液力耦合器
化工设备基础知识-液力耦合器

化工设备基础知识-液力耦合器引言液力耦合器是一种常见的传动装置,广泛应用于化工设备中。
它具有简单可靠、传动平稳以及对负载变化具有自适应能力的特点。
本文将介绍液力耦合器的工作原理、结构组成、应用领域以及维护保养等内容。
工作原理液力耦合器利用工作液体在转动容器内的离心力产生液力传递动力。
主要由输入轴、转子、定子以及液体组成。
当输入轴带动转子旋转时,液体随着转子的运动形成旋涡,离心力将液体推向定子,随后再被转子重新抓住。
这样,动力就从输入轴传递到输出轴。
液力耦合器的工作原理可以简化为以下几个步骤: 1. 输入轴带动转子旋转。
2. 转子运动使液体形成旋涡。
3. 离心力将液体推向定子。
4. 转子再次抓住液体,形成闭合传递动力。
结构组成液力耦合器主要由转子组件、定子组件、液体以及附件组件组成。
转子组件转子组件包括转子轴、转子盘、转子鳍片等。
转子轴是液力耦合器的主轴,通过输入轴将动力输入到转子上。
转子盘位于转子轴的两端,起到固定转子鳍片的作用。
而转子鳍片则是将动能转化为离心力的关键部件。
定子组件定子组件包括定子壳体、定子鳍片等。
定子壳体是液力耦合器的外壳,起到固定转子组件的作用。
而定子鳍片则是承接离心力并传递到输出轴的部件。
液体液力耦合器中的液体是起到传递动力的媒介。
常见的液体包括油和水。
液体的选择要根据工作条件和要求来确定。
附件组件附件组件包括液力控制阀、壳体附件等。
液力控制阀用于控制液力耦合器的工作状态,例如启动和停止。
壳体附件用于安装和固定液力耦合器。
应用领域液力耦合器广泛应用于各种化工设备中,例如泵、压缩机、搅拌器等。
其主要作用是传递动力并实现转速的适应性调节。
在输送泵中,液力耦合器能够平稳启动泵,并在负载变化时保持泵的稳定工作状态,有效降低设备的损坏风险。
在压缩机中,液力耦合器可以起到起动和停止压缩机的作用,并在压缩机的负载突变时提供缓冲。
在搅拌器中,液力耦合器具有较高的转矩传递能力,能够保证搅拌器在高负载条件下的稳定运行。
液力耦合器

液力耦合器液力耦合器液力耦合器fluid coupling以液体为工作介质的一种非刚性联轴器﹐又称液力联轴器。
液力耦合器(见图液力耦合器简图)的泵轮和涡轮组成一个可使液体循环流动的密闭工作腔﹐泵轮装在输入轴上﹐涡轮装在输出轴上。
动力机(内燃机﹑电动机等)带动输入轴旋转时﹐液体被离心式泵轮甩出。
这种高速液体进入涡轮后即推动涡轮旋转﹐将从泵轮获得的能量传递给输出轴。
最后液体返回泵轮﹐形成周而复始的流动。
液力耦合器靠液体与泵轮﹑涡轮的叶片相互作用产生动量矩的变化来传递扭矩。
它的输出扭矩等于输入扭矩减去摩擦力矩﹐所以它的输出扭矩恒小于输入扭矩。
液力耦合器输入轴与输出轴间靠液体联系﹐工作构件间不存在刚性联接。
液力耦合器的特点是﹕能消除冲击和振动﹔输出转速低于输入转速﹐两轴的转速差随载荷的增大而增加﹔过载保护性能和起动性能好﹐载荷过大而停转时输入轴仍可转动﹐不致造成动力机的损坏﹔当载荷减小时﹐输出轴转速增加直到接近于输入轴的转速﹐使传递扭矩趋于零。
液力耦合器的传动效率等于输出轴转速与输入轴转速之比。
一般液力耦合器正常工况的转速比在0.95以上时可获得较高的效率。
液力耦合器的特性因工作腔与泵轮﹑涡轮的形状不同而有差异。
它一般靠壳体自然散热﹐不需要外部冷却的供油系统。
