学易金卷:段考模拟君之高一数学下学期期中考试原创模拟卷01(参考答案)

合集下载

新高一数学下期中模拟试卷及答案

新高一数学下期中模拟试卷及答案

新高一数学下期中模拟试卷及答案一、选择题1.已知直线l 过点(1,0),且倾斜角为直线0l :220x y --=的倾斜角的2倍,则直线l 的方程为( )A .4330x y --=B .3430x y --=C .3440x y --=D .4340x y --= 2.设l 为直线,,αβ是两个不同的平面,下列命题中正确的是( )A .若//l α,//l β,则//αβB .若l α⊥,l β⊥,则//αβC .若l α⊥,//l β,则//αβD .若αβ⊥,//l α,则l β⊥ 3.已知,,,A B C D 是同一球面上的四个点,其中ABC ∆是正三角形,AD ⊥平面ABC ,26AD AB ==,则该球的体积为( )A .48πB .24πC .16πD .4.已知三棱锥S ABC -的所有顶点都在球O 的球面上,SC 为球O 的直径,且SC OA ⊥,SC OB ⊥,OAB 为等边三角形,三棱锥S ABC -的体积为3,则球O 的半径为( )A .3B .1C .2D .45.设α表示平面,a ,b 表示直线,给出下列四个命题:①a α//,a b b α⊥⇒//; ②a b //,a b αα⊥⇒⊥;③a α⊥,a b b α⊥⇒⊂;④a α⊥,b a b α⊥⇒//,其中正确命题的序号是( )A .①②B .②④C .③④D .①③ 6.已知圆()()22:341C x y -+-=和两点(),A m m -,(),B m m -()0m >,若圆C 上存在点P ,使得90APB ∠=︒,则m 的最大值为( )A .B .CD .7.用一个平面去截正方体,则截面不可能是( )A .直角三角形B .等边三角形C .正方形D .正六边形8.在三棱锥P ABC -中,PA ⊥平面1202ABC BAC AP AB ∠=︒==,,,M 是线段BC 上一动点,线段PM P ABC -的外接球的表面积是( )A .92πB .C .18πD .40π9.某几何体的三视图如图所示,图中的四边形都是边长为4的正方形,两条虚线互相垂直且相等,则该几何体的体积是( )A.1763B.1603C.1283D.3210.若方程21424x kx k+-=-+有两个相异的实根,则实数k的取值范围是()A.13,34⎛⎤⎥⎝⎦B.13,34⎛⎫⎪⎝⎭C.53,124⎛⎫⎪⎝⎭D.53,12411.如图,平面四边形ABCD中,1AB AD CD===,2BD=,BD CD⊥,将其沿对角线BD折成四面体A BCD'-,使平面A BD'⊥平面BCD,若四面体A BCD'-的顶点在同一个球面上,则该球的表面积为()A.3πB.3πC.4πD.3π12.如图,在三棱柱111ABC A B C-中,1CC⊥平面ABC,ABC是等腰三角形,BA BC=,123AC CC==,,D是AC的中点,点F在侧棱1A上,若要使1C F⊥平面BDF,则1AFFA的值为( )A .1B .12或2C .22或2D .13或3 二、填空题13.已知圆22:20(0)M x y ay a +-=>截直线0x y +=所得线段的长度是22,则圆M 与圆22:(1)(1)1N x y -+-=的位置关系是_________.14.如图,正方体ABCD ﹣A 1B 1C 1D 1的棱长为1,M 为B 1C 1中点,连接A 1B ,D 1M ,则异面直线A 1B 和D 1M 所成角的余弦值为________________________.15.直线与圆交于两点,则________.16.三棱锥P ABC -中,5PA PB ==,2AC BC ==,AC BC ⊥,3PC =,则该三棱锥的外接球面积为________. 17.若直线l :-3y kx =与直线23-60x y +=的交点位于第一象限,则直线l 的倾斜角的取值范围是___________.18.正四棱锥P ABCD -底面的四个顶点,,,A B C D 在球O 的同一个大圆上,点P 在球面上.若163P ABCD V ,则球O 的体积是______. 19.在三棱锥P ABC -中,PA ⊥平面ABC ,AC BC ⊥,且三棱锥的最长的棱长为2,则此三棱锥的外接球体积为_____________.20.已知四面体ABCD 的外接球球心O 在棱CD 上,AB=3,CD=2,则A 、B 两点在四面体ABCD 的外接球上的球面距离是________.三、解答题21.如图,在四棱锥P ABCD -中,PA ⊥面ABCD ,//AB CD ,且22,22CD AB BC ===,90ABC ∠=︒,M 为BC 的中点.(1)求证:平面PDM ⊥平面PAM ;(2)若二面角P DM A --为30,求直线PC 与平面PDM 所成角的正弦值.22.如图,梯形ABCD 中,AB ∥CD ,,E F 是线段AB 上的两点,且DE AB ⊥,CF AB ⊥,12AB =,5AD =,42BC =,4DE =.现将△ADE ,△CFB 分别沿DE ,CF 折起,使两点,A B 重合于点G ,得到多面体CDEFG (1)求证:平面DEG ⊥平面CFG ;(2)求多面体CDEFG 的体积23.如图,在平面直角坐标系xoy 中,点(0,3)A ,直线:24=-l y x ,设圆C 的半径为1, 圆心在l 上.(1)若圆心C 也在直线1y x =-上,过点A 作圆C 的切线,求切线方程;(2)若圆C 上存在点M ,使2MA MO =,求圆心C 的横坐标a 的取值范围.24.在正三棱柱111ABC A B C -中,点D 是BC 的中点.(1)求证:1A C //面1AB D ;(2)设M 是棱1CC 上的点,且满足1BM B D ⊥.求证:面1AB D ⊥面ABM .25.如图,已知四棱锥的底面是菱形,平面,点为的中点.(1)求证:∥平面;(2)求证:. 26.已知以点C (1,﹣2)为圆心的圆与直线x+y ﹣1=0相切.(1)求圆C 的标准方程;(2)求过圆内一点P (2,﹣)的最短弦所在直线的方程.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】设直线0l 的倾斜角为α,则斜率01tan 2k α==,所以直线l 的倾斜角为2α,斜率22tan 4tan 21tan 3k ααα===-,又经过点(1,0),所以直线方程为4(1)3y x =-,即4340x y --=,选D.2.B解析:B【解析】A 中,,αβ也可能相交;B 中,垂直与同一条直线的两个平面平行,故正确;C 中,,αβ也可能相交;D 中,l 也可能在平面β内.【考点定位】点线面的位置关系3.D解析:D【解析】【分析】根据球的性质可知球心O 与ABC ∆外接圆圆心O '连线垂直于平面ABC ;在Rt POE ∆和Rt OO A ∆'中利用勾股定理构造出关于半径R 和OO '的方程组,解方程组求得R ,代入球的体积公式可得结果.设O '为ABC ∆的外心,如下图所示:由球的性质可知,球心O 与O '连线垂直于平面ABC ,作OE AD ⊥于E设球的半径为R ,OO x '=ABC ∆为等边三角形,且3AB = 3AO '∴=OO '⊥平面ABC ,AD ⊥平面ABC ,OE AD ⊥OO AE x '∴==,3OE AO '==在Rt POE ∆和Rt OO A ∆'中,由勾股定理得:22222OE PE O O O A R ''+=+=,即()222363x x R +-=+= 解得:3x =,3R =∴球的体积为:343233V R ππ== 本题正确选项:D【点睛】本题考查棱锥外接球的体积求解问题,关键是能够确定棱锥外接球球心的位置,从而在直角三角形中利用勾股定理构造方程求得半径.4.C解析:C【解析】【分析】根据题意作出图形,欲求球的半径r .利用截面的性质即可得到三棱锥S ABC -的体积可看成是两个小三棱锥S ABO -和C ABO -的体积和,即可计算出三棱锥的体积,从而建立关于r 的方程,即可求出r ,从而解决问题.【详解】解:根据题意作出图形:设球心为O ,球的半径r .SC OA ⊥,SC OB ⊥,SC ∴⊥平面AOB ,三棱锥S ABC -的体积可看成是两个小三棱锥S ABO -和C ABO -的体积和.2343123S ABC S ABO C ABO V V V r r ---∴=+=⨯⨯=三棱锥三棱锥三棱锥,故选:C .【点睛】本题考查棱锥的体积,考查球内接多面体,解题的关键是确定将三棱锥S ABC -的体积看成是两个小三棱锥S ABO -和C ABO -的体积和,属于中档题.5.B解析:B【解析】【分析】【详解】①a ∥α,a ⊥b ⇒b 与α平行,相交或b ⊂α,故①错误;②若a ∥b ,a ⊥α,由直线与平面垂直和判定定理得b ⊥α,故②正确;③a ⊥α,a ⊥b ⇒b 与α平行,相交或b ⊂α,故③错误;④若a ⊥α,b ⊥α,则由直线与平面垂直的性质得a ∥b ,故④正确.故选B .6.B解析:B【解析】【分析】根据使得90APB ∠=︒的点P 在以AB 为直径的圆上,再分析轨迹圆与圆C 的关系即可.【详解】由题, 使得90APB ∠=︒的点P 在以AB 为直径的圆上,又两点(),A m m -,(),B m m -, 所以圆心为()0,0.()222m m m +-=.故P 的轨迹方程为2222x y m +=. 又由题意知,当圆()()22:341C x y -+-=内切于222x y m +=时m 取最大值. 2223416m,故32m =故选:B【点睛】本题主要考查了圆与圆的位置关系,重点是根据90APB ∠=︒求出点P 的轨迹.属于中等题型.7.A解析:A【解析】【分析】【详解】画出截面图形如图显然A正三角形C正方形:D正六边形可以画出三角形但不是直角三角形;故选A.用一个平面去截正方体,则截面的情况为:①截面为三角形时,可以是锐角三角形、等腰三角形、等边三角形,但不可能是钝角三角形、直角三角形;②截面为四边形时,可以是梯形(等腰梯形)、平行四边形、菱形、矩形,但不可能是直角梯形;③截面为五边形时,不可能是正五边形;④截面为六边形时,可以是正六边形.故可选A.8.C解析:C【分析】首先确定三角形ABC 为等腰三角形,进一步确定球的球心,再求出球的半径,最后确定球的表面积.【详解】解:如图所示:三棱锥P ABC -中,PA ⊥平面2,2ABC AP AB ==,,M 是线段BC 上一动点,线段PM 3则:当AM BC ⊥时,线段PM 达到最小值,由于:PA ⊥平面ABC ,所以:222PA AM PM +=,解得:1AM =, 所以:3BM =,则:60BAM ∠=︒,由于:120BAC ∠=︒,所以:60MAC ∠=︒则:ABC 为等腰三角形. 所以:23BC =在ABC 中,设外接圆的直径为2324r ==, 则:2r =, 所以:外接球的半径2229222R ⎛⎫=+= ⎪ ⎪⎝⎭, 则:94182S ππ=⋅⋅=, 故选:C .【点睛】本题考查的知识要点:三棱锥的外接球的球心的确定及球的表面积公式的应用. 9.B【解析】该几何体为一个正方体去掉一个倒四棱锥,其中正方体棱长为4,倒四棱锥顶点为正方体中心,底面为正方体上底面,因此体积是32116042433-⨯⨯=,选B. 点睛: 1.解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图.2.三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据.10.D解析:D【解析】【分析】由题意可得,曲线22(1)4(1)x y y +-=与直线4(2)y k x -=-有2个交点,数形结合求得k 的范围.【详解】如图所示,化简曲线得到22(1)4(1)x y y +-=,表示以(0,1)为圆心,以2为半径的上半圆,直线化为4(2)y k x -=-,过定点(2,4)A ,设直线与半圆的切线为AD ,半圆的左端点为(2,1)B -,当AD AB k k k <,直线与半圆有两个交点,AD 221k =+,解得512AD k =, 4132(2)4AB k -==--,所以53,124k ⎛⎤∈ ⎥⎝⎦. 故选:D【点睛】本题考查直线与圆的位置关系,属于中档题.11.A解析:A【解析】【分析】设BC 的中点是E ,连接DE ,由四面体A′­BCD 的特征可知,DE 即为球体的半径.【详解】设BC 的中点是E ,连接DE ,A′E,因为AB =AD =1,BD 由勾股定理得:BA⊥AD又因为BD⊥CD,即三角形BCD 为直角三角形所以DE 为球体的半径2DE =243S ππ== 故选A【点睛】 求解球体的表面积、体积的问题,其实质是求球体的半径,解题的关键是构造关于球体半径R 的方程式,构造常用的方法是构造直角三角形,再利用勾股定理建立关于半径R 的方程.12.B解析:B【解析】【分析】易证1BD C F ⊥,故要使1C F ⊥平面BDF ,只需1C F DF ⊥,然后转化到平面11AAC C 中,根据勾股定理计算,即可得结果.【详解】1CC ⊥平面ABC ,BD ⊂平面ABC ,所以1BD CC ⊥,又BA BC =,D 为AC 中点,所以BD AC ⊥,又1AC CC C =,所以BD ⊥平面11AAC C ,1C F 平面11AAC C ,所以1C F BD ⊥,因为DF BD D =,故要使1C F 平面BDF ,只需1C F DF ⊥,在四边形11AAC C 中,1231AC CC AD CD ====,,, 设AF x =,则13FA x =-,由22211C D DF C F =+得()()2219143x x ⎡⎤+=+++-⎣⎦, 即2320x x -+=,解得1x =或2x =,所以112AF FA =或者12AF FA =, 故选:B.【点睛】本题考查了棱柱的结构特征,考查了空间中直线与平面的垂直的性质,勾股定理,考查空间想象能力和推理能力,属于中档题.二、填空题13.相交【解析】【分析】根据直线与圆相交的弦长公式求出的值结合两圆的位置关系进行判断即可【详解】解:圆的标准方程为则圆心为半径圆心到直线的距离圆截直线所得线段的长度是即则圆心为半径圆的圆心为半径则即两个 解析:相交【解析】【分析】根据直线与圆相交的弦长公式,求出a 的值,结合两圆的位置关系进行判断即可.