(浙江专用)2019高考数学二轮复习专题二立体几何第2讲立体几何中的空间角问题学案
(浙江专用)2019高考数学二轮复习 专题二 立体几何 第3讲 空间角学案

第3讲 空间角[考情考向分析] 以空间几何体为载体考查空间角是高考命题的重点,热点为异面直线所成的角、直线与平面所成的角和二面角的求解,向量法作为传统几何法的补充,为考生答题提供新的工具.热点一 异面直线所成的角(1)几何法:按定义作出异面直线所成的角(即找平行线),解三角形.(2)向量法:设直线l ,m 的方向向量分别为a =(a 1,b 1,c 1),b =(a 2,b 2,c 2).设l ,m 的夹角为θ⎝ ⎛⎭⎪⎫0≤θ≤π2,则cos θ=|a ·b ||a ||b |=|a 1a 2+b 1b 2+c 1c 2|a 21+b 21+c 21 a 22+b 22+c 22. 例1 (1)(2018·全国Ⅱ)在长方体ABCD -A 1B 1C 1D 1中,AB =BC =1,AA 1=3,则异面直线AD 1与DB 1所成角的余弦值为( ) A.15 B.56 C.55 D.22 答案 C解析 方法一 如图,在长方体ABCD -A 1B 1C 1D 1的一侧补上一个相同的长方体A ′B ′BA -A 1′B 1′B 1A 1.连接B 1B ′,由长方体性质可知,B 1B ′∥AD 1,所以∠DB 1B ′为异面直线AD 1与DB 1所成的角或其补角.连接DB ′,由题意,得DB ′=12+(1+1)2=5,B ′B 1=12+(3)2=2,DB 1=12+12+(3)2= 5.在△DB ′B 1中,由余弦定理,得DB ′2=B ′B 21+DB 21-2B ′B 1·DB 1·cos∠DB 1B ′,即5=4+5-2×25cos∠DB 1B ′,∴cos∠DB 1B ′=55. 故选C.方法二 如图,以点D 为坐标原点,分别以DA ,DC ,DD 1所在直线为x ,y ,z 轴建立空间直角坐标系D -xyz .由题意,得A (1,0,0),D (0,0,0),D 1(0,0,3),B 1(1,1,3),∴AD 1→=(-1,0,3),DB 1→=(1,1,3),∴AD 1→·DB 1→=-1×1+0×1+(3)2=2, |AD 1→|=2,|DB 1→|=5, ∴cos〈AD 1→,DB 1→〉=AD 1→·DB 1→|AD 1→|·|DB 1→|=225=55.故选C.(2)(2018·浙江省杭州二中月考)已知异面直线a ,b 所成的角为50°,过空间一定点P 最多可作n 条直线与直线a ,b 均成θ角,则下列判断不正确的是( ) A .当θ=65°时,n =3 B .当n =1时,θ只能为25° C .当θ=30°时,n =2 D .当θ=75°时,n =4答案 B解析 将空间直线平移,异面直线的夹角不变,则可将异面直线a ,b 平移到同一平面α内,使得点P 为平移后的直线a ′,b ′的交点,则当0°≤θ<25°时,n =0;当θ=25°时,n =1,此时该直线为直线a ′,b ′所成锐角的角平分线所在的直线;当25°<θ<65°时,n =2,此时这两条直线在平面α内的投影为直线a ′,b ′所成锐角的角平分线所在的直线;当θ=65°时,n =3,此时其中两条直线在平面α内的投影为直线a ′,b ′所成锐角的角平分线所在的直线,另一条直线为直线a ′,b ′所成钝角的角平分线所在的直线;当65°<θ<90°时,n =4,此时其中两条直线在平面α内的投影为直线a ′,b ′所成锐角的角平分线所在的直线,另外两条直线在平面α内的投影为直线a ′,b ′所成钝角的角平分线所在的直线;当θ=90°时,n =1,此时直线为过点P 且与平面α垂直的直线.综上所述,B 选项的说法错误,故选B.思维升华 (1)运用几何法求异面直线所成的角一般是按找—证—求的步骤进行. (2) 两条异面直线所成的角α不一定是直线的方向向量的夹角β,即cos α=|cos β|. 跟踪演练1 (2018·浙江省衢州二中模拟)如图,已知等腰三角形ABC 中,AB =AC ,O 为BC 的中点,动点P 在线段OB 上(不含端点),记∠APC =θ,现将△APC 沿AP 折起至△APC ′,记异面直线BC ′与AP 所成的角为α,则下列结论一定成立的是( )A .θ>αB .θ<αC .θ+α>π2D .θ+α<π2答案 A解析 设PC →=λBC →, 则cos θ=|PA →·PC →||PA →||PC →|=|PA →·λBC →||PA →||λBC →|=|PA →·BC →||PA →||BC →|=|PA →·(BP →+PC →)||PA →|·(|BP →|+|PC →|), 因为cos α=|PA →·BC ′→||PA →||BC ′→|=|PA →·(BP →+PC ′→)||PA →||BC ′→|,且PA →·PC →=PA →·PC ′→,|BP →|+|PC →|=|BP →|+|PC ′→|>|BC ′→|, 所以cos θ<cos α,又θ,α∈⎝⎛⎭⎪⎫0,π2,所以θ>α,故选A.热点二 直线与平面所成的角(1)几何法:按定义作出直线与平面所成的角(即找到斜线在平面内的投影),解三角形. (2)向量法:设直线l 的方向向量为a =(a 1,b 1,c 1),平面α的法向量为μ=(a 2,b 2,c 2),设直线l 与平面α的夹角为θ⎝ ⎛⎭⎪⎫0≤θ≤π2,则sin θ=|a ·μ||a ||μ|=|cos 〈a ,μ〉|.例2 (2018·浙江省名校协作体联考)在如图所示的几何体中,平面DAE ⊥平面ABCD ,四边形ABCD 为等腰梯形,四边形DCFE 为菱形.已知AB ∥CD ,∠ABC =60°,CD =12AB =1.(1)线段AC 上是否存在一点N ,使得AE ∥平面FDN ?证明你的结论;(2)若线段FC 在平面ABCD 上的投影长度为12,求直线AC 与平面ADF 所成角的正弦值.解 (1)在线段AC 上存在点N ,使得AE ∥平面FDN ,且N 是AC 的中点.如图,取AC 的中点N ,连接NF ,DN ,连接EC 交DF 于点O ,连接ON . ∵四边形CDEF 为菱形, ∴O 为EC 的中点.在△ACE 中,由中位线定理可得ON ∥AE .∵ON ⊂平面FDN ,AE ⊄平面FDN ,∴AE ∥平面FDN ,∴在线段AC 上存在点N ,使得AE ∥平面FDN ,且N 是AC 的中点. (2)方法一 ∵DE ∥CF ,∴DE 在平面ABCD 上的投影长度为12,过点E 作EO ⊥AD 于点O ,∵平面DAE ⊥平面ABCD ,且平面DAE ∩平面ABCD =AD ,EO ⊂平面DAE , ∴EO ⊥平面ABCD ,则OD =12,∵在等腰梯形ABCD 中,由已知易得AD =BC =1, ∴点O 为线段AD 的中点. 设点C 到平面FDA 的距离为h , ∵V C -FDA =V F -ADC , ∴h ·S △FDA =EO ·S △ADC , 易知S △ADC =34,EO =32, 取AB 的中点M ,连接CM ,取CM 的中点P ,连接AP ,DP ,FP ,OP .∵O ,P 分别为AD ,MC 的中点,AM ∥DC ∥EF ,且AM =DC =EF ,∴OP ∥EF 且OP =EF , ∴四边形OPFE 为平行四边形,∴OE ∥FP ,OE =FP , ∴FP ⊥平面ABCD . 易求得AP =72,DP =FP =32,∴AF =102,DF =62, ∴DF 2+AD 2=AF 2,∴△ADF 为直角三角形,∴S △FDA =64.∴h =EO ·S △ADCS △FDA=32×3464=64. 设直线AC 与平面FDA 所成的角为θ, 在△ADC 中,易得AC =3,则sin θ=h AC =24. 方法二 ∵DE ∥CF ,∴DE 在平面ABCD 上的投影长度为12,过点E 作EO ⊥AD 于点O ,∵平面DAE ⊥平面ABCD ,且平面DAE ∩平面ABCD =AD ,EO ⊂平面DAE . ∴EO ⊥平面ABCD ,则OD =12,∵在等腰梯形ABCD 中,由已知易得AD =BC =1. ∴点O 为线段AD 的中点.以O 为原点,OE 所在直线为z 轴,过O 且平行于DC的直线为y 轴,过O 且垂直于yOz 平面的直线为x 轴建立空间直角坐标系,易得x 轴在平面ABCD 内.可得A ⎝⎛⎭⎪⎫34,-14,0,C ⎝ ⎛⎭⎪⎫-34,54,0,D ⎝ ⎛⎭⎪⎫-34,14,0,E ⎝⎛⎭⎪⎫0,0,32,∴AC →=⎝ ⎛⎭⎪⎫-32,32,0,DA →=⎝ ⎛⎭⎪⎫32,-12,0,DF →=DE →+EF →=DE →+DC →=⎝ ⎛⎭⎪⎫34,-14,32+(0,1,0)=⎝ ⎛⎭⎪⎫34,34,32.设平面ADF 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·DA →=0,n ·DF →=0,得⎩⎪⎨⎪⎧32x -12y =0,34x +34y +32z =0.令x =1,得平面ADF 的一个法向量为n =(1,3,-2).若直线AC 与平面ADF 所成的角为θ, 则sin θ=|cos 〈n ,AC →〉|=322×3=24. 思维升华 (1)运用几何法求直线与平面所成的角一般是按找——证——求的步骤进行. (2)直线和平面所成角的正弦值等于平面法向量与直线方向向量夹角的余弦值的绝对值,注意所求角和两向量夹角间的关系.跟踪演练2 (2018·杭州质检)如图,在等腰三角形ABC 中,AB =AC ,∠A =120°,M 为线段BC 的中点,D 为线段BC 上一点,且BD =BA ,沿直线AD 将△ADC 翻折至△ADC ′,使AC ′⊥BD .(1)证明:平面AMC ′⊥平面ABD ;(2)求直线C ′D 与平面ABD 所成的角的正弦值. (1)证明 因为△ABC 为等腰三角形,M 为BC 的中点, 所以AM ⊥BD ,又因为AC ′⊥BD ,AM ∩AC ′=A ,AM ,AC ′⊂平面AMC ′, 所以BD ⊥平面AMC ′,因为BD ⊂平面ABD ,所以平面AMC ′⊥平面ABD .(2)解 在平面AC ′M 中,过C ′作C ′F ⊥AM 交直线AM 于点F ,连接FD . 由(1)知,平面AMC ′⊥平面ABD ,又平面AMC ′∩平面ABD =AM ,C ′F ⊂平面AMC ,所以C ′F ⊥平面ABD . 所以∠C ′DF 为直线C ′D 与平面ABD 所成的角. 设AM =1,则AB =AC =AC ′=2,BC =23,MD =2-3,DC =DC ′=23-2,AD =6- 2.在Rt△C ′MD 中,MC ′2=DC ′2-MD 2=(23-2)2-(2-3)2=9-4 3.设AF =x ,在Rt△C ′FA 和Rt△C ′FM 中,AC ′2-AF 2=MC ′2-MF 2,即4-x 2=9-43-(x-1)2,解得x =23-2,即AF =23-2. 所以C ′F =223-3.故直线C ′D 与平面ABD 所成的角的正弦值等于C ′F DC ′=23-33-1. 热点三 二面角二面角有两种求法:①几何法:利用定义作出二面角的平面角,然后计算.②向量法:利用两平面的法向量.设平面α,β的法向量分别为μ=(a 3,b 3,c 3),v =(a 4,b 4,c 4),设二面角α—a —β的平面角为θ(0≤θ≤π),则|cos θ|=|μ·v ||μ||v |=|cos 〈μ,v 〉|.例3 如图,在矩形ABCD 中,AB =2,AD =4,点E 在线段AD 上且AE =3,现分别沿BE ,CE 所在的直线将△ABE ,△DCE 翻折,使得点D 落在线段AE 上,则此时二面角D -EC -B 的余弦值为( )A.45B.56C.67D.78 答案 D解析 如图1所示,连接BD ,设其与CE 的交点为H ,由题意易知BD ⊥CE .翻折后如图2所示,连接BD ,图1 图2则在图2中,∠BHD 即为二面角D -EC -B 的平面角, 易求得BD =22,DH =255,BH =855,所以cos∠DHB =BH 2+DH 2-BD 22BH ·DH =78,故选D.