如将液力耦合器的油放空﹐耦合器就处于脱开状态﹐能起离合器的作用。
变频器调速与液力耦合器调速的优缺点比较(一)[摘要]在风机,水泵类负载进行调速节能,先期应用的液力耦合器较多,高压变频器技术成熟后,也越来越多地得到了应用。
对于这两种调速节能的装置进行其优缺点的比较,提高对调速节能领域的了解。
[关键词]调速变频器液力耦合器一、引言风机、水泵是量大面广的普通机械,其耗电量占发电总量的30%左右,而高压电机拖动的大中型风机水泵的耗电量约占风机水泵耗电总量的50%。
目前大中型风机水泵基本上采用档板或阀门来调节风量或流量,以满足负荷变化的要求,其浪费电能相当严重,如若采用改变电机转速来实现调节风量或流量,无疑对节约能源,提高设备工作效率意义非常重大。
3、 液力耦合器调速

液力耦合器调速
1
第一节
液力耦合器工作原理
液力耦合器是一种应用很广的通用传动 元件。 它置于动力机与工作机之间传递动力
液力耦合器能改善起动性能、实现过载 保护、无级调速等。
2
一、液力耦合器的结构
典型的液力耦合器结构 ( 图 3—1) 由对称布置的泵 轮、涡轮以及主轴、外壳等构件组成。 外壳与泵轮通过螺栓固定连接,其作用是防止工 作液体外溢。 输入轴(与泵轮固定连接)与输出轴(与涡轮固定连 接)分别与动力机和工作机相连接。 泵轮与涡轮均为具有径向直叶片的叶轮。 由泵轮和涡轮具有叶片的凹腔部分所形成的圆环 状空腔称为工作腔,供工作液体在其中循环流动, 传递动力进行工作。
8
第二节
液力耦合器的特性参数
1、转矩T : 由封闭力系平衡原理可知,液力耦合器 中的两个叶轮对工作腔内工作液体作用 所产生的泵轮转矩T1与涡轮转矩T2之和 等于零。即 T1+T2=0,或者 T1 = -T2
说明耦合器只能传递转矩而不能改变转 矩的大小。(这是忽略各种损耗后的理论值)
9
2、转速比i: 转速比为涡轮转速与泵轮转速之比,即 n2 i= —— n1
Tmax kg = —— Tn
11
起动过载系数ks为起动力矩Ts与额定力矩Tn之 比:
Ts ks= —— Tn
5、效率η
效率为输出功率P2与输入功率P1之比, 即
P2 T2 n2 η = —— = —— = i P1 T1 n1
12
液力耦合器效率等于其转速比 (在忽略 轴承等功率损失的情况下),这是液力耦 合器的重要特点之一。因此,通常使之 在高转速比下运转以求得到高效率。
17
C、 反转工况(i<o): 位于第二象限。 特点:载荷驱动涡轮反转,电机驱动泵轮正转, 载荷与电机同时向液力耦合器输入功率,均转化 为热量,使液温迅速上升。 随着涡轮反转转速的升高,液流循环流速减弱(在 涡轮里反转趋势加强),使传递力矩下降。 当液流在涡轮里的反转趋势上升到与泵轮里正转 相互势均力敌时,工作腔中原来的一个循环液流 变为正转(在泵轮里)和反转(在涡轮里)两个循环液 流,此时传递力矩最低。 当涡轮反转转速高于泵轮正转转速时,两个不同 旋向的循环液流又合为一个反向旋转的循环液流, 特性曲线随转速差的增加而上升。
液力耦合器

1、液力偶合器的结构液力偶合器又称液力联轴器,是一种靠液体动能传递扭矩的传动元件。
YOX系列限矩型液力偶合器,主要由输入轴、输出轴、泵轮、涡轮、外壳、易熔塞等构件组成。
输入轴一端与电机相连,另一端与泵轮相连。
输出轴一端与涡轮相连,另一端与工作机相连。
