Blackman)窗和凯塞(Kaiser)。
FIR数字滤波器的设计原理:采用窗口法线性相位实系数FIR滤波器按其N值奇偶和h(n)的奇偶对称性分为四种:1、h(n)为偶对称,N为奇数H(ejω)的幅值关于ω=0,π,2π成偶对称。
2、h(n)为偶对称,N为偶数H(ejω)的幅值关于ω=π成奇对称,不适合作高通。
3、h(n)为奇对称,N为奇数H(ejω)的幅值关于ω=0,π,2π成奇对称,不适合作高通和低通。
信号频谱介绍及分析方法

关键词:傅里叶变换 频谱 确知信号 随机信号 频域分析
一 信号频谱的由来
在 LTI 系统中,信号表示成基本信号的线性组合,这些基本信号应该具有以下两 个性质: 1,由这些基本信号能够构成相当广泛的一类有用信号; 2,LTI 系统对每一个基本信号的响应应该十分简单,以使得系统对任意输 入信号的响应由一个很方便的表示式。 在 LTI 系统中,复指数信号的重要性在于:一个 LTI 系统对复指数信号的响 应也是一个复指数信号,不同的是幅度上的变化,即: 连续时间: e st → H ( s )e st 离散时间: z n → H ( z ) z n 这里 H ( s ) 或 H ( z ) 是一个复振幅因子, 一般来说是复变量 s 或 z 的函数。 对于连续时间和离散时间来说, 如果一个 LTI 系统的输入能够表示成复指数 的线性组合,那么系统的输出也能表示成相同复指数信பைடு நூலகம்的线性组合;并且输出 表达式中的每一个系数可以用输入中相应的系数分别与有关的系统特征值
{e jnω1t : n ∈ Z } ,函数周期为
T1,角频率为 ω1 = 2πf1 = 2π 。
T1
(3) (4) (i)
任何满足狄义赫利条件周期函数都可展成傅里叶级数。 三角形式的 FS: 展开式: f (t ) = a0 + ∑ (an conω1t + bn sin nω1t )
n =1 ∞
Fn + F− n = an Fn − F− n = bn / j
2 2 2 2 cn = dn = an + bn = 4 Fn F− n = 4 Fn 2
( n ≠ 0)
(iv) (v) (6)
Fn 关于
n 是共扼对称的,即它们关于原点互为共轭。
采集信号的频谱分析

采集信号的频谱分析1. 引言频谱分析是一种重要的信号处理技术,它可以帮助我们理解信号的频域特性。
在现代通信领域和无线电频谱监测中,采集信号的频谱分析是一项关键的工作。
频谱分析可以帮助我们识别信号的不同频率成分,并从中提取有用的信息。
本文将介绍频谱分析的基本原理、常用的采集方法以及一些相关的应用领域。
2. 频谱分析的基本原理频谱分析是将信号从时域转换到频域的过程。
在时域中,信号被表示为随时间变化的波形;而在频域中,信号被表示为不同频率成分的强度和相位。
常用的频谱分析方法包括傅里叶变换(Fourier Transform)和快速傅里叶变换(Fast Fourier Transform,FFT)。
傅里叶变换是一种数学变换,它能将信号从时域转换到频域。
快速傅里叶变换是傅里叶变换的一种高效算法,能够快速计算信号的频谱。
在频谱分析中,我们使用频谱图来表示信号的频谱。
频谱图通常以频率为横轴,信号强度为纵轴,用于直观地展示不同频率成分的能量分布。
3. 采集信号的方法采集信号的频谱分析需要使用合适的设备和方法。
以下是常用的采集信号的方法:3.1 信号接收器信号接收器是一种用于接收信号并将其转化为电信号的设备。
根据需要采集的信号类型不同,可以选择不同类型的信号接收器,如无线电接收器、音频接收器等。
3.2 采样率采样率是指在单位时间内采集信号的样本数。
在频谱分析中,较高的采样率能够提供更精确的频谱信息,但也会增加数据处理的复杂性和成本。
根据信号的带宽和分辨率要求,选择合适的采样率非常重要。
3.3 采样深度采样深度是指每个样本的比特数,决定了每个样本的精度。
较大的采样深度能够提供更高的分辨率,但也会增加数据存储和传输的需求。
根据信号的动态范围和精度要求,选择适当的采样深度是必要的。