思维升华 (1)构造二面角的平面角的方法(几何法):根据定义;利用二面角的棱的垂面;利用两同底等腰三角形底边上的两条中线等. (2)向量法:根据两平面的法向量.跟踪演练3 (2018·绍兴质检)已知四面体SABC 中,二面角B -SA -C ,A -SB -C ,A -SC -B 的平面角的大小分别为α,β,γ,则( ) A.π2<α+β+γ<π B.3π2<α+β+γ<2π C .π<α+β+γ<3π D .2π<α+β+γ<3π 答案 C解析 设三棱锥的顶点S 距离底面ABC 无穷远,则三棱锥S -ABC 近似为以△ABC 为底面的三棱柱,此时二面角的平面角α,β,γ等于三角形ABC 的三个内角;若顶点S 与底面ABC 的距离趋向于0,则三棱锥S -ABC 近似压缩为四顶点共面,则当S 为△ABC 内一点时,二面角的平面角α,β,γ的大小都为π,因此α+β+γ∈(π,3π),故选C.真题体验1.(2017·全国Ⅲ)a ,b 为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边AB 以直线AC 为旋转轴旋转,有下列结论: ①当直线AB 与a 成60°角时,AB 与b 成30°角; ②当直线AB 与a 成60°角时,AB 与b 成60°角; ③直线AB 与a 所成角的最小值为45°; ④直线AB 与a 所成角的最大值为60°.其中正确的是________.(填写所有正确结论的编号) 答案 ②③解析 依题意建立如图所示的空间直角坐标系,设等腰直角三角形ABC 的直角边长为1.由题意知,点B 在平面xOy 中形成的轨迹是以C 为圆心,1为半径的圆.设直线a 的方向向量为a =(0,1,0),直线b 的方向向量为b =(1,0,0),CB →以Ox 轴为始边沿逆时针方向旋转的旋转角为θ,θ∈[)0,2π, 则B (cos θ,sin θ,0),∴AB →=(cos θ,sin θ,-1),|AB →|= 2. 设直线AB 与a 所成的角为α,则cos α=|AB →·a ||a ||AB →|=22|sin θ|∈⎣⎢⎡⎦⎥⎤0,22,∴45°≤α≤90°,∴③正确,④错误; 设直线AB 与b 所成的角为β, 则cos β=|AB →·b ||b ||AB →|=22|cos θ|.当直线AB 与a 的夹角为60°,即α=60°时, |sin θ|=2cos α=2cos 60°=22, ∴|cos θ|=22,∴cos β=22|cos θ|=12. ∵45°≤β≤90°,∴β=60°, 即直线AB 与b 的夹角为60°. ∴②正确,①错误.2.(2017·浙江改编)如图,已知正四面体D —ABC (所有棱长均相等的三棱锥),P ,Q ,R 分别为AB ,BC ,CA 上的点,AP =PB ,BQ QC =CRRA=2,分别记二面角D —PR —Q ,D —PQ —R ,D —QR —P 的平面角为α,β,γ,则α,β,γ的大小关系为________.答案 α<γ<β解析 如图①,作出点D 在底面ABC 上的射影O ,过点O 分别作PR ,PQ ,QR 的垂线OE ,OF ,OG ,连接DE ,DF ,DG ,则α=∠DEO ,β=∠DFO ,γ=∠DGO .由图可知,它们的对边都是DO , ∴只需比较EO ,FO ,GO 的大小即可.如图②,在AB边上取点P′,使AP′=2P′B,连接OQ,OR,则O为△QRP′的中心.设点O到△QRP′三边的距离为a,则OG=a,OF=OQ·sin∠OQF<OQ·sin∠OQP′=a,OE=OR·sin∠ORE>OR·sin∠ORP′=a,∴OF<OG<OE,∴ODtan β<ODtan γ<ODtan α,∴α<γ<β.3.(2018·浙江)如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.(1)证明:AB1⊥平面A1B1C1;(2)求直线AC1与平面ABB1所成的角的正弦值.方法一(1)证明由AB=2,AA1=4,BB1=2,AA1⊥AB,BB1⊥AB,得AB1=A1B1=22,所以A1B21+AB21=AA21,故AB1⊥A1B1.由BC=2,BB1=2,CC1=1,BB1⊥BC,CC1⊥BC,得B1C1= 5.由AB=BC=2,∠ABC=120°,得AC=2 3.由CC1⊥AC,得AC1=13,所以AB21+B1C21=AC21,故AB1⊥B1C1.又因为A1B1∩B1C1=B1,A1B1,B1C1⊂平面A1B1C1,因此AB1⊥平面A1B1C1.(2)解 如图,过点C 1作C 1D ⊥A 1B 1,交直线A 1B 1于点D ,连接AD . 由AB 1⊥平面A 1B 1C 1, 得平面A 1B 1C 1⊥平面ABB 1.由C 1D ⊥A 1B 1,平面A 1B 1C 1∩平面ABB 1=A 1B 1,C 1D ⊂平面A 1B 1C 1,得C 1D ⊥平面ABB 1. 所以∠C 1AD 即是直线AC 1与平面ABB 1所成的角. 由B 1C 1=5,A 1B 1=22,A 1C 1=21, 得cos∠C 1A 1B 1=427,sin∠C 1A 1B 1=77, 所以C 1D =3, 故sin∠C 1AD =C 1D AC 1=3913. 因此直线AC 1与平面ABB 1所成的角的正弦值是3913. 方法二 (1)证明 如图,以AC 的中点O 为原点,分别以射线OB ,OC 为x ,y 轴的正半轴,建立空间直角坐标系O -xyz .由题意知各点坐标如下:A (0,-3,0),B (1,0,0),A 1(0,-3,4),B 1(1,0,2),C 1(0,3,1).因此AB 1→=(1,3,2),A 1B 1→=(1,3,-2),A 1C 1→=(0,23,-3). 由AB 1→·A 1B 1→=0,得AB 1⊥A 1B 1. 由AB 1→·A 1C 1→=0,得AB 1⊥A 1C 1.又A 1B 1∩A 1C 1=A 1,A 1B 1,A 1C 1⊂平面A 1B 1C 1, 所以AB 1⊥平面A 1B 1C 1.(2)解 设直线AC 1与平面ABB 1所成的角为θ. 由(1)可知AC 1→=(0,23,1),AB →=(1,3,0),BB 1→=(0,0,2).设平面ABB 1的一个法向量为n =(x ,y ,z ). 由⎩⎪⎨⎪⎧n ·AB →=0,n ·BB 1→=0,得⎩⎨⎧x +3y =0,2z =0,可取n =(-3,1,0).所以sin θ=|cos 〈AC 1→,n 〉|=|AC 1→·n ||AC 1→||n |=3913.因此直线AC 1与平面ABB 1所成的角的正弦值是3913. 押题预测如图所示,在四棱锥S -ABCD 中,底面ABCD 是矩形,SA ⊥底面ABCD ,E ,F 分别为线段AB ,SD 的中点.(1)证明:EF ∥平面SBC ;(2)设SA =AD =2AB ,试求直线EF 与平面SCD 所成角的正弦值.押题依据 定义法求直线与平面所成的角的关键是利用直线与平面所成角的定义去构造一个直角三角形,通过解三角形的知识求角.方法一求解第(2)问的关键是构造三角形,证明∠AFE 为直线EF 与平面SCD 所成角的余角.(1)证明 方法一 如图,过点E 作EG ∥SB ,交SA 于点G ,连接GF .因为E 为AB 的中点,所以G 为SA 的中点, 又F 为SD 的中点, 所以GF ∥AD ,所以GF ∥BC ,又BC ⊂平面SBC ,GF ⊄平面SBC ,所以GF ∥平面SBC .因为GE ∥SB ,SB ⊂平面SBC ,GE ⊄平面SBC , 所以GE ∥平面SBC ,又GE ∩GF =G ,GE ,GF ⊂平面GEF , 所以平面GEF ∥平面SBC ,又EF ⊂平面GEF ,所以EF ∥平面SBC .方法二 取SC 的中点H ,连接FH ,BH ,因为F 是SD 的中点,所以FH ∥CD ,FH =12CD ,又CD ∥AB ,CD =AB ,点E 是AB 的中点,所以FH ∥BE ,FH =BE ,所以四边形EFHB 是平行四边形,所以EF ∥BH ,又BH ⊂平面SBC ,EF ⊄平面SBC ,所以EF ∥平面SBC . (2)解 方法一 如图,连接AF .因为SA =AD ,SA ⊥AD , 所以AF ⊥SD . 因为SA ⊥平面ABCD , 所以SA ⊥CD .因为AD ⊥CD ,SA ∩AD =A ,SA ,AD ⊂平面SAD , 所以CD ⊥平面SAD ,因为AF ⊂平面SAD ,所以CD ⊥AF , 又SD ∩CD =D ,SD ,CD ⊂平面SCD , 所以AF ⊥平面SCD .所以∠AFE 即为直线EF 与平面SCD 所成角的余角. 令SA =AD =2AB =4,则AE =1,AF =22,所以EF =3.设直线EF 与平面SCD 所成的角为θ, 则sin θ=sin ⎝⎛⎭⎪⎫π2-∠AFE =cos∠AFE =AF EF =223.所以直线EF 与平面SCD 所成角的正弦值为223.方法二 因为四边形ABCD 是矩形,SA ⊥底面ABCD , 所以直线AB ,AD ,AS 两两垂直.以A 为坐标原点,AB ,AD ,AS 所在的直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系A -xyz . 设SA =AD =2AB =4,则S (0,0,4),C (2,4,0),D (0,4,0),E (1,0,0),F (0,2,2). 所以EF →=(-1,2,2),SD →=(0,4,-4),DC →=(2,0,0). 设平面SCD 的法向量为a =(x ,y ,z ), 则⎩⎪⎨⎪⎧a ·SD →=4y -4z =0,a ·DC →=2x =0,取y =1,所以a =(0,1,1)是平面SCD 的一个法向量. 设直线EF 与平面SCD 所成的角为θ, 所以sin θ=|a ·EF →||a |·|EF →|=|0+2+2|2×3=223.所以直线EF 与平面SCD 所成角的正弦值为223.A 组 专题通关1.(2017·全国Ⅱ)已知直三棱柱ABCA 1B 1C 1中,∠ABC =120°,AB =2,BC =CC 1=1,则异面直线AB 1与BC 1所成角的余弦值为( )A.32 B.155 C.105 D.33答案 C解析 方法一 将直三棱柱ABC -A 1B 1C 1补形为直四棱柱ABCD -A 1B 1C 1D 1,如图①所示,连接AD 1,B 1D 1,BD .图①由题意知∠ABC =120°,AB =2,BC =CC 1=1, 所以AD 1=BC 1=2,AB 1=5,∠DAB =60°.在△ABD 中,由余弦定理知BD 2=22+12-2×2×1×cos 60°=3,所以BD =3,所以B 1D 1=3.又AB 1与AD 1所成的角即为AB 1与BC 1所成的角θ,所以cos θ=AB 21+AD 21-B 1D 212×AB 1×AD 1=5+2-32×5×2=105.故选C.方法二 以B 1为坐标原点,B 1C 1所在的直线为x 轴,垂直于B 1C 1的直线为y 轴,BB 1所在的直线为z 轴建立空间直角坐标系,如图②所示.图②由已知条件知B 1(0,0,0),B (0,0,1),C 1(1,0,0),A (-1,3,1),则BC 1→=(1,0,-1),AB 1→=(1,-3,-1). 所以cos 〈AB 1→,BC 1→〉=AB 1→·BC 1→|AB 1→||BC 1→|=25×2=105.所以异面直线AB 1与BC 1所成角的余弦值为105. 故选C.2.(2018·嘉兴、丽水模拟)已知两个平面α,β和三条直线m ,a ,b ,若α∩β=m ,a ⊂α且a ⊥m ,b ⊂β,设α和β所成的一个二面角的大小为θ1,直线a 和平面β所成的角的大小为θ2,直线a ,b 所成的角的大小为θ3,则( ) A .θ1=θ2≥θ3 B .θ3≥θ1=θ2 C .θ1≥θ3,θ2≥θ3 D .θ1≥θ2,θ3≥θ2答案 D解析 当平面α与平面β所成的二面角为锐角或直角时,θ1=θ2,当平面α与平面β所成的二面角为钝角时,θ2为θ1的补角,则θ1>θ2,综上所述,θ1≥θ2,又由最小角定理得θ3≥θ2,故选D.3.如图,正四棱锥P -ABCD .