2020-2021学年最新大连市中考仿真模拟数学试卷及答案
2020-2021学年辽宁省大连市中考数学适应性试题及答案解析

大连市最新中考适应性测试数学注意事项:1.请在答题卡上作答,在试卷上作答无效。
2.本试卷共五大题,26小题,满分150分。
考试时间120分钟。
一、选择题(本大题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一个选项正确)1.分别取正整数5的绝对值、倒数、相反数、算术平方根,得到的数值仍为正整数的是 A. 绝对值 B. 倒数 C. 相反数 D. 算术平方根2.我国是一个严重缺水的国家,淡水资源总量为28000亿立方米,人均淡水资源低于世界水平,因此,珍惜水,保护水是我们每一位公民的责任.其中数据28000用科学计数法表示为A. 28×103B. 2.8×104C. 0.28×105D. 2.8×105 3. 如图,在⊙O 中,直径CD ⊥弦AB ,则下列结论中正确的是 A .AC=AB B .∠C=∠BC .∠C=21∠BOD D .∠A=∠BOD4.不等式11≤-x 的解集是A. x >2B. x <0C. 1<x <2D. 0<x <25.在平面直角坐标系中,抛物线21)1(212-+-=x y 的顶点是A. (-1,-21) B.(-1,21) C. (1,-21) D. (1,21) 6.如图,直线l 1,l 2,l 3交于一点,直线l 4∥l 1,若∠1=124°,∠2=88°,则∠3的度数为A .26°B .36°C .46°D .56°7.一枚质地均匀的正方体骰子的六个面分别刻有1到6的点数,将这枚骰子掷两次,其点数之和是7的概率为A. 41B. 51C. 61D. 718.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问”积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有 A. 14 B. 22斛 C. 36斛 D. 66斛 二、填空题(本题共8小题,每小题3分,满分24分)(第3题)(第6题)(第8题)9.因式分解:2a2-4a=.年龄(岁)13 14 15 16人数 2 4 3 1 则这10名队员年龄的众数是.11.若二次根式12-x有意义,则x的取值范围是.12.如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,△A’B’C’可以看由△ABC绕点C顺时针旋转得到,其中点A’与点A是对应点,点B’与点B是对应点,联结AB’,且A、B、A’在同一条直线上,则AA’的长度是.13.如图,△ABC与△DEF位似,位似中心点为O,且△ABC与△DEF面积比为4:9,则AB:DE=.14.如图,点A是反比例函数图象上xky=一点,过点A作AB⊥y轴于点B,点C、D在x 轴上,且BC∥AD,四边形ABCD的面积为3,则k=.15.在平面直角坐标系中,有平行四边形ABCD,点A坐标为(2,0),点C(5,-3),点B(4,1),则D点坐标为.16.如图,一艘潜艇在海面下500m深的点A处,测得正前方俯角为31°方向上的的海底有黑匣子发出信号,潜艇在同一深度保持直线航行500m,在点B处测得海底黑匣子位于正前方俯角36.9°的方向上,海底黑匣子C所在点距海绵的深度为m.(精确到1,m.参考数据:sin36.9°≈0.60,cos36.9°≈0.80,tan36.9°≈0.75,sin31°≈0.51,cos31°≈0.87,tan31°≈0.60)三、解答题(本题共4小题,其中17、18、19题各9分,20题12,共39分)17.计算:20160-|-23|-(21)-1+6tan30°.18.先化简,再求值:12111122-÷⎪⎭⎫⎝⎛+--aaaa,其中a=2.(第12题)(第13题)(第14题)(第16题)19.如图,在正方形ABCD 内有一点P 满足AP=AB ,PB=PC ,连接AC 、PD.求证:△APB ≌△DPC.20.