3.4 采集时间采集时间是指采集信号所需的时间长度。
较长的采集时间可以提供更准确的频谱信息,但也会增加采集的时间和资源。
根据应用需求和实际情况,选择合适的采集时间是必要的。
现代通信原理 第2章 确定信号分析

设x1(t)和x2(t)都为功率信号,则它们的互相关函数定义为
(2.38)
式中, T的含义与式(2.14)中相同,为功率信号的截断区间。
44
第2章
确定信号分析
当x1(t)=x2(t)=x(t)时,定义
(2.39)
为功率信号x(t)的自相关函数。
45
第2章
确定信号分析
由式(2.39)可得到周期信号x(t)的自相关函数为
41
第2章
确定信号分析
2.3.2 能量信号的相关定理 若能量信号x1(t)和x2(t)的频谱分别是X1(ω)和X2(ω),则信号 x1(t)和x2(t)的互相关函数R12(τ)与X1(ω)的共轭乘以X2(ω)是傅立 叶变换对,即
(2.36)
式(2.36)称为能量信号的相关定理。它表明两个能量信号在时 域内相关,对应频域内为一个信号频谱的共轭与另一信号的频 谱相乘。
30
第2章
确定信号分析
2.3 相关函数与功率谱密度函数
2.3.1 能量信号的相关函数
设信号x1(t)和x2(t)都为能量信号,则定义它们的互相关函 数R12(τ)为 (2.32) 若x1(t)=x2(t)=x(t),则定义 (2.33) 为x(t)的自相关函数。
31
第2章
确定信号分析
【例2.2】
5
第2章
确定信号分析
设xT(t)为x(t)在一个周期内的截断信号,即
(2. 6)
而
6
第2章
确定信号分析
则有:
(2. 7)
比较式(2. 5)与式(2. 7)可得:
(2. 8) 由此可见,由于引入了δ(· )函数,对周期信号和非周期信
号都可统一用信号的傅立叶变换(即频谱密度函数)来表示。
第2章:确定信号的频谱分析
信号的分类主要是依据信号波形特征来划分的, 在介绍信号分类前,先建立信号波形的概念。 信号波形:被测信号的信号幅度随时间的变化历 程称为信号的波形。
波形
2.1 信号的分类
A
0
t
信号波形图:用被测物理量的强度作为纵坐标, 用时间做横坐标,记录被测物理量随时间的变 化情况。
2.1 信号的分类
在噪声背景下提取有用信息。
信号分析的经典方法:
1、时域分析
瞬时值,最大值,最小值, 均值,均方值,均方根值等。
1)图形或表达式分析;
2)时域分解;
稳定分量,波动分量
3)相关分析; 4)概率密度分布
信号本身的相似程度 信号之间的相似程度
信号幅值分布
2、频谱分析
幅值谱,相位谱,能量谱,功率谱等
第二章、信号分析基础
xx((tt))a c00 n 1(cann•ceojnn s 0t 0t nb 1ncsn•ien jn00tt)
n 1
x(t) ncn•1e,2j,n 30 t n0,1,2
n
x(t) cnejn 0t n0,1,2,3 n
1
cn
T
T
2 T
x(t)ejn0tdt
2
cn的模|: cn |
2.1 信号的分类
a) 周期信号:经过一定时间可以重复出现的信号 b) x (t) = x (t+nT)
简单周期信号
复杂周期信号
例:单自由度振动系统作无阻尼自有振动位移:
k x(t)x0sin( t
)
m
m
x0,φ0 — 初始条件常数 m — 质量 K — 弹簧刚度
A x(t)
k
信号的频谱分析
信号频谱分析
摘要:频谱分析就是将信号源发出的信号强度按频率顺序展开,使其成为频率的函数,并考察变化规律。
频谱分析的意义可以说是很明确的,就是分析信号的频率构成。
更确切地说就是用来分析信号中都含有哪几种正弦波成份。
反过来说就是,该信号可以用哪几种频率的正弦波来合成出来。
我们可以应用DFT 进行频谱分析,MATLAB编程仿真
实验原理:DSP数字信号处理器可以对实时采集到的信号进行FFT 预算以实现时域与频域的转换,FFT运算结果反映的是频域中各频率分量幅值的大小,从而使画出频谱图成为可能。