记异面直线PA 与CD 所成的角为α,直线PA 与平面ABCD 所成的角为β,二面角P -BC -A 的平面角为γ,则( )A .β<α<γB .γ<α<βC .β<γ<αD .α<β<γ答案 C解析 如图,过点P 作PO ⊥平面ABCD ,则O 为正方形ABCD 的中心.连接AO ,并过O 点作OE ⊥BC ,交BC 于点E ,连接PE .∵AB ∥DC ,∴异面直线PA 与CD 所成的角就是∠PAB ,而AO 为PA 在平面ABCD 上的投影,∴∠PAO 为PA 与平面ABCD 所成的角. ∴∠PAB >∠PAO .又OE ⊥BC ,PO ⊥BC ,OE 与PO 相交于点O , ∴BC ⊥平面POE ,∴PE ⊥BC ,因此∠PEO 为二面角P -BC -A 的平面角. ∵OE <AO ,∴tan∠PEO >tan∠PAO , ∴∠PEO >∠PAO .又∠PAB =∠PBE ,cos∠PBE =BEPB ,cos∠PEO =OE PE, ∵OE =BE ,PE <PB ,∴cos∠PBE <cos∠PEO ,∴∠PBE >∠PEO ,又∠PBE =∠PAB =α,∴β<γ<α,故选C.4.已知四边形ABCD ,AB =BD =DA =2,BC =CD =2,现将△ABD 沿BD 折起,使二面角A -BD -C 的大小在⎣⎢⎡⎦⎥⎤π6,5π6内,则直线AB 与CD 所成角的余弦值的取值范围是( )A.⎣⎢⎡⎦⎥⎤0,528B.⎣⎢⎡⎦⎥⎤0,28 C.⎣⎢⎡⎦⎥⎤0,28∪⎣⎢⎡⎭⎪⎫528,1 D.⎣⎢⎡⎦⎥⎤28,528答案 A解析 设BD 的中点为E ,连接AE ,CE , 因为AB =BD =DA =2,BC =CD =2, 所以AE =3,CE =1,且AE ⊥BD ,CE ⊥BD , 则∠AEC 为二面角A -BD -C 的平面角,在平面ABD 内,过点A 作AF ∥BD ,使AF =BD ,构造平行四边形ABDF ,连接FD ,CF ,则∠CDF 或其补角即为异面直线AB 与CD 的夹角, 则在△AEC 中,由余弦定理得AC 2=AE 2+CE 2-2AE ·CE cos∠AEC=4-23cos∠AEC ,又因为∠AEC ∈⎣⎢⎡⎦⎥⎤π6,5π6,所以AC 2=4-23cos∠AEC ∈[1,7].因为AE ⊥BD ,CE ⊥BD ,且AE ∩CE =E ,AE ,CE ⊂平面AEC , 所以BD ⊥平面AEC , 则BD ⊥AC ,所以AF ⊥AC ,则在Rt△CAF 中,CF 2=AC 2+AF 2∈[5,11],则在△CDF 中,由余弦定理易得直线AB 与CD 的夹角的余弦值为|cos∠CDF |=⎪⎪⎪⎪⎪⎪DF 2+CD 2-CF 22DF ·CD ∈⎣⎢⎡⎦⎥⎤0,528,故选A.5.长方体的对角线与过同一个顶点的三个表面所成的角分别为α,β,γ,则cos 2α+cos 2β+cos 2γ=________. 答案 2解析 设长方形的长、宽、高分别为a ,b ,c ,则对角线长d =a 2+b 2+c 2,所以cos 2α+cos 2β+cos 2γ=⎝ ⎛⎭⎪⎫b 2+c 2d 2+⎝ ⎛⎭⎪⎫a 2+c 2d 2+⎝ ⎛⎭⎪⎫a 2+b 2d 2=2()a 2+b 2+c 2d 2=2.6.如图所示,在正方体AC 1中, AB =2, A 1C 1∩B 1D 1=E ,直线AC 与直线DE 所成的角为α,直线DE 与平面BCC 1B 1所成的角为β,则cos ()α-β=________.答案66解析 由题意可知,α=π2,则cos ()α-β=sin β,以点D 为坐标原点,DA ,DC ,DD 1方向为x ,y ,z 轴正方向建立空间直角坐标系,则D ()0,0,0,E ()1,1,2,DE →=()1,1,2,平面BCC 1B 1的法向量DC →=()0,2,0,由此可得cos ()α-β=sin β=|DE →·DC →||DE →||DC →|=66.7.(2018·浙江省名校新高考研究联盟联考)如图,平行四边形PDCE 垂直于梯形ABCD 所在的平面,∠ADC =∠BAD =90°,∠PDC =120°,F 为PA 的中点,PD =1,AB =AD =12CD =1.(1)求证:AC ∥平面DEF ;(2)求直线BC 与平面PAD 所成角的余弦值.(1)证明 连接PC .设PC 与DE 的交点为M ,连接FM ,因为F ,M 分别为PA ,PC 的中点,则FM ∥AC . 因为FM ⊂平面DEF ,AC ⊄平面DEF ,所以AC ∥平面DEF .(2)解 方法一 (几何法)取CD 的中点G ,连接AG ,则AG ∥BC ,所以直线AG 与平面PAD 所成的角即为直线BC 与平面PAD 所成的角. 过点G 作GH ⊥PD ,交PD 于点H ,又平面PDCE ⊥平面ABCD ,平面PDCE ∩平面ABCD =CD ,AD ⊥CD ,AD ⊂平面ABCD , 所以AD ⊥平面PDCE ,又GH ⊂平面PDCE ,所以AD ⊥GH , 因为PD ∩AD =D ,PD ,AD ⊂平面PAD ,所以GH ⊥平面PAD ,则∠GAH 即为所求的线面角, 易得GH =32,AG =BC =2, 则sin∠GAH =GH AG =64, 所以直线BC 与平面PAD 所成角的余弦值为104. 方法二 (向量法)过点D 在平面PDCE 中作DQ ⊥PE ,交PE 于点Q ,由已知可得PQ =12,以D 为坐标原点,分别以DA ,DC ,DQ 所在的直线为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示.由题意可得D (0,0,0),P ⎝⎛⎭⎪⎫0,-12,32,A (1,0,0),B (1,1,0),C (0,2,0),则DA →=(1,0,0),DP →=⎝ ⎛⎭⎪⎫0,-12,32,设平面PAD 的法向量n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·DA →=0,n ·DP →=0,即⎩⎪⎨⎪⎧x =0,-12y +32z =0,令y =3,得平面PAD 一个法向量n =(0,3,1),BC →=(-1,1,0).设直线BC 与平面PAD 所成的角为θ,则sin θ=|cos 〈n ,BC →〉|=⎪⎪⎪⎪⎪⎪⎪⎪n ·BC →|n ||BC →|=322=64, 所以直线BC 与平面PAD 所成角的余弦值为104. 8.(2018·浙江省杭州二中月考)如图,等腰梯形ABCD 中,AB =CD =BC =2,AD =5,M ,N 是AD 上的点,且AM =DN =2,现将△ABM ,△CDN 分别沿BM ,CN 折起,使得A ,D 重合记作S .(1)求证:BC ∥平面SMN ;(2)求直线SN 与底面BCNM 所成角的余弦值.(1)证明 ∵BC ∥MN ,且MN ⊂平面SMN ,BC ⊄平面SMN ,∴BC ∥平面SMN .(2)解 过S 向底面作垂线,垂足为O ,连接BC 的中点Q 与MN 的中点P ,根据对称性可知O 在PQ 上,分别连接SQ ,SP ,ON ,则∠SNO 是所求的线面角.在△SPQ 中,SP =152,SQ =3,PQ =72,则SO =2357, 则sin∠SNO =357,∴cos∠SNO =147. 9.(2018·湖州、衢州、丽水质检)已知矩形ABCD 满足AB =2,BC =2,△PAB 是正三角形,平面PAB ⊥平面ABCD .(1)求证:PC ⊥BD ;(2)设直线l 过点C 且l ⊥平面ABCD ,点F 是直线l 上的一个动点,且与点P 位于平面ABCD的同侧.记直线PF 与平面PAB 所成的角为θ,若0<CF ≤3+1,求tan θ的取值范围. (1)证明 取AB 的中点E ,连接PE ,EC .因为点E 是正三角形PAB 的边AB 的中点,所以PE ⊥AB . 又平面PAB ⊥平面ABCD ,平面PAB ∩平面ABCD =AB ,PE ⊂平面PAB , 所以PE ⊥平面ABCD ,因为BD ⊂平面ABCD ,则PE ⊥BD . 因为BEBC=12=22=BCCD,∠EBC =∠BCD =90°, 所以△EBC ∽△BCD . 故∠ECB =∠BDC ,所以∠ECB +∠DBC =∠BDC +∠DBC =90°, 所以CE ⊥BD ,又CE ∩PE =E ,CE ,PE ⊂平面PEC , 故BD ⊥平面PEC ,又PC ⊂平面PEC ,因此PC ⊥BD .(2)解 方法一 在平面PAB 内过点B 作直线m ∥FC ,过F 作FG ⊥m ,交m 于点G ,连接PG ,则四边形BGFC 为矩形,BC ∥FG ,BC =FG . 又由(1)及题意得,BC ⊥平面PAB , 所以FG ⊥平面PAB ,所以∠GPF 是直线PF 与平面PAB 所成的角,所以点F 到平面PAB 的距离等于点C 到平面PAB 的距离,即为BC =2, 因为0<CF ≤3+1,所以1≤GP <2, 故tan θ=2GP∈⎝⎛⎦⎥⎤22,2. 方法二 如图,以E 为坐标原点,EB ,EP 所在直线为x 轴,z 轴,过点E 平行于BC 的直线为y 轴,建立空间直角坐标系.设CF =a (0<a ≤3+1), 则P (0,0,3),F (1,2,a ), 所以PF →=(1,2,a -3),取平面PAB 的一个法向量为n =(0,1,0), 则sin θ=|PF →·n ||PF →||n |=212+(2)2+(a -3)2, 由0<a ≤3+1,得sin θ∈⎝ ⎛⎦⎥⎤33,63, 则tan θ∈⎝⎛⎦⎥⎤22,2. B 组 能力提高10.已知三棱锥P -ABC 的底面ABC 是边长为23的正三角形,A 点在侧面PBC 内的投影H 为△PBC 的垂心,二面角P -AB -C 的平面角的大小为60°,则AP 的长为( )A .3B .3 2 C.7 D .4 答案 C解析 连接BH 交PC 于点E ,连接AE .设P 点在底面ABC 内的投影为O ,则PO ⊥平面ABC ,连接CO 交AB 于F 点,连接PF .∵A 点在侧面PBC 内的投影H 为△PBC 的垂心, ∴AH ⊥平面PBC ,且BE ⊥PC , ∵PC ⊂平面PBC ,∴AH ⊥PC .∵BE ∩AH =H ,BE ⊂平面ABE ,AH ⊂平面ABE , ∴PC ⊥平面ABE .又AB ⊂平面ABE ,∴PC ⊥AB . ∵PO ⊥平面ABC ,AB ⊂平面ABC ,∴PO ⊥AB . ∵PO ∩PC =P ,PO ⊂平面PFC ,PC ⊂平面PFC , ∴AB ⊥平面PFC . ∴AB ⊥PE ,AB ⊥CF ,∴∠PFC 为二面角P -AB -C 的平面角.∵三棱锥P -ABC 的底面ABC 是边长为23的正三角形, ∴BF =3,CF =3,则FO =13×3=1,∵二面角P -AB -C 的平面角的大小为60°,∴∠PFC =60°,在Rt△POF 中,PO =FO ·tan 60°=3,PF =FOcos 60°=2.又在Rt△PFA中,PF =2,AF =AB2=3,∴AP =PF 2+AF 2=7,故选C.11.(2018·湖州、衢州、丽水质检)已知等腰直角三角形ABC 内接于圆O ,点M 是下半圆弧上的动点.现将上半圆面沿AB 折起(如图所示),使所成的二面角C -AB -M 为π4,则直线AC与直线OM 所成角的最小值是( )A.π12B.π6C.π4D.π3 答案 B解析 设圆的半径为2,∠AOM =θ(θ∈[0,π]),建立如图所示的空间直角坐标系,则O (0,0,0),M (2sin θ,-2cos θ,0),A (0,-2,0),C (2,0,2),所以OM →=(2sin θ,-2cos θ,0),AC →=(2,2,2).设直线AC 与OM 所成的角为α,则cos α=|cos 〈OM →,AC →〉|=|OM →·AC →||OM →||AC →|=|22sin θ-4cos θ|2×22=|26sin (θ-φ)|42≤2642=32(其中tan φ=2),又α∈⎝ ⎛⎦⎥⎤0,π2,所以α∈⎣⎢⎡⎦⎥⎤π6,π2, 所以α的最小值为π6,故选B.12.