【详解】解:圆的标准方程为222:()(0)M x y a a a +-=>,则圆心为(0,)a ,半径R a =, 圆心到直线0x y +=的距离2d =,圆22:20(0)M x y ay a +-=>截直线0x y +=所得线段的长度是22222222a a ∴-即24a =,2a =,则圆心为(0,2)M ,半径2R =,圆22:(1)(1)1N x y -+-=的圆心为(1,1)N ,半径1r =,则2MN =3R r +=,1R r -=,R r MN R r ∴-<<+,即两个圆相交.故答案为:相交.【点睛】本题主要考查直线和圆相交的应用,以及两圆位置关系的判断,根据相交弦长公式求出a 的值是解决本题的关键.14.【解析】【分析】连接取的中点连接可知且是以为腰的等腰三角形然后利用锐角三角函数可求出的值作为所求的答案【详解】如下图所示:连接取的中点连接在正方体中则四边形为平行四边形所以则异面直线和所成的角为或其 解析:10. 【解析】【分析】 连接1CD 、CM ,取1CD 的中点N ,连接MN ,可知11//A B CD ,且1CD M ∆是以1CD 为腰的等腰三角形,然后利用锐角三角函数可求出1cos CD M ∠的值作为所求的答案.【详解】如下图所示:连接1CD 、CM ,取1CD 的中点N ,连接MN ,在正方体1111ABCD A B C D -中,11//A D BC ,则四边形11A BCD 为平行四边形, 所以11//A B C D ,则异面直线1A B 和1D M 所成的角为1CD M ∠或其补角,易知1111190B C D BC C CDD ∠=∠=∠=,由勾股定理可得15CM D M ==12CDN 为1CD 的中点,则1MN CD ⊥,在1Rt D MN ∆中,11110cos 5D N CD M D M ∠==, 因此,异面直线1A B 和1D M 所成角的余弦值为105,故答案为105.【点睛】本题考查异面直线所成角的余弦值的计算,求解异面直线所成的角一般利用平移直线法求解,遵循“一作、二证、三计算”,在计算时,一般利用锐角三角函数的定义或余弦定理求解,考查计算能力,属于中等题.15.22【解析】【分析】首先将圆的一般方程转化为标准方程得到圆心坐标和圆的半径的大小之后应用点到直线的距离求得弦心距借助于圆中特殊三角形半弦长弦心距和圆的半径构成直角三角形利用勾股定理求得弦长【详解】根 解析:【解析】【分析】首先将圆的一般方程转化为标准方程,得到圆心坐标和圆的半径的大小,之后应用点到直线的距离求得弦心距,借助于圆中特殊三角形半弦长、弦心距和圆的半径构成直角三角形,利用勾股定理求得弦长.【详解】 根据题意,圆的方程可化为, 所以圆的圆心为,且半径是, 根据点到直线的距离公式可以求得, 结合圆中的特殊三角形,可知,故答案为. 【点睛】该题考查的是有关直线被圆截得的弦长问题,在解题的过程中,熟练应用圆中的特殊三角形半弦长、弦心距和圆的半径构成的直角三角形,借助于勾股定理求得结果.16.【解析】【分析】由已知数据得两两垂直因此三棱锥外接球直径的平方等于这三条棱长的平方和【详解】∵∴∴又以作长方体则长方体的外接球就是三棱锥的外接球设外接球半径为则球表面积为故答案为:【点睛】本题考查球 解析:7π【解析】【分析】由已知数据得,,CA CB CP 两两垂直,因此三棱锥外接球直径的平方等于这三条棱长的平方和.【详解】 ∵5PA PB ==2AC BC ==3PC =,∴222222,PC CB PB PC CA PA +=+=,∴,PC CB PC CA ⊥⊥,又CA CB ⊥,以,,CA CB CP 作长方体,则长方体的外接球就是三棱锥P ABC -的外接球.设外接球半径为R ,则2222(2)7R CA CB CP =++=,7R =,球表面积为22744()7.2S R πππ==⨯= 故答案为:7π.【点睛】 本题考查球的表面积,解题关键是确定,,CA CB CP 两两垂直,以,,CA CB CP 作长方体,则长方体的外接球就是三棱锥P ABC -的外接球. 17.【解析】若直线与直线的交点位于第一象限如图所示:则两直线的交点应在线段上(不包含点)当交点为时直线的倾斜角为当交点为时斜率直线的倾斜角为∴直线的倾斜角的取值范围是故答案为解析:(,)62ππ 【解析】 若直线:3l y kx =-与直线2360x y +-=的交点位于第一象限,如图所示:则两直线的交点应在线段AB 上(不包含,A B 点), 当交点为()0,2A 时,直线l 的倾斜角为2π,当交点为()3,0B 时,斜率(03330k -==-l 的倾斜角为6π ∴直线的倾斜角的取值范围是,62ππ⎛⎫⎪⎝⎭. 故答案为,62ππ⎛⎫ ⎪⎝⎭ 18.【解析】【分析】正四棱锥底面的四个顶点在球的同一个大圆上则棱锥的高等于球的半径由此可由棱锥体积求得球的半径从而得球体积【详解】∵正四棱锥底面的四个顶点在球的同一个大圆上∴球心是正方形对角线交点是棱锥 解析:323π 【解析】【分析】正四棱锥P ABCD -底面的四个顶点,,,A B C D 在球O 的同一个大圆上,则棱锥的高等于球的半径,由此可由棱锥体积求得球的半径,从而得球体积.【详解】∵正四棱锥P ABCD -底面的四个顶点,,,A B C D 在球O 的同一个大圆上,∴球心O 是正方形ABCD 对角线交点,PO 是棱锥的高,设球半径为R ,则AB =,22)2ABCD S R ==,211162333P ABCD ABCD V S PO R R -==⨯⨯=,2R =, ∴3344322333V R πππ==⨯=球. 故答案为:323π. 【点睛】本题考查球的体积,考查正四棱锥与半球的截接问题.解题关键是确定球半径与正四棱锥中的线段长之间的关系.19.【解析】【分析】根据题意可得平面所以得出为三棱锥的最长边根据直角三角形的性质边的中点到三棱锥的各顶点距离都相等所以为球心球直径即为【详解】平面平面平面所以三棱锥中最长边为设中点为在中所以三棱锥的外接 解析:43π 【解析】【分析】根据题意可得,BC ⊥平面PAC ,所以BC PC ⊥,得出PB 为三棱锥的最长边,PA AB ⊥,根据直角三角形的性质,PB 边的中点到三棱锥的各顶点距离都相等,所以为球心,球直径即为PB .【详解】PA ⊥平面ABC ,BC ⊂平面ABC ,PA BC ∴⊥,,,AC BC PA AC A BC ⊥=∴⊥平面PAC ,BC PC ⊥,,,,,PB BC PB PC PA AC PC AC PC PA ∴>>⊥∴>>,所以三棱锥中最长边为2PB =,设PB 中点为O ,在,Rt PAB Pt PBC ∆∆中,12AO CO PB ==,所以三棱锥的外接球的球心为O , 半径为41,3V π∴=. 故答案为:43π. 【点睛】 本题考查几何体的“切”“接”球问题,确定球心是解题的关键,考查空间垂直的应用,属于中档题.20.【解析】【分析】根据球心到四个顶点距离相等可推断出O 为CD 的中点且OA =OB =OC =OD 进而在△A0B 中利用余弦定理求得cos ∠AOB 的值则∠AOB 可求进而根据弧长的计算方法求得答案【详解】解:球心 解析:23π 【解析】【分析】根据球心到四个顶点距离相等可推断出O 为CD 的中点,且OA =OB =OC =OD ,进而在△A 0B 中,利用余弦定理求得cos ∠AOB 的值,则∠AOB 可求,进而根据弧长的计算方法求得答案.【详解】解:球心到四个顶点距离相等,故球心O 在CD 中点,则OA =OB =OC =OD =1,再由AB =A 0B 中,利用余弦定理cos ∠AOB 11312112+-==-⨯⨯, 则∠AOB 23π=,则弧AB 23π=•123π=. 故答案为:23π. 【点睛】本题主要考查了余弦定理的应用、四面体外接球的性质等,考查了学生观察分析和基本的运算能力. 三、解答题21.(1)详见解析;(2. 【解析】【分析】(1)在直角梯形ABCD 中,由条件可得222AD AM DM =+,即DM AM ⊥.再由PA ⊥面ABCD ,得DM PA ⊥,利用线面垂直的判定可得DM ⊥平面PAM ,进一步得到平面PDM ⊥平面PAM ;(2)由(1)知,,PM DM AM DM ⊥⊥,则PMA ∠为二面角P DM A --的平面角为30,求得tan301PA AM =⋅︒=.以A 为坐标原点,分别以,,AE AB AP 所在直线为,,x y z 轴建立空间直角坐标系,求出PC 的坐标及平面PDM 的一个法向量,由PC 与n 所成角的余弦值可得直线PC 与平面PDM 所成角的正弦值.【详解】(1)证明:在直角梯形ABCD 中,由已知可得,1,2,2AB CD BM CM ==== 可得223,6AM DM ==,过A 作AE CD ⊥,垂足为E ,则1,22DE AE ==29AD =,则222AD AM DM =+,∴DM AM ⊥.∵PA ⊥面ABCD ,∴DM PA ⊥,又PA AM A =,∴DM ⊥平面PAM ,∵DM ⊂平面PDM ,∴平面PDM ⊥平面PAM ;(2)解:由(1)知,,PM DM AM DM ⊥⊥,则PMA ∠为二面角P DM A --的平面角为30,则tan301PA AM =⋅︒=.以A 为坐标原点,分别以,,AE AB AP 所在直线为,,x y z 轴建立空间直角坐标系, 则()0,0,1P ,(22,1,0)D -,(22,1,0)C ,(2,1,0)M ,(22,1,1),(22,1,1),(2,1,1)PC PD PM =-=--=-. 设平面PDM 的一个法向量为(,,)n x y z =, 由22020n PD y z n PM x y z ⎧⋅=--=⎪⎨⋅=+-=⎪⎩,取1x =,得2321,,22n ⎛= ⎝⎭. ∴直线PC 与平面PDM 所成角的正弦值为:||230|cos ,|30||||106PC n PC n PC n ⋅<>===⋅⋅. 【点睛】 向量法是求立体几何中的线线角、线面角、面面角时常用方法.22.:(Ⅰ)见解析(Ⅱ)16【解析】【分析】【详解】(Ⅰ)证明:因为,DE EF CF EF ⊥⊥,所以四边形平面CDEF 为矩形,由5,4GD DE ==,42,4GC CF==得223GE GD CF =-=224GF GC CF =-=,所以5EF =,在EFG 中 ,有222EF GE FG =+,所以EG GF ⊥又因为,CF EF CF FG ⊥⊥,得CF ⊥平面EFG , 所以CF EG ⊥,所以EG ⊥平面CFG ,即平面DEG ⊥平面CFG ;(Ⅱ):在平面EGF 中,过点G 作GH EF ⊥于点H ,则125EG GF GH EF ⋅== 因为平面CDEF ⊥平面EFG , 得GH ⊥平面CDEF ,1163CDEF CDEF V S GH =⋅=23.(1)3y =或34120x y +-=;(2)12[0,]5. 【解析】 【分析】 (1)两直线方程联立可解得圆心坐标,又知圆C 的半径为1,可得圆的方程,根据点到直线距离公式,列方程可求得直线斜率,进而得切线方程;(2)根据圆C 的圆心在直线l :24y x =-上可设圆C 的方程为[]22()(24)1x a y a -+--=,由2MA MO =,可得M 的轨迹方程为22(1)4x y ++=,若圆C 上存在点M ,使2MA MO =,只需两圆有公共点即可.【详解】 (1)由24,{1,y x y x =-=-得圆心()3,2C , ∵圆C 的半径为1,∴圆C 的方程为:22(3)(2)1x y -+-=,显然切线的斜率一定存在,设所求圆C 的切线方程为3y kx =+,即30kx y -+=. 232311k k -+=+,∴2(43)0k k +=,∴0k =或34k =-. ∴所求圆C 的切线方程为3y =或34120x y +-=. (2)∵圆C 的圆心在直线l :24y x =-上,所以,设圆心C 为(,24)a a -, 则圆C 的方程为[]22()(24)1x a y a -+--=.又∵2MA MO =,∴设M 为(,)x y =22(1)4x y ++=,设为圆D . 所以点M 应该既在圆C 上又在圆D 上,即圆C 和圆D 有交点,∴2121-≤+,由251280a a -+≥,得a R ∈, 由25120a a -≤,得1205a ≤≤. 综上所述,a 的取值范围为120,5⎡⎤⎢⎥⎣⎦. 考点:1、圆的标准方程及切线的方程;2、圆与圆的位置关系及转化与划归思想的应用.【方法点睛】本题主要考查圆的标准方程及切线的方程、圆与圆的位置关系及转化与划归思想的应用.属于难题.转化与划归思想是解决高中数学问题的一种重要思想方法,是中学数学四种重要的数学思想之一,尤其在解决知识点较多以及知识跨度较大的问题发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是将题设条件研究透,这样才能快速找准突破点.以便将问题转化为我们所熟悉的知识领域,进而顺利解答,希望同学们能够熟练掌握并应用于解题当中.本题(2)巧妙地将圆C 上存在点M ,使2MA MO =问题转化为,两圆有公共点问题是解决问题的关键所在.24.(1)证明见解析;(2)证明见解析.【解析】【分析】(1)记1A B 与1B A 交于O ,先证明OD //1A C ,根据线面平行的判定定理即可证明A 1C ∥平面AB 1D ;(2)先证明BM ⊥面1AB D ,即可根据面面垂直的判定定理进行证明即可.【详解】(1)设11A B AB O ⋂=,连OD .因为四边形11AA B B 是矩形,∴O 是1A B 的中点. 又D 是BC 的中点,∴1A C //OD .又1AC ⊄面1AB D ,OD ⊂面1AB D , ∴1A C //面1AB D .(2)因为ABC ∆是正三角形,D 是BC 的中点,∴AD BC ⊥.∵平面ABC ⊥面11BB C C ,又平面ABC ⊥面11BB C C BC =,AD ⊂面ABC . ∴AD ⊥面11BB C C ,∵BM ⊂面11BB C C ,∴AD BM ⊥. 又∵1BM B D ⊥,1AD B D D ⋂=,AD ,1B D ⊂面1AB D , ∴BM ⊥面1AB D ,又BM ⊂面ABM , ∴面1AB D ⊥面ABM . 【点睛】垂直、平行关系证明中应用转化与化归思想的常见类型. (1)证明线面、面面平行,需转化为证明线线平行. (2)证明线面垂直,需转化为证明线线垂直. (3)证明线线垂直,需转化为证明线面垂直. 25.(1)详见解析;(2)详见解析。