用DSP试验系统进行信号频谱分析的基本思路是:先将实时信号的采样值并送入DSP系统,DSP程序对这些采样值进行FFT变换,经运算求出对应的信号频谱数据,并将结果送到PC机屏幕上进行显示,是DSP硬件系统完成体态信号频谱分析仪的功能,如图所示。
实验步骤:1.先运行仿真软件MATLAB,进入分析窗口。
2.在仿真软件上分别对正弦波信号,方波信号和三角波信号进行仿真。
3.将仿真结果记录下来。
实验内容及结果
1.正弦波信号频谱分析
对正弦函数x(t)=cos(2 *50t)进行频谱分析,采样频率为10000Hz,对其进行整周期采样,非整周期采样,结果如图。
2、方波信号频谱
对方波函数x(t)=square (2 *50t)进行频谱分析,采样频率为10000Hz,对其进行整周期采样,非整周期采样,结果如图。
3、三角波信号频谱
对方波函数x(t)=sawtooth (2 *50t , 0.5)进行频谱分析,采样频率为10000Hz,对其进行整周期采样,非整周期采样,结果如图。
实验二 应用 FFT 对信号进行频谱分析
三、实验内容及步骤
(一)编制实验用主程序及相应子程序
1、在实验之前,认真复习 DFT 和 FFT 有关的知识,阅读本实验原 理与方法和实验附录部分中和本实验有关的子程序,掌握子程序的原理 并学习调用方法。 2、编制信号产生子程序及本实验的频掊分析主程序。实验中需要用 到的基本信号包括: (1)高斯序列: (2)衰减正弦序列: (3)三角波序列: (4)反三角序列:
四、思考题
能说出哪一个低频分量更多一些吗?为什么? 2、 对一个有限长序列进行离散傅里叶变换(DFT),等价于将该序 列周期延拓后进行傅里叶级数(DFS)展开。因为 DFS 也只是取其中一 个周期来运算,所以 FFT 在一定条件下也可以用以分析周期信号序 列。如果实正弦信号,用 16 点的 FFT来做 DFS 运算,得到的频谱是信 号本身的真实谱吗?
(二)上机实验内容
1、观察高斯序列的时域和频域特性 ①固定信号中的参数 p=8,改变 q 的值,使 q 分别等于 2,4,8。观 察它们的时域和幅频特性,了解 q 取不同值的时候,对信号时域特性和 幅频特性的影响。 ②固定 q=8,改变 p,使 p 分别等于 8,13,14,观察参数 p 变化对 信号序列时域及幅频特性的影响。注意 p 等于多少时,会发生明显的泄 漏现象,混淆现象是否也随之出现?记录实验中观察到的现象,绘制相 应的时域序列和幅频特性曲线。 2、观察衰减正弦序列的时域和幅频特性 ①令α=0.1 并且 f=0.0625,检查谱峰出现的位置是否正确,注意频谱 的形状,绘制幅频特性曲线。 ②改变 f=0.4375,再变化 f=0.5625,观察这两种情况下,频谱的形状 和谱峰出现的位置,有无混淆和泄漏现象发生?说明产生现象的原因。 3、观察三角波序列和反三角波序列的时域和幅频特性
信号的频谱分析
实验4 信号的频谱分析一、 实验目的:1. 掌握连续时间周期信号的傅里叶级数的分析方法及其物理意义;2. 观察截短的傅里叶级数而产生的“Gibbs 现象”,了解其特点以及产生的原因;3. 掌握连续时间傅里叶变换的分析方法及其物理意义;二、 实验内容及要求 1.设上例中12;2T E π==,请用付立叶三角级数的方法绘制出上例中周期函数f(t)的一个周期,选择适当的不同谐波次数N ,观察这两个信号用有限项谐波合成后的时域波形中是否有Gibbs 现象产生,Gibbs 现象有何规律,用文字说明你观察到的结果及相关分析或说明。
尝试改变各频率分量的幅值或相位,观察周期函数波形所受的影响。
(1)程序代码(2)实验结果(3)实验分析1、将具有不连续点如矩形脉冲进行傅立叶级数展开后,选取有限项进行合成。
在逼近信号的断点处出现了明显的振荡现象,随着谐波次数的增加,振荡并没有消失,反而更加的集中在断点附近。
2、当改变周期信号各频率上的幅值和相位时,周期函数的波形随幅值和相位发生对应的变化。
例:E=4,1Φ=,则图形的幅值就变成2,且向右平移一个单位。