(2018·浙江省温州六校协作体联考)如图1,在Rt△ABC 中,∠BAC =90°,∠ABC =60°,E 是边AC 上的点,EC →=2AE →,D 是斜边BC 的中点,现将△ABE 与△DEC 分别沿BE 与DE 翻折,翻折后的点A ,C 分别记作A ′,C ′,若点A ′落在线段EC ′上,如图2,则二面角B -EC ′-D 的余弦值为( )A.13B.33C.23D.63 答案 A解析 设AB =1,易得BC =2,AC =3,又因为EC →=2AE →, 点D 是斜边BC 的中点, 所以AE =33,CE =233,CD =BD =1, 则由翻折的性质易得A ′E =A ′C ′=33,A ′B =1,BD =C ′D =1,BA ′⊥C ′E ,连接BC ′,则C ′B =A ′B 2+A ′C ′2=233=BE , 在△BDC ′中,由余弦定理得cos∠BDC ′=BD 2+C ′D 2-C ′B 22BD ·C ′D =13,在△C ′DE 中,过点A ′作C ′E 的垂线,交C ′D 于点F ,则∠FA ′B 就是二面角B -EC ′-D 的平面角.易得A ′F =A ′C ′tan 30°=13,C ′F =23,DF=C ′D -C ′F =13.连接BF ,在△BDF 中,由余弦定理得BF =BD 2+DF 2-2BD ·DF cos∠BDF =223, 则在△BA ′F 中,由余弦定理得cos∠BA ′F =A ′B 2+A ′F 2-BF 22A ′B ·A ′F =13,即二面角B -EC ′-D 的余弦值为13,故选A.13.如图,已知三棱锥A —BCD 的所有棱长均相等,点E 满足DE →=3EC →,点P 在棱AC 上运动,设EP 与平面BCD 所成的角为θ,则sin θ的最大值为________.答案223解析 因为三棱锥A —BCD 的所有棱长都相等,设底面BCD 的中心为O ,则O 为顶点A 在底面的射影,以点O 为原点,以过点O 且平行于CD 的直线为x 轴,过点O 且垂直于CD 的直线为y 轴,直线OA 为z 轴建立空间直角坐标系.设三棱锥A —BCD 的棱长为2,则易得O (0,0,0),A ⎝⎛⎭⎪⎫0,0,263,C ⎝ ⎛⎭⎪⎫1,33,0,E ⎝ ⎛⎭⎪⎫12,33,0, 则OA →=⎝⎛⎭⎪⎫0,0,263,A E →=⎝ ⎛⎭⎪⎫12,33,-263,AC →=⎝⎛⎭⎪⎫1,33,-263,设AP →=λAC →(0≤λ≤1), 则PE →=AE →-AP →=AE →-λAC →=⎝ ⎛⎭⎪⎫12-λ,33(1-λ),263(λ-1),则sin θ=|PE →·OA →||PE →||OA →|=463·1-λ16λ2-28λ+13, 设f (x )=(1-x )216x 2-28x +13 (0≤x ≤1),则f ′(x )=2(2x -1)(x -1)(16x 2-28x +13)2,令f ′(x )>0,得0<x <12,所以函数f (x )在⎝ ⎛⎭⎪⎫0,12上单调递增; 令f ′(x )<0,得12<x <1,所以函数f (x )在⎝ ⎛⎭⎪⎫12,1上单调递减, 所以f (x )max =f ⎝ ⎛⎭⎪⎫12=112,所以sin θ的最大值为463×112=223.。
高考数学 《立体几何中的向量方法(二)——求空间角与距离易错点》

立体几何中的向量方法(二)——求空间角与距离备考策略易错点主标题:立体几何中的向量方法(二)——求空间角与距离备考策略易错点副标题:从考点分析立体几何中的向量方法(二)——求空间角与距离备考策略易错点,为学生备考提供简洁有效的备考策略。
关键词:空间角,距离,易错点难度:2重要程度:4【易错点】1.直线的方向向量与平面的法向量(1)若n 1,n 2分别是平面α,β的法向量,则n 1∥n 2⇔α∥β.(×)(2)两直线的方向向量的夹角就是两条直线所成的角.(×)(3)已知a =(-2,-3,1),b =(2,0,4),c =(-4,-6,2),则a ∥c ,a ⊥b .(√)2.空间角(4)两异面直线夹角的范围是⎝ ⎛⎦⎥⎤0,π2,直线与平面所成角的范围是⎣⎢⎡⎦⎥⎤0,π2,二面角的范围是[0,π].(√)(5)已知向量m ,n 分别是直线l 和平面α的方向向量、法向量,若cos<m ,n >=-12,则l 与α所成的角为150°.(×)(6)已知两平面的法向量分别为m =(0,1,0),n =(0,1,1),则两平面所成的二面角的大小为45°.(×)(7)在如图所示的正方体ABCD -A 1B 1C 1D 1中,异面直线A 1B 与B 1C 所成角的大小为60°.(√)剖析:1.利用空间向量求空间角,避免了寻找平面角和垂线段等诸多麻烦,使空间点线面的位置关系的判定和计算程序化、简单化.主要是建系、设点、计算向量的坐标、利用数量积的夹角公式计算.2.两种关系一是异面直线所成的角与其方向向量的夹角:当异面直线的方向向量的夹角为锐角或直角时,就是该异面直线的夹角;否则向量夹角的补角是异面直线所成的角,如(2).二是二面角与法向量的夹角:利用平面的法向量求二面角的大小时,当求出两半平面α,β的法向量n1,n2时,要根据向量坐标在图形中观察法向量的方向,从而确定二面角与向量n1,n2的夹角是相等,还是互补,如(6).。
高考真题(立体几何中空间角问题[题目])
![高考真题(立体几何中空间角问题[题目])](https://img.taocdn.com/s3/m/9d2b391cdaef5ef7bb0d3c62.png)
解答题1. 如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 是菱形,2,60AB BAD =∠=o .(Ⅰ)求证:BD ⊥平面;PAC(Ⅱ)若,PA AB =求PB 与AC 所成角的余弦值;(Ⅲ)当平面PBC 与平面PDC 垂直时,求PA 的长.2. 如图,四棱锥P -ABCD 中,P A ⊥底面ABCD ,四边形ABCD 中,AB ⊥AD ,AB +AD =4,CD =2,︒=∠45CDA .(I )求证:平面P AB ⊥平面P AD ;(II )设AB =AP .(i )若直线PB 与平面PCD 所成的角为︒30,求线段AB 的长;(ii )在线段AD 上是否存在一个点G ,使得点G 到点P ,B ,C ,D 的距离都相等?说明理由。
3. 如图5.在椎体P -ABCD 中,ABCD 是边长为1的棱形,且∠DAB =60︒,2PA PD ==,PB =2, E ,F 分别是BC ,PC 的中点.(1) 证明:AD ⊥平面DEF ;(2) 求二面角P -AD -B 的余弦值.4. 如图,已知正三棱柱111ABC A B C -的各棱长都是4,E 是BC 的中点,动点F 在侧棱1CC 上,且不与点C 重合.(Ⅰ)当CF =1时,求证:EF ⊥1A C ;(Ⅱ)设二面角C AF E --的大小为θ,求tan θ的最小值.A B DC FPE5. 如图,在圆锥PO中,已知PO=2,⊙O的直径2AB=,C是»AB的中点,D为AC 的中点.(Ⅰ)证明:平面POD⊥平面PAC;(Ⅱ)求二面角B PA C--的余弦值。
6. 如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=12 PD.(I)证明:平面PQC⊥平面DCQ;(II)求二面角Q—BP—C的余弦值.8. 如图,四棱锥P ABCD -中,底面ABCD 为平行四边形,60DAB ∠=︒,2AB AD =,PD ⊥底面ABCD .(I )证明:PA BD ⊥;(II )若PD =AD ,求二面角A -PB -C 的余弦值.9. 在如图所示的几何体中,四边形ABCD 为平行四边形,∠ ACB =90︒,EA⊥平面ABCD,EF ∥AB,FG∥BC,EG∥AC.AB=2EF.(Ⅰ)若M是线段AD的中点,求证:GM∥平面ABFE;(Ⅱ)若AC=BC=2AE,求二面角A-BF-C的大小.10. 如图,在ABC ∆中,60,90,ABC BAC AD ∠=∠=o o 是BC 上的高,沿AD 把ABC ∆折起,使90BCD ∠=o 。
高考数学二轮复习 第二部分专项二 专题四 1 第1讲 空间几何体的三视图、表面积与体积

专题四立体几何与空间向量第1讲空间几何体的三视图、表面积与体积年份卷别考查内容及考题位置命题分析2018卷Ⅰ空间几何体的三视图及侧面展开问题·T71.“立体几何”在高考中一般会以“两小一大”或“一小一大”的命题形式出现,这“两小”或“一小”主要考查三视图,几何体的表面积与体积,空间点、线、面的位置关系(特别是平行与垂直).2.考查一个小题时,此小题一般会出现在第4~8题的位置上,难度一般;考查两个小题时,其中一个小题难度一般,另一个小题难度稍高,一般会出现在第10~16题的位置上,此小题虽然难度稍高,主要体现在计算量上,但仍是对基础知识、基本公式的考查.空间几何体的截面问题·T12卷Ⅱ圆锥的侧面积·T16卷Ⅲ三视图的识别·T3三棱锥的体积及外接球问题·T102017卷Ⅰ空间几何体的三视图与直观图、面积的计算·T7卷Ⅱ空间几何体的三视图及组合体体积的计算·T4卷Ⅲ球的内接圆柱、圆柱的体积的计算·T82016卷Ⅰ有关球的三视图及表面积的计算·T6卷Ⅱ空间几何体的三视图及组合体表面积的计算·T6卷Ⅲ空间几何体的三视图及组合体表面积的计算·T9直三棱柱的体积最值问题·T10空间几何体的三视图(基础型) 一个物体的三视图的排列规则俯视图放在正(主)视图的下面,长度与正(主)视图的长度一样,侧(左)视图放在正(主)视图的右面,高度与正(主)视图的高度一样,宽度与俯视图的宽度一样.即“长对正、高平齐、宽相等”.由三视图还原到直观图的三个步骤(1)根据俯视图确定几何体的底面.(2)根据正(主)视图或侧(左)视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱、面的位置.(3)确定几何体的直观图形状.[注意]在读图或者画空间几何体的三视图时,应注意三视图中的实线和虚线.[考法全练]1.(2018·高考全国卷Ⅲ)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()解析:选A.由题意知,在咬合时带卯眼的木构件中,从俯视方向看,榫头看不见,所以是虚线,结合榫头的位置知选A.2.(2018·高考全国卷Ⅰ)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.217 B.2 5C.3 D.2解析:选B.由三视图可知,该几何体为如图①所示的圆柱,该圆柱的高为2,底面周长为16.画出该圆柱的侧面展开图,如图②所示,连接MN,则MS=2,SN=4,则从M到N 的路径中,最短路径的长度为MS2+SN2=22+42=2 5.故选B.3.把边长为1的正方形ABCD沿对角线BD折起,使得平面ABD⊥平面CBD,形成的三棱锥C-ABD的正视图与俯视图如图所示,则侧视图的面积为()A.12B.22C.24D.14解析:选D.由三棱锥C -ABD 的正视图、俯视图得三棱锥C -ABD 的侧视图为直角边长是22的等腰直角三角形,如图所示,所以三棱锥C -ABD 的侧视图的面积为14,故选D.4.(2018·长春质量监测(二))如图,网格纸上小正方形的边长为1,粗线条画出的是一个三棱锥的三视图,则该三棱锥中最长棱的长度为( )A .2 B. 5 C .2 2D .3解析:选D.如图,三棱锥A -BCD 即为所求几何体,根据题设条件,知辅助的正方体棱长为2,CD =1,BD =22,BC =5,AC =2,AB =3,AD =5,则最长棱为AB ,长度为3.5.(2018·石家庄质量检测(一))如图,网格纸上的小正方形的边长为1,粗线表示的是某三棱锥的三视图,则该三棱锥的四个面中,最小面的面积是( )A .2 3B .2 2C .2D. 3解析:选C.在正方体中还原该几何体,如图中三棱锥D -ABC 所示,其中正方体的棱长为2,则S △ABC =2,S △DBC =22,S △ADB =22,S △ADC =23,故该三棱锥的四个面中,最小面的面积是2,选C.空间几何体的表面积和体积(综合型)柱体、锥体、台体的侧面积公式 (1)S 柱侧=ch (c 为底面周长,h 为高). (2)S 锥侧=12ch ′(c 为底面周长,h ′为斜高).