学易金卷:段考模拟君之高一数学下学期期末考试原创模拟卷01(全解全析)

学易金卷:段考模拟君之高一数学下学期期末考试原创模拟卷01(全解全析)

高一数学 第1页(共7页)
2017-2018学年下学期期末原创卷01
高一数学·全解全析
1.【答案】D
【解析】∵学生人数比较多,∵把每个班级学生从1到50号编排,要求每班编号为14的同学留下进行交流,这样选出的样本是采用系统抽样的方法,故选D . 2.【答案】B
【解析】这70人中用分层抽样的方法抽取一个容量为14的样本,每个个体被抽到的概率是141705
=. ∵高二年级有40名,∴要抽取40×1
5
=8,故选B .
5.【答案】A
【解析】∵角α终边经过点5π
5πsin cos 33P ⎛⎫ ⎪⎝
⎭,,即点P (,12),∴x =y =12,r =|OP |=1,
则sin (π+α)=–sin α=y r -=–y =–1
2
.故选A . 6.【答案】D
【解析】根据频率分布直方图,得体重大于等于58.5小于等于64.5的频率是(0.05+0.05+0.07)×2=0.34,∴对应的学生人数是100×0.34=34.故选D . 7.【答案】A
【解析】A ,0•a =0,故A 错误,B 、C 、D 说法均正确,故选A .。

学易金卷:段考模拟君之高一数学下学期第二次月考(5月)原创模拟B卷(全解全析)

学易金卷:段考模拟君之高一数学下学期第二次月考(5月)原创模拟B卷(全解全析)

