第二章基本初等函数Ⅰ单元试题新人教版高中必修1
人教版高中数学必修一第二章基本初等函数Ⅰ(二)A卷单元测试卷

高中同步创优单元测评A 卷 数 学班级:________ 姓名:________ 得分:________第二章 基本初等函数(Ⅰ)(二) (对数与对数函数、幂函数)名师原创·基础卷](时间:120分钟 满分:150分) 第Ⅰ卷 (选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数f (x )=lg(x -1)的定义域是( )A .(2,+∞)B .(1,+∞)C .1,+∞)D .2,+∞) 2.下列函数中,既是奇函数,又在定义域内为减函数的是( )A .y =⎝ ⎛⎭⎪⎫12xB .y =1x C .y =-x 3D .y =log 3(-x )3.设y 1=40.9,y 2=log 124.3,y 3=⎝ ⎛⎭⎪⎫131.5,则( )A .y 3>y 1>y 2B .y 2>y 1>y 3C .y 1>y 2>y 3D .y 1>y 3>y 24.函数y =⎝ ⎛⎭⎪⎫12x 的反函数的图象为( )5.已知f (x n )=ln x ,则f (2)的值为( )A .ln 2 B.1n ln 2 C.12ln 2 D .2ln 26.幂函数y =(m 2-m -1)x m 2-2m -3,当x ∈(0,+∞)时为减函数,则实数m 的值为( )A .m =2B .m =-1C .m =-1或2D .m ≠1±527.设函数f (x )=⎩⎪⎨⎪⎧21-x ,x ≤1,1-log 2x ,x >1,则满足f (x )≤2的x 的取值范围是( )A .-1,2]B .0,2]C .1,+∞)D .0,+∞)8.若0<a <1,在区间(-1,0)上函数f (x )=log a (x +1)是( ) A .增函数且f (x )>0 B .增函数且f (x )<0 C .减函数且f (x )>0D .减函数且f (x )<09.已知函数f (x )=a x +log a x (a >0,且a ≠1)在1,2]上的最大值与最小值之和为log a 2+6,则a 的值为( )A.12B.14 C .2 D .410.若偶函数f (x )在(-∞,0)内单调递减,则不等式f (-1)<f (lg x )的解集是( )A .(0,10)B.⎝⎛⎭⎪⎫110,10 C.⎝⎛⎭⎪⎫110,+∞ D.⎝⎛⎭⎪⎫0,110∪(10,+∞)11.已知f (x )=a x (a >0,且a ≠1),g (x )=log a x (a >0,且a ≠1),若f (3)g (3)<0,则f (x )与g (x )在同一平面直角坐标系内的图象可能是( )12.设f (x )是定义在(-∞,+∞)上的偶函数,且它在0,+∞)上单调递增,若,c =f (-2),则a ,b ,c 的大小关系是( )A .a >b >cB .b >c >aC .c >a >bD .c >b >a第Ⅱ卷 (非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,请把正确答案填在题中横线上)13.若函数y =f (x )的定义域是⎣⎢⎡⎦⎥⎤12,2,则函数y =f (log 2x )的定义域为________.14.给出函数f (x )=⎩⎨⎧⎝ ⎛⎭⎪⎫12x ,x ≥4,f (x +1),x <4,则f (log 23)=________.15.已知函数y =log a (x +b )的图象如图所示,则a =________,b =________.16.设函数f(x)是定义在R上的奇函数,若当x∈(0,+∞)时,f(x)=lg x,则满足f(x)>0的x的取值范围是________.三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)计算下列各题:18.(本小题满分12分)已知函数f(x)=-2x 12 .(1)求f(x)的定义域;(2)证明:f(x)在定义域内是减函数.19.(本小题满分12分)已知-3≤log 0.5x ≤-32,求函数f (x )=log 2x 2·log 2x4的最大值和最小值.20.(本小题满分12分)设f (x )=⎩⎨⎧2-x,x ∈(-∞,1],log 3x 3·log 3x9,x ∈(1,+∞). (1)求f ⎝⎛⎭⎪⎫log 232的值;(2)求f (x )的最小值.21.(本小题满分12分)已知函数f (x )=log a (1-x )+log a (x +3),其中0<a <1. (1)求函数f (x )的定义域;(2)若函数f (x )的最小值为-4,求a 的值.22.(本小题满分12分)已知函数f (x )=log 4(ax 2+2x +3)(a ∈R ). (1)若f (1)=1,求f (x )的单调区间;(2)是否存在实数a ,使f (x )的最小值为0?若存在,求出a 的值;若不存在,请说明理由.详解答案第二章 基本初等函数(Ⅰ)(二) (对数与对数函数、幂函数)名师原创·基础卷]1.B 解析:由x -1>0,得x >1. 解题技巧:真数大于零.2.C 解析:y =⎝ ⎛⎭⎪⎫12x与y =log 3(-x )都为非奇非偶,排除A ,D.y=1x 在(-∞,0)与(0,+∞)上都为减函数,但在定义域内不是减函数,排除B.3.D 解析:因为y 1=40.9>40=1,y 2=log 124.3<log 121=0,0<y 3=⎝ ⎛⎭⎪⎫131.5<⎝ ⎛⎭⎪⎫130=1,所以y 1>y 3>y 2. 4.D 解析:函数y =⎝ ⎛⎭⎪⎫12x的反函数为y =log 12x ,故选D.5.B 解析:令t =x n,则x =t 1n ,f (t )=ln t 1n =1nln t ,则f (2)=1n ln 2,故选B.6.A 解析:由y =(m 2-m -1)xm 2-2m -3为幂函数,得m 2-m -1=1,解得m =2或m =-1.当m =2时,m 2-2m -3=-3,y =x -3在(0,+∞)上为减函数;当m =-1时,m 2-2m -3=0,y =x 0=1(x ≠0)在(0,+∞)上为常数函数(舍去),所以m =2,故选A.7.D 解析:当x ≤1时,由21-x ≤2知,x ≥0,即0≤x ≤1; 当x >1时,由1-log 2x ≤2知x ≥12,即x >1. 综上得x 的取值范围是0,+∞).8.C 解析:当0<a <1时,f (x )=log a (x +1)为减函数,∵x ∈(-1,0),∴x +1∈(0,1),∴log a (x +1)>0.9.C 解析:当a >1时,函数y =a x 和y =log a x 在1,2]上都是增函数,所以f (x )=a x +log a x 在1,2]上是增函数,当0<a <1时,函数y =a x 和y =log a x 在1,2]上都是减函数,所以f (x )=a x +log a x 在1,2]上是减函数,由题意得f (1)+f (2)=a +a 2+log a 2=6+log a 2, 即a +a 2=6,解得a =2或a =-3(舍去).10.D 解析:因为f (x )为偶函数,所以f (x )=f (|x |),因为f (x )在(-∞,0)内单调递减,所以f (x )在(0,+∞)内单调递增,由f (-1)<f (lg x ),得|lg x |>1,即lg x >1或lg x <-1,解得x >10或0<x <110.11.C 解析:∵f (3)=a 3>0,由f (3)·g (3)<0得g (3)<0, ∴0<a <1,∴f (x )与g (x )均为单调递减函数,故选C.13.2,4] 解析:由题意知,12≤log 2x ≤2,即log 22≤log 2x ≤log 24, ∴2≤x ≤4.14.124 解析:∵log 23<4,∴f (log 23)=f (log 23+1)=f (log 23+3)=f (log 224),∵log 224>4,∴f (log 224)=⎝ ⎛⎭⎪⎫12log 224=124.15.3 3 解析:由图象过点(-2,0),(0,2),知⎩⎪⎨⎪⎧ log a (-2+b )=0,log a b =2,∴⎩⎪⎨⎪⎧ -2+b =1,b =a 2.解得⎩⎪⎨⎪⎧b =3,a 2=3.由a >0,知a = 3.∴a =3,b =3.16.