(3)S 台侧=12(c +c ′)h ′(c ′,c 分别为上下底面的周长,h ′为斜高).柱体、锥体、台体的体积公式 (1)V 柱体=Sh (S 为底面面积,h 为高). (2)V 锥体=13Sh (S 为底面面积,h 为高).(3)V 台=13(S +SS ′+S ′)h (S ,S ′分别为上下底面面积,h 为高)(不要求记忆).[典型例题]命题角度一 空间几何体的表面积(1)(2018·潍坊模拟)某几何体的三视图如图所示,则该几何体的表面积为( )A .4+23B .4+4 2C .6+2 3D .6+4 2(2)(2018·合肥第一次质量检测)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积为( )A .5π+18B .6π+18C .8π+6D .10π+6【解析】 (1)由三视图还原几何体的直观图如图所示,易知BC ⊥平面P AC ,又PC ⊂平面P AC ,所以BC ⊥PC ,又AP =AC =BC =2,所以PC =22+22=22,又AB =22,所以S △PBC =S △P AB =12×2×22=22,S △ABC =S △P AC =12×2×2=2,所以该几何体的表面积为4+4 2.(2)由三视图可知该几何体是由一个半圆柱和两个半球构成的,故该几何体的表面积为2×12×4π×12+2×12×π×12+2×3+12×2π×1×3=8π+6. 【答案】 (1)B (2)C求几何体的表面积的方法(1)求表面积问题的基本思路是将立体几何问题转化为平面几何问题,即空间图形平面化,这是解决立体几何的主要出发点.(2)求不规则几何体的表面积时,通常将所给几何体分割成基本的柱、锥、台体,先求这些柱、锥、台体的表面积,再通过求和或作差得几何体的表面积.命题角度二 空间几何体的体积(1)(2018·武汉调研)某几何体的三视图如图所示,则该几何体的体积为( )A.12B.22C.33D.23(2)(2018·高考全国卷Ⅱ)已知圆锥的顶点为S ,母线SA ,SB 互相垂直,SA 与圆锥底面所成角为30°.若△SAB 的面积为8,则该圆锥的体积为________.【解析】 (1)由三视图知,该几何体是在长、宽、高分别为2,1,1的长方体中,截去一个三棱柱AA 1D 1BB 1C 1和一个三棱锥C -BC 1D 后剩下的几何体,即如图所示的四棱锥D -ABC 1D 1,四棱锥D -ABC 1D 1的底面积为S 四边形ABC 1D 1=2×2=22,高h =22,其体积V =13S 四边形ABC 1D 1h =13×22×22=23.故选D.(2)由题意画出图形,如图,设AC 是底面圆O 的直径,连接SO ,则SO 是圆锥的高.设圆锥的母线长为l ,则由SA ⊥SB ,△SAB 的面积为8,得12l 2=8,得l =4.在Rt △ASO 中,由题意知∠SAO =30°,所以SO =12l =2,AO =32l =2 3.故该圆锥的体积V =13π×AO 2×SO =13π×(23)2×2=8π.【答案】 (1)D (2)8π求空间几何体体积的常用方法(1)公式法:直接根据相关的体积公式计算.(2)等积法:根据体积计算公式,通过转换空间几何体的底面和高使得体积计算更容易,或是求出一些体积比等.(3)割补法:把不能直接计算体积的空间几何体进行适当分割或补形,转化为易计算体积的几何体.[对点训练]1.(2018·洛阳第一次统考)一个几何体的三视图如图所示,图中的三个正方形的边长均为2,则该几何体的体积为( )A .8-2π3B .4-π3C .8-π3D .4-2π3解析:选A.由三视图可得该几何体的直观图如图所示,该几何体是一个棱长为2的正方体上、下各挖去一个底面半径为1,高为1的圆锥后剩余的部分,其体积为23-2×13×π×12×1=8-2π3.故选A.2.(2018·唐山模拟)如图,网格纸上小正方形的边长为1,粗线画的是一个几何体的三视图,则该几何体的体积为( )A .3 B.113 C .7D.233解析:选B.由题中的三视图可得,该几何体是由一个长方体切去一个三棱锥所得的几何体,长方体的长,宽,高分别为2,1,2,体积为4,切去的三棱锥的体积为13,故该几何体的体积V =4-13=113.故选B.多面体与球(综合型)[典型例题]命题角度一 外接球(2018·南宁模拟)三棱锥P -ABC 中,△ABC 为等边三角形,P A =PB =PC =3,P A⊥PB ,三棱锥P -ABC 的外接球的体积为( )A.272π B.2732πC .273πD .27π【解析】 因为三棱锥P -ABC 中,△ABC 为等边三角形,P A =PB =PC =3,所以△P AB ≌△PBC ≌△P AC .因为P A ⊥PB ,所以P A ⊥PC ,PC ⊥PB .以P A ,PB ,PC 为过同一顶点的三条棱作正方体(如图所示),则正方体的外接球同时也是三棱锥P -ABC 的外接球.因为正方体的体对角线长为32+32+32=33,所以其外接球半径R =332.因此三棱锥P -ABC 的外接球的体积V =4π3×⎝⎛⎭⎫3323=2732π,故选B.【答案】 B解决多面体的外接球问题,关键是确定球心的位置,方法是先选择多面体中的一面,确定此面外接圆的圆心,再过圆心作垂直此面的垂线,则球心一定在此垂线上,最后根据其他顶点确定球心的准确位置.对于特殊的多面体还可采用补成正方体或长方体的方法找到球心位置.命题角度二 内切球已知一个平放的各棱长为4的三棱锥内有一个小球O (重量忽略不计),现从该三棱锥顶端向内注水,小球慢慢上浮,当注入的水的体积是该三棱锥体积的78时,小球与该三棱锥各侧面均相切(与水面也相切),则小球的表面积等于( )A.7π6B.4π3C.2π3D.π2【解析】 当注入水的体积是该三棱锥体积的78时,设水面上方的小三棱锥的棱长为x (各棱长都相等),依题意,⎝⎛⎭⎫x 43=18,得x =2.易得小三棱锥的高为263,设小球半径为r ,则13S 底面·263=4·13·S 底面·r ,得r =66,故小球的表面积S =4πr 2=2π3.故选C.【答案】 C求解多面体的内切球的问题,一般是将多面体分割为以球心为顶点,多面体的各面为底面的棱锥,利用多面体的体积等于各棱锥的体积之和求内切球的半径.命题角度三 与球有关的最值问题(2018·高考全国卷Ⅲ)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC为等边三角形且其面积为93,则三棱锥D -ABC 体积的最大值为( )A .12 3B .18 3C .24 3D .54 3【解析】 如图,E 是AC 中点,M 是△ABC 的重心,O 为球心,连接BE ,OM ,OD ,BO .因为S △ABC =34AB 2=93,所以AB =6,BM =23BE =23AB 2-AE 2=2 3.易知OM ⊥平面ABC ,所以在Rt △OBM 中,OM =OB 2-BM 2=2,所以当D ,O ,M 三点共线且DM =OD +OM 时,三棱锥D -ABC 的体积取得最大值,且最大值V max =13S △ABC ×(4+OM )=13×93×6=18 3.故选B.【答案】 B多面体与球有关的最值问题,主要有三种:一是多面体确定的情况下球的最值问题,二是球的半径确定的情况下与多面体有关的最值问题;三是多面体与球均确定的情况下,截面的最值问题.[对点训练]1.(2018·福州模拟)已知圆锥的高为3,底面半径为3,若该圆锥的顶点与底面的圆周都在同一个球面上,则这个球的体积等于( )A.83π B.323π C .16πD .32π解析:选B.设该圆锥的外接球的半径为R ,依题意得,R 2=(3-R )2+(3)2,解得R =2,所以所求球的体积V =43πR 3=43π×23=323π,故选B.2.(2018·洛阳第一次联考)已知球O 与棱长为4的正四面体的各棱均相切,则球O 的体积为( )A.823πB.833πC.863π D.1623π解析:选A.将正四面体补成正方体,则正四面体的棱为正方体面上的对角线,因为正四面体的棱长为4,所以正方体的棱长为2 2.因为球O 与正四面体的各棱都相切,所以球O 为正方体的内切球,即球O 的直径为正方体的棱长22,则球O 的体积V =43πR 3=823π,故选A.3.已知四棱锥S -ABCD 的所有顶点在同一球面上,底面ABCD 是正方形且球心O 在此平面内,当四棱锥的体积取得最大值时,其表面积等于16+163,则球O 的体积等于( )A.42π3B.162π3C.322π3D.642π3解析:选D.由题意得,当四棱锥的体积取得最大值时,该四棱锥为正四棱锥.因为该四棱锥的表面积等于16+163,设球O 的半径为R ,则AC =2R ,SO =R ,如图,所以该四棱锥的底面边长AB =2R ,则有(2R )2+4×12×2R × (2R )2-⎝⎛⎭⎫22R 2=16+163,解得R =22,所以球O 的体积是43πR 3=6423π.故选D.一、选择题1.(2018·长沙模拟)如图是一个正方体,A ,B ,C 为三个顶点,D 是棱的中点,则三棱锥A -BCD 的正视图、俯视图是(注:选项中的上图为正视图,下图为俯视图)( )解析:选A.正视图和俯视图中棱AD 和BD 均看不见,故为虚线,易知选A.2.(2018·高考北京卷)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为( )A .1B .2C .3D .4解析:选C.将三视图还原为直观图,几何体是底面为直角梯形,且一条侧棱和底面垂直的四棱锥,如图所示.易知,BC ∥AD ,BC =1,AD =AB =P A =2,AB ⊥AD ,P A ⊥平面ABCD ,故△P AD ,△P AB 为直角三角形, 因为P A ⊥平面ABCD ,BC ⊂平面ABCD , 所以P A ⊥BC ,又BC ⊥AB ,且P A ∩AB =A ,所以BC ⊥平面P AB ,又PB ⊂平面P AB ,所以BC ⊥PB ,所以△PBC 为直角三角形,容易求得PC =3,CD =5,PD =22, 故△PCD 不是直角三角形,故选C.3.(2018·沈阳教学质量监测(一))如图,网格纸上小正方形的边长为1,粗实线画出的是某简单几何体的三视图,则该几何体的体积为( )A.4π3B.8π3C.16π3D.32π3解析:选A.由三视图可得该几何体为半圆锥,底面半圆的半径为2,高为2,则其体积V =12×13×π×22×2=4π3,故选A.4.(2018·西安八校联考)某几何体的三视图如图所示,则该几何体的体积是( )A.4π3B.5π3 C .2+2π3D .4+2π3解析:选B.由三视图可知,该几何体为一个半径为1的半球与一个底面半径为1,高为2的半圆柱组合而成的组合体,故其体积V =23π×13+12π×12×2=5π3,故选B.5.(2018·长春质量检测(一))已知矩形ABCD 的顶点都在球心为O ,半径为R 的球面上,AB =6,BC =23,且四棱锥O -ABCD 的体积为83,则R 等于( )A .4B .2 3 C.479D.13解析:选A.如图,设矩形ABCD 的中心为E ,连接OE ,EC ,由球的性质可得OE ⊥平面ABCD ,所以V O ABCD =13·OE ·S 矩形ABCD =13×OE×6×23=83,所以OE =2,在矩形ABCD 中可得EC =23,则R =OE 2+EC 2=4+12=4,故选A.6.(2018·南昌调研)如图,网格纸上小正方形的边长为1,粗实线及粗虚线画出的是某多面体的三视图,则该多面体的体积为( )A.23 B.43 C .2D.83解析:选A.由三视图可知,该几何体为三棱锥,将其放在棱长为2的正方体中,如图中三棱锥A -BCD 所示,故该几何体的体积V =13×12×1×2×2=23.7.(2018·辽宁五校协作体联考)如图所示,网格纸上小正方形的边长为1,粗实线及粗虚线画出的是三棱锥的三视图,则此三棱锥的体积是( )A .8B .16C .24D .48解析:选A.由三视图还原三棱锥的直观图,如图中三棱锥P ABC 所示,且长方体的长、宽、高分别为6,2,4,△ABC 是直角三角形,AB ⊥BC ,AB =2,BC =6,三棱锥P -ABC 的高为4,故其体积为13×12×6×2×4=8,故选A.8.