2
2
2
∵ c2=a2+b2–2abcosC=42+52–2 × 4 × 5 × 1 =21 , ∴ c= 21 , ∴ △ ABC 的 周 长 为 2
a+b+c=4+5+ 21 =9+ 21 .故选 B.
12.【答案】A
13.【答案】 2
高一数学 第 2 页(共 7 页)
【解析】由题意得 cosα= m 2 ,解得 m= 2 ,故答案为: 2 . m2 2 2
选 C.
9.【答案】D
【解析】∵ tan(

π) 2 4
tan 1 ,可求 1 tan
tanα=–3,∴tan2α= 2tan 1 tan2
2 (3)
1 (3)2

3 4
.故选
D.
10.【答案】B
【 解 析 】 由 题 意 得 , 每 天 行 走 的 路 程 {an} 成 等 比 数 列 , 且 公 比 为
1 2
,∵6
天后共走了
378
里,∴
S6=Biblioteka a1(11 26
1 1
)

378
,解得
a1=192,∴第三天走了
a3=a1×
(
1 2
)2
=192×
1 4
=48(里),故选
B.
2
11.【答案】B
【解析】△ABC 中,b=5,C=60°,且△ABC 的面积为 5 3 ,∴ 1 absinC= 1 •a•5• 3 =5 3 ,∴a=4,又

1 2
,∴an=2n–1.(6
分)
法二:∵{an}是等差数列,且 a3n=2×3n–1=6n–1, ∴an=2n–1.(6 分)

学易金卷:段考模拟君之高一数学下学期期末考试原创模拟卷03(参考答案)

学易金卷:段考模拟君之高一数学下学期期末考试原创模拟卷03(参考答案)


3cos 9cos
=
2tan 4tan

3 9
(3
分)
= 223 429
=–1;(5 分)
(2)sin2α–3sinαcosα+1
=2sin2α–3sinαcosα+cos2α
=
2sin
2
3sin sin2
cos cos2
cos2
=
2tan2 3tan tan2 1
2
2
3
(2)又(1)知
f
x

cos

2
如下:
2x– π
–π
0
π
π


3
3
2
2
3
x
0
π


11 π
π
6
12
3
12
f(x)
1
1
0
–1
0
1
2
2
所以 f(x)在[0,π]上的图象如下图:学=科网
(7 分)
高一数学 第 4页(共 5页)
高一数学 第 5页(共 5页)
1
(8
分)
861 4 1
= 3 .(10 分) 5
18.(本小题满分 12 分)
【答案】(1)证明详见解析;(2)α=30°或α=210°.
【解析】(1)因为 a=(cosα,sinα),b=(– 1 , 3 ), 22
所以
a

b


cos

1 ,sin 2

3 2

20.(本小题满分 12 分) 【答案】(1) x =6, y =80;(2)y= 34 x+ 356 ;(3)31 件. 77 【解析】(1) x 1 (3+4+5+6+7+8+9)=6,(1 分) 7 y 1 (66+69+73+81+89+90+92)=80,(3 分) 7 (2)由题意,得 b 3496 7 6 80 34 ,(6 分) 280 7 36 7

学易金卷:段考模拟君之高一数学下学期第一次月考(3月)原创卷B卷(参考答案)

学易金卷:段考模拟君之高一数学下学期第一次月考(3月)原创卷B卷(参考答案)
i 1
6
ti t 2 =(–2.5)2+(–1.5)2+(–0.5)2+0.52+1.52+2.52=17.5.
i 1
由 bˆ
n
i 1
ti
t
t n
i1 i
yi t 2
y

,得


2.8 17.5

0.16
,(5
分)
又 aˆ y bˆt ,得 aˆ 7 0.16 3.5 6.44 ,
高一数学 第 3 页(共 6 页)
22.(本小题满分 12 分)
(3)居民月收入在3500, 4000 的频率为 0.0005 4000 3500 = 0.25 ,
100 0.25 = 25 (人),
所以再从这 10000 人中用分层抽样的方法抽取 100 人,则月收入在3500, 4000 的这一组应抽取 25
21.(本小题满分 12 分)
【解析】(1)由题意,得
t 1 2 3 4 5 6 3.5 , y 6.6 6.7 7 7.1 7.2 7.4 7 ,(2 分 yi y =(–2.5)×(–0.4)+(–1.5)×(–0.3)+0+0.5×0.1+1.5×0.2+2.5×0.4=2.8,
人.(12 分)学.科.网
高一数学 第 4 页(共 6 页)
高一数学 第 5 页(共 6 页)
高一数学 第 6 页(共 6 页)
(2)当输入 x=2,y=1 时,进行赋值运算后,得 x=4,y=3,
高一数学 第 2 页(共 6 页)
(6 分)
然后输出 x,y 的值 4,3;继续进行赋值运算,得 x=4×3=12, 下一步输出(12+3)/2=7.5. 所以输出的值为 4,3;7.5.(12 分) 20.(本小题满分 12 分)

学易金卷:段考模拟君之高一历史下学期期中考试原创模拟卷01 (考试版)

学易金卷:段考模拟君之高一历史下学期期中考试原创模拟卷01 (考试版)

历史试题 第1页(共8页) 历史试题 第2页(共8页)绝密★启用前|学科网试题命制中心2017-2018学年下学期期中原创卷01高一历史(考试时间:90分钟 试卷满分:100分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.测试范围:人教必修2第1—5单元。

5.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷本卷共30小题。

每小题2分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.“从它一产生,就与土地兼并、贫富分化并臻而至,社会一再遭受破坏,连它本身也不能正常存在。

它的存在和发展需要国家的适度干预,需要广大劳动人民的斗争。

”材料中的“它”是指 A .土地国有制 B .重农抑商政策 C .盐铁专卖政策D .土地私有制2.在春秋战国时期,土特产品的地区差价很大,甚至“市费倍蓰”,相差一倍至五倍。

利之驱使,使商人们“虽有关梁之难,盗贼之危”而不顾。

这主要反映了 A .大众消费需求的极大增长 B .商人从业风险空前升高 C .特殊商品长途贩运的繁荣D .交通不畅阻碍商品交换3.郑州古荥冶铁遗址总面积12万余平方米,考古挖掘出炼铁炉炉基两座、椭圆形炉和鼓风设施,出土遗物主要是铁制农具和兵器,遗址内共发现铜五铢钱十二枚,周围清理出船形坑等众多遗址。

据此能够被认定的历史事实是A .遗址年代应是北宋中晚期B .古荥地处南北间水运中心C .遗址应为官营手工业场所D .古荥已成为铜钱铸造要地4.下表为唐代江南东道(今江浙地区)交纳贡赋中丝织品的种类表,据此可知当时A .丝织品成为民众的主要衣料B .丝织业劳动分工细密C .实物税逐渐取代了货币税D .以商品生产为目的5.唐朝商业有较大发展,出现了:水市、山市、村市、草市、早市、晚市、夜市、鱼市、酒市、药市、蚕市、花市、灯市、槐市、鬼市等。

学易金卷:段考模拟君之2018-2019学年高一数学下学期期末原创卷03(考试版)

学易金卷:段考模拟君之2018-2019学年高一数学下学期期末原创卷03(考试版)

高一数学试题 第1页(共4页) 高一数学试题 第2页(共4页)绝密★启用前|学科网试题命制中心2018-2019学年下学期期末原创卷03高一数学(考试时间:120分钟 试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.测试范围:人教必修3、必修4。

5.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在某线性回归分析中,已知数据满足线性回归方程y x b a =+,并且由数据算得x =5,y =56,b =10.5,则当x =10时,预测数值y = A .108.5B .210C .140D .210.52.已知将某选手的6个得分去掉1个最高分,去掉一个最低分,4个剩余分数的平均分为91.现场作的6个分数的茎叶图因故有1个数据模糊,无法辨认,在图中以x 表示,则去掉1个最高分,去掉一个最低分,4个剩余分数的方差为A .6B .1C .32D .43.某学校高一、高二、高三共有学生3500人,其中高三学生数是高一学生数的两倍,高二学生数比高一学生数多300人,现在按1100的抽样比用分层抽样的方法抽取样本,则应抽取高一学生数为A .8B .11C .16D .104.在样本的频率分布直方图中,共有9个小长方形,若中间一个长方形的面积等于其他8个小长方形面积的和的13,且样本容量为200,则中间一组的频数为 A .0.2 B .0.25 C .40D .505.某程序框图如图所示,若运行该程序,则输出的S =A .53B .74C .95D .1166.已知向量=a (1,2),=b (x ,4),且a ∥b ,则||+=a b A .5B .C .D 7.半径为3,圆心角为150°的扇形的弧长为 A .2π3B .5π6C .2πD .5π28.在平行四边形ABCD 中,E 为CD 的中点,F 为AE 的中点,设AB AD ==,a b ,则FB = A .3142-+a b B .3142-a b C .1324-a b D .1324+a b 9.已知sin (π6θ+)+cos θ=cos (5π6θ+)=A .35 B .35-C .45D .45-10.函数f (x )=sin2x –2cos 2x +1的最小正周期为A .πB .2πC .3πD .4π11.已知函数y =sin (2x +φ)的图象关于点π06⎫⎛ ⎪⎝⎭对称,则φ可以是 A .π6-B .π6C .π3-D .π3高一数学试题 第3页(共4页) 高一数学试题 第4页(共4页)12.若函数y =f (x )的图象上每一点的纵坐标不变,横坐标伸长为原来的2倍,再将整个函数图象向右平移π2个单位长度,沿y 轴向下平移1个单位长度,得到函数y 14=sin x -x 的图象,则y =f (x )的解析式为A .y 12=sin (2x π6+)+1 B .y 12=sin (2x π4+)+1 C .y 12=sin (2x π3+)+1D .y 12=sin (2x 5π6+)+1第Ⅱ卷二、填空题(本题共4小题,每小题5分,共20分)13.已知向量=a (t ,1),=b (1,0),若2+a b 与a 垂直,则t =_________.14.从由数字1,2,3组成的所有两位数中随机抽取一个数,则该数为没有重复数字的两位数的概率为_________.15.已知圆C :x 2+y 2=1,直线l :y =k (x +2),在[–1,1]上随机选取一个实数k ,则事件“直线l 与圆C 相交”发生的概率为_________.16.已知扇形的周长是10 cm ,半径是4 cm ,则该扇形的圆心角是_________弧度. 三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)(1)化简:πcos 25sin π2αα⎫⎛- ⎪⎝⎭⎫⎛+ ⎪⎝⎭•sin (α–π)•cos (2π–α); (2)证明:sin 4α+sin 2α•cos 2α+cos 2α=1. 18.(本小题满分12分)设向量(1,1)(,3)(8,6)x ===,,a b c ,且⊥b a . (1)求向量b ;(2)求向量a 在向量c 方向上的投影; (3)求实数λ1和λ2,使12λλ=+c a b . 19.(本小题满分12分)袋子中放有4个大小和形状均相同的小球,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球2个,从袋子中不放回地随机抽取2个小球,记第一次取出的小球标号为p ,第二次取出的小球标号为q .(1)记事件A 表示“p q +=2”,求事件A 的概率;(2)在区间[0,2]内任取2个实数x ,y ,记(p q -)2的最大值为M ,求事件“x 2+y 2<M ”的概率.20.(本小题满分12分)一汽车销售公司对开业4年来某种型号的汽车“五一”优惠金额x 与销售量y 之间的关系进行分析研究并做了记录,得到如下资料:利用散点图可知x ,y 线性相关. (1)求出y 关于x 的线性回归方程;(2)若第5年优惠金额x =8.5千元,估计第5年的销售量y (辆)的值.参考公式:y x b a =+,其中1221121()((ˆn iii nni ii nii i i x x y y x ybx x x x y n xn ====---==--∑∑∑∑,a by x =-.21.(本小题满分12分)设向量=a (2cos x ,2sin x ),=b cos x ,cos x ),函数()f x =⋅a b (1)求函数()f x 的单调递增区间; (2)若f (2α)65=-,且α∈(π2,π)求cos α的值. 22.(本小题满分12分)某校高三(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,可见部分如下图所示.(1)求分数在[50,60)内的频率、全班人数及分数在[80,90)内的频数;(2)若要从分数在[80,100)内的试卷中任取两份分析学生的失分情况,求在抽取的试卷中,至少有一份试卷的分数在[90,100)内的概率.。