(-1,0)∪(1,+∞) 解析:根据题意画出f (x )的草图,由图象可知,f (x )>0的x 的取值范围是-1<x <0或x >1.解题技巧:数形结合确定取值范围.19.解:∵f (x )=log 2x 2·log 2x4 =(log 2x -1)(log 2x -2) =(log 2x )2-3log 2x +2 =⎝⎛⎭⎪⎫log 2x -322-14,又∵ -3≤log 0.5x ≤-32, ∴ -3≤log 12 x ≤-32.∴ 32≤log 2x ≤3.∴当log 2x =32,即x =22时,f (x )有最小值-14; 当log 2x =3,即x =8时,f (x )有最大值2. 20.解:(1)因为log 232<log 22=1,(2)当x ∈(-∞,1]时,f (x )=2-x=⎝ ⎛⎭⎪⎫12x在(-∞,1]上是减函数,所以f (x )的最小值为f (1)=12.当x ∈(1,+∞)时,f (x )=(log 3x -1)(log 3x -2), 令t =log 3x ,则t ∈(0,+∞),f (x )=g (t )=(t -1)(t -2)=⎝ ⎛⎭⎪⎫t -322-14,所以f (x )的最小值为g ⎝ ⎛⎭⎪⎫32=-14. 综上知,f (x )的最小值为-14.21.解:(1)要使函数有意义,则有⎩⎪⎨⎪⎧1-x >0,x +3>0,解之得-3<x <1, 所以函数的定义域为(-3,1).(2)函数可化为f (x )=log a (1-x )(x +3)]=log a (-x 2-2x +3)=log a -(x +1)2+4],∵-3<x <1,∴0<-(x +1)2+4≤4.∵0<a <1,∴log a -(x +1)2+4]≥log a 4,即f (x )min =log a 4.由log a 4=-4,得a -4=4,∴a =4-14 =22.22.解:(1)∵f (1)=1, ∴log 4(a +5)=1,因此a +5=4,a =-1,这时f (x )=log 4(-x 2+2x +3).由-x 2+2x +3>0,得-1<x <3,函数定义域为(-1,3).∴f (x )的单调递增区间是(-1,1),单调递减区间是(1,3).(2)假设存在实数a ,使f (x )的最小值为0,则h (x )=ax 2+2x +3应有最小值1,因此应有⎩⎨⎧ a >0,12a -44a =1,解得a =12. 故存在实数a =12,使f (x )的最小值为0.解题技巧:存在性问题的求解办法:先假设符合题意的实数存在,从这个假设出发,利用已知条件看看能不能求出这个实数.附赠材料答题六注意:规范答题不丢分提高考分的另一个有效方法是减少或避免不规范答题等非智力因素造成的失分,具体来说考场答题要注意以下六点: 第一,考前做好准备工作。
高中数学必修一第二章基本初等函数单元测试题(含答案)

第二章综合测试题一、选择题1.有下列各式:①na n=a ;②若a ∈R ,则(a 2-a +1)0=1;③3x 4+y 3=x 43+y ;④3-5=6(-5)2.其中正确的个数是 ( ) A .0 B .1 C .2D .32.三个数log 215,20.1,20.2的大小关系是 ( )A .log 215<20.1<20.2B .log 215<20.2<20.1C .20.1<20.2<log 215D .20.1<log 215<20.23.(2016·山东理,2)设集合A ={y |y =2x ,x ∈R },B ={x |x 2-1<0},则A ∪B = ( ) A .(-1,1) B .(0,1) C .(-1,+∞)D .(0,+∞)4.已知2x =3y ,则xy = ( )A.lg2lg3B.lg3lg2 C .lg 23D .lg 325.函数f (x )=x ln|x |的图象大致是 ( )6.若函数f (x )=3x +3-x 与g (x )=3x -3-x 的定义域均为R ,则 ( ) A .f (x )与g (x )均为偶函数B .f (x )为奇函数,g (x )为偶函数C .f (x )与g (x )均为奇函数D .f (x )为偶函数,g (x )为奇函数 7.函数y =(m 2+2m -2)x 1m -1是幂函数,则m = ( )A .1B .-3C .-3或1D .28.下列各函数中,值域为(0,+∞)的是 ( ) A .y =2-x 2B .y =1-2xC .y =x 2+x +1D .y =31x +19.已知函数:①y =2x;②y =log 2x ;③y =x-1;④y =x 12;则下列函数图象(第一象限部分)从左到右依次与函数序号的对应顺序是 ( )A .②①③④B .②③①④C .④①③②D .④③①②10.设函数f (x )=⎩⎪⎨⎪⎧1+log 2(2-x ) (x <1)2x -1 (x ≥1),则f (-2)+f (log 212)= ( )A .3B .6C .9D .1211.已知函数f (x )=⎩⎪⎨⎪⎧(a -2)x ,x ≥2,(12)x -1,x <2满足对任意的实数x 1≠x 2都有f (x 1)-f (x 2)x 1-x 2<0成立,则实数a 的取值范围为 ( )A .(-∞,2)B .(-∞,138]C .(-∞,2]D .[138,2)12.(2016·汉中高一检测)如果一个点是一个指数函数与一个对数函数的图象的公共点,那么称这个点为“好点”.在下面的五个点M (1,1),N (1,2),P (2,1),Q (2,2),G (2,12)中,可以是“好点”的个数为 ( )A .0个B .1个C .2个D .3个第Ⅱ卷(非选择题 共90分)二、填空题 三、13.已知a 12=49(a >0),则log 23a =________. 14.已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,3x ,x ≤0,则f (f (14))=________.15.若函数y =log 12(3x 2-ax +5)在[-1,+∞)上是减函数,则实数a 的取值范围是________.16.(2016·邵阳高一检测)如图,矩形ABCD 的三个顶点A ,B ,C 分别在函数y =log 22x ,y =x 12,y =(22)x的图象上,且矩形的边分别平行于两坐标轴.若点A 的纵坐标为2,则点D 的坐标为________.四、解答题17.(本小题满分10分)计算:10.25+(127)-13 +(lg3)2-lg9+1-lg 13+810.5log 35.18.(本小题满分12分)已知函数f (x )=(12)ax ,a 为常数,且函数的图象过点(-1,2).(1)求a 的值;(2)若g (x )=4-x -2,且g (x )=f (x ),求满足条件的x 的值.19.(本小题满分12分)已知函数f (x )=log a (1+x ),g (x )=log a (1-x ),(a >0,a ≠1). (1)设a =2,函数f (x )的定义域为[3,63],求f (x )的最值; (2)求使f (x )-g (x )>0的x 的取值范围.20.(本小题满分12分)求使不等式(1a )x 2-8>a -2x 成立的x 的集合(其中a >0,且a ≠1).21.(本小题满分12分)(2016·雅安高一检测)已知函数f (x )=2x 的定义域是[0,3],设g (x )=f (2x )-f (x +2),(1)求g (x )的解析式及定义域; (2)求函数g (x )的最大值和最小值.22.(本小题满分12分)若函数f (x )满足f (log a x )=a a 2-1·(x -1x )(其中a >0且a ≠1).(1)求函数f (x )的解析式,并判断其奇偶性和单调性;(2)当x ∈(-∞,2)时,f (x )-4的值恒为负数,求a 的取值范围. 参考答案: 1.[答案] B[解析] ①na n=⎩⎪⎨⎪⎧|a |,n 为偶数,a ,n 为奇数(n >1,且n ∈N *),故①不正确.②a 2-a +1=(a -12)2+34>0,所以(a 2-a +1)0=1成立.③3x 4+y 3无法化简.④3-5<0,6(-5)2>0,故不相等.因此选B. 2.[答案] A[解析] ∵log 215<0,0<20.1<20.2,∴log 215<20.1<20.2,选A.3.