将一个底面半径为1,高为2的圆锥形工件切割成一个圆柱体,能切割出的圆柱的最大体积为( )A.π27B.8π27C.π3D.2π9解析:选B.如图所示,设圆柱的半径为r ,高为x ,体积为V ,由题意可得r 1=2-x2,所以x =2-2r ,所以圆柱的体积V =πr 2(2-2r )=2π(r 2-r 3)(0<r <1),设V (r )=2π(r 2-r 3)(0<r <1),则V ′(r )=2π(2r -3r 2),由2π(2r -3r 2)=0得r =23,所以圆柱的最大体积V max =2π⎣⎡⎦⎤⎝⎛⎭⎫232-⎝⎛⎭⎫233=8π27. 9.(2018·福州模拟)如图,网格纸上小正方形的边长为1,粗线画出的是某多面体的三视图,则该多面体的表面积为 ( )A .14B .10+4 2 C.212+4 2 D.21+32+4 2解析:选D.由三视图可知,该几何体为一个直三棱柱切去一个小三棱锥后剩余的几何体,如图所示.所以该多面体的表面积S =2×⎝⎛⎭⎫22-12×1×1+12×(22-12)+12×22+2×22+12×32×(2)2=21+32+42,故选D. 10.(2018·太原模拟)某几何体的三视图如图所示,则该几何体中最长的棱长为( )A .3 3B .2 6 C.21D .2 5解析:选B.由三视图得,该几何体是四棱锥P -ABCD ,如图所示,ABCD 为矩形,AB =2,BC =3,平面P AD ⊥平面ABCD ,过点P 作PE ⊥AD ,则PE =4,DE =2,所以CE =22,所以最长的棱PC =PE 2+CE 2=26,故选B.11.(2018·南昌调研)已知三棱锥P -ABC 的所有顶点都在球O 的球面上,△ABC 满足AB =22,∠ACB =90°,P A 为球O 的直径且P A =4,则点P 到底面ABC 的距离为( )A. 2 B .2 2 C. 3D .2 3解析:选B.取AB 的中点O 1,连接OO 1,如图,在△ABC 中,AB =22,∠ACB =90°,所以△ABC 所在小圆O 1是以AB 为直径的圆,所以O 1A =2,且OO 1⊥AO 1,又球O 的直径P A =4,所以OA =2,所以OO 1=OA 2-O 1A 2=2,且OO 1⊥底面ABC ,所以点P 到平面ABC 的距离为2OO 1=2 2.12.(2018·高考全国卷Ⅰ)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为( )A.334B.233C.324D.32解析:选A.记该正方体为ABCD -A ′B ′C ′D ′,正方体的每条棱所在直线与平面α所成的角都相等,即共点的三条棱A ′A ,A ′B ′,A ′D ′与平面α所成的角都相等.如图,连接AB ′,AD ′,B ′D ′,因为三棱锥A ′AB ′D ′是正三棱锥,所以A ′A ,A ′B ′,A ′D ′与平面AB ′D ′所成的角都相等.分别取C ′D ′,B ′C ′,BB ′,AB ,AD ,DD ′的中点E ,F ,G ,H ,I ,J ,连接EF ,FG ,GH ,IH ,IJ ,JE ,易得E ,F ,G ,H ,I ,J 六点共面,平面EFGHIJ 与平面AB ′D ′平行,且截正方体所得截面的面积最大.又EF =FG =GH =IH =IJ =JE =22,所以该正六边形的面积为6×34×⎝⎛⎭⎫222=334,所以α截此正方体所得截面面积的最大值为334,故选A. 二、填空题13.(2018·洛阳第一次联考)一个几何体的三视图如图所示,则该几何体的体积为________.解析:由题图可知该几何体是一个四棱锥,如图所示,其中PD ⊥平面ABCD ,底面ABCD 是一个对角线长为2的正方形,底面积S =12×2×2=2,高h =1,则该几何体的体积V =13Sh =23.答案:2314.(2018·福州四校联考)已知某几何体的三视图如图所示,则该几何体的表面积为________.解析:在长、宽、高分别为3,33,33的长方体中,由几何体的三视图得几何体为如图所示的三棱锥C -BAP ,其中底面BAP 是∠BAP =90°的直角三角形,AB =3,AP =33,所以BP =6,又棱CB ⊥平面BAP 且CB =33,所以AC =6,所以该几何体的表面积是12×3×33+12×3×33+12×6×33+12×6×33=27 3. 答案:27 315.(2018·高考全国卷Ⅱ)已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA与圆锥底面所成角为45°.若△SAB 的面积为515,则该圆锥的侧面积为________.解析:如图所示,设S 在底面的射影为S ′,连接AS ′,SS ′.△SAB 的面积为12·SA ·SB ·sin∠ASB =12·SA 2·1-cos 2∠ASB =1516·SA 2=515,所以SA 2=80,SA =4 5.因为SA 与底面所成的角为45°,所以∠SAS ′=45°,AS ′=SA ·cos 45°=45×22=210.所以底面周长l =2π·AS ′=410π,所以圆锥的侧面积为12×45×410π=402π.答案:402π16.(2018·潍坊模拟)已知正四棱柱的顶点在同一个球面上,且球的表面积为12π,当正四棱柱的体积最大时,正四棱柱的高为________.解析:设正四棱柱的底面边长为a ,高为h ,球的半径为r ,由题意知4πr 2=12π,所以r 2=3,又2a 2+h 2=(2r )2=12,所以a 2=6-h 22,所以正四棱柱的体积V =a 2h =⎝⎛⎭⎫6-h 22h ,则V ′=6-32h 2,由V ′>0,得0<h <2,由V ′<0,得h >2,所以当h =2时,正四棱柱的体积最大,V max =8.答案:2。
(浙江专用)2019高考数学二轮复习_专题二 立体几何 规范答题示例4 空间角的计算问题课件

规范答题示例4
空间角的计算问题
典例4 (15分)(2017·浙江)如图,已知四棱锥P—ABCD,△PAD是以AD为 斜边的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E 为PD的中点.
(1)证明:CE∥平面PAB; (2)求直线CE与平面PBC所成角的正弦值.
评分细则 (1)方法一第(1)问中证明CE∥平面PAB缺少条件扣1分,第(2) 问中证明PN⊥AD和BN⊥AD各给1分. (2)方法二中建系给2分,两个法向量求出1个给3分,没有最后结论扣1 分,法向量取其他形式同样给分.
跟踪演练4 (2018·全国Ⅰ)如图,四边形ABCD为正方形,E,F分别为AD, BC 的 中 点 , 以 DF 为 折 痕 把 △DFC 折 起 , 使 点 C 到 达 点 P 的 位 置 , 且 PF⊥BF. (1)证明:平面PEF⊥平面ABFD; 证明 由已知可得BF⊥PF,BF⊥EF, PF∩EF=F,PF,EF⊂平面PEF, 所以BF⊥平面PEF. 又BF⊂平面ABFD,所以平面PEF⊥平面ABFD.
由DC⊥AD,N是AD的中点得BN⊥AD,
又PN∩BN=N,PN,BN⊂平面PBN,所以AD⊥平面PBN.
9分
由BC∥AD得BC⊥平面PBN,
又BC⊂平面PBC,那么平面PBC⊥平面PBN.
过点Q作PB的垂线,垂足为H,连接MH.
MH是MQ在平面PBC上的投影,
所以∠QMH是直线CE与平面PBC所成的角.
审题路线图
方法二 (1) 取AD中点为O,连接OB,OP → AD⊥平面OPB
→ 以O为原点建立空间直角坐标系,求各点的坐标
→
→ 求平面PAB的法向量n和CE的坐标
2019版高考数学(浙江专用)二轮复习(优编增分):专题二 立体几何 第3讲Word版含答案

第3讲 空间角[考情考向分析] 以空间几何体为载体考查空间角是高考命题的重点,热点为异面直线所成的角、直线与平面所成的角和二面角的求解,向量法作为传统几何法的补充,为考生答题提供新的工具.热点一 异面直线所成的角(1)几何法:按定义作出异面直线所成的角(即找平行线),解三角形.(2)向量法:设直线l ,m 的方向向量分别为a =(a 1,b 1,c 1),b =(a 2,b 2,c 2).设l ,m 的夹角为θ⎝⎛⎭⎫0≤θ≤π2,则cos θ=|a ·b ||a ||b |=|a 1a 2+b 1b 2+c 1c 2|a 21+b 21+c 21a 22+b 22+c 22.例1 (1)(2018·全国Ⅱ)在长方体ABCD -A 1B 1C 1D 1中,AB =BC =1,AA 1=3,则异面直线AD 1与DB 1所成角的余弦值为( ) A.15B.56C.55D.22 答案 C解析 方法一 如图,在长方体ABCD -A 1B 1C 1D 1的一侧补上一个相同的长方体A ′B ′BA -A 1′B 1′B 1A 1.连接B 1B ′,由长方体性质可知,B 1B ′∥AD 1,所以∠DB 1B ′为异面直线AD 1与DB 1所成的角或其补角.连接DB ′,由题意,得DB ′=12+(1+1)2=5,B ′B 1=12+(3)2=2,DB 1=12+12+(3)2= 5.在△DB ′B 1中,由余弦定理,得DB ′2=B ′B 21+DB 21-2B ′B 1·DB 1·cos ∠DB 1B ′, 即5=4+5-2×25cos ∠DB 1B ′,∴cos ∠DB 1B ′=55.故选C.方法二 如图,以点D 为坐标原点,分别以DA ,DC ,DD 1所在直线为x ,y ,z 轴建立空间直角坐标系D -xyz .由题意,得A (1,0,0),D (0,0,0), D 1(0,0,3),B 1(1,1,3), ∴AD 1→=(-1,0,3), DB 1→=(1,1,3),∴AD 1→·DB 1→=-1×1+0×1+(3)2=2, |AD 1→|=2,|DB 1→|=5,∴cos 〈AD 1→,DB 1→〉=AD 1→·DB 1→|AD 1→|·|DB 1→|=225=55.故选C.(2)(2018·浙江省杭州二中月考)已知异面直线a ,b 所成的角为50°,过空间一定点P 最多可作n 条直线与直线a ,b 均成θ角,则下列判断不正确的是( ) A .当θ=65°时,n =3 B .当n =1时,θ只能为25° C .当θ=30°时,n =2 D .当θ=75°时,n =4答案 B解析 将空间直线平移,异面直线的夹角不变,则可将异面直线a ,b 平移到同一平面α内,使得点P 为平移后的直线a ′,b ′的交点,则当0°≤θ<25°时,n =0;当θ=25°时,n =1,此时该直线为直线a ′,b ′所成锐角的角平分线所在的直线;当25°<θ<65°时,n =2,此时这两条直线在平面α内的投影为直线a ′,b ′所成锐角的角平分线所在的直线;当θ=65°时,n =3,此时其中两条直线在平面α内的投影为直线a ′,b ′所成锐角的角平分线所在的直线,另一条直线为直线a ′,b ′所成钝角的角平分线所在的直线;当65°<θ<90°时,n =4,此时其中两条直线在平面α内的投影为直线a ′,b ′所成锐角的角平分线所在的直线,另外两条直线在平面α内的投影为直线a ′,b ′所成钝角的角平分线所在的直线;当θ=90°时,n =1,此时直线为过点P 且与平面α垂直的直线.综上所述,B 选项的说法错误,故选B. 思维升华 (1)运用几何法求异面直线所成的角一般是按找—证—求的步骤进行. (2) 两条异面直线所成的角α不一定是直线的方向向量的夹角β,即cos α=|cos β|.跟踪演练1 (2018·浙江省衢州二中模拟)如图,已知等腰三角形ABC 中,AB =AC ,O 为BC 的中点,动点P 在线段OB 上(不含端点),记∠APC =θ,现将△APC 沿AP 折起至△APC ′,记异面直线BC ′与AP 所成的角为α,则下列结论一定成立的是( )A .θ>αB .θ<αC .θ+α>π2D .