专升本高数二概念和公式
专升本高数公式大全

专升本高数公式大全1.二次函数的图像方程:f(x)=a(x-h)²+k2.平面直角坐标方程:Ax+By+C=03.二次曲线方程:Ax² + By² + Cxy + Dx + Ey + F = 04.圆的标准方程:(x-a)²+(y-b)²=r²5.椭圆的标准方程:(x-a)²/b²+(y-b)²/a²=16.双曲线的标准方程:(x-a)²/b²-(y-b)²/a²=17.抛物线的标准方程:(x-a)²=4p(y-b)8.三角函数的正余弦和差公式:(1) sin(A ± B)= sinAcosB ± cosAsinB(2) cos(A ± B) = cosAcosB ∓ sinAsinB(3) tan(A ± B) = (tanA ± tanB) / (1 ∓ tanAtanB)9.三角函数的倍角公式:(1) sin2A = 2sinAcosA(2) cos2A = cos²A - sin²A(3) tan2A = (2tanA) / (1 - tan²A)10.三角函数的半角公式:(1) sin(A/2) = ±√[(1 - cosA) / 2](2) c os(A/2) = ±√[(1 + cosA) / 2](3) tan(A/2) = ±√[(1 - cosA) / (1 + cosA)]注:±的选取根据A的象限确定。
11.三角方程的化简公式:(1) sin²x + cos²x = 1(2) 1 + tan²x = sec²x(3) 1 + cot²x = csc²x12.导数的基本公式:(1) (cf(x))' = cf'(x)(2)(f(x)±g(x))'=f'(x)±g'(x)(3)(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)(4)(f(x)/g(x))'=[f'(x)g(x)-f(x)g'(x)]/[g(x)]²(5)(f(g(x)))'=f'(g(x))g'(x)(6)(f(x)⋅g(x)⋅h(x))'=f'(x)g(x)h(x)+f(x)g'(x)h(x)+f(x)g(x)h'( x)13.微分的基本公式:(1) dy = f'(x)dx(2) dy = dx/g'(y)(3) dy = p(x)dx + q(x)dx² + r(x)f'(x)14.积分的基本公式:(1) ∫cf(x)dx = c∫f(x)dx(2) ∫[f(x) ± g(x)]dx = ∫f(x)dx ± ∫g(x)dx(3) ∫f'(x)dx = f(x) + C(4) ∫f'(g(x))g'(x)dx = f(g(x)) + C15.牛顿-莱布尼兹公式:∫[a, b]f(x)dx = F(b) - F(a)注:其中F(x)为f(x)的一个原函数。
专升本高等数学二知识点总结

专升本高等数学二知识点总结嘿,想专升本的小伙伴们!今天咱就来好好唠唠高等数学二的那些知识点。
这高等数学二啊,就像是一座神秘的城堡,里面有各种各样的宝藏(知识点)等待我们去挖掘呢。
先说说函数这一块吧。
函数就像是一个魔法盒子,你给它一个输入(自变量),它就会给你一个输出(因变量)。
一元函数是最基础的啦,就像我们走的单行道,只有一个方向决定结果。
比如一次函数y = kx + b,k就像是这条道路的坡度,b呢,就是在起点的时候的偏移量。
我记得我那同学小李啊,最开始学函数的时候,老是把k和b的意义搞混。
我就跟他说:“你看啊,k就好比是你骑自行车的速度,b就是你出发的时候离原点有多远,这能一样吗?”他这才恍然大悟。
接着就是极限。
极限这东西可神奇了,它像是一个目标,函数这个小火车一直朝着这个目标开去。
当自变量无限接近某个值的时候,函数值就无限接近极限值。
有次考试,有个求极限的题,小张在那愁眉苦脸的。
我问他咋了,他说这极限感觉就像天上的星星,看得见摸不着。
我就笑着跟他说:“你呀,别把它想得那么复杂。
你就想象你在追一只跑得特别快的兔子,你离它越来越近,这个越来越近的状态就是极限。
”求极限的方法有好多呢,像等价无穷小替换,就像是用相似的东西去代替,简化计算。
导数可不得了,它是函数的变化率。
这导数就像一个超级放大镜,能看到函数在每一点的变化速度。
如果把函数看成是一个爬山的路线,导数就是你在每个点上爬坡的陡峭程度。
我和小王一起讨论导数的时候,他说:“这导数感觉好抽象啊。
”我就说:“你想啊,你跑步的时候,你每一秒速度的变化,那就是导数啊。
”导数的公式得好好记,像常见函数的导数公式,就像是武功秘籍里的基本招式,不记住可不行。
求导法则呢,加法求导法则就像两个人合作干活,各自的效率相加就是总的效率;乘法求导法则就稍微复杂点,有点像互相影响的关系。
再讲讲积分吧。
积分和导数是相反的过程,就像上山和下山一样。
不定积分是求原函数,就像是把已经加工好的东西还原到原材料。
专升本高数二概念和公式