[答案] C[解析] A ={y |y =2x ,x ∈R }={y |y >0}.B ={x |x 2-1<0}={x |-1<x <1},∴A ∪B ={x |x >0}∪{x |-1<x <1}={x |x >-1},故选C. 4.[答案] B[解析] 由2x =3y 得lg2x =lg3y ,∴x lg2=y lg3, ∴x y =lg3lg2. 5.[答案] A[解析] 由f (-x )=-x ln|-x |=-x ln|x |=-f (x )知,函数f (x )是奇函数,故排除C ,D ,又f (1e )=-1e<0,从而排除B ,故选A.6.[答案] D[解析] 因为f (-x )=3-x +3x =f (x ),g (-x )=3-x -3x =-g (x ),所以f (x )是偶函数,g (x )为奇函数,故选D.7.[答案] B[解析] 因为函数y =(m 2+2m -2)x 1m -1是幂函数,所以m 2+2m -2=1且m ≠1,解得m =-3.8.[答案] A [解析] A ,y =2-x 2=(22)x的值域为(0,+∞). B ,因为1-2x ≥0,所以2x ≤1,x ≤0, y =1-2x 的定义域是(-∞,0], 所以0<2x ≤1,所以0≤1-2x <1, 所以y =1-2x 的值域是[0,1).C ,y =x 2+x +1=(x +12)2+34的值域是[34,+∞),D ,因为1x +1∈(-∞,0)∪(0,+∞),所以y =31x +1的值域是(0,1)∪(1,+∞).9.[答案] D[解析] 根据幂函数、指数函数、对数函数的图象可知选D. 10.[答案] C[解析] f (-2)=1+log 2(2-(-2))=3,f (log 212)=2log 212-1=2log 26=6, ∴f (-2)+f (log 212)=9,故选C. 11.[答案] B[解析] 由题意知函数f (x )是R 上的减函数,于是有⎩⎪⎨⎪⎧a -2<0,(a -2)×2≤(12)2-1,由此解得a ≤138,即实数a 的取值范围是(-∞,138],选B.12.[答案] C[解析] 设指数函数为y =a x (a >0,a ≠1),显然不过点M 、P ,若设对数函数为y =log b x (b >0,b ≠1),显然不过N 点,选C. 13.[答案] 4[解析]∵a 12=49(a >0), ∴(a 12)2=[(23)2]2,即a =(23)4,∴log 23 a =log 23 (23)4=4.14.[答案] 19[解析] ∵14>0,∴f (14)=log 214=-2.则f (14)<0,∴f (f (14))=3-2=19.15.[答案] (-8,-6][解析] 令g (x )=3x 2-ax +5,其对称轴为直线x =a 6,依题意,有⎩⎪⎨⎪⎧a 6≤-1,g (-1)>0,即⎩⎪⎨⎪⎧a ≤-6,a >-8. ∴a ∈(-8,-6]. 16.[答案] (12,14)[解析] 由图象可知,点A (x A,2)在函数y =log 22x 的图象上,所以2=log 22x A ,x A =(22)2=12. 点B (x B,2)在函数y =x 12的图象上,所以2=x B 12,x B =4.点C (4,y C )在函数y =(22)x的图象上, 所以y C =(22)4=14. 又x D =x A =12,y D =y C =14,所以点D 的坐标为(12,14).17.[解析] 原式=10.5+(3-1)-13 +(lg3-1)2-lg3-1+(34)0.5log 35=2+3+(1-lg3)+lg3+32log 35 =6+3log 325=6+25=31.18.[解析] (1)由已知得(12)-a =2,解得a =1.(2)由(1)知f (x )=(12)x ,又g (x )=f (x ),则4-x -2=(12)x ,即(14)x -(12)x -2=0,即[(12)x ]2-(12)x -2=0,令(12)x =t ,则t 2-t -2=0,即(t -2)(t +1)=0, 又t >0,故t =2,即(12)x =2,解得x =-1.19.[解析] (1)当a =2时,f (x )=log 2(1+x ),在[3,63]上为增函数,因此当x =3时,f (x )最小值为2. 当x =63时f (x )最大值为6. (2)f (x )-g (x )>0即f (x )>g (x ) 当a >1时,log a (1+x )>log a (1-x ) 满足⎩⎪⎨⎪⎧ 1+x >1-x 1+x >01-x >0∴0<x <1当0<a <1时,log a (1+x )>log a (1-x ) 满足⎩⎪⎨⎪⎧1+x <1-x 1+x >01-x >0∴-1<x <0综上a >1时,解集为{x |0<x <1} 0<a <1时解集为{x |-1<x <0}. 20.[解析] ∵(1a )x 2-8=a 8-x 2,∴原不等式化为a 8-x 2>a-2x.当a >1时,函数y =a x 是增函数, ∴8-x 2>-2x ,解得-2<x <4; 当0<a <1时,函数y =a x 是减函数, ∴8-x 2<-2x ,解得x <-2或x >4. 故当a >1时,x 的集合是{x |-2<x <4}; 当0<a <1时,x 的集合是{x |x <-2或x >4}. 21.[解析] (1)∵f (x )=2x , ∴g (x )=f (2x )-f (x +2)=22x -2x +2.因为f (x )的定义域是[0,3],所以0≤2x ≤3,0≤x +2≤3,解得0≤x ≤1.于是g (x )的定义域为{x |0≤x ≤1}.(2)设g (x )=(2x )2-4×2x =(2x -2)2-4. ∵x ∈[0,1],∴2x ∈[1,2],∴当2x =2,即x =1时,g (x )取得最小值-4; 当2x =1,即x =0时,g (x )取得最大值-3. 22.[解析] (1)令log a x =t (t ∈R ),则x =a t , ∴f (t )=a a 2-1(a t -a -t ). ∴f (x )=a a 2-1(a x -a -x )(x ∈R ).∵f (-x )=a a 2-1(a -x -a x )=-a a 2-1(a x -a -x )=-f (x ),∴f (x )为奇函数.当a >1时,y =a x为增函数,y =-a -x为增函数,且a 2a 2-1>0,∴f (x )为增函数.当0<a <1时,y =a x为减函数,y =-a -x为减函数,且a 2a 2-1<0,∴f (x )为增函数. ∴f (x )在R 上为增函数.(2)∵f (x )是R 上的增函数,∴y =f (x )-4也是R 上的增函数. 由x <2,得f (x )<f (2),要使f (x )-4在(-∞,2)上恒为负数, 只需f (2)-4≤0,即aa 2-1(a 2-a -2)≤4. ∴a a 2-1(a 4-1a2)≤4, ∴a 2+1≤4a ,∴a 2-4a +1≤0, ∴2-3≤a ≤2+ 3.又a ≠1,∴a 的取值范围为[2-3,1)∪(1,2+3].。
(完整word版)高中数学必修一第二章基本初等函数(Ⅰ)单元测试题(含答案)