θ+α<π2答案 A解析 设PC →=λBC →,则cos θ=|P A →·PC →||P A →||PC →|=|P A →·λBC →||P A →||λBC →|=|P A →·BC →||P A →||BC →|=|P A →·(BP →+PC →)||P A →|·(|BP →|+|PC →|),因为cos α=|P A →·BC ′→||P A →||BC ′→|=|P A →·(BP →+PC ′→)||P A →||BC ′→|,且P A →·PC →=P A →·PC ′→,|BP →|+|PC →|=|BP →|+|PC ′→|>|BC ′→|, 所以cos θ<cos α,又θ,α∈⎝⎛⎭⎫0,π2,所以θ>α,故选A. 热点二 直线与平面所成的角(1)几何法:按定义作出直线与平面所成的角(即找到斜线在平面内的投影),解三角形. (2)向量法:设直线l 的方向向量为a =(a 1,b 1,c 1),平面α的法向量为μ=(a 2,b 2,c 2),设直线l 与平面α的夹角为θ⎝⎛⎭⎫0≤θ≤π2,则sin θ=|a ·μ||a ||μ|=|cos 〈a ,μ〉|. 例2 (2018·浙江省名校协作体联考)在如图所示的几何体中,平面DAE ⊥平面ABCD ,四边形ABCD 为等腰梯形,四边形DCFE 为菱形.已知AB ∥CD ,∠ABC =60°,CD =12AB =1.(1)线段AC 上是否存在一点N ,使得AE ∥平面FDN ?证明你的结论;(2)若线段FC 在平面ABCD 上的投影长度为12,求直线AC 与平面ADF 所成角的正弦值.解 (1)在线段AC 上存在点N ,使得AE ∥平面FDN ,且N 是AC 的中点.如图,取AC 的中点N ,连接NF ,DN ,连接EC 交DF 于点O ,连接ON . ∵四边形CDEF 为菱形, ∴O 为EC 的中点.在△ACE 中,由中位线定理可得ON ∥AE .∵ON ⊂平面FDN ,AE ⊄平面FDN ,∴AE ∥平面FDN ,∴在线段AC 上存在点N ,使得AE ∥平面FDN ,且N 是AC 的中点. (2)方法一 ∵DE ∥CF ,∴DE 在平面ABCD 上的投影长度为12,过点E 作EO ⊥AD 于点O ,∵平面DAE ⊥平面ABCD ,且平面DAE ∩平面ABCD =AD ,EO ⊂平面DAE , ∴EO ⊥平面ABCD ,则OD =12,∵在等腰梯形ABCD 中,由已知易得AD =BC =1,∴点O 为线段AD 的中点. 设点C 到平面FDA 的距离为h , ∵V C -FDA =V F -ADC , ∴h ·S △FDA =EO ·S △ADC , 易知S △ADC =34,EO =32, 取AB 的中点M ,连接CM ,取CM 的中点P ,连接AP ,DP ,FP ,OP .∵O ,P 分别为AD ,MC 的中点,AM ∥DC ∥EF ,且AM =DC =EF ,∴OP ∥EF 且OP =EF , ∴四边形OPFE 为平行四边形,∴OE ∥FP ,OE =FP , ∴FP ⊥平面ABCD . 易求得AP =72,DP =FP =32, ∴AF =102,DF =62, ∴DF 2+AD 2=AF 2,∴△ADF 为直角三角形, ∴S △FDA =64.∴h =EO ·S △ADC S △FDA =32×3464=64.设直线AC 与平面FDA 所成的角为θ, 在△ADC 中,易得AC =3,则sin θ=h AC =24.方法二 ∵DE ∥CF ,∴DE 在平面ABCD 上的投影长度为12,过点E 作EO ⊥AD 于点O ,∵平面DAE ⊥平面ABCD ,且平面DAE ∩平面ABCD =AD ,EO ⊂平面DAE . ∴EO ⊥平面ABCD ,则OD =12,。
浙江专用2019高考数学二轮复习精准提分第二篇重点专题分层练中高档题得高分第14练空间几何体试题

第14练 空间几何体[明晰考情] 1.命题角度:空间几何体的三视图,球与多面体的组合,一般以计算面积、体积的形式出现.2.题目难度:中档或中档偏难.考点一 空间几何体的三视图与直观图要点重组 (1)三视图画法的基本原则:长对正,高平齐,宽相等;画图时看不到的线画成虚线.(2)由三视图还原几何体的步骤定底面根据俯视图确定—↓定棱及侧面根据正视图确定几何体的侧棱与侧面特征,调整实线、虚线对应棱的位置—↓定形状确定几何体的形状—(3)直观图画法的规则:斜二测画法.1.一个四面体的顶点在空间直角坐标系O-xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到的正视图为( )答案 A解析 在空间直角坐标系中作出四面体OABC的直观图如图所示,作顶点A,C在xOz平面的投影A′,C′,可得四面体的正视图.故选A.2.(2018·北京)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为( )A.1B.2C.3D.4答案 C解析 由三视图得到空间几何体,如图所示,则PA⊥平面ABCD,平面ABCD为直角梯形,PA=AB=AD=2,BC=1,所以PA⊥AD,PA⊥AB,PA⊥BC.又BC⊥AB,AB∩PA=A,AB,PA⊂平面PAB,所以BC⊥平面PAB.又PB⊂平面PAB,所以BC⊥PB.25在△PCD中,PD=2,PC=3,CD=,所以△PCD为锐角三角形.所以侧面中的直角三角形为△PAB,△PAD,△PBC,共3个.故选C.3.如图所示是一个几何体的三视图,则此三视图所描述的几何体的直观图是( )答案 D解析 先观察俯视图,由俯视图可知选项B和D中的一个正确,由正视图和侧视图可知选项D正确.4.已知正三棱锥V -ABC 的正视图和俯视图如图所示,则该正三棱锥侧视图的面积是________.答案 6解析 如图,由俯视图可知正三棱锥的底面边长为2,3则AO =×2sin60°=2.233所以VO ==2,42-223则VA ′=2.3所以该正三棱锥的侧视图的面积为×2×2=6.1233考点二 空间几何体的表面积与体积方法技巧 (1)求三棱锥的体积时,等体积转化是常用的方法,转化原则是其高易求,底面放在已知几何体的某一面上.(2)求不规则几何体的体积,常用分割或补形的思想,将不规则几何体转化为规则几何体以易于求解.(3)已知几何体的三视图,可去判断几何体的形状和各个度量,然后求解表面积和体积.5.已知正三棱柱ABC -A 1B 1C 1的底面边长为2,侧棱长为,D 为BC 的中点,则三棱锥3A -B 1DC 1的体积为( )A .3B.C .1D.3232答案 C解析 ∵D 是等边三角形ABC 的边BC 的中点,∴AD ⊥BC .又ABC -A 1B 1C 1为正三棱柱,∴AD ⊥平面BB 1C 1C .∵四边形BB 1C 1C 为矩形,∴11DB C S △=11BB C C S 四边形=×2×=.又AD =2×=,121233323∴11A B DC V △=11B DC S △·AD =××=1.故选C.1313336.一个四面体的三视图如图所示,则该四面体的体积是( )A. B. C.D .1121323答案 B解析 根据题意得到原四面体是底面为等腰直角三角形,高为1的三棱锥,故得到体积为××2×1×1=.1312137.某几何体的三视图如图所示,则该几何体的体积为________,其表面积为________.答案 +8π 16+16+12π6432解析 由正视图和侧视图可知,该几何体含有半个圆柱,再结合俯视图不难得到该几何体是半个圆柱和一个倒立的直四棱锥组合而成,如图.故该几何体的体积为V =×4×4×4+=+8π,134π×42643表面积为S =π×22+++=16+16+12π.2π×2×424×4×224×42×2228.已知一个圆锥的母线长为2,侧面展开图是半圆,则该圆锥的体积为________.答案 π33解析 由题意,得圆锥的底面周长为2π,设圆锥的底面半径是r ,则2πr =2π,解得r =1,∴圆锥的高为h ==.22-123∴圆锥的体积为V =πr 2h =π.1333考点三 多面体与球要点重组 (1)设球的半径为R ,球的截面圆半径为r ,球心到球的截面的距离为d ,则有r =.R 2-d 2(2)当球内切于正方体时,球的直径等于正方体的棱长,当球外接于长方体时,长方体的体对角线长等于球的直径;当球与正方体各棱都相切时,球的直径等于正方体底面的对角线长.(3)若正四面体的棱长为a ,则正四面体的外接球半径为a ,内切球半径为a .646129.已知三棱锥S -ABC 的所有顶点都在球O 的球面上,SA ⊥平面ABC ,SA =2,AB =1,AC =2,∠BAC =60°,则球O 的表面积为( )3A .4πB.12πC.16πD.64π答案 C解析 在△ABC 中,由余弦定理得,BC 2=AB 2+AC 2-2AB ·AC cos60°=3,∴AC 2=AB 2+BC 2,即AB ⊥BC .又SA ⊥平面ABC ,∴SA ⊥AB ,SA ⊥BC ,∴三棱锥S -ABC 可补成分别以AB =1,BC =,SA =2为长、宽、高的长方体,33∴球O 的直径为=4,12+(3)2+(23)2故球O 的表面积为4π×22=16π.10.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A .πB. C. D.3π4π2π4答案 B解析 设圆柱的底面半径为r ,球的半径为R ,且R =1,由圆柱的两个底面的圆周在同一个球的球面上可知,r ,R 及圆柱的高的一半构成直角三角形.∴r ==.12-(12)232∴圆柱的体积为V =πr 2h =π×1=.343π411.已知四棱锥P -ABCD 的底面ABCD 是边长为6的正方形,且PA =PB =PC =PD ,若一个半径为1的球与此四棱锥所有面都相切,则该四棱锥的高是( )A .6B .5C. D.9294答案 D解析 由题意知,四棱锥P -ABCD 是正四棱锥,球的球心O 在四棱锥的高PH 上,过正四棱锥的高作组合体的轴截面如图:其中PE ,PF 是斜高,A 为球面与侧面的切点.设PH =h ,易知Rt△PAO ∽Rt△PHF ,所以=,即=,解得h =,故选D.OA FH PO PF 13h -1h 2+329412.一个圆锥过轴的截面为等边三角形,它的顶点和底面圆周在球O 的球面上,则该圆锥的体积与球O 的体积的比值为________.答案 932解析 设等边三角形的边长为2a ,球O 的半径为R ,则V 圆锥=·πa 2·a =πa 3.13333又R 2=a 2+(a -R )2,3所以R =a ,233故V 球=·3=πa 3,4π3(233a )32327故其体积比值为.9321.如图,在正四棱柱ABCD -A 1B 1C 1D 1中,点P 是平面A 1B 1C 1D 1内一点,则三棱锥P -BCD 的正视图与侧视图的面积之比为( )A .1∶1B.2∶1C.2∶3D.3∶2答案 A解析 由题意可得正视图的面积等于矩形ADD 1A 1面积的,侧视图的面积等于矩形CDD 1C 112面积的.又底面ABCD 是正方形,所以矩形ADD 1A 1与矩形CDD 1C 1的面积相等,即正视图与12侧视图的面积之比是1∶1.2.已知一几何体的三视图如图所示,它的侧视图与正视图相同,则该几何体的体积为( )A.π+ B.π+16382383823C.π+8 D.π+81632832答案 A解析 由三视图知该几何体是正四棱锥(底面为正方形,且顶点在底面的射影为正方形的中心的棱锥)与半球体的组合体,且正四棱锥的高为,底面对角线长为4,球的半径为2,2所以组合体的体积为V =×π×23+××42×=π+.1243131221638233.已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点.若三棱锥O -ABC 体积的最大值为36,则球O 的表面积为( )A .36πB .64πC .144πD .256π答案 C解析 易知△AOB 的面积确定,若三棱锥O -ABC 的底面OAB 上的高最大,则其体积最大.因为高最大为半径R ,所以V O -ABC =×R 2×R =36,解得R =6.故S 球=4πR 2=144π.1312解题秘籍 (1)三视图都是几何体的投影,要抓住这个根本点确定几何体的特征.(2)多面体与球的切、接问题,要明确切点、接点的位置,利用合适的截面图确定两者的关系,要熟悉长方体与球的各种组合.1.