我市某校九年级实行小组合作学习,为了解学生课堂发言情况,随机抽取该年级部分学生,对他们每天在课堂上发言的次数进行调查和统计,统计表如下,并绘制了两幅不完整的统计图,已经知A 、B 两组发言人数直方图高度比为1∶5.请结合图中相关的数据回答下列问题:(1)A 组的人数是多少?本次调查的样本容量是多少? (2)求出C 组的人数并补全直方图; (3)该校七年级共有250人,请估计全年级每天在课堂上发言次数不少于15次的人数.四、解答题(本题共3小题,其中21、22题各9分,23题10,共28分)21.一学校为了绿化校园环境,向某园林公司购买力一批树苗.园林公司规定:如果购买树苗不超过60棵,每棵售价120元;如果购买树苗超过60棵,每增加1棵,所出售的这批树苗每棵售价均降低0.5元,但每棵树苗最低售价不得少于100元,该校最终向园林公司支付树苗款8800元.请问该校共购买了多少棵树苗?22.如图,已知一次函数的图象b kx y +=与反比例函数8xy -=的图象交于A ,B 两点,且点A 的横坐标和点B 的纵坐标都是-2,求: (1)一次函数的解析式;(2)△AOB 的面积;(3)直接写出一次函数的函数值大于反比例函数的函数值时x 的取值范围.23.如图,O 为等腰三角形ABC 内一点,⊙O 与△ABC 的底边BC 交于M,N 两点,与底边上的高AD 交于点G ,且与AB ,AC 分别相切于E,F 两点. (1)证明:EF //BC ; (2)若AG 等于⊙O 的半径,且AE =MN =32,求四边形EBCF 的面积.五、解答题(本题共3小题,其中24题11分,25、26题各12分,共35分)24.如图1,在△ABC 中.∠C =90°,AC >BC ,正方形CDEF 的顶点D 在边AC 上,点F 在射线CB 上设CD =x ,正方形CDEF 与△ABC 重叠部分的面积为S , S 关于x 的函数图象如图2所示(其中0<x ≤m ,m <x ≤2,2<x ≤n 时,函数的解析式不同). (1)填空:m 的值为________;(2)求S 关于x 的函数解析式,并写出x 的取值范围; (3)S 的值能否为213?若能,直接写出此时x 的值,若不能,说明理由.25.如图,已知:在矩形ABCD 中,O 为AC 的中点,直线l 经过点B ,且直线l 绕着点B 旋转,AM ⊥l 于点M,CN ⊥l 于点N,连接OM ,ON.4(1)当直线l 经过点D 时,如图1,则OM 、ON 的数量关系为;(2)当直线l 与线段CD 交于点F 时,如图2,(1)中的结论是否仍然成立?若成立,请加以证明;若不成立,请说明理由;(3)当直线l 与线段DC 的延长线交于点P 时,请在图3中做出符合条件的图形,并判断(1)中的结论是否仍然成立?说明理由.26.在平面直角坐标系xOy 中,抛物线C :y =ax 2.(1)若直线l 1:y =x -1与抛物线C 有且只有1个交点,求抛物线C 的解析式.(2)如图1,在(1)的条件下,在y 轴上有一点A (0,4),过点A 作直线l 2与抛物线C 有两个交点M 、N (N 位于第一象限),过点N 作x 轴的垂线,垂足为H . 试探究:是否存在l 2,使△MON ∽△NHO ?若存在,求出l 2的解析式;若不存在,说明理由. (3)如图2,E 、F 为抛物线C (y =ax 2)上两动点,始终满足OE ⊥OF ,连接EF ,则直线EF 是否恒过一定点G ?若存在点G ,直接写出G 点坐标(用含a 的坐标表示),若不存在,给予证明.(参考结论:若直线l :y =kx +b 上有两点(x 1,y 1)、(x 2,y 2),则斜率k =1212x x y y --;当两直线l 1、l 2的斜率乘积k 1·k 2=-1时,l 1⊥l 2)(第25题)数学参考答案及评分标准说明:一、时间能力有限,本解答给出了一种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 三、只给整数分数,选择题和填空题不给中间分.2016年5月15日定稿一、选择题1.A ; 2.B ; 3.C ; 4.D ; 5.A ; 6.B ; 7.C ; 8.B . 二、填空题9.2a (a -2); 10.14; 11.x ≥21; 12.6; 13.32; 14.