专升本高数二概念和公式高等数学是专升本考试中的一门重要科目,其中的概念和公式也是必须掌握的内容。
本文将对专升本高数二的概念和公式进行详细介绍。
一、极限的概念和性质极限是高等数学中一个核心概念,它用于描述函数趋近于某个值的过程。
在计算极限时,我们需要掌握以下几个重要的性质:1. 极限的唯一性:如果函数的极限存在,则极限是唯一的。
2. 保号性:如果函数在某个点的左右两侧函数值符号不同,那么极限不存在。
3. 四则运算法则:加法、减法、乘法和除法运算的极限可以通过分别计算各项的极限得到。
二、导数的定义与计算导数是描述函数在某一点的变化率的概念。
它的计算与定义有着密切的关系。
1. 导数的定义:函数在某一点的导数定义为函数在该点的切线斜率。
2. 导数的计算:导数可以通过求导公式来计算,例如对多项式函数进行求导时,可以按照幂减一的原则进行计算。
三、不定积分和定积分不定积分和定积分是高等数学中的两个重要概念,它们用于求取函数与自变量之间的关系。
1. 不定积分:不定积分可看作是导数的逆运算,表示函数的原函数。
2. 定积分:定积分用于计算函数在一定区间上的累积效应,可以求取曲线下的面积。
四、常见的高数二公式在高数二中,有一些常见的公式需要掌握,这些公式在计算过程中非常常用。
1. 三角函数的和差化积公式:例如sin(a ± b) = sin(a)cos(b) ±cos(a)sin(b)。
2. 指数函数的导数公式:例如d/dx(e^x) = e^x。
3. 对数函数的导数公式:例如d/dx(lnx) = 1/x。
总结:高等数学中的概念和公式是专升本考试中不可或缺的一部分,熟练掌握这些概念和公式对于解题至关重要。
本文简要介绍了高数二中的概念和性质、导数的定义与计算、不定积分和定积分以及常见的公式。
希望读者通过本文的介绍能够对这些内容有更深入的理解,为专升本考试做好充分的准备。
成考专升本高等数学(二)重点及解析(精简版)

解: ∂z = 2x sin 2 y , ∂z = 2x2 cos 2 y
∂x
∂y
三、全微分
1、全微分公式:函数 z = f (x, y) 在点 (x, y) 处全微分公式为: dz = ∂z dx + ∂z dy ∂x ∂y
2、全微分求法:(1)、先求出两个一阶偏导数 ∂z 和 ∂z . (2)、然后代入上述公式即可. ∂x ∂y
一、多元函数的定义:由两个或两个以上的自变量所构成的函数,称为多.元.函.数.。其自 变量的变化范围称为定.义.域.,通常记作 D 。 例如:二元函数通常记作: z = f (x, y) , (x, y) ∈ D
二、二元函数的偏导数 1、偏导数的表示方法: (1)设二元函数 z = f (x, y) ,则函数 z 在区域 D 内对 x 和对 y 的偏导数记为:
或 dy
x= x0
dx
x = x0
(2)函数 f (x) 在区间(a,b)内的导数记作:
f '(x ) , y' 或 dy dx
二、求导公式(必须熟记) (1) (c)' = 0 (C 为常数) (3) (ex )' = ex (5) (sin x)' = cos x
(2) (xα )' = α xα −1 (4) (ln x)' = 1
x2
− 2x + x2 −1
1
.
……… 0未定式,提取公因式 0
解:原式=
lim
x→1
(
x
( x −1)2 −1)( x +1)
=
lim
x→1
( (
x x
−1) +1)
=
专升本高等数学二笔记公式大全名师制作优质教学资料