数学高一下期中经典测试卷(含答案解析)(1)

数学高一下期中经典测试卷(含答案解析)(1)

一、选择题1.(0分)[ID :12425]设曲线31x y x +=-在点25(,)处的切线与直线10ax y +-=平行,则a=( )A .-4B .14-C .14D .42.(0分)[ID :12421]设l 为直线,,αβ是两个不同的平面,下列命题中正确的是( ) A .若//l α,//l β,则//αβB .若l α⊥,l β⊥,则//αβC .若l α⊥,//l β,则//αβD .若αβ⊥,//l α,则l β⊥3.(0分)[ID :12416]水平放置的ABC 的斜二测直观图如图所示,若112A C =,111A B C △的面积为22,则AB 的长为( )A .2B .217C .2D .84.(0分)[ID :12398]已知定义在R 上的函数()21()x m f x m -=-为实数为偶函数,记0.5(log 3),a f 2b (log 5),c (2)f f m ,则,,a b c ,的大小关系为( )A .a b c <<B .c a b <<C .a c b <<D .c b a << 5.(0分)[ID :12377]<九章算术>中,将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥P ABC -为鳖臑,PA ⊥平面,2,4ABC PA AB AC ===,三棱锥P ABC -的四个顶点都在球O 的球面上,则球O 的表面积为( )A .8πB .12πC .20πD .24π6.(0分)[ID :12356]在我国古代数学名著 九章算术 中,将四个面都为直角三角形的四面体称为鳖臑,如图,在鳖臑ABCD 中, AB ⊥平面BCD ,且AB BC CD ==,则异面直线AC 与BD 所成角的余弦值为( )A .12B .12-C 3D .3 7.(0分)[ID :12344]用一个平面去截正方体,则截面不可能是( )A .直角三角形B .等边三角形C .正方形D .正六边形 8.(0分)[ID :12396]若a >b >0,0<c <1,则A .log a c <log b cB .log c a <log c bC .a c <b cD .c a >c b9.(0分)[ID :12395]正方体ABCD ﹣A 1B 1C 1D 1中,E ,F 分别是AD ,DD 1的中点,AB =4,则过B ,E ,F 的平面截该正方体所得的截面周长为( )A .62+45B .62+25C .32+45D .32+25 10.(0分)[ID :12387]α,β为两个不同的平面,m ,n 为两条不同的直线,下列命题中正确的是( )①若α//β,m ⊂α,则m//β; ②若m//α,n ⊂α,则m//n ;③若α⊥β,α∩β=n ,m ⊥n ,则m ⊥β ④若n ⊥α,n ⊥β,m ⊥α,则m ⊥β. A .①③ B .①④ C .②③ D .②④ 11.(0分)[ID :12371]若方程21424x kx k +-=-+ 有两个相异的实根,则实数k 的取值范围是( )A .13,34⎛⎤ ⎥⎝⎦ B .13,34⎛⎫ ⎪⎝⎭ C .53,124⎛⎫ ⎪⎝⎭ D .53,124 12.(0分)[ID :12369]某锥体的三视图如图所示(单位:cm ),则该锥体的体积(单位:cm 3)是( )A .13 B .12 C .16 D .113.(0分)[ID :12410]已知三棱锥S ABC -的所有顶点都在球O 的求面上,ABC ∆是边长为1的正三角形,SC 为球O 的直径,且2SC =,则此棱锥的体积为( ) A 2 B 3C 2 D 2 14.(0分)[ID :12397]若函数6(3)3,7(),7x a x x f x a x ---≤⎧=⎨>⎩单调递增,则实数a 的取值范围是( )A .9,34⎛⎫ ⎪⎝⎭B .9,34⎡⎫⎪⎢⎣⎭C .()1,3D .()2,3 15.(0分)[ID :12360]如图,网格纸上小正方形的边长为1,粗实(虚)线画出的是某多面体的三视图,则该多面体的体积为( )A .64B .643C .16D .163二、填空题16.(0分)[ID :12478]在棱长为1的正方体1111ABCD A B C D -中,BD AC O ⋂=,M 是线段1D O 上的动点,过M 做平面1ACD 的垂线交平面1111D C B A 于点N ,则点N 到点A 的距离最小值是___________.17.(0分)[ID :12463]已知圆22:20(0)M x y ay a +-=>截直线0x y +=所得线段的长度是22,则圆M 与圆22:(1)(1)1N x y -+-=的位置关系是_________.18.(0分)[ID :12462]若一个圆柱的侧面展开图是边长为2的正方形,则此圆柱的体积为 .19.(0分)[ID :12522]在三棱锥P ABC -中,PA ⊥平面ABC ,AB BC ⊥,3AB =,4BC =,5PA =,则三棱锥P ABC -的外接球的表面积为__________20.(0分)[ID :12508]已知P 是抛物线24y x =上的动点,点Q 是圆22:(3)(3)1C x y ++-=上的动点,点R 是点P 在y 轴上的射影,则PQ PR +的最小值是____________.21.(0分)[ID :12443]已知B 与点()1,2,3A 关于点()0,1,2M -对称,则点B 的坐标是______.22.(0分)[ID :12431]已知棱长等于23的正方体1111ABCD A B C D -,它的外接球的球心为O ﹐点E 是AB 的中点,则过点E 的平面截球O 的截面面积的最小值为________.23.(0分)[ID :12430]若直线:20l kx y --=与曲线()2:111C y x --=-有两个不同的交点,则实数k 的取值范围________.24.(0分)[ID :12432]如图所示,二面角l αβ--为60,,A B 是棱l 上的两点,,AC BD 分别在半平面内,αβ,且AC l ⊥,,4,6,8AB AC BD ===,则CD 的长______.25.(0分)[ID :12450]已知球的表面积为20π,球面上有A 、B 、C 三点.如果2AB AC ==,22BC =,则球心到平面ABC 的距离为__________.三、解答题26.(0分)[ID :12628]已知点()1,0P ,圆22:6440C x y x y +-++=.(1)若直线l 过点P 且到圆心C 的距离为2,求直线l 的方程;(2)设过点()0,1Q -的直线m 与圆C 交于A 、B 两点(m 的斜率为负),当||4AB =时,求以线段AB 为直径的圆的方程.27.(0分)[ID :12597]已知点(3,3)M ,圆22:(1)(2)4C x y -+-=.(1)求过点M 且与圆C 相切的直线方程;(2)若直线40()ax y a -+=∈R 与圆C 相交于A ,B 两点,且弦AB 的长为23,求实数a 的值.28.(0分)[ID :12545]如图所示,已知四棱锥P ABCD -中,底面ABCD 为菱形,PA ⊥平面ABCD ,60,,ABC E F ∠=分别是,BC PB 的中点.(1)证明:AE ⊥平面PAD ;(2)若H 为PD 上的动点,EH 与平面PAD 所成最大角的正切值为3,求二面角B AF C --的正切值.29.(0分)[ID :12622]已知圆22C (4)4x y +-=:,直线:(31)(1)40l m x m y ++--=.(1)求直线l 所过定点A 的坐标;(2)求直线l 被圆C 所截得的弦长最短时直线l 的方程及最短弦长;(3)已知点M (-3,4),在直线MC 上(C 为圆心),存在定点N (异于点M ),满足:对于圆C 上任一点P ,都有||||PM PN 为一常数, 试求所有满足条件的点N 的坐标及该常数.30.(0分)[ID :12542]如图,将棱长为2的正方体1111ABCD A B C D -沿着相邻的三个面的对角线切去四个棱锥后得一四面体11A CB D -.(Ⅰ)求该四面体的体积;(Ⅱ)求该四面体外接球的表面积.【参考答案】2016-2017年度第*次考试试卷参考答案 **科目模拟测试一、选择题1.D2.B3.B4.B5.C6.A7.A8.B9.A10.B11.D12.A13.A14.B15.D二、填空题16.【解析】连结易知面面而即在面内且点的轨迹是线段连结易知是等边三角形则当为中点时距离最小易知最小值为17.相交【解析】【分析】根据直线与圆相交的弦长公式求出的值结合两圆的位置关系进行判断即可【详解】解:圆的标准方程为则圆心为半径圆心到直线的距离圆截直线所得线段的长度是即则圆心为半径圆的圆心为半径则即两个18.2π【解析】试题分析:设圆柱的底面半径为r高为h底面积为S体积为V则有2πr=2⇒r=1π故底面面积S=πr2=π×(1π)2=1π故圆柱的体积V=Sh=1π×2=2π考点:圆柱的体积19.【解析】【分析】以为长宽高构建长方体则长方体的外接球是三棱锥的外接球由此能求出三棱锥的外接球的表面积【详解】由题意在三棱锥中平面以为长宽高构建长方体则长方体的外接球是三棱锥的外接球所以三棱锥的外接球20.【解析】根据抛物线的定义可知而的最小值是所以的最小值就是的最小值当三点共线时此时最小最小值是所以的最小值是3【点睛】本题考查了点和圆的位置关系以及抛物线的几何性质和最值问题考查了转化与化归能力圆外的21.【解析】【分析】根据空间直角坐标系中点坐标公式求结果【详解】设B则所以所以的坐标为【点睛】本题考查空间直角坐标系中点坐标公式考查基本分析求解能力属基础题22.【解析】【分析】当过球内一点的截面与垂直时截面面积最小可求截面半径即可求出过点的平面截球的截面面积的最小值【详解】解:棱长等于的正方体它的外接球的半径为3当过点的平面与垂直时截面面积最小故答案为:【23.【解析】【分析】由题意可知曲线为圆的右半圆作出直线与曲线的图象可知直线是过点且斜率为的直线求出当直线与曲线相切时k的值利用数形结合思想可得出当直线与曲线有两个公共点时实数的取值范围【详解】对于直线则24.【解析】【分析】推导出两边平方可得的长【详解】二面角为是棱上的两点分别在半平面内且的长故答案为:【点睛】本题考查线段长的求法考查空间中线线线面面面间的位置关系等基础知识考查运算求解能力考查函数与方程25.【解析】设球的半径为表面积解得∵在中∴从圆心作平面的垂线垂足在斜边的中点处∴球心到平面的距离故答案为点睛:本题考查的知识点是空间点线面之间的距离计算其中根据球心距球半径解三角形我们可以求出所在平面截三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷 参考解析【参考解析】**科目模拟测试一、选择题1.D解析:D【解析】【分析】求出原函数的导函数,得到函数在2x =时的导数,再由两直线平行与斜率的关系求得a 值.【详解】 解:由31x y x +=-,得()()2213411x x y x x ---=---'=, ∴2'|4x y ==-,又曲线31x y x +=-在点25(,)处的切线与直线10ax y +-=平行, ∴4a -=-,即4a =.故选D .