第二章综合测试题本试卷分第Ⅰ卷 (选择题 )和第Ⅱ卷 (非选择题 )两部分.满分 150分.考试时间 120 分钟.第Ⅰ卷 (选择题共 60 分 )一、选择题 (本大题共12 个小题,每题 5 分,共 60 分,在每题给出的四个选项中,只有一项为哪一项切合题目要求的)1.有以下各式:①na n= a;②若 a∈ R,则 ( a2-a+ 1)0= 1;③343- 5x4+ y3= x3+ y;④=6- 5 2.此中正确的个数是()A . 0B. 1C.2D. 32.三个数 log 21, 20.1,20.2的大小关系是()511A . log 25<20.1<20.2B. log25<20.2<20.111C.20.1<20.2<log 25D. 20.1<log25<20.23. (2016 山·东理, 2)设会合 A={ y|y= 2x, x∈ R} , B= { x|x2- 1<0} ,则 A∪ B= () A . (- 1,1)B. (0,1)C.( -1,+∞ )D. (0,+∞ )4.已知 2x= 3y,则x= ()ylg2lg3A.lg3B.lg223C.lg 3D. lg25.函数 f(x)= xln|x|的图象大概是()6.若函数f( x)= 3x+ 3-x与 g(x)= 3x-3-x的定义域均为R ,则 ()A . f(x)与 g(x)均为偶函数B.f(x)为奇函数, g(x)为偶函数C.f(x)与 g(x)均为奇函数D. f(x)为偶函数, g(x)为奇函数17.函数 y= (m2+ 2m- 2)xm-1是幂函数,则m= ()A . 1C .- 3 或1B .- 3D . 28.以下各函数中,值域为(0,+∞)的是( )xA . y = 2-2B . y = 1- 2xC .y = x 2+ x + 11D . y = 3x+119.已知函数:① y = 2x ;② y = log 2 x ;③ y = x -1 ;④ y = x 2;则以下函数图象 (第一象限部分 )从左到右挨次与函数序号的对应次序是()A .②①③④B .②③①④C .④①③②D .④③①②10.设函数 f(x)=1+ log 2 2- xx<1,则 f(- 2)+ f(log 212) = ()-1xx ≥ 12A . 3B . 6C .9D . 12a - 2 x , x ≥ 2, x 1≠ x 2 都有f x 1 -f x 2< 0 成11.已知函数 f( x)=1 x -1, x <2 知足对随意的实数x - x21 2立,则实数 a 的取值范围为()13A . (-∞, 2)B . (-∞, 8 ]C .( -∞, 2]13, 2)D . [ 812. (2016 汉·中高一检测 )假如一个点是一个指数函数与一个对数函数的图象的公共点,那么称这个点为“好点”.在下边的五个点M (1,1), N(1,2), P(2,1), Q(2,2), G(2, 1)中,2 能够是“好点”的个数为()A . 0 个B . 1 个C .2 个D . 3 个第Ⅱ卷 (非选择题共 90 分)二、填空题 (本大题共4 个小题,每题5 分,共 20 分,把正确答案填在题中横线上)1413.已知 a 2(a > 0),则 log 2 a = ________.=9314.已知函数 f(x)=log 2x , x > 0, 1则 f(f( ))= ________.3x , x ≤ 0,415.若函数y = log 1 (3x 2- ax + 5)在 [ - 1,+∞ )上是减函数,则实数a 的取值范围是2________.16.(2016 ·阳高一检测邵 )如图,矩形 ABCD 的三个极点 A ,B ,C 分别在函数y = log 221x ,y = x 2,y = ( 2)x 的图象上,且矩形的边分别平行于两坐标轴.若点 A 的纵坐标为 2,则2点 D 的坐标为 ________.三、解答题 (本大题共 6 个小题, 共 70 分,解答应写出文字说明,证明过程或演算步骤 )1 + ( 1 1lg32- lg9 + 1- lg 1+ 810.5log 35.17. (本小题满分 10 分 )计算:)-3 +0.25 27318. (本小题满分 12 分 )已知函数 f(x)= (12)ax , a 为常数,且函数的图象过点(- 1,2).(1) 求 a 的值;(2)若 g(x)=4 -x - 2,且 g(x)= f(x),求知足条件的 x 的值. 19. (本小题满分 12 分 )已知函数 f(x)= log a (1+ x), g(x)= log a (1- x),(a >0, a ≠ 1).(1)设 a = 2,函数 f(x)的定义域为 [3,63],求 f( x)的最值;(2)求使 f(x)- g(x)> 0 的 x 的取值范围.20. (本小题满分 12 分 )求使不等式 (1)x 2-8>a -2x 建立的 x 的会合 (此中 a>0,且 a ≠ 1).a21. (本小题满分 12 分 )(2016 雅·安高一检测 )已知函数 f(x)= 2x 的定义域是 [0,3] ,设 g(x)= f (2x)- f(x + 2),(1)求 g(x)的分析式及定义域;(2)求函数 g(x)的最大值和最小值.a122. (本小题满分 12 分 )若函数 f(x)知足 f(log a x)=a2-1·(x-x)(此中 a> 0且 a≠1).(1)求函数 f(x)的分析式,并判断其奇偶性和单一性;(2)当 x∈ (-∞, 2) 时, f( x)- 4 的值恒为负数,求 a 的取值范围.参照答案:1.[ 答案 ]B[分析 ]① na n=|a|, n 为偶数, (n>1,且 n ∈ N * ),故①不正确.a , n 为奇数② a 2- a + 1= (a -12)2+ 34>0 ,所以 (a 2- a + 1)0= 1 建立.③ 3 x 4+ y 3没法化简.④ 3 - 5<0 , 6-5 2>0,故不相等.所以选 B.2.[答案 ] A[分析 ]1 0.1<20.2,∵ log 2 <0,0<25∴ log 21<20.1<2 0.2,选A. 53.[答案 ]C[分析 ]A ={ y|y = 2x , x ∈ R} = { y|y>0} .B = { x|x 2- 1<0} = { x|- 1<x<1} ,∴ A ∪ B = { x|x>0} ∪ { x|- 1< x<1} = { x|x>- 1} ,应选 C.4.[答案 ]B[分析 ]由 2x = 3y 得 lg2x = lg3y ,∴ xlg2 = ylg3,x lg3∴ y=lg2.5.[答案 ] A[分析 ] 由 f(- x)=- xln|- x|=- xln|x|=- f(x) 知,函数 f(x)是奇函数,故清除C ,D ,11又 f(e )=- e <0,进而清除 B ,应选 A.6.[答案 ] D[分析 ]- xx= f( x),g( -x)= 3 -xx=- g(x),所以 f(x)是偶函数, g( x)由于 f(- x)= 3 + 3 - 3 为奇函数,应选 D.7.[答案 ]B1[分析 ]由于函数 y = (m 2+2m -2)xm-1是幂函数,所以m 2+ 2m - 2= 1 且 m ≠ 1,解得m =- 3.8.[答案 ] A[分析 ]A , y = 2x- 2 = ( 2)x 的值域为 (0,+ ∞ ). 2B ,由于 1- 2x ≥ 0,所以 2x ≤ 1, x ≤ 0,y = 1- 2x 的定义域是 (-∞ , 0],所以 0< 2x ≤ 1,所以 0≤1- 2x < 1, 所以 y = 1- 2x 的值域是 [0,1) .C ,y = x 2+ x + 1= (x + 1) 2+ 3的值域是 [ 3,+ ∞ ),2441∈ (- ∞ , 0)∪ (0,+ ∞ ),D ,由于 x + 11所以 y =3x+1的值域是 (0,1)∪ (1,+ ∞ ).9.[答案 ] D[分析 ]依据幂函数、指数函数、对数函数的图象可知选D.10.[答案 ] C[分析 ]2212)=2 log 212-1= 2log 26= 6,f( -2)= 1+ log (2 - (- 2))= 3, f(log∴ f(- 2)+ f(log 212)= 9,应选 C. 11.[答案 ] Ba - 2<0,[分析 ]由题意知函数 f(x) 是 R 上的减函数,于是有1由此解得2- 1,a - 2 × 2≤ 213,即实数 a 的取值范围是 (-∞ ,13a ≤ 88 ],选 B.12.[答案 ] C[分析 ]设指数函数为 y = a x(a>0, a ≠ 1),明显可是点 M 、 P ,若设对数函数为 y = log b x(b>0, b ≠ 1),明显可是 N 点,选 C.13.[答案 ] 414[分析 ]∵ a 2= (a > 0),9∴ (a 1)2= [( 2) 2] 2,即 a = (2)4,233∴ log 2 a = log 2 (23)4= 4.33114.[答案 ]9[分析 ]∵1> 0,∴ f(1)= log 21=- 2.4 4 4则 f(1) <0,∴ f(f(1))= 3-2=1.44915.[答案 ] (- 8,- 6]a[ 分析 ] 令 g(x) = 3x 2- ax + 5,其对称轴为直线x = a,依题意,有6≤ - 1, ,即6g - 1 > 0a ≤ - 6, a >- 8.∴ a ∈ (- 8,- 6].16.[答案 ]( 1,1)24[分析 ] 由图象可知,点 A(x2)在函数 y = log 2 x 的图象上,A,2所以 2= log2 x A ,x A = (2 1 )2= .2221点 B(x B,2)在函数 y = x 2的图象上,1所以 2= x B 2, x B = 4.