-3; 15.(3,-4); 16. 2000. 三、解答题17.解:原式=1-23-2+6×33, (8)分=-1. (9)分18.解:原式=2222112aa a -⨯-, ………………………………………………………………6分=21a .……………………………………………………………8分当a =2时,原式=21.………………………………………………………9分 19.证明:∵四边形ABCD 是正方形,∴∠ABC =∠DCB =90°∵PB =PC ,∠PBC =∠P CB . (4)分∴∠A BC-∠PBC =∠DCB-∠PCB ,∴即∠A B P =∠D C P .…………………………………………………………………7分 又∵AB=DC ,PB=PC∴△APB ≌△DPC ...........................................................................................9分 20.解:(1)∵B 组有10人,A 组发言人数:B 发言人数=1∶5,则A 组发言人数为:2人, (3)分本次调查的样本容量为:2÷4%=50人;……………………………………………………5分 (2)c 组的人数有:50×40%=20人;…………………………………………7分 直方图如图所示;……………………………………………………………………………9分(3)全年级每天发言次数不少于15次的发言的人数有:250×(1-4%-40%-20%)=90(人); (1)2分四、解答题21.解:因为60棵树苗售价为120元×60=7200元<8800元,所以该校购买树苗超过60棵,设该校共购买了x 棵树苗,由题意得:x [120-0.5(x -60)]=8800,……………………………4分 解得:x1=220,x2=80.………………………………………………………………………………6分当x 2=220时,120-0.5×(220-60)=40<100, ∴x1=220(不合题意,舍去);……………………………………7分当x 2=80时,120-0.5×(80-60)=110>100,∴x =80,……………………………………………………………8分9分2分……………………………………4分 ………………………………5分 6又为☉的弦,所以在上. 连结OE ,OM ,则OE ⊥AE .由AG 等于☉O 的半径得AO =2OE ,所以∠OAE =30°.因此△ABC 和△AEF 都是等边三角形.………………………4分(此步骤也可通过其他方法证明,未证明△ABC 和△AEF 是等边三角形但面积求对的最多得7分) 因为A E 所以A O =4,O E =2.………………………………………………………5分 因为OM =OE 所以OD =1.……………………………………………………7分 于是AD =5,AB 8分 所以四边形EBCF 10分(也可以设AD 、EF 交于点H ,求出HD =2,直接根据梯形面积公式求解) 五、解答题24.解:(1)23;………… ……………………………………………………………………………………1分(2)①当0<x ≤23时,S=x 2.………… …………………………………2分 由题意知BC=2,当点E 恰好在AB 上时(如图1), ∵四边形CDEF 是正方形, ∴ED ∥BC , ∴△AED ∽△ABC ,∴ACAD BC ED =,即6,23223=-=AC AC AC ; ………… ……………………………………………5分 ②当23<x ≤2时,设DE 、EF 与AB 分别相交于点G 、H (如图2), 同理AC AD BC GD =,即)6(31,662x DG x DG -=-=,同理BC BF CA FH =,即)-2(,226x FH xFH =-=, ……………………6分∴S =S △ABC -S △AGD -S △HBF)2(21)6(31)6(212621x x x ----⨯-⨯⨯=68352-+=x x -.