2.采用数值计算算法分别计算非周期连续时间信号1f 的傅里叶变换.()()16f t g t =采用数值计算算法的理论依据是:()()()j t j nT n F j f t e dt f nT e T ωωω∞---∞==∑⎰,用绘图函数将时间信号f(t),信号的幅度谱|F(j w )|和相位谱∠F (j w )分别以图形的方式表现出来,并对图形加以适当的标注。
观察结果与理论推导是否相符,试图查找原因,并在一定程度上加以改善。
理论分析:()()6(3)j t F jw f t e dt Sa w ω∞--∞==⎰(1)程序代码(2)实验结果(3)实验分析理论分析与实验结果是一致的。
实验报告要求:1.列出本实验的所有文件及各项实验结果,加注必要的说明;2.对实验结果作理论解释;3.总结实验体会及实验存在的问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模拟信号:时间和幅值均为连续的信号
数字信号:幅值可以是连续的,也可以是离 散的。
采样信号:时间为离散的而幅值取连续值
2.1 信号的分类
5 物理可实现信号与物理不可实现信号
a) 物理可实现信号:又称为单边信号,满足条件: b) t<0时,x(t) = 0,
即在时刻小于零的一侧全为零。
解:两个周期信号x(t),y(t)的周期分别为T1和T2, 若其周期之比T1/T2为有理数,则其和信号x(t)+y(t) 仍然是周期信号,其周期为T1和T2的最小公倍数。
(1)sin2t是周期信号,其周期为:T1= 2π/ 2= π cos3t是周期信号,其周期为:T2= 2π/ 3
由于T1/T2= 3/2为有理数,故f1(t)为周期信号,其 周期为T1和T2的最小公倍数2π。
(2) cos2t 和sinπt的周期分别为T1= π, T2= 2 ,由 于T1/T2为无理数,故f2(t)为非周期信号。
2.1 信号的分类 c)非确定性信号:不能用数学式描述,其幅值、相位 变化不可预知,所描述物理现象是一种随机过程。
噪声信号(平稳)
噪声信号(非平稳)
统计特性变异
2.1 信号的分类
各态历经随机信号 非各态历经随机信号
2.1 信号的分类
a) 周期信号:经过一定时间可以重复出现的信号 b) x (t) = x (t+nT)
简单周期信号
复杂周期信号
例:单自由度振动系统作无阻尼自有振动位移:
x(t)x0sin(kt)
m
m
x0,φ0 — 初始条件常数 m — 质量 K — 弹簧刚度
x(t)sint1sin3t1sin5t 24
2.1 信号的分类 b) 非周期信号:不会重复出现的信号。
准周期信号:由多个周期信号合成,但各信号频率不成 公倍数。如:x(t) = sin(t)+sin(√2t)
瞬态信号:持续时间有限的信号, 如 x(t)= e-Bt . Asin(2πft)
2.1 信号的分类 例1 判断下列信号是否为周期信号,若是,确定其周期。 (1)f1(t) = sin2t + cos3t (2)f2(t) = cos2t + sinπt
SPECTRUM ANALYZER 9 kHz - 26.5 GHz
0
f
2.2 周期信号的频域分析
一、信号的时域描述和频域描述
时域描述— 测量中以时间为独立变量,一般能反 映信号的幅值随时间变化的状态,不能明确揭示 信号的频率组成成分 。
t — 横坐标;An —纵坐标;
频域描述—测量中以频率为独立变量,可表述信 号的频率结构、各频率成分的幅值和相位关系。
2 能量信号与功率信号
a)能量信号 在所分析的区间(-∞,∞),能量为有限
值的信号称为能量信号,满足条件:
x2(t)dt
一般持续时间有限的瞬态信号是能量信号。
2.1 信号的分类
b)功率信号 在所分析的区间(-∞,∞),能量不是有限
值.此时,研究信号的平均功率更为合适。
T l i m 21T
T x2(t)dt
T
一般持续时间无限的信号都属于功率信号:
2.1 信号的分类
3 时限与频限信号
a) 时域有限信号 在时间段 (t1,t2)内有定义,其外恒等于零.