点 C(4, y C )在函数 y = ( 2)x的图象上,2所以 y C =( 2)4= 1.2 4又 x D A1, y DC1,= x =2=y = 4所以点 D 的坐标为 (1,1).241117.[分析 ]原式= + (3-1)-3 + lg3- 1 2 - lg3-1+ (34)0.5log 350.5= 2+ 3+ (1- lg3) + lg3 + 32log 35= 6+ 3log 325= 6+ 25= 31.18.[分析 ]1 - a = 2,解得 a = 1.(1) 由已知得 ( )2(2)由 (1) 知 f(x)= (1)x,又 g( x)= f(x),2则 4-x-2= (12)x,即 (14)x -( 12)x- 2= 0,即 [(1)x ]2 -(1)x- 2= 0,22令 (12)x= t ,则 t 2- t - 2= 0,即 (t -2)( t + 1)= 0,又 t>0 ,故 t = 2,即 (1)x= 2,解得 x =-1. 2 19.[分析 ] (1) 当 a =2 时, f(x)= log 2(1+ x),在 [3,63] 上为增函数,所以当 x =3 时, f(x) 最小值为 2.当 x = 63 时 f(x)最大值为 6.(2)f(x)- g(x)> 0 即 f(x) >g(x)当 a >1 时, log a (1+ x)> log a (1- x)1+ x > 1- x知足 1+ x > 0∴ 0<x < 11- x > 0当 0<a < 1 时, log a (1+ x)> log a (1- x)知足1+ x < 1- x1+ x > 01- x > 0∴- 1<x < 0综上 a > 1 时,解集为 { x|0< x < 1}0< a <1 时解集为 { x|- 1<x < 0} .20.[分析 ]∵(1a ) x 2-8=a 8-x 2,∴原不等式化为 a 8 -x 2>a -2x .当 a>1 时,函数 y = a x 是增函数,∴ 8- x 2>-2x ,解得- 2<x<4;当 0<a<1 时,函数 y = a x 是减函数, ∴ 8- x 2<-2x ,解得 x<- 2 或 x>4.故当 a>1 时, x 的会合是 { x|- 2< x<4} ;当 0<a<1 时, x 的会合是 { x|x<- 2 或 x>4} .21.[分析 ](1) ∵ f(x)=2x ,∴ g(x)= f(2x)- f(x + 2)=22x - 2x +2.由于 f(x)的定义域是 [0,3] ,所以 0≤ 2x ≤3,0≤ x + 2≤3,解得 0≤ x ≤1.于是 g(x)的定义域为 { x|0≤ x ≤1} .(2)设 g(x)=(2 x )2- 4× 2x =(2x - 2)2- 4.∵ x ∈ [0,1] ,∴ 2x ∈ [1,2] ,∴当 2x = 2,即 x = 1 时, g(x)获得最小值- 4; 当 2x = 1,即 x = 0 时, g(x)获得最大值- 3. 22.[分析 ] (1) 令 log a x = t(t ∈ R),则 x =a t ,∴ f(t)= 2a(a t -a -t ). a- 1∴ f(x)= 2-a1(a x - a -x )(x ∈ R).a∵ f(- x)= 2 a - xx ax-a - x)=- f(x),∴ f(x)为奇函数.(a- a )=-2(aa - 1a - 1-a 2当 a >1 时, y = a x 为增函数, y =- a x 为增函数,且 a 2- 1>0,∴ f(x)为增函数.当 0<a < 1 时, y = a x 为减函数, y =- a -x 为减函数,且 a 2 < 0,a 2- 1∴ f(x)为增函数.∴ f(x)在 R 上为增函数.(2)∵ f(x)是 R 上的增函数,∴ y = f( x)- 4 也是 R 上的增函数.由 x < 2,得 f(x)< f(2),要使 f(x)- 4 在 (- ∞, 2)上恒为负数,只要 f(2) - 4≤ 0,即 2 a(a 2- a-2)≤ 4.a - 1aa 4- 1∴a 2-1(a2)≤ 4,∴ a 2+ 1≤ 4a ,∴ a 2- 4a + 1≤ 0, ∴ 2- 3≤ a ≤ 2+ 3.又 a ≠1,∴ a 的取值范围为 [2- 3, 1)∪ (1,2+ 3].。
(完整版)必修1第二章基本初等函数测试题

必修1 第二章 基本初等函数测试题一、选择题(每题5分,共35分)1.下列函数与x y =有相同图象的一个函数是( )A .2x y = B .x x y 2= C .)10(log ≠>=a a a y x a 且 D .x a a y log =2.下列函数中是奇函数的有几个( ) ①11x x a y a +=- ②2lg(1)33x y x -=+- ③x y x = ④1log 1a x y x +=- A .1 B .2 C .3 D .43.函数y x =3与y x=--3的图象关于下列那种图形对称( ) A .x 轴 B .y 轴 C .直线y x = D .原点中心对称4.已知13x x-+=,则3322x x -+值为( )A .B .C .D . -5.函数y = )A .[1,)+∞B .2(,)3+∞C .2[,1]3D .2(,1]3 6.三个数60.70.70.76log 6,,的大小关系为( ) A . 60.70.70.7log 66<< B . 60.70.70.76log 6<< C .0.760.7log 660.7<< D . 60.70.7log 60.76<<7.若f x x (ln )=+34,则f x ()的表达式为( )A .3ln xB .3ln 4x +C .3x eD .34xe + 二、填空题(每题5分,共25分)1.985316,8,4,2,2从小到大的排列顺序是 。
2.化简11410104848++的值等于__________。
3.计算:(log )log log 2222545415-++= 。
4.已知x y x y 224250+--+=,则log ()x x y 的值是_____________。
5.方程33131=++-xx的解是_____________。
三、解答题1.已知),0(56>-=a a x 求x x xx a a a a ----33的值。
(word完整版)人教A版高中数学必修1第二章基本初等函数单元测试题(含参考答案)(2021年整理)

(word完整版)人教A版高中数学必修1第二章基本初等函数单元测试题(含参考答案)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((word完整版)人教A版高中数学必修1第二章基本初等函数单元测试题(含参考答案)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(word完整版)人教A版高中数学必修1第二章基本初等函数单元测试题(含参考答案)(word 版可编辑修改)的全部内容。
高一数学单元测试题 必修1第二章《基本初等函数》班级 姓名 序号 得分一.选择题.(每小题5分,共50分)1.若0m >,0n >,0a >且1a ≠,则下列等式中正确的是 ( )A .()m n m n a a +=B .11mm a a= C .log log log ()a a a m n m n ÷=- D 43()mn =2.函数log (32)2a y x =-+的图象必过定点 ( )A .(1,2)B .(2,2)C .(2,3)D .2(,2)33.已知幂函数()y f x =的图象过点(2,2,则(4)f 的值为 ( ) A .1 B . 2 C .12D .84.若(0,1)x ∈,则下列结论正确的是 ( ) A .122lg xx x >> B .122lg xx x >> C .122lg xx x >> D .12lg 2x x x >>5.函数(2)log (5)x y x -=-的定义域是 ( ) A .(3,4) B .(2,5) C .(2,3)(3,5) D .(,2)(5,)-∞+∞6.某商品价格前两年每年提高10%,后两年每年降低10%,则四年后的价格与原来价格比较,变化的情况是( )A .减少1.99%B .增加1.99%C .减少4%D .