………… …………………………………………………………………………7分 ③当2<x ≤6时,如图3,∴S =S △ABC -S △AGD=x x x x 261)6(31)6(2126212+-=-⨯--⨯⨯,…………8分即⎪⎪⎪⎩⎪⎪⎪⎨⎧⋯⋯⋯⋯⋯⋯⋯⋯≤<+-≤<-+≤<=分9).62(261)223 (6835)230(222x x x x x x -x x S(3)不能.由图2可知S 随着x 的增大而递增,当x=6时,S=6<213,所以S 不能为213..........11分 25.解:(1)OM =ON ; (2)分(2)如图2,过点O 作OH ⊥l ,垂足为H , ∵AM ⊥l 于点M ,CN ⊥l 于点N , ∴AM ∥OH ∥CN , ∵OA =OB , ∴MH =NH ,∴OM =ON ,(线段垂直平分线性质定理); (7)分(另一种证明方法:延长NO 交AM 于点E ,易证△AOE ≌△CON ,O 为EN 中点,得出OM =ON )(3)成立,画图正确.(如图3),…………………………………………10分证明:过点O 作OH ⊥l ,垂足为H,AM ∥OH ∥CN ,,∵OA =OB , ∴MH =NH ,∴O M =O N .………………………………………………………………12分 26.解(1)将l 1和抛物线C 的解析式联立,a x 2-x +1=0,令Δ=1-4a =0,……………………………………………………………1分解得a =41, ∴C 的解析式为y =41x 2.………………………………………………………………2分 (2)假设存在l 2,设l 2解析式为y =k x+b , 与抛物线C 解析式联立得04x 412=--k x ,………………………………3分 设点M (x 1,kx 1+4),N (x 2,kx 2+4), 则直线O M 、O N 的斜率分别为1114x kx k +=,2224x kx k +=,…………………………4分∴21212122116)(4x x x x x x k k k k +++=•,………………………………………………………………………5分∵x1+x2=4k ,x1·x2=-16,……………………………………………6分∴116-1616-16221-k k k k 2=++=•,……………………………………………………7分∴O M ⊥O N 恒成立,∠M O N =∠N H O =90°,……………………………………8分 要想使△MON ∽△NHO 成立,只需再令∠MNO=∠NOH 即可,即MN ⊥x 轴,………………9分 ∴存在l 2符合题意,l 2解析式为y =4.………………………………………………10分 (3)存在定点G ,点G 坐标为(0,a1).………………………………12分 【(3)证明方法参考(2)】。
2020-2021学年辽宁省中考数学仿真模拟试卷2有答案

辽宁省中考数学试题第一部分选择题(共30分)一、选择题(本题包括10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.-3的绝对值是()A.13B.3 C.13-D.-32.第十三届国际动漫节近日在杭州闭幕,共吸引了来自82个国家和地区的1394500人参与,将数据1394500用科学记数法表示为()A.41.394510⨯B.513.94510⨯C.61.394510⨯D.81.394510⨯3.如图是下面某个几何体的三种视图,则该几何体是()A.圆锥B.圆柱C..三棱锥D.三棱柱4.下列运算正确的是()A.224(2)2a a=B.824632a a a÷=C.2322a a a=g D.22321a a-=5.下列事件中适合采用抽样调査的是()A.对乘坐飞机的乘客进行安检B.学校招聘教师,对应聘人员进行面试C.对“天宫2号”零部件的检査D.对端午节期间市面上粽子质量情况的调查6.如图,在ABCD Y 中, 120BAD ∠=o,连接BD ,作//AE BD 交CD 延长线于点E ,过点E 作EF BC ⊥交BC 的延长线于点F ,且1CF =,则AB 的长是( )A .2B .1C .3 D .27.