三角脉冲信号
b) 频域有限信号 在频率区间(f1,f2 )内有定义,其外恒等于零.
正弦波幅值谱
2.1 信号的分类
4 模拟信号与数字信号
a) 连续时间信号:在所有时间点上有定义
机械工程测试技术与信号分析
第二章、确定信号的频谱分析
本章学习要求:
1.了解信号分类方法 2.掌握信号频域分析方法
信号——传递某个实际系统状态或行为信息的一 种物理现象或过程。其基本表现形式是变化着的 电压或电流。
信息——人类社会、自然界一切事物运动与状态 的特征,是提供判断或决策的一种资料。
关系: 信号是信息的实际载体; 信息则是信号经过处理之后的有用部分。 即: 脱离信息的信号是毫无实际意义的。
5 从可实现性 --物理可实现信号与物理不可实现信号。
2.1 信号的分类
1 确定性信号与非确定性信号
可以用明确数学关系式描述的信号称为确定性
信号。不能用数学关系式描述的信号称为非确定性
信号。
简单周期信号 周期信号
信号
确定性信号
复杂周期信号
瞬变信号 非周期信号
准周期信号
非平稳随机信号 非确定性信号
平稳性随机信号 (随机信号)
幅值谱,相位谱,能量谱,功率谱等
第二章、信号分析基础
2.1 信号的分类
信号的分类主要是依据信号波形特征来划分的, 在介绍信号分类前,先建立信号波形的概念。 信号波形:被测信号的信号幅度随时间的变化历 程称为信号的波形。
波形
2.1 信号的分类
A
0
t
信号波形图:用被测物理量的强度作为纵坐标, 用时间做横坐标,记录被测物理量随时间的变 化情况。
A x(t)
k
1、最简单最常用的周期信号是正弦信号。 2、复杂的周期信号是由频率比为有理数的不同频率的正 弦信号迭加而成.
x(t)sin0t1 2sin30t1 4sin50t x(t)sin80t3sin100t5sin120t.....
其频率的比为有理数,所以,是周期函数,周期的确定根据 各周期值的最小公倍数来确定。
2.1 信号的分类
b) 物理不可实现信号:在事件发生前(t<0)就预制 知信号。
第2章、信号分析基础
2.2 周期信号的频域分析
信号频域分析是采用傅立叶变换将时域信号x(t) 变换为频域信号X(f),从而帮助人们从另一个角度 来了解信号的特征。
X(t)= sin(2πnft)
傅里叶 变换
0
t
8563A
2.1 信号的分类
为深入了解信号的物理实质,将其进行分类研究 是非常必要的,从不同角度观察信号,可分为: 1 从信号描述上分
--确定性信号与非确定性信号;
2 从信号的幅值和能量上分 --与频域;
2.1 信号的分类 4 从连续性
--连续时间信号与离散时间信号;
机械工程测试技术与信号分析的基本内容 :
在噪声背景下提取有用信息。
信号分析的经典方法:
1、时域分析
瞬时值,最大值,最小值, 均值,均方值,均方根值等。
1)图形或表达式分析;
2)时域分解;
稳定分量,波动分量
3)相关分析; 4)概率密度分布
信号本身的相似程度 信号之间的相似程度
信号幅值分布
2、频谱分析