(2018·浙江)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm 3)是( )A .2B .4C .6D .8答案 C 解析 由几何体的三视图可知,该几何体是一个底面为直角梯形,高为2的直四棱柱,直角梯形的上、下底边长分别为2,1,高为2,∴该几何体的体积为V =2×=6.[12×(2+1)×2]故选C.2.已知某几何体的三视图如图所示,则该几何体的最大边长为( )A. B.56C.D .272答案 B 解析 根据三视图作出原几何体(四棱锥P -ABCD )的直观图如下:可计算PB =PD =BC =,PC =,故该几何体的最大边长为.2663.如图是棱长为2的正方体的表面展开图,则多面体ABCDE 的体积为( )A .2B.23C.D.4383答案 D 解析 多面体ABCDE 为四棱锥(如图),利用割补法可得其体积V =4-=,故选D.43834.如图,网格纸上小正方形的边长为1,下图画出的是某几何体的三视图,则该几何体的表面积为( )A .12+6+18132B .9+6+18132C .9+8+18132D .9+6+12132答案 B解析 作出该几何体的直观图如图所示(所作图形进行了一定角度的旋转),故所求几何体的表面积S =2×3×+2××3×+×4×6+×3×4+×4×3=9+6+18,故选B.131********221325.某锥体的三视图如图所示,用平行于锥体底面的平面把锥体截成体积相等的两部分,则截面面积为( )A .2B .22C .2D .23234答案 C解析 三视图表示的几何体(如图)是四棱锥(镶嵌入棱长为2的正方体中),且四棱锥F -ABCD 的底面为正方形ABCD ,面积为4,设截面面积为S ,所截得小四棱锥的高为h ,则Error!解得S =2.326.某几何体的三视图如图所示,其中正视图、侧视图均是由三角形与半圆构成,俯视图由圆与内接三角形构成,则该几何体的体积为( )A.+B.+2π6162π612C.+ D.+2π3162π312答案 A 解析 该几何体是一个半球,上面有一个三棱锥,体积为V =××1×1×1+×π×3=+,故选A.13121243(22)162π67.(2018·全国Ⅰ)某圆柱的高为2,底面周长为16,其三视图如图所示.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在侧视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( )A .2B .2175C .3D .2答案 B 解析 先画出圆柱的直观图,根据题中的三视图可知,点M ,N 的位置如图①所示.圆柱的侧面展开图及M ,N 的位置(N 为OP 的四等分点)如图②所示,连接MN ,则图中MN 即为M 到N 的最短路径.|ON |=×16=4,|OM |=2,14∴|MN |===2.|OM |2+|ON |222+425故选B.8.某几何体的三视图如图所示,则该几何体外接球的表面积是( )A .8πB.12πC.16πD.25π2答案 D解析 如图所示,该几何体是三棱锥D —ABC ,其中AB =2,AC =2,BC =2,取BC 的中23点E ,连接DE ,则DE =,且AB ⊥AC ,DE ⊥平面ABC ,故外接球球心O 必在直线DE 上,2设三棱锥D —ABC 外接球的半径为R ,由(OD -DE )2+EC 2=OC 2=R 2,得(R -)2+()232=R 2,解得R 2=,故三棱锥D —ABC 的外接球的表面积S =4πR 2=,故选D.25825π29.某几何体的三视图如图所示(单位:cm),则该几何体共有________条棱;该几何体的体积为________cm 3.答案 8 1解析 由三视图知该几何体为底面为上底是1cm ,下底是2cm ,高是1cm 的直角梯形,有一条高为2cm 的棱垂直于底面的四棱锥,则其有8条棱,体积为×2××1=1(cm 3).131+2210.《九章算术》是我国古代内容极为丰富的数学名著,系统地总结了战国、秦、汉时期的数学成就.书中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为“阳马”,若某“阳马”的三视图如图所示(网格纸上小正方形的边长为1),则该“阳马”最长的棱长为________.答案 52解析 由三视图知,几何体是四棱锥,且四棱锥的一条侧棱与底面垂直,如图所示.其中PA ⊥平面ABCD ,∴PA =3,AB =CD =4,AD =BC =5,∴PB ==5,PC ==5,PD ==.9+169+16+2529+2534∴该几何体最长的棱长为5.211.已知某几何体的三视图如图所示,其中俯视图是正三角形,则该几何体的体积为________.答案 23解析 依题意得,该几何体是由如图所示的三棱柱ABC -A 1B 1C 1截去四棱锥A -BEDC 得到的,故其体积V =×22××3-××2×=2.1232131+223312.已知三棱锥A -BCD 中,AB =AC =BC =2,BD =CD =,点E 是BC 的中点,点A 在平面2BCD 上的投影恰好为DE 的中点F ,则该三棱锥外接球的表面积为________.答案 60π11解析 连接BF ,由题意,得△BCD 为等腰直角三角形,E 是外接圆的圆心.∵点A 在平面BCD 上的投影恰好为DE 的中点F ,∴BF ==,1+1452∴AF ==.4-54112设球心O 到平面BCD 的距离为h ,则1+h 2=+2,解得h =,14(112-h )21111∴外接球的半径r ==,1+4111511故该三棱锥外接球的表面积为4π×=.151160π11。
(浙江专用)2021高考数学二轮复习专题二立体几何第2讲立体几何中的空间角问题课件

探究提高 求异面直线所成的角,可以应用向量法,也可以应用异面直线的定义求解.
【训练1】 (1)(2021·浙江卷)四棱锥SABCD的底面是正方形,侧棱长均相等,E是线
段AB上的点(不含端点).设SE与BC所成的角为θ1,SE与平面ABCD所成的角为θ2,
二面角SABC的平面角为θ3,那么( )
A.θ1≤θ2≤θ3
67,sin∠C1A1B1=
1, 7
所以 C1D= 3,故 sin∠C1AD=CAC1D1= 1339.因此,直线 AC1 与平面 ABB1 所成的角的
正弦值是
39 13 .
法二 (1)证明 如图,以AC的中点O为原点,分别以射线OB,OC 为x,y轴的正半轴,建立空间直角坐标系O-xyz. 由题意知各点坐标如下: A(0,- 3,0),B(1,0,0),A1(0,- 3,4),B1(1,0,2),C1(0, 3,1). 因此A→B1=(1, 3,2),A→1B1=(1, 3,-2),A→1C1=(0,2 3,-3). 由A→B1·A→1B1=0 得 AB1⊥A1B1.由A→B1·A→1C1=0 得 AB1⊥A1C1.所以 AB1⊥平面 A1B1C1.
(2)解 如图,过点C1作C1D⊥A1B1,交直线A1B1于点D,连接AD. 由AB1⊥平面A1B1C1,AB1 平面ABB1,得平面A1B1C1⊥平面ABB1,
由C1D⊥A1B1得C1D⊥平面ABB1,所以∠C1AD是AC1与平面ABB1所成的角.
由 B1C1=
5,A1B1=2
2,A1C1=
21得 cos∠C1A1B1=
【训练2】 如图,在四棱锥P-ABCD中,AD∥BC,∠ADC=∠PAB =90°,BC=CD= 12AD,E为棱AD的中点,异面直线PA与CD所 成的角为90°. (1)在平面PAB内找一点M,使得直线CM∥平面PBE,并说明理 由;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2讲 立体几何中的空间角问题
高考定位 以空间几何体为载体考查空间角(以线面角为主)是高考命题的重点,常与空间线面关系的证明相结合,热点为空间角的求解,常以解答题的形式进行考查,高考注重以传统方法解决空间角问题,但也可利用空间向量来求解.
真 题 感 悟
(2018·浙江卷)如图,已知多面体ABCA 1B 1C 1,A 1A ,B 1B ,C 1C 均垂直于平
面ABC ,∠ABC =120°,A 1A =4,C 1C =1,AB =BC =B 1B =2.
(1)证明:AB 1⊥平面A 1B 1C 1;
(2)求直线AC 1与平面ABB 1所成的角的正弦值.
法一 (1)证明 由AB =2,AA 1=4,BB 1=2,AA 1⊥AB ,BB 1⊥AB 得AB 1=A 1B 1
=22,所以A 1B 21+AB 21=AA 2
1,
所以AB 1⊥A 1B 1.
由BC =2,BB 1=2,CC 1=1,BB 1⊥BC ,CC 1⊥BC 得B 1C 1=5,
由AB =BC =2,∠ABC =120°得AC =23,
由CC 1⊥AC ,得AC 1=13,所以AB 21+B 1C 21=AC 21,
故AB 1⊥B 1C 1,又A 1B 1∩B 1C 1=B 1,
因此AB 1⊥平面A 1B 1C 1.
(2)解 如图,过点C 1作C 1D ⊥A 1B 1,交直线A 1B 1于点D ,连接AD .
由AB 1⊥平面A 1B 1C 1,AB 1平面ABB 1,得
平面A 1B 1C 1⊥平面ABB 1,
由C 1D ⊥A 1B 1得C 1D ⊥平面ABB 1,
所以∠C 1AD 是AC 1与平面ABB 1所成的角.
由B 1C 1=5,A 1B 1=22,A 1C 1=21得cos∠C 1A 1B 1=6
7,sin∠C 1A 1B 1=1
7, 所以C 1D =3,故sin∠C 1AD =C 1D AC 1=3913
. 因此,直线AC 1与平面ABB 1所成的角的正弦值是
3913. 法二 (1)证明 如图,以AC 的中点O 为原点,分别以射线OB ,OC 为x ,
y 轴的正半轴,建立空间直角坐标系O-xyz .
由题意知各点坐标如下:
A (0,-3,0),
B (1,0,0),A 1(0,-3,4),B 1(1,0,2),
C 1(0,3,1).
因此AB 1→=(1,3,2),A 1B 1→=(1,3,-2),A 1C 1→=(0,23,-3).
由AB 1→·A 1B 1→=0得AB 1⊥A 1B 1.
由AB 1→·A 1C 1→=0得AB 1⊥A 1C 1.
所以AB 1⊥平面A 1B 1C 1.
(2)解 设直线AC 1与平面ABB 1所成的角为θ.
由(1)可知AC 1→=(0,23,1),AB →=(1,3,0),BB 1→=(0,0,2).
设平面ABB 1的法向量n =(x ,y ,z ).
由⎩⎪⎨⎪⎧n ·AB →=0,n ·BB 1→=0,即⎩⎨⎧x +3y =0,2z =0,
可取n =(-3,1,0). 所以sin θ=|cos 〈AC 1→
,n 〉|=|AC 1→·n ||AC 1→|·|n |=3913. 因此,直线AC 1与平面ABB 1所成的角的正弦值是3913
. 考 点 整 合
1.求异面直线所成角的方法
方法一:几何法.用几何法求两条异面直线所成角的步骤为:①利用定义构造角,可固定一条直线,平移另一条直线,或将两条直线同时平移到某个特殊的位置;②证明找到(或作出)的角即为所求角;③通过解三角形来求角.
方法二:空间向量法.用空间向量法求两条异面直线a ,b 所成角θ的步骤为:①求出直线a ,b 的方向向量,分别记为m ,n ;②计算cos 〈m ,n 〉=
m ·n |m ||n |
;③利用cos θ=|cos 〈m ,n 〉|,以及θ∈(0°,90°],求出角θ.
2.求直线与平面所成角的方法 方法一:几何法.用几何法求直线l 与平面α所成角的步骤为:①找出直线l 在平面α上的射影;②证明所找的角就是所求的角;③把这个平面角置于一个三角形中,通过解三角形来求角.
方法二:空间向量法.用空间向量法求直线AB 与平面α所成角θ的步骤为:①求出平面
α的法向量n 与直线AB 的方向向量AB →;②计算cos 〈AB →,n 〉=AB →·n |AB →||n |
;③利用sin θ=|cos 〈AB →,n 〉|,以及θ∈[0°,90°],求出角θ.。