共享单车为市民出行带来了方便,某单车公司第一个月投放1000辆单车,计划第三个月投放单车数量比第一个月多440辆.设该公司第二、三两个月投放单车数量的月平均增长率为x ,则所列方程正确的为( )A .21000(1)1000440x +=+ B .21000(1)440x += C . 2440(1)1000x += D .1000(12)1000440x +=+8.如果小球在如图所示的地面上自由滚动,并随机停留在某块方砖上,每块方砖大小、质地完全一致,那么它最终停留在黑色区域的概率是( )A .13 B .14 C . 15 D .169.如图,抛物线223y x x =--与y 轴交于点C ,点D 的坐标为(0,1)-,在第四象限抛物线上有一点P ,若PCD ∆是以CD 为底边的等腰三角形,则点P 的横坐标为( )A .12+B .12-C .21- D .12-或12+10. 甲、乙两人分别从A B 、两地同时出发,相向而行,匀速前往B 地、A 地,两人相遇时停留了4min ,又各自按原速前往目的地,甲、乙两人之间的距离()y m 与甲所用时间(min)x 之间的函数关系如图所示.有下列说法:①A B 、之间的距离为1200m ; ②乙行走的速度是甲的1.5倍; ③960b =; ④34a =. 以上结论正确的有( )A .①②B .①②③C . ①③④D .①②④第二部分 非选择题(共120分)二、填空题(本题共8小题,每小题3分,共24分)11.分解因式:2232x y xy y -+=____________.12.甲、乙、丙、丁四名射击运动员分别连续射靶10次,他们各自的平均成绩及其方差如下表所示,如果选一名成绩好且发挥稳定的运动员参赛,则应选择的运动员是____________.甲乙丙丁平均成绩(环) 8.6 8.4 8.6 7.6 方差0.940.740.561.9213.如图,在ABC ∆中,以AB 为直径的O e 与BC 相交于点D ,过点D 作O e 的切线交AC 于点E ,若O e 的半径为5,20CDE ∠=o,则弧BD 的长为 .14.如图,在矩形ABCD 中,ABC ∠的平分线交AD 于点E ,连接CE ,若7,4BC AE ==,则CE = .15.若关于x 的一元二次方程2(1)450k x x ---=没有实数根,则k 的取值范围是 .16.现有五张正面图形分别是平行四边形、圆、等边三角形、正五边形、菱形的卡片,它们除正面图形不同,其它完全相同.将它们背面朝上洗匀后,从中随机抽取一张卡片,卡片的正面图形既是中心对称图形又是轴对称图形的概率是 .17.如图,正方形ABCD 的边长为2,AD 边在x 轴负半轴上,反比例函数(0)ky x x=<的图象经过点B 和CD 边中点E ,则k 的值为 .18.如图,OAB ∆中,90OAB ∠=o,1OA AB ==.以OB 为直角边向外作等腰直角三角形1OBB ,以1OB 为直角边向外作等腰直角三角形12OB B ,以2OB 为直角边向外作等腰直角三角形23,...OB B ,连接1213,,,...AB BB B B ,分别与12,,,...OB OB OB 交于点123,,,...C C C ,按此规律继续下去,1ABC ∆的面积记为1S ,12BB C ∆的面积记为2S ,123B B C ∆的面积记为3S ,…,则2017S = .三、解答题 (第19题10分,第20题12分,共22分)19.先化简,再求值: 2221(1)21x x x x x x --÷+++,其中1184sin 45()2x -=+o. 20.某校以“我最喜爱的体育项目”为主题对全校学生进行随机抽样调查,调查的运动项目有:篮球、羽毛球、乒乓球、跳绳及其它项目(每位同学仅选一项),根据调查数据绘制了如下不完整的统计表和扇形统计图: 学生选择最爱的体育项目统计表运动项目频数(人数)频率篮球36 0.30羽毛球m0.25乒乓球24 n跳绳12 0.10其它项目18 0.15请根据以上图表信息解答下列问题:(1)统计表中的m=__________,n=__________;(2)在扇形统计图中,“篮球”所在扇形的圆心角为_________度;(3)该学校共有2400名学生,据此估计有多少名学生最喜爱乒乓球?