泵轮与涡轮对称布置,都是具有径向直叶片的叶轮,叶轮工作腔的最大直径称为有效直径,是规格大小的标志。
外壳与泵轮固连成密封腔,供工作介质在其中做螺旋环流运动以传递扭矩。
2、液力偶合器的原理当电机通过输入轴带动偶合器泵轮旋转时,泵轮工作腔内的工作液体受离心力的作用由半径较小的泵轮入口被加速加压抛向半径较大的泵轮出口处,同时液体的动量矩产生增量,即泵轮将输入的机械能转化成了液体动能。
当携带液体动能的工作液体从泵轮出口冲向对面的涡轮时,液流便沿涡轮叶片所形成的流道做向心流动,同时释放液体动能转化机械能,驱动涡轮并带负载旋转做功。
于是,输入与输出在没有直接机械连接的情况下,仅靠液体动能便柔性的连接起来了。
二、功能与用途1、液力偶合器的功能具有柔性传动功能:能有效的减缓冲击,隔离扭振,提高转动品质;具有电机轻载起动功能:当电机起动时,力矩甚微,接近于空载起动,从而降低起动电流,缩短起动时间,起动过程平衡、顺利;具有过载保护功能:有效的保护电机和工作机,在起动或超载时不受损坏,降低机器故障率,延长使用寿命,降低维护保护费用和停工时间;具有协调多机同步起动功能:在多机起动系统,能够达到电机顺序起动,协调各电机同步、平稳驱动。
2、液力偶合器的用途限矩型液力偶合器适用于一切需要解决起动困难、过载保护、减缓冲击震动和隔离扭振,协调多机驱动的机械设备上,广泛用于矿山。
三、安装与拆卸1、液力偶合器的安装(1)安装偶合器前应将原动机与工作机轴清洁干净并涂抹润滑脂。
(2)安装时不允许用压板或铁锤敲打偶合器铝制壳体,也不可热装,以免损坏密封及元件。
可在工作机轴上绞螺纹孔,并在其上旋入螺杆,通过旋转螺杆上特制的螺母将套在螺杆上的偶合器主轴(联带偶合器)平衡代入,安装在工作设备上(如安装简图所示)。
液力耦合器型号大全

液力耦合器型号大全概述液力耦合器是一种常见的动力传动装置,通过液体传递和调节扭矩,实现机械设备的启动、停止和调速。
液力耦合器广泛应用于各个行业,包括工程机械、冶金设备、石油钻机、电力传动等领域。
本文将介绍一些常见的液力耦合器型号,以帮助读者了解液力耦合器的种类和特点。
1. YOX系列液力耦合器YOX系列液力耦合器是一种常见的弹性液力耦合器,广泛应用于传动装置中。
它由外齿轮壳体、内齿轮和延伸弹簧组成。
该系列耦合器结构简单紧凑,具有可靠的传动性能和良好的启动特性。
YOX系列液力耦合器适用于高扭矩传递和起动大负载设备,例如矿山提升机、输送机等。
2. YOXD系列液力耦合器YOXD系列液力耦合器是一种新型的液力耦合器,专为电动机和液压机械传动设计。
它采用了带有电机齿槽的内齿轮,可直接与电机轴连接,实现动力传递。
该系列耦合器具有启动平稳、结构紧凑、传动可靠等特点。
YOXD系列液力耦合器广泛应用于冶金、矿山、水泥等行业的传动装置中。
3. YOXV系列液力耦合器YOXV系列液力耦合器是一种特殊设计的液力耦合器,适用于辊筒式输送机的传动。
它具有扭矩传输平稳、启动性能良好、结构紧凑等特点。
YOXV系列液力耦合器往往与电动机和减速器配合使用,可有效提高输送机的传动效率和工作稳定性。
4. YOXE系列液力耦合器YOXE系列液力耦合器是一种高效、环保的液力耦合器。
它采用了新型的密封结构,减少了液力耦合器在工作过程中的泄漏和挥发。
YOXE系列耦合器安装简便、性能可靠,广泛应用于石油、化工等行业的传动装置中。