【点睛】本题考查利用导数研究过曲线上某点处的切线方程,考查两直线平行与斜率的关系,是中档题.2.B解析:B【解析】A 中,,αβ也可能相交;B 中,垂直与同一条直线的两个平面平行,故正确;C 中,,αβ也可能相交;D 中,l 也可能在平面β内.【考点定位】点线面的位置关系3.B解析:B【解析】【分析】依题意由111A B C △的面积为114B C =,所以8BC =,2AC =,根据勾股定理即可求AB .【详解】依题意,因为111A B C △的面积为所以11111sin 452AC B C ︒=⨯⋅=11122B C ⨯⨯,解得114B C =, 所以8BC =,2AC =,又因为AC BC ⊥,由勾股定理得:AB ====故选B .【点睛】本题考查直观图还原几何图形,属于简单题. 利用斜二测画法作直观图,主要注意两点:一是与x 轴平行的线段仍然与x '轴平行且相等;二是与y 轴平行的线段仍然与y '轴平行且长度减半. 4.B解析:B【解析】由()f x 为偶函数得0m =,所以0,52log 3log 32121312,a =-=-=-=2log 521514b =-=-=,0210c =-=,所以c a b <<,故选B.考点:本题主要考查函数奇偶性及对数运算.5.C解析:C【解析】【分析】先作出三棱锥P ABC -的图像,根据P ABC -四个面都为直角三角形和PA ⊥平面ABC ,可知PC 中点即为球心,利用边的关系求出球的半径,再由24S R π=计算即得.【详解】三棱锥P ABC -如图所示,由于P ABC -四个面都为直角三角形,则ABC 是直角三角形,且2ABC π∠=,2223BC AC AB ∴=-=,又PA ⊥平面ABC ,且PAC 是直角三角形,∴球O 的直径2222PC R PA AB BC ==++2025==,5R ∴=,则球O 的表面积2420S R ππ==.故选:C【点睛】本题考查多面体外接球的表面积,是常考题型.6.A解析:A【解析】如图,分别取,,,BC CD AD BD 的中点,,,M N P Q ,连,,,MN NP PM PQ ,则,MN BD NP AC ,∴PNM ∠即为异面直线AC 和BD 所成的角(或其补角).又由题意得PQ MQ ⊥,11,22PQ AB MQ CD ==. 设2AB BC CD ===,则2PM =又112,222MN BD NP AC ====, ∴PNM ∆为等边三角形,∴60PNM =︒∠,∴异面直线AC 与BD 所成角为60︒,其余弦值为12.选A . 点睛:用几何法求空间角时遵循“一找、二证、三计算”的步骤,即首先根据题意作出所求的角,并给出证明,然后将所求的角转化为三角形的内角.解题时要注意空间角的范围,并结合解三角形的知识得到所求角的大小或其三角函数值. 7.A解析:A【解析】【分析】【详解】画出截面图形如图显然A 正三角形C 正方形:D 正六边形可以画出三角形但不是直角三角形;故选A .用一个平面去截正方体,则截面的情况为:①截面为三角形时,可以是锐角三角形、等腰三角形、等边三角形,但不可能是钝角三角形、直角三角形;②截面为四边形时,可以是梯形(等腰梯形)、平行四边形、菱形、矩形,但不可能是直角梯形;③截面为五边形时,不可能是正五边形;④截面为六边形时,可以是正六边形.故可选A .8.B解析:B【解析】试题分析:对于选项A ,a b 1gc 1gc log c ,log c lg a lg b==,01c <<,10gc ∴<,而0a b >>,所以lg lg a b >,但不能确定lg lg a b 、的正负,所以它们的大小不能确定;对于选项B ,c lg lg log ,log lg lg c a b a b c c ==,lg lg a b >,两边同乘以一个负数1lg c改变不等号方向,所以选项B 正确;对于选项C ,利用c y x =在第一象限内是增函数即可得到c c a b >,所以C 错误;对于选项D ,利用xy c =在R 上为减函数易得a b c c <,所以D 错误.所以本题选B.【考点】指数函数与对数函数的性质【名师点睛】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数函数的单调性进行比较;若底数不同,可考虑利用中间量进行比较. 9.A解析:A【解析】【分析】利用线面平行的判定与性质证明直线1BC 为过直线EF 且过点B 的平面与平面11BCC B 的交线,从而证得1,,,B E F C 四点共面,然后在正方体中求等腰梯形1BEFC 的周长即可.【详解】作图如下:因为,E F 是棱1,AD DD 的中点,所以11////EF AD BC ,因为EF ⊄平面11BCC B ,1BC ⊂平面11BCC B ,所以//EF 平面11BCC B ,由线面平行的性质定理知,过直线EF 且过点B 的平面与平面11BCC B 的交线l 平行于直线EF ,结合图形知,l 即为直线1BC ,过B ,E ,F 的平面截该正方体所得的截面即为等腰梯形1BEFC ,因为正方体的棱长AB =4,所以11EF BE C F BC ====所以所求截面的周长为+故选:A【点睛】本题主要考查多面体的截面问题和线面平行的判定定理和性质定理;重点考查学生的空间想象能力;属于中档题.10.B解析:B【解析】【分析】在①中,由面面平行的性质定理得m ∥β;在②中,m 与n 平行或异面;在③中,m 与β相交、平行或m ⊂β;在④中,由n ⊥α,m ⊥α,得m ∥n ,由n ⊥β,得m ⊥β.【详解】由α,β为两个不同的平面,m ,n 为两条不同的直线,知:在①中,若α∥β,m ⊂α,则由面面平行的性质定理得m ∥β,故①正确;在②中,若m ∥α,n ⊂α,则m 与n 平行或异面,故②错误;在③中,若α⊥β,α∩β=n ,m ⊥n ,则m 与β相交、平行或m ⊂β,故③错误; 在④中,若n ⊥α,m ⊥α,则m ∥n ,由n ⊥β,得m ⊥β,故④正确.故选:B .【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查空间想象能力、推理论证能力,考查化归与转化思想,是中档题.11.D解析:D【解析】【分析】由题意可得,曲线22(1)4(1)x y y +-=与直线4(2)y k x -=-有2个交点,数形结合求得k 的范围.【详解】如图所示,化简曲线得到22(1)4(1)x y y +-=,表示以(0,1)为圆心,以2为半径的上半圆,直线化为4(2)y k x -=-,过定点(2,4)A ,设直线与半圆的切线为AD ,半圆的左端点为(2,1)B -,当AD AB k k k <,直线与半圆有两个交点,AD 与半圆相切时,2|124|21k k --+=+,解得512AD k =, 4132(2)4AB k -==--,所以53,124k ⎛⎤∈ ⎥⎝⎦. 故选:D【点睛】本题考查直线与圆的位置关系,属于中档题.12.A解析:A【解析】【分析】根据三视图知该几何体对应的三棱锥,结合图中数据求得三棱锥的体积.【详解】由题意可知三棱锥的直观图如图:三棱锥的体积为:111211323⨯⨯⨯⨯=. 故选:A .【点睛】本题考查了利用三视图求几何体体积的应用问题,考查了空间想象能力,是基础题.13.A解析:A【解析】【分析】【详解】根据题意作出图形:设球心为O ,过ABC 三点的小圆的圆心为O 1,则OO 1⊥平面ABC ,延长CO 1交球于点D ,则SD ⊥平面ABC .∵CO 1=233323⨯=, ∴116133OO =-=, ∴高SD=2OO 1=263,∵△ABC 是边长为1的正三角形,∴S △ABC =34, ∴132623436S ABC V -=⨯⨯=三棱锥.考点:棱锥与外接球,体积.【名师点睛】本题考查棱锥与外接球问题,首先我们要熟记一些特殊的几何体与外接球(内切球)的关系,如正方体(长方体)的外接球(内切球)球心是对角线的交点,正棱锥的外接球(内切球)球心在棱锥的高上,对一般棱锥来讲,外接球球心到名顶点距离相等,当问题难以考虑时,可减少点的个数,如先考虑到三个顶点的距离相等的点是三角形的外心,球心一定在过此点与此平面垂直的直线上.如直角三角形斜边中点到三顶点距离相等等等.14.B解析:B【解析】【分析】利用函数的单调性,判断指数函数底数的取值范围,以及一次函数的单调性,及端点处函数值的大小关系列出不等式求解即可【详解】解:函数6(3)3,7(),7x a x x f x a x ---⎧=⎨>⎩单调递增,()301373a a a a ⎧->⎪∴>⎨⎪-⨯-≤⎩解得934a ≤< 所以实数a 的取值范围是9,34⎡⎫⎪⎢⎣⎭.故选:B .【点睛】本题考查分段函数的应用,指数函数的性质,考查学生的计算能力,属于中档题. 15.D 解析:D【解析】根据三视图知几何体是:三棱锥D ABC -为棱长为4的正方体一部分,直观图如图所示:B 是棱的中点,由正方体的性质得,CD ⊥平面,ABC ABC ∆的面积12442S =⨯⨯=,所以该多面体的体积1164433V =⨯⨯=,故选D.二、填空题16.【解析】连结易知面面而即在面内且点的轨迹是线段连结易知是等边三角形则当为中点时距离最小易知最小值为6【解析】连结11B D ,易知面1ACD ⊥面11BDD B ,而1MN ACD ⊥,即1NM D O ⊥,NM 在面11BDD B 内,且点N 的轨迹是线段11B D ,连结1AB ,易知11AB D 是等边三角形,则当N 为11B D 中点时,NA 6 17.相交【解析】【分析】根据直线与圆相交的弦长公式求出的值结合两圆的位置关系进行判断即可【详解】解:圆的标准方程为则圆心为半径圆心到直线的距离圆截直线所得线段的长度是即则圆心为半径圆的圆心为半径则即两个【解析】【分析】根据直线与圆相交的弦长公式,求出a 的值,结合两圆的位置关系进行判断即可.【详解】解:圆的标准方程为222:()(0)M x y a a a +-=>,则圆心为(0,)a ,半径R a =,圆心到直线0x y +=的距离d =,圆22:20(0)M x y ay a +-=>截直线0x y +=所得线段的长度是∴即24a =,2a =,则圆心为(0,2)M ,半径2R =,圆22:(1)(1)1N x y -+-=的圆心为(1,1)N ,半径1r =,则MN =3R r +=,1R r -=,R r MN R r ∴-<<+,即两个圆相交.故答案为:相交.【点睛】本题主要考查直线和圆相交的应用,以及两圆位置关系的判断,根据相交弦长公式求出a 的值是解决本题的关键.18.2π【解析】试题分析:设圆柱的底面半径为r 高为h 底面积为S 体积为V 则有2πr=2⇒r=1π故底面面积S=πr2=π×(1π)2=1π故圆柱的体积V=Sh=1π×2=2π考点:圆柱的体积解析:2π【解析】试题分析:设圆柱的底面半径为r ,高为h ,底面积为S ,体积为V ,则有2πr =2⇒r =1π,故底面面积S =πr 2=π×(1π)2=1π,故圆柱的体积V =Sh =1π×2=2π. 考点:圆柱的体积 19.【解析】【分析】以为长宽高构建长方体则长方体的外接球是三棱锥的外接球由此能求出三棱锥的外接球的表面积【详解】由题意在三棱锥中平面以为长宽高构建长方体则长方体的外接球是三棱锥的外接球所以三棱锥的外接球 解析:50π【解析】以,,AB BC PA 为长宽高构建长方体,则长方体的外接球是三棱锥P ABC -的外接球,由此能求出三棱锥P ABC -的外接球的表面积.