不增不减7.若1005,102a b ==,则2a b += ( ) A .0 B .1 C .2 D .38. 函数()lg(101)2x xf x =+-是 ( )A .奇函数B .偶函数C .既奇且偶函数D .非奇非偶函数9.函数2log (2)(01)a y x x a =-<<的单调递增区间是 ( )A .(1,)+∞B .(2,)+∞C .(,1)-∞D .(,0)-∞10.已知2log (2)y ax =- (0a >且1a ≠)在[0,1]上是x 的减函数,则a 的取值范围是( ) A .(0,1) B .(0,2) C .(1,2) D .[2,)+∞ 一.选择题(每小题5分,共50分)二.填空题.(每小题5分,共25分)11.计算:459log 27log 8log 625⨯⨯= .12.已知函数3log (0)()2(0)x x x >f x x ⎧=⎨≤⎩,, ,则1[()]3f f = .13.若3())2f x a xbx =++,且(2)5f =,则(2)f -= .14.若函数()log (01)f x ax a =<<在区间[,2]a a 上的最大值是最小值的3倍,则a = . 15.已知01a <<,给出下列四个关于自变量x 的函数:①log x y a =,②2log a y x =, ③31(log )ay x = ④121(log )ay x =.其中在定义域内是增函数的有 . 三.解答题(6小题,共75分) 16.(12分)计算下列各式的值:(Ⅰ)4160.253216(22)4()849-+-⨯-.(Ⅱ)21log 32393ln(log (log 81)2log log 12543++++-17.( 12分)已知函数方程2840x x -+=的两根为1x 、2x (12x x <). (Ⅰ)求2212x x ---的值;(Ⅱ)求112212x x ---的值.18.(共12分)(Ⅰ)解不等式2121()x x a a--> (01)a a >≠且.(Ⅱ)设集合2{|log (2)2}S x x =+≤,集合1{|()1,2}2x T y y x ==-≥-求S T ,S T .19.( 12分) 设函数421()log 1x x f x x x -⎧<=⎨≥⎩.(Ⅰ)求方程1()4f x =的解.(Ⅱ)求不等式()2f x ≤的解集.20.( 13分)设函数22()log (4)log (2)f x x x =⋅的定义域为1[,4]4,(Ⅰ)若x t 2log =,求t 的取值范围;(Ⅱ)求()y f x =的最大值与最小值,并求出最值时对应的x 的值.21.(14分)已知定义域为R 的函数12()22x x bf x +-+=+是奇函数.(Ⅰ)求b 的值;(Ⅱ)证明函数()f x 在R 上是减函数;(Ⅲ)若对任意的t R ∈,不等式22(2)(2)0f t t f t k -+-<恒成立,求k 的取值范围.参考答案一.选择题二.填空题.11. 9. 12. 12. 13. 1-. 14. 4. 15. ③,④.三.解答题:16.(Ⅰ). 解:原式427272101=⨯+--=.(Ⅱ)解:原式33log (425)3315223223211222log ()25⨯=++⨯+=++⨯-=⨯.17. 解:由条件得:14x =-24x =+.(Ⅰ)221221122121212()()11118()()()16x x x x x x x x x x x x --+-⨯-=+-===. (Ⅱ)1122121x x ---===. 18.解:(Ⅰ)原不等式可化为:212x x a a -->.当1a >时,2121x x x ->-⇔>.原不等式解集为(1,)+∞. 当1a >时,2121x x x -<-⇔<.原不等式解集为(,1)-∞.(Ⅱ)由题设得:{|024}(2,2]S x x =<+≤=-,21{|1()1}(1,3]2T y y -=-<≤-=-.∴(1,2]S T =-, (2,3]S T =-.19.解:(Ⅰ) 11()1424x x f x -<⎧⎪=⇔⎨=⎪⎩(无解)或411log 4x x x ≥⎧⎪⇔=⎨=⎪⎩∴方程1()4f x =的解为x =(Ⅱ)1()222xx f x -<⎧≤⇔⎨≤⎩或41log 2x x ≥⎧⎨≤⎩11x x <⎧⇔⎨≥-⎩或116x x ≥⎧⎨≤⎩. 11x ⇔-≤<或116x ≤≤即116x -≤≤.∴不等式()2f x ≤的解集为:[1,16]-.20.解:(Ⅰ)t 的取值范围为区间221[log ,log 4][2,2]4=-.(Ⅱ)记22()(log 2)(log 1)(2)(1)()(22)y f x x x t t g t t ==++=++=-≤≤.∵231()()24y g t t ==+-在区间3[2,]2--是减函数,在区间3[,2]2-是增函数∴当23log 2t x ==-即322x -==,()y f x =有最小值31()24f g =-=-;当2log 2t x ==即224x ==时,()y f x =有最大值(4)(2)12f g ==.21.解:(Ⅰ)∵()f x 是奇函数,所以1(0)014bf b -==⇔=(经检验符合题设) .(Ⅱ)由(1)知21()2(21)x x f x -=-+.对12,x x R ∀∈,当12x x <时,总有2112220,(21)(21)0x x x x ->++> .∴122112121212121122()()()0221212(21)(21)x x x x x x x x f x f x ----=-⋅-=⋅>++++,即12()()f x f x >. ∴函数()f x 在R 上是减函数.(Ⅲ)∵函数()f x 是奇函数且在R 上是减函数,∴22222(2)(2)0(2)(2)(2)f t t f t k f t t f t k f k t -+-<⇔-<--=-. 22221122323()33t t k t k t t t ⇔->-⇔<-=--.(*) 对于t R ∀∈(*)成立13k ⇔<-.∴k 的取值范围是1(,)3-∞-.。
高中数学必修1第二章基本初等函数单元测试题(含参考答案)

高一数学训练题(二)一.选择题.(每小题5分,共50分)1.若0m >,0n >,0a >且1a ≠,则下列等式中正确的是 ( )A .()m n m na a += B .11mm a a= C .log log log ()a a a m n m n ÷=- D 43()mn = 2.函数log (32)2a y x =-+的图象必过定点 ( ) A .(1,2) B .(2,2) C .(2,3) D .2(,2)33.已知幂函数()y f x =的图象过点(2,2,则(4)f 的值为 ( ) A .1 B . 2 C .12D .8 4.若(0,1)x ∈,则下列结论正确的是 ( ) A .122lg xx x >> B .122lg xx x >> C .122lg xx x >> D .12lg 2xx x >> 5.函数(2)log (5)x y x -=-的定义域是 ( ) A .(3,4) B .(2,5) C .(2,3)(3,5)U D .(,2)(5,)-∞+∞U6.某商品价格前两年每年提高10%,后两年每年降低10%,则四年后的价格与原来价格比较,变化的情况是 ( ) A .减少1.99% B .增加1.99% C .减少4% D .不增不减7.若1005,102ab==,则2a b += ( ) A .0 B .1 C .2 D .3 8. 函数()lg(101)2xxf x =+-是 ( ) A .奇函数 B .偶函数 C .既奇且偶函数 D .非奇非偶函数9.函数2log (2)(01)a y x x a =-<<的单调递增区间是 ( )A .(1,)+∞B .(2,)+∞C .(,1)-∞D .(,0)-∞10.已知2log (2)y ax =- (0a >且1a ≠)在[0,1]上是x 的减函数,则a 的取值范围是( ) A .(0,1) B .(0,2)C .(1,2)D .[2,)+∞二.填空题.(每小题5分,共25分)11.计算:459log 27log 8log 625⨯⨯= . 12.已知函数3log (0)()2(0)xx x >f x x ⎧=⎨≤⎩,, ,则1[()]3f f = . 13.