第一章极限和连续 3. 理解事件之间并(和)、交(积)、差运算的第一节极限意义,掌握其运算规律。
1,0 ,1,0 ,⋯有界: 0, 1[ 复习考试要求 ] 4. 理解概率的古典型意义,掌握事件概率的基本 2. 数列极限的存在准则1.了解极限的概念(对极限定义性质及事件概率的计算。
定理 1.3(两面夹准则)若数列 {x n},{y n},{z n} 满等形式的描述不作要 5. 会求事件的条件概率;掌握概率的乘法公式及足以下条件:求)。
会求函数在一点处的左极限与右极限,了事件的独立性。
( 1),6. 了解随机变量的概念及其分布函数。
解函数在一点处极限存在的充分必要条件。
2.了解极限的有关性质,掌握极限的四则运算法7. 理解离散性随机变量的意义及其概率分布掌握( 2),则 2. 当 x→∞时,函数 f ( x)的极限则。
概率分布的计算方法。
定理 1.4若数列 {x n} 单调有界,则它必有极限。
(1 )当 x →∞时,函数 f ( x)的极限3.理解无穷小量、无穷大量的概念,掌握无穷小8. 会求离散性随机变量的数学期望、方差和标准 3. 数列极限的四则运算定理。
y=f(x)x→∞ f(x)→?量的性质、无穷小量与无穷大量的关系。
会进行差。
定理 1.5无穷小量阶的比较(高阶、低阶、同阶和等价)。
y=f(x)=1+会运用等价无穷小量代换求极限。
( 1)4.熟练掌握用两个重要极限求极限的方法。
x→∞ f(x)=1+→ 1第二节函数的连续性( 2)[ 复习考试要求 ]1.理解函数在一点处连续与间断的概念,理解函定义对于函数 y=f (x ),如果当 x→∞时, f (x)数在一点处连续与极限存在之间的关系,掌握判( 3)当时,无限地趋于一个常数 A,则称当 x→∞时,函数 f断函数(含分段函数)在一点处连续性的方法。
(三)函数极限的概念(x )的极限是 A,记作2.会求函数的间断点。
1. 当 x→ x0时函数 f (x )的极限或 f ( x)→ A(当 x →∞时)3.掌握在闭区间上连续函数的性质会用它们证明( 1)当 x→ x0时 f (x)的极限(2 )当 x →+∞时,函数 f ( x)的极限一些简单命题。
专升本高等数学公式

专升本高等数学公式高等数学(专升本)是一门重要的学科,其中涉及了许多重要的公式和定理。
下面是一些在这门课程中常见的高等数学公式:一、极限1.基本极限公式:- 常数函数极限:lim(c) = c (c为常数)- 幂函数极限:lim(x^n) = a^n (n为常数)- 三角函数极限:lim(sin x) = sin a (a为常数)- 指数函数极限:lim(a^x) = a^a (a为常数)- 对数函数极限:lim(log_a x) = log_a a (a为常数)- 指数函数、对数函数极限:lim(a^x - 1) = ln a (a为正常数)- 指数函数、对数函数极限:lim(log_a (1 + x)) = ln a (a为正常数)2.无穷小与无穷大的性质:-无穷小的乘除性质-无穷小与有界量的乘除性质-无穷小的常数倍性质-无穷小与有界量的加减性质-无穷大的加减乘除性质-无穷小与无穷大的关系3.极限的运算法则:-四则运算法则-复合函数法则-两个无穷小量乘积的极限二、导数和微分1.基本导数公式:-变量常数的导数:d(c)=0(c为常数)- 幂函数导数:d(x^n) = nx^(n-1) (n为常数)- 三角函数导数:d(sin x) = cos x (d为常数)- 三角函数导数:d(cos x) = -sin x (d为常数)- 指数函数导数:d(a^x) = a^xlna (a为常数)- 对数函数导数:d(log_a x) = 1/(xlna) (a为常数,且x>0) 2.复合函数导数:-链式法则:d(f(g(x)))=f'(g(x))*g'(x)3.导数的法则:- 和差法则:d(u ± v) = du/dx ± dv/dx- 积法则:d(uv) = u * dv/dx + v * du/dx- 商法则:d(u/v) = (v * du/dx - u * dv/dx) / v^2三、不定积分1.基本积分公式:- 幂函数积分:∫(x^n)dx = (x^(n+1))/(n+1) + C (n不等于-1) - 指数函数积分:∫(a^x)dx = (a^x)/(lna) + C (a不等于1) - 三角函数积分:∫sin x dx = -cos x + C- 三角函数积分:∫cos x dx = sin x + C- 三角函数积分:∫sec^2 x dx = tan x + C- 三角函数积分:∫csc^2 x dx = -cot x + C- 对数函数积分:∫(1/x)dx = ln,x, + C2.基本积分性质:-积分的线性性质-积分的分部积分法-积分的换元法-积分的替换法四、微分方程1.常微分方程:- 一阶线性齐次方程:dy/dx + p(x)y = 0- 一阶线性非齐次方程:dy/dx + p(x)y = f(x)-二阶齐次方程:y''+p(x)y'+q(x)y=0-二阶非齐次方程:y''+p(x)y'+q(x)y=f(x)2.常微分方程的解法:-变量分离法-齐次方程的解法-一阶线性非齐次方程的解法-二阶齐次方程的解法-二阶非齐次方程的解法这些公式和定理是高等数学(专升本)中的一部分,掌握了这些公式对于学习和理解高等数学非常重要。
专升本高数二概念和公式