5. YOXJ系列液力耦合器YOXJ系列液力耦合器是一种紧凑型的液力耦合器,可有效提高传动效率和节能性能。
它采用了轻质材料、新型液力传动机构和节能型控制系统,可实现高效的动力传输和启停控制。
YOXJ系列液力耦合器广泛应用于发电、冶金、水泥等行业的传动装置中。
6. YOXEJ系列液力耦合器YOXEJ系列液力耦合器是YOXE系列和YOXJ系列的结合体,结合了两种耦合器的特点。
化工设备基础知识-液力耦合器

• 充液范围为耦合器总容积的40~80%,不
允许超出此范围,更不允许充满,因为充液 量超出容积80%,耦合器转动时,因过载而 急剧升温升压,工作液体积膨胀,耦合器内 压增大,破坏密封,引起漏液,甚至造成耦 合器壳体开裂、机械损坏。 • 而充液量少于容积的40%,轴承可能润滑不 足,耦合器得不到充分利用,且体积大,无 甚意义,建议选小一规格型号。
液力耦合器的 泵轮和涡轮组成一 个可使液体循环流 动的密闭工作腔, 泵轮装在输入轴上, 涡轮装在输出轴上。 动力机(内燃机、电 动机等)带动输入轴 旋转时,液体被离 心式泵轮甩出。
14
这种高速液体进入涡轮后即推动涡轮旋转,将从泵轮获得的能量传 递给输出轴。最后液体返回泵轮,形成周而复始的流动。
15
21
• 液力耦合器一般采用油介质。工作液推荐使
用32号汽轮机油、6号液力传动油、8号液力 传动油。 • 拧下注液塞,用80-100目滤网过滤工作液, 按量注入耦合器内,旋紧注液塞进行试车。 当注油塞口旋至距垂直中心线最高点约55 ,腔内工作液刚好流出时可视为耦合器能传 递较高的额定功率的较佳油位。 • 项目开车时,将由设备厂家(德国福伊特) 和开车试运小组根据实际工作负载的大小及 22 工况要求来调整充油量的多少。
大刻度之间)。 • 7、检查电源电压是否正确连接到电力系统及 传输/过程信号。 • 8、使用水/油换热器,打开水侧阀门,排空 油冷器水侧气体并检查流量。 • 9、通过VEHS位置控制单元和执行机构勺管 位置从0%到100%,检查设定值(信号420mA)。 • 10、勺管位置处在0%。 40 • 11、检查整个系统是否为运行做好准备。
17
• 旋转油环靠自身旋转所形成的压头,当遇
到勺管头时,工作液体便由勺管导出。于 是通过电动执行器操纵勺管的伸缩程度, 便可以改变导管腔内的油环厚度。由于导 管腔与工作腔连通,所以也就改变了工作 腔内的充液度,实现无级调速。勺管排出 的油通过回油三通重新回到油箱。 • 由于勺管吸油和油泵的进、出油口均与耦 合器的转向有关。所以油泵转子与勺管安 装方向要与耦合器转向相适应。也就是说 ,第一,勺头开口方向必须迎着导管腔油 18
液力耦合器工作原理

液力耦合器工作原理引言概述:液力耦合器是一种常见的机械传动装置,广泛应用于各种工业领域。
它通过液体的动力传递来实现机械的连接和传动。
本文将详细介绍液力耦合器的工作原理,包括液力传递、液力变速和液力控制等方面。
一、液力传递1.1 流体动力传递液力耦合器内部填充着液体,通常是油。
当液体在转子内部流动时,它会产生动力,这种动力可以传递给其他机械部件,实现动力传递。
液力传递的基本原理是利用液体的动能和压力来传递转矩和功率。
1.2 液力耦合器的结构液力耦合器由驱动轴、从动轴和液力传递介质组成。
驱动轴和从动轴通过液力传递介质连接在一起。