若3())2f x a x bx =++,且(2)5f =,则(2)f -= .14.若函数()log (01)f x ax a =<<在区间[,2]a a 上的最大值是最小值的3倍,则a = . 15.已知01a <<,给出下列四个关于自变量x 的函数:①log x y a =,②2log a y x =, ③31(log )ay x = ④121(log )ay x =.其中在定义域内是增函数的有 . 三.解答题(6小题,共75分) 16.(12分)计算下列各式的值:(Ⅰ)设集合}21|{<<-=x x A ,}31|{<<=x x B ,求B A ⋂,()R A B ⋂ð, ()()R R A B ⋃痧..17. (本小题满分15分)已知函数⎩⎨⎧<≥+-=0,,0,4222x x x x x y , (1)画出函数的图像;(2)求函数的单调区间;(3)求函数在区间[]3,2-上的最大值与最小值.18. (本小题满分15分)(1)如果定义在区间(1,0)-的函数3()log (1)a f x x =+满足()0f x <,求a 的取值范围;(2)解方程:3log (323)2xx +•=19.( 12分) 设函数421()log 1x x f x x x -⎧<=⎨≥⎩.(Ⅰ)求方程1()4f x =的解.(Ⅱ)求不等式()2f x ≤的解集.20.( 13分)设函数22()log (4)log (2)f x x x =⋅的定义域为1[,4]4, (Ⅰ)若x t 2log =,求t 的取值范围;(Ⅱ)求()y f x =的最大值与最小值,并求出最值时对应的x 的值.21. 某公司生产一种仪器的固定成本为10000元,每生产一台仪器需增加投入200元,已知总收益满足函数⎪⎩⎪⎨⎧>≤≤-=400,100000,4000,21400)(2x x x x x g . 其中x 是仪器的月产量(单位:台).(1)将利润表示为月产量x 的函数)(x f ;(2)当月产量x 为何值时,公司所获利润最大?最大利润为多少元? (总收益=总成本﹢利润)参考答案一.选择题11. 9 . 12.12. 13. 1-. 14. 4. 15. ③,④.三.解答题:16.(Ⅰ). 解:原式427272101=⨯+--=. (Ⅱ)解:原式33log (425)3315223223211222log ()25⨯=++⨯+=++⨯-=⨯.17.(1)解:ln(x-1)<lne}1|{11-<∈∴+<∴<-∴e x x x e x ex}2log 1|{2log 12log 1)31()31(2)31()2(3131312log 1x 131+<∈∴+<∴>-∴<∴<--x x x x x x 解:1212,101212,11)3(212212<∴-<-<<>∴->->∴>∴⎪⎭⎫ ⎝⎛>----x x x a x x x a a a a a xx x x 时当时当解:.18.解:(Ⅰ)原不等式可化为:212x x aa -->.当1a >时,2121x x x ->-⇔>.原不等式解集为(1,)+∞. 当1a >时,2121x x x -<-⇔<.原不等式解集为(,1)-∞. (Ⅱ)由题设得:{|024}(2,2]S x x =<+≤=-,21{|1()1}(1,3]2T y y -=-<≤-=-.∴(1,2]S T =-I , (2,3]S T =-U .19.解:(Ⅰ) 11()1424x x f x -<⎧⎪=⇔⎨=⎪⎩(无解)或411log 4x x x ≥⎧⎪⇔=⎨=⎪⎩∴方程1()4f x =的解为x = (Ⅱ)1()222x x f x -<⎧≤⇔⎨≤⎩或41log 2x x ≥⎧⎨≤⎩11x x <⎧⇔⎨≥-⎩或116x x ≥⎧⎨≤⎩.11x ⇔-≤<或116x ≤≤即116x -≤≤.∴不等式()2f x ≤的解集为:[1,16]-. 20.解:(Ⅰ)t 的取值范围为区间221[log ,log 4][2,2]4=-. (Ⅱ)记22()(log 2)(log 1)(2)(1)()(22)y f x x x t t g t t ==++=++=-≤≤. ∵231()()24y g t t ==+-在区间3[2,]2--是减函数,在区间3[,2]2-是增函数∴当23log 2t x ==-即322x -==()y f x =有最小值31()24f g =-=-; 当2log 2t x ==即224x ==时,()y f x =有最大值(4)(2)12f g ==.21.解:(Ⅰ)∵()f x 是奇函数,所以1(0)014bf b -==⇔=(经检验符合题设) . (Ⅱ)由(1)知21()2(21)x x f x -=-+.对12,x x R ∀∈,当12x x <时,总有2112220,(21)(21)0x x x x ->++> .∴122112121212121122()()()0221212(21)(21)x x x x xx x x f x f x ----=-⋅-=⋅>++++,即12()()f x f x >. ∴函数()f x 在R 上是减函数. (Ⅲ)∵函数()f x 是奇函数且在R 上是减函数,∴22222(2)(2)0(2)(2)(2)f t t f t k f t t f t k f k t -+-<⇔-<--=-.22221122323()33t t k t k t t t ⇔->-⇔<-=--.(*)对于t R ∀∈(*)成立13k ⇔<-.∴k 的取值范围是1(,)3-∞-.}0|{函数的定义域为,时10当}0|x {函数的定义域为,时1当1a 01(1)a :解22x x <<<>>∴>∴>-x x a x a.)0,()(,10;),0()(,1)2(上递增在时当上递增在时当-∞<<+∞>x f a x f a。
高中数学 第二章 基本初等函数(Ⅰ)单元测试题(含解析)新人教A版必修1(2021年最新整理)

高中数学第二章基本初等函数(Ⅰ)单元测试题(含解析)新人教A版必修1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第二章基本初等函数(Ⅰ)单元测试题(含解析)新人教A版必修1)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第二章基本初等函数(Ⅰ)单元测试题(含解析)新人教A版必修1的全部内容。
基本初等函数(I) 测试题(时间:120分钟 满分:150分)学号:______ 班级:______ 姓名:______ 得分:______一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知2log 3x =,则13x -等于 ( )A 。
2B 。
12C.32 D 。
22.下列函数中,既是单调函数,又是奇函数的是( ) A.y=x 5B .5x y =C .2log y x =D .1y x -=3. 函数()()2log 31x f x =+的值域为( )A. ()0,+∞ B 。
)0,+∞⎡⎣ C.()1,+∞ D. )1,+∞⎡⎣ 4.设2log ,0,()1(),0,3x x x f x x >⎧⎪=⎨≤⎪⎩则1(())8f f 的值 ( )A. 9B. 116C. 27D. 1815。
已知幂函数()y f x =的图象过点13(,)23,则3log (2)f 的值为( )A .12B .-12C .2D .-26.设15log 6a =,0.216b ⎛⎫= ⎪⎝⎭,165c =,则( )A .a b c <<B .c b a <<C .c a b <<D .b a c <<7. 给出四个函数,分别满足: ①f(x +y )=f (x )+f (y ) ;② g (x +y )=g (x )g (y ) ;③h (x ·y )=h (x )+h (y ); ④ t (x ·y )=t (x )·t (y ),又给出四个函数图象,它们的正确匹配方案是 ( )A 。
人教版高一数学必修1第二章《基本初等函数》单元测验(两套,含答案)