【详解】由题意,在三棱锥P ABC -中,PA ⊥平面,,3,4,5ABC AB BC AB BC PA ⊥===, 以,,AB BC PA 为长宽高构建长方体,则长方体的外接球是三棱锥P ABC -的外接球, 所以三棱锥P ABC -的外接球的半径为22215234522R =++=, 所以三棱锥P ABC -的外接球的表面积为225244()502S R πππ==⨯=. 【点睛】 本题主要考查了三棱锥的外接球的表面积的计算问题,其中解答中根据几何体的结构特征,以,,AB BC PA 为长宽高构建长方体,得到长方体的外接球是三棱锥P ABC -的外接球是解答的关键,着重考查了数形结合思想,以及推理与运算能力.20.【解析】根据抛物线的定义可知而的最小值是所以的最小值就是的最小值当三点共线时此时最小最小值是所以的最小值是3【点睛】本题考查了点和圆的位置关系以及抛物线的几何性质和最值问题考查了转化与化归能力圆外的 解析:【解析】根据抛物线的定义,可知1PR PF =-,而PQ 的最小值是1PC -,所以PQ PR +的最小值就是2PF PC +-的最小值,当,,C P F 三点共线时,此时PF FC +最小,最小值是()()2231305CF =--+-= ,所以PQ PR +的最小值是3.【点睛】本题考查了点和圆的位置关系以及抛物线的几何性质和最值问题,考查了转化与化归能力,圆外的点和圆上的点最小值是点与圆心的距离减半径,最大值是距离加半径,抛物线上的点到焦点的距离和到准线的距离相等,这样转化后为抛物线上的点到两个定点的距离和的最小值,即三点共线时距离最小.21.【解析】【分析】根据空间直角坐标系中点坐标公式求结果【详解】设B则所以所以的坐标为【点睛】本题考查空间直角坐标系中点坐标公式考查基本分析求解能力属基础题解析:()1,4,1--【解析】【分析】根据空间直角坐标系中点坐标公式求结果.【详解】设B (),,x y z ,则1230,1,2222x y z +++=-==,所以1,4,1x y z =-=-=,所以B 的坐标为()1,4,1--.【点睛】本题考查空间直角坐标系中点坐标公式,考查基本分析求解能力,属基础题. 22.【解析】【分析】当过球内一点的截面与垂直时截面面积最小可求截面半径即可求出过点的平面截球的截面面积的最小值【详解】解:棱长等于的正方体它的外接球的半径为3当过点的平面与垂直时截面面积最小故答案为:【 解析:3π.【解析】【分析】当过球内一点E 的截面与OE 垂直时,截面面积最小可求截面半径,即可求出过点E 的平面截球O 的截面面积的最小值.【详解】解:棱长等于1111ABCD A B C D -,它的外接球的半径为3,||OE =当过点E 的平面与OE 垂直时,截面面积最小,r 33S ππ=⨯=, 故答案为:3π.【点睛】本题考查过点E 的平面截球O 的截面面积的最小值及接体问题,找准量化关系是关键,属于中档题.23.【解析】【分析】由题意可知曲线为圆的右半圆作出直线与曲线的图象可知直线是过点且斜率为的直线求出当直线与曲线相切时k 的值利用数形结合思想可得出当直线与曲线有两个公共点时实数的取值范围【详解】对于直线则 解析:4,23⎛⎤ ⎥⎝⎦【解析】【分析】由题意可知,曲线C 为圆()()22111x y -+-=的右半圆,作出直线l 与曲线C 的图象,可知直线l 是过点()0,2-且斜率为k 的直线,求出当直线l 与曲线C 相切时k 的值,利用数形结合思想可得出当直线l 与曲线C 有两个公共点时实数k 的取值范围.【详解】对于直线:2l y kx =-,则直线l 是过点()0,2P -且斜率为k 的直线,对于曲线()2:111C y x --=-,则101x x -≥⇒≥,曲线C 的方程两边平方并整理得()()22111x y -+-=,则曲线C 为圆()()22111x y -+-=的右半圆,如下图所示:当直线l 与曲线C 相切时,0k >()222123111k k k k ---==++-,解得43k =, 当直线l 过点()1,0A 时,则有20k -=,解得2k =.结合图象可知,当4,23k ⎛⎤∈ ⎥⎝⎦时,直线l 与曲线C 有两个交点. 故答案为:4,23⎛⎤ ⎥⎝⎦. 【点睛】本题考查利用直线与曲线的交点个数求参数,解题的关键就是将曲线C 化为半圆,利用数形结合思想求解,同时要找出直线与曲线相切时的临界位置,考查数形结合思想的应用,属于中等题.24.【解析】【分析】推导出两边平方可得的长【详解】二面角为是棱上的两点分别在半平面内且的长故答案为:【点睛】本题考查线段长的求法考查空间中线线线面面面间的位置关系等基础知识考查运算求解能力考查函数与方程 解析:217【解析】【分析】推导出CD CA AB BD =++,两边平方可得CD 的长.【详解】二面角l αβ--为60︒,A 、B 是棱l 上的两点,AC 、BD 分别在半平面α、β内, 且AC l ⊥,BD l ⊥,4AB =,6AC =,8BD =,∴CD CA AB BD =++,∴22()CD CA AB BD =++2222CA AB BD CA BD =+++361664268cos12068=+++⨯⨯⨯︒=,CD ∴的长||68217CD ==.故答案为:217.【点睛】本题考查线段长的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.25.【解析】设球的半径为表面积解得∵在中∴从圆心作平面的垂线垂足在斜边的中点处∴球心到平面的距离故答案为点睛:本题考查的知识点是空间点线面之间的距离计算其中根据球心距球半径解三角形我们可以求出所在平面截 3【解析】设球的半径为r ,表面积24π20πS r ==,解得5r =ABC 中,2AB AC ==,22BC =222AB AC BC +=,∴90BAC ∠=︒,从圆心作平面ABC 的垂线,垂足在斜边BC 的中点处,∴球心到平面ABC 的距离22132d r BC ⎛⎫=-= ⎪⎝⎭3 点睛:本题考查的知识点是空间点、线、面之间的距离计算,其中根据球心距d ,球半径R ,解三角形我们可以求出ABC 所在平面截球所得圆(即ABC 的外接圆半径),构造直角三角形,满足勾股定理,我们即可求出球心到平面ABC 的距离是与球相关的距离问题常用方法.三、解答题26.(1)1x =或0y =;(2)()()22134x y -++=.【解析】【分析】(1)对直线l 的斜率是否存在进行分类讨论,利用圆心到直线l 的距离等于2可求得直线l 的方程;(2)先通过点到直线的距离及勾股定理可解得直线m 的斜率,然后将直线m 的方程与圆的方程联立,求出线段AB 的中点,作为圆心,并求出所求圆的半径,进而可得出所求圆的方程.【详解】(1)由题意知,圆C 的标准方程为()()22329x y -++=,∴圆心()3,2C -,半径3r =,①当直线l 的斜率k 存在时,设直线的方程为()01y k x -=-,即kx y k 0--=, 则圆心到直线l的距离为2d ==,0k ∴=.∴直线l 的方程为0y =;②当直线l 的斜率不存在时,直线l 的方程为1x =,此时圆心C 到直线l 的距离为2,符合题意.综上所述,直线l 的方程为1x =或0y =;(2)依题意可设直线m 的方程为1y kx =-,即()100kx y k --=<,则圆心()3,2C -到直线m的距离d === 22320k k ∴+-=,解得12k =或2k =-, 又0k <,2k ∴=-,∴直线m 的方程为210x y ---=即210x y ++=,设点()11,A x y 、()22,B x y ,联立直线m 与圆C 的方程得()()22210329x y x y ++=⎧⎪⎨-++=⎪⎩, 消去y 得251010x x -+=,122x x ∴+=,则线段AB 的中点的横坐标为1212x x +=,把1x =代入直线m 中得3y =-, 所以,线段AB 的中点的坐标为()1,3-, 由题意知,所求圆的半径为:122AB =, ∴以线段AB 为直径的圆的方程为:()()22134x y -++=.【点睛】本题考查利用圆心到直线的距离求直线方程,同时也考查了圆的方程的求解,涉及利用直线截圆所得弦长求参数,考查计算能力,属于中等题.27.(1)3x =或34210x y +-=;(2)34-. 【解析】【分析】(1)考虑切线的斜率是否存在,结合直线与圆相切的的条件d=r ,直接求解圆的切线方程即可.(2)利用圆的圆心距、半径及半弦长的关系,列出方程,求解a 即可.【详解】(1)由圆的方程得到圆心(1,2),半径2r .当直线斜率不存在时,直线3x =与圆C 显然相切;当直线斜率存在时,设所求直线方程为3(3)y k x -=-,即330kx y k -+-=,2=,解得34k =-, ∴ 方程为33(3)4y x -=--,即34210x y +-=. 故过点M 且与圆C 相切的直线方程为3x =或34210x y +-=. (2)∵ 弦长AB为 2.圆心到直线40ax y -+=的距离d =∴2242⎛⎛⎫+= ⎝⎭, 解得34a =-. 【点睛】本题考查直线与圆的位置关系的综合应用,考查切线方程的求法,考查了垂径定理的应用,考查计算能力. 28.(1)见证明;(2) 【解析】【分析】(1)由PA ⊥面ABCD 可知PA AE ⊥,又可证AE BC ⊥,根据线面垂直的判定即可证明(2) 取AB 中点M ,作MN AF ⊥于N ,连CN ,可证MNC ∠是二面角B AF C --的平面角,解三角形即可求解.【详解】(1)PA ⊥面ABCD ,AE ⊂面ABCD ,PA AE ∴⊥; 又底面ABCD 为菱形,60ABC ∠=,E 为BC 中点,,//,,AE BC AD BC AE AD ∴⊥∴⊥AE ∴⊥面PAD ;(2)AE 面PAD ,AHE ∴∠是EH 与面PAD 所成角,tan ,AE AHE AH PO AH∠=⊥时,AH 最小,tan AHE ∠最大,AHE ∠最大, 令2AB =,则3,1AE AH ==,在Rt AHD ∆中,2,30AD ADH =∠=, 在Rt PAD ∆中,233PA = PA ⊥面ABCD ,∴面PAB ⊥面ABCD ,且交线为AB ,取AB 中点M ,正ABC ∆中,,CM AB CM ⊥∴⊥面PAB ,作MN AF ⊥于N ,连CN ,由三垂线定理得CN AF ⊥,MNC ∠是二面角B AF C --的平面角.3CM =.在PAB ∆中,23,2,3BF AF AB ===边AF 上的高11,2BG MN ==, tan 23CM MNC MN∠==【点睛】 本题主要考查了线面垂直的判定,线面垂直的性质,二面角的求法,属于难题. 29.(1)A (1,3);(2)直线l 方程为20x y -+=,最短弦长为223)在直线MC 上存在定点4,43N ⎛⎫-⎪⎝⎭,使得||||PM PN 为常数32. 【解析】【分析】(1)利用直线系方程的特征,直接求解直线l 过定点A 的坐标;(2)当AC ⊥l 时,所截得弦长最短,由题知C (0,4),2r,求出AC 的斜率,利用点到直线的距离,转化求解即可;(3)由题知,直线MC 的方程为4y =,假设存在定点N (t ,4)满足题意,则设。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