专升本高数二概念和公式高等数学(二)是专升本数学考试中的一门重要学科,主要涵盖了函数、极限、导数等内容。
下面将详细介绍高等数学(二)中的一些重要概念和公式。
一、函数的概念和性质1.1函数的定义:函数是一个将一个集合的每个元素映射到另一个集合的元素的规则。
一般地,若对于集合A中的任意元素x,存在集合B中有唯一元素y与之对应,则称y是x的函数值,记作f(x)=y,并称f(x)为定义在A上的函数。
1.2函数的性质:(1)定义域:函数中所有可能输入的集合。
(2)值域:函数的所有可能输出的集合。
(3)奇偶函数:当函数满足f(x)=f(-x)时,称其为偶函数;当满足f(-x)=-f(x)时,称其为奇函数。
(4)单调性:函数在定义域的任意两个点上,函数值的大小关系保持不变。
(5)周期性:对于其中一正常数T,若对于定义域中的任意一个值x,有f(x+T)=f(x),则称f(x)为周期函数,T称为该函数的周期。
二、极限的概念和性质2.1 极限的定义:设函数f(x)在点x0的其中一去心邻域内有定义,当自变量x趋近于x0时,如果存在常数A,使得对于任意给定的正数ε,总存在正数δ,使得当x满足0 < ,x - x0,< δ时,有,f(x) - A,< ε,那么称常数A为函数在点x0处的极限,记为lim(x→x0) f(x) = A。
2.2极限的性质:(1)极限的唯一性:如果函数f在x0的其中一去心邻域内有定义,并且lim(x→x0) f(x)存在,则该极限是唯一的。
(2)无穷小量的性质:如果lim(x→x0) f(x) = A,则A为常数,若A=0,则称f(x)当x趋于x0时是无穷小量。
(3)夹逼定理:设在点x0的其中一去心邻域上有g(x) ≤ f(x) ≤ h(x),且lim(x→x0) g(x) = lim(x→x0) h(x) = A,则lim(x→x0) f(x) = A。
(4)极限的四则运算:设lim(x→x0) f(x) = A,lim(x→x0) g(x) = B,则有以下结论:①lim(x→x0) [f(x) ± g(x)] = A ± B;②lim(x→x0) [f(x)g(x)] = AB;③lim(x→x0) [f(x)/g(x)] = A/B(其中B≠0)。
成人高考专升本高等数学二概念和笔记公式

成人高考专升本高等数学二概念和笔记公式(2)对数的运算法则:①②③④3、对数换底公式:由换底公式推出一些常用的结论:(1)(2)(3)(4)三角函数的单调区间:的递增区间是,递减区间是;的递增区间是,递减区间是,的递增区间是,数列极限的四则运算法则如果那么推广:上面法则可以推广到有限多个数列的情况。
例如,若,,有极限,则:特别地,如果C是常数,那么函数极限的四算运则如果那么推论设都存在,为常数,为正整数,则有:无穷小量的比较:某与n同时趋向+¥由夹挤准则第二章节公式1.导数的定义:函数y=f(某)在某=某0处的瞬时变化率是=,我们称它为函数y=f(某)在某=某0处的导数,记作f′(某0)或y′|某=某0即f′(某0)=.2.导数的几何意义函数f(某)在某=某0处的导数就是切线的斜率k,即k==f′(某0).3.导函数(导数)当某变化时,f′(某)便是某的一个函数,我们称它为f(某)的导函数(简称导数),y=f(某)的导函数有时也记作y′,即f′(某)=y′=.4.几种常见函数的导数(1)c′=0(c为常数),(2)(某n)′=n某n-1(n∈Z),(3)(a某)′=a某lna(a>0,a1),(e某)′=e某(4)(ln某)′=,(loga某)′=logae=(a>0,a1)(5)(in某)′=co某,(6)(co某)′=-in某(7),(8)(9),(10)(11),(12)5.函数的和、差、积、商的导数(u±v)′=u′±v′,(uv)′=u′v+uv′′=,(ku)′=cu′(k为常数).(uvw)′=u′vw+uv′w+uvw′微分公式:(1)(7),(8)(9),(10)(11),(12)6.微分的四算运则d(u±v)=du±dv,d(uv)=vdu+udvd(ku)=kdu(k为常数).洛必达法则:在一定条件下通过分子分母分别求导,再求极限来确定未定式的值的方法。