人教版高一数学必修1第二章《基本初等函数》单元测验(两套,含答案)(时间:120分钟 分值:150分)一、选择题(每小题5分,共60分)1.函数f (x )=1-2x 的定义域是( )A .(-∞,0]B .[0,+∞)C .(-∞,0)D .(-∞,+∞)2.已知log a 9=-2,则a 的值为( )A .-3B .-13C .3 D.133.2log 62+3log 633=( )A .0B .1C .6D .log 6234.已知函数f (x )=⎩⎪⎨⎪⎧e x -1,x ≤1,ln x ,x >1,那么f (ln2)的值是( ) A .0 B .1 C .ln(ln2) D .25.已知集合A ={y |y =log 2x ,x >1},B ={y |y =(12)x ,x >1},则A ∩B =( ) A .{y |0<y <12} B .{y |0<y <1} C .{y |12<y <1} D .∅ 6.设a =log 0.50.6,b =log 1.10.6,c =1.10.6,则( )A .a <b <cB .b <c <aC .b <a <cD .c <a <b7.函数y =2-|x |的单调递增区间是( )A .(-∞,+∞)B .(-∞,0)C .(0,+∞)D .不存在8.函数f (x )=4x +12x 的图象( ) A .关于原点对称 B .关于直线y =x 对称C .关于x 轴对称D .关于y 轴对称9.函数y =x |x |log 2|x |的大致图象是( )10.定义运算a ⊕b =⎩⎪⎨⎪⎧a (a ≤b ),b (a >b ),则函数f (x )=1⊕2x 的图象是( )11.函数f (x )=a x +log a (x +1)在[0,1]上的最大值与最小值和为a ,则a 的值为( ) A.14 B.12C .2D .4 12.已知函数f (x )满足:当x ≥4时, f (x )=⎝⎛⎭⎫12x ;当x <4时, f (x )=f (x +1),则f (2+log 23)=( )A.124B.112C.18D.38第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分)13.幂函数f (x )的图象过点(4,12),那么f (8)=________. 14.若0<a <1,b <-1,则函数f (x )=a x +b 的图象不经过第________象限.15.已知m 为非零实数,若函数y =ln(m x -1-1)的图象关于原点中心对称,则m =________. 16.对于下列结论:①函数y =a x +2(x ∈R )的图象可以由函数y =a x (a >0,且a ≠1)的图象平移得到; ②函数y =2x 与函数y =log 2x 的图象关于y 轴对称;③方程log 5(2x +1)=log 5(x 2-2)的解集为{-1,3};④函数y =ln(1+x )-ln(1-x )为奇函数.其中正确的结论是________.(把你认为正确结论的序号都填上)三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(10分)计算下列各式:(1)(235)0+2-2·(214)- 12 -(0.01)0.5.(2)(279)0.5+0.1-2+(21027)- 23 -3π0+3748.18.(12分)求值:(1)(235)0+2-2·|-0.064| 13 -(214) 12 ; (2)(log 32+log 92)·(log 43+log 83)+(log 33 12 )2+ln e -lg1.19.(12分)已知x ∈[-3,2],求f (x )=14x -12x +1的最小值与最大值.20.(12分)已知函数y =b +a x 2+2x (a ,b 是常数,且a >0,a ≠1)在区间[-32,0]上有y max =3,y min =52,试求a 和b 的值.21.(12分)设a ,b ∈R ,且a ≠2,定义在区间(-b ,b )内的函数f (x )=lg 1+ax 1+2x是奇函数. (1)求b 的取值范围;(2)讨论函数f (x )的单调性.22.(12分)设f (x )=log 12 (10-ax ),a 为常数.若f (3)=-2.(1)求a 的值;(2)求使f (x )≥0的x 的取值范围;(3)若对于区间[3,4]上的每一个x 的值,不等式f (x )>(12)x +m 恒成立,求实数m 的取值范围.参考答案1A 2D 3B 4B 5A 6C 7B 8D 9D 10A 11B 12A13.2414.一15.-216.①④17.(1) 1615. (2) 100.18.(1)-25. (2) 2.19.当t =12,即x =1时, f (x )有最小值34;当t =8,即x =-3时, f (x )有最大值57.20.a =23,b =32,或a =2,b =2.21.(1)⎝ ⎛⎦⎥⎤0,12. (2)f (x )在(-b ,b )内是减函数,具有单调性.22.(1)a =2.(2)x ∈[92,5).(3)m <g (3)=-178.第二套一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学第二章单元测试题
姓名: 班级: 学号: 分数:
一、选择题:(本题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)
1、已知函数=-=+-=)(.)(.11lg )(a f b a f x
x
x f 则若 ( )
A .b
B .-b
C .b
1
D .-
b
1 2、已知集合{}21log ,1,,12x
A y y x x
B y y x B ⎧⎫⎪⎪⎛⎫
==>==>=⎨⎬ ⎪⎝⎭⎪⎪⎩⎭
,则A
( )
A 、102y y ⎧⎫
<<
⎨⎬⎩⎭
B 、{}
01y y <<
C 、112y
y ⎧⎫
<<⎨⎬⎩⎭
D 、∅ 3、由于电子技术的飞速发展,计算机的成本不断降低,若每隔5年计算机的价格降低3
1
,则现在价格为8100
元的计算机经 年后降为2400元. ( )
A .14
B .15
C .16
D .17
4、函数2()2log (1)f x x x =+≥的值域为 ( )
A 、()2,+∞
B 、(),2-∞
C 、[)2,+∞
D 、[
)3,+∞
5、设 1.5
0.90.48
12314,8,2y y y -⎛⎫=== ⎪
⎝⎭
,则 ( )
A 、312y y y >>
B 、213y y y >>
C 、132y y y >>
D 、123y y y >> 6、在(2)()log (5)x f x x -=-中,实数x 的取值范围是 ( ) A 、52x x ><或 B 、2335x x <<<<或 C 、25x << D 、34x <<
7、有以下四个结论 ○
1 lg(lg10)=0○
2 lg(lne)=0 ○3若10=lgx,x=10 则○4 若2
e=lnx,x=e 则, 其中正确的是 ( )
A.○
1○3 B.○2○4 C.○1○2 D. ○3○4 8、已知函数()2,(1)x
f x f x =-则的图象为 ( )
A
B
C
D
9、已知()f x 是偶函数,它在[0,+∞)上是减函数,若(lg )(1)f x f >,则x 的取值范围是( )
A. )1,101(
B.1(0,)(1,)10
+∞ C.)10,101
( D.(0,1)(10,+)∞ 10、若函数()log (01)a f x x a =<<在区间[]
,2a a 上的最大值是最小值的3倍,则a 的值为 ( )
A 、
B 、
C 、14
D 、12
二、填空题:(本题共4小题,每小题5分,共20分,请把答案填写在答题纸上) 13、()
0.75
22
3
10.258lg 25lg 216--⎛⎫+--- ⎪
⎝⎭
=___________ ____;
14、2
3log 1,(01),a a a a <>≠且的取值范围为 ;
15、已知函数2()log (2)f x x =-的值域是[]
21,log 14,那么函数()f x 的定义域是 ; 16、设0≤x ≤2,则函数12
()4
325x x f x -=-∙+的最大值是________,最小值是______.
三、解答题:(本题共2小题,共30分,解答应写出文字说明,证明过程或演算步骤.) 17、(15分)已知1()log ,(0,1)1a
x
f x a a x
+=>≠-且. (1) 求()f x 的定义域
(2) 求使()0f x <的x 的取值范围.
20.(15分)已知函数2
2
2(-3)=lg 6
x f x x -
(1) 求()f x 表达式及定义域 ;(2)判断函数()f x 的奇偶性.。