液力传递介质通常由转子、泵和涡轮组成。
泵将液体从驱动轴端抽出,然后通过转子和涡轮的作用,将液体传递到从动轴端。
1.3 液力传递的特点液力传递具有一定的特点。
首先,液力传递可以在无接触的情况下实现动力传递,减少了磨损和噪音。
其次,液力传递可以实现连续的动力传递,不受转速比的限制。
此外,液力传递还具有一定的扭矩放大效应,可以在启动和低速工况下提供更大的扭矩输出。
二、液力变速2.1 液力耦合器的变速原理液力耦合器可以通过改变液体的流动状态来实现变速。
当液体在转子内部流动时,它的流速和流量会发生变化,从而改变液力传递的效果。
通过调整液体的流动状态,可以实现不同的转速比和扭矩输出。
2.2 液力变速的调节方式液力耦合器的变速可以通过调节泵和涡轮的转速来实现。
当泵和涡轮的转速不同时,液体的流动状态会发生变化,从而实现不同的变速效果。
此外,还可以通过改变液体的粘度和密度来调节液力变速的效果。
2.3 液力变速的优势和应用液力变速具有一定的优势。
首先,液力变速可以实现平滑的变速过程,减少机械部件的磨损和冲击。
其次,液力变速可以实现无级变速,满足不同工况下的需求。
液力变速广泛应用于汽车、船舶、工程机械等领域。
三、液力控制3.1 液力耦合器的控制方式液力耦合器的控制可以通过调节液体的流量和压力来实现。
液力耦合器工作原理

液力耦合器工作原理引言概述:液力耦合器是一种常见的动力传输装置,广泛应用于各种机械设备中。
它通过液体的流动来传递动力,具有承载能力强、传动效率高等特点。
本文将详细介绍液力耦合器的工作原理及其应用。
一、液力耦合器的基本构造:1.1 液力耦合器的外壳:液力耦合器外壳由两个相互套合的壳体组成,内壳连接到动力源,外壳连接到工作机械。
外壳的内部充满了液体,形成一个密闭的工作环境。
1.2 液力耦合器的转子:液力耦合器内部有两个转子,分别称为泵轮和涡轮。
泵轮由内壳驱动,涡轮与外壳相连。
1.3 液力耦合器的液体:液力耦合器中充满了液体,通常使用油作为液体介质。
液体的流动是实现动力传递的关键。
二、液力耦合器的工作原理:2.1 初始状态:当液力耦合器处于静止状态时,泵轮和涡轮之间没有直接的机械连接。
液体充满整个液力耦合器,但没有形成液流。
2.2 动力传递:当内壳驱动泵轮旋转时,泵轮产生离心力将液体向外壁挤压。
液体的流动使得涡轮开始旋转,从而将动力传递到外壳。
2.3 液力变矩:液体流动产生的离心力作用于涡轮,使其产生转矩。
液力耦合器的转矩传递比取决于液体的流动速度和涡轮的转速。
当液体流动速度增加时,液力耦合器的传递比也会增加。
三、液力耦合器的应用:3.1 汽车传动系统:液力耦合器广泛应用于汽车的自动变速器中。
它可以平稳地传递动力,提高汽车的行驶舒适性。
3.2 工业机械:液力耦合器也被用于各种工业机械设备中,如起重机、钢铁厂等。
它可以承载较大的转矩,实现高效的动力传递。
3.3 发电机组:在发电机组中,液力耦合器可以起到启动发电机的作用,使得发电机可以平稳地启动并达到额定转速。
四、液力耦合器的优势与劣势:4.1 优势:液力耦合器具有承载能力强、传动效率高、传递平稳等优点。
它可以适应大范围的负载和转速变化。
4.2 劣势:液力耦合器的传递比不是固定的,会随着负载和转速的变化而改变。
同时,液力耦合器在传递动力时会有一定的能量损耗。