个等腰三角形组成的,其面积为
SA

2
1 2
11
1 ,(10
分)
所以由几何概型概率公式得关于 x 的方程 x2 mx n2
0 有实数根的概率为 P A
SA

1
(. 12 分)
S 4
19.(本小题满分 12 分)
【解析】(Ⅰ)由频率分布直方图得,众数为
=65.(1 分)
制当天车流量在 13 万辆以内.(12 分) 21.(本小题满分 12 分)
(Ⅱ)由(Ⅰ)知 h=10−8cos ,
令 10−8cos ≥14,可得 cos ≤﹣ ,(8 分)

(k∈Z),解得 4 12k t 8 12k, k Z ,
又 0 t 12 ,∴k=0,(10 分)
由 π 2kπ 2x π 2kπ , k Z ,得 3π kπ x π kπ , k Z ,
4
8
8
故函数
f
x 的单调递增区间为

3π 8

kπ ,
π 8



(k
Z
).(4
分)
(Ⅱ)因为 f (x)
2cos(2x

π 4
)
在区间
7
高一数学 第 2页(共 5页)
7
7
xi yi 1372 , xi2 140 ,(3 分)
i 1
i 1
7
所以 bˆ
xi yi 7x y
i 1
7
xi2 7 x 2
1372 1204 140 112

6 , aˆ
y bˆx
43 4 6 19 ,(5 分)
5
25
1
所以 sincos

12 25
1
,所以
sin
1 cos

cos sin sin cos

5 12
5 12
.(5 分)
25
18.(本小题满分 12 分)
【解析】(Ⅰ)方程 x2 x n2 0 有实数根等价于 1 4n2 0 ,解得 1 n 1 ,
∴4≤t≤8,
即在蚂蚁绕圆环爬行的一圈内,有 4 分钟时间蚂蚁距离地面超过 14 m.(12 分)
22.(本小题满分 12 分)
【解析】(Ⅰ)因为 f (x) 2cos(2x π ) , 4
所以函数 f x 的最小正周期为 T 2π π ,(2 分)
2
高一数学 第 3页(共 5页)

π 8
,
π 8

上为增函数,在区间

π 8
,
π 2

上为减函数,

f


π 8


0

f

π 8


2

f

π 2


2
cos

π

π 4



2 cos π 1 ,(6 分) 4
当 k 0, 2 时方程 f x k 恰有两个不同的实数根.(8 分)学=科网
2
2
由几何概型概率公式得方程有实数根的概率为
P

1 2



1 2

1 1

1 2
.(4
分)
(2 分)
(Ⅱ)方程
x2

mx

n2

0
有实数根等价于




4n2

m 0 ,即
m

2n 2n

0

0
m m
2n 2n

0
.(5
0
分)
高一数学 第 1页(共 5页)
成绩在[50,70)内的频率为(0.005+0.035)×10=0.4,成绩在[70,80)内的频率为 0.03×10=0.3,
∴中位数为 70+ ×10≈73.3.(3 分)
(Ⅱ)成绩为[70,80)、[80,90)、[90,100]的频率分别为 0.3,0.2,0.1, ∴从成绩在[70,80)、[80,90)、[90,100]的学生中抽取的人数分别为 3,2,1.(5 分) (Ⅲ)由(Ⅱ)知成绩在[70,80)的有 3 人,分别记为 a,b,c;成绩在[80,90)的有 2 人,分别记 为 d,e;成绩在[90,100]的有 1 人,记为 f. ∴从(Ⅱ)中抽取的 6 人中选出正、副 2 个小组长包含的基本事件有 30 种,分别为: ab,ba,ac,ca,ad,da,ae,ea,af,fa,bc,cb,bd,db,be,eb,bf,fb,cd,dc,ce,ec,cf,fc, de,ed,df,fd,ef,fe,(8 分) 记“成绩在[80,90)中至少有 1 人当选为正、副小组长”为事件 Q,则事件 Q 包含的基本事件有 18 种,
高一数学 第 4页(共 5页)
高一数学 第 5页(共 5页)
由题意得,试验的所有结果所构成的平面区域为 m, n 1 m 1, 1 n 1 ,这是一个正方形
区域,其面积为 S 2 2 4 ,(7 分)
设事件 A 方程有实数根,
则 A 构成的平面区域为
A m,n 1 m 0,m 2n 0,m 2n 0 m, n 0 m 1, m 2n 0, m 2n 0 ,这是两
(10 分)
∴成绩在[80,90)中至少有 1 人当选为正、副小组长的概率为 P(Q)=
.(12 分)
20.(本小题满分 12 分)
【解析】(Ⅰ)由数据可得, x 1 1 2 3 4 5 6 7 4 ,
7
y 1 28 30 35 41 49 56 62 43 ,
i 1
∴ y 关于 x 的线性回归方程为 yˆ 6x 19 .(6 分)
(Ⅱ)(ⅰ)当车流量为 8 万辆时,即 x 8 时, yˆ 6 8 19 67 .
故车流量为 8 万辆时,PM2.5 的浓度为 67 微克/立方米.(9 分)
(ⅱ)根据题意信息得, 6x 19 100 ,即 x 13.5 ,故要使该市某日空气质量为优或为良,则应控
2017-2018 学年下学期期中原创卷 01
高一数学·参考答案
1
2
3
4
5
6
7
8
9
10
11
12
A
C
D
D
B
A
B
D
C
D
A
A
13.466
14.19
15. 5 4
16.③⑤
17.(本小题满分 10 分)
【解析】(I)因为 sin cos 1 ,所以 sin2 cos2 2sincos 1 ,(2 分)
相关文档
最新文档