(4)将2名最喜爱篮球的学生和2名最喜爱羽毛球的学生编为一组,从中随机抽取两人,请用列表或画树状图的方法求出所抽取的两人都选择了最喜爱篮球的概率.四、解答题(第21题12分,第22题12分,共24分)21.近年来雾霾天气给人们的生活带来很大影响,空气质量问题倍受人们关注.某单位计划在室、两种设备.每台B种设备价格比每台A种设备价格多0.7万内安装空气净化装置,需购进A B元,花3万元购买A种设备和花7.2万元购买B种设备的数量相同.(1)求A种、B种设备每台各多少万元?(2)根据单位实际情况,需购进A B 、两种设备共20台,总费用不高于15万元,求A 种设备至少要购买多少台?22.今年,我国海关总署严厉打击“洋垃圾”违法行动,坚决把“洋垃圾”拒于国门之外.如图,某天我国一艘海监船巡航到A 港口正西方的B 处时,发现在B 的北偏东60o方向,相距150海里处的C 点有一可疑船只正沿CA 方向行驶,C 点在A 港口的北偏东30o方向上,海监船向A 港口发出指令,执法船立即从A 港口沿AC 方向驶出,在D 处成功拦截可疑船只,此时D 点与B 点的距离为752海里.(1)求B 点到直线CA 的距离;(2)执法船从A 到D 航行了多少海里?(结果保留根号)五、解答题(满分12分)23.如图,Rt ABC ∆中,90ACB ∠=o,以BC 为直径的O e 交AB 于点D ,E F 、是O e 上两点,连接AE CF DF 、、,满足EA CA =.(1)求证:AE 是O e 的切线;(2)若O e 的半径为3,4tan 3CFD ∠=,求AD 的长. 六、解答题(满分12分)24.某超市销售樱桃,已知樱桃的进价为15元/千克,如果售价为20元/千克,那么每天可售出250千克,如果售价为25元/千克,那么每天可获利2000元,经调查发现:每天的销售量y (千克)与售价x (元/千克)之间存在一次函数关系. (1)求y 与x 之间的函数关系式;(2)若樱桃的售价不得高于28元/千克,请问售价定为多少时,该超市每天销售樱桃所获的利润最大?最大利润是多少元?七、解答题(满分12分)25.如图,在Rt ABC ∆中,90ACB ∠=o,AC BC =,点D E 、分别在AC BC 、边上,DC EC =,连接DE AE BD 、、,点M N P 、、分别是AE BD AB 、、的中点,连接PM PN MN 、、.(1)BE 与MN 的数量关系是___________;(2)将DEC ∆绕点C 逆时针旋转到如图2的位置,判断(1)中的结论是否仍然成立,如果成立,请写出证明过程,若不成立,请说明理由;(3)若6,2CB CE ==,在将图1中的DEC ∆绕点C 逆时针旋转一周的过程中,当B E D、、三点在一条直线上时, MN 的长度为_________.八、解答题(满分14分)26.如图1,抛物线213y x bx c =++经过(23,0)(0,2)A B --、两点,点C 在y 轴上,ABC ∆为等边三角形,点D 从点A 出发,沿AB 方向以每秒2个单位长度的速度向终点B 运动,设运动时间为t 秒(0t >),过点D 作DE AC ⊥于点E ,以DE 为边作矩形DEGF ,使点F 在x 轴上,点G 在AC 或AC 的延长线上.(1)求抛物线的解析式;(2)将矩形DEGF 沿GF 所在直线翻折,得矩形D E GF '',当点D 的对称点D '落在抛物线上时,求此时点D '的坐标;(3)如图2,在x 轴上有一点(23,0)M ,连接BM CM 、,在点D 的运动过程中,设矩形DEGF 与四边形ABMC 重叠部分的面积为S ,直接写出S 与t 之间的函数关系式,并写出自变量t 的取值范围.。
2020-2021学年辽宁省中考数学仿真模拟试卷及答案

辽宁省中考数学试卷一、选择题(每小题3分,共24分)1.在实数﹣1,0,3,中,最大的数是()A.﹣1 B.0 C.3 D.2.一个几何体的三视图如图所示,则这个几何体是()A.圆锥B.长方体C.圆柱D.球3.计算﹣的结果是()A. B. C. D.4.计算(﹣2a3)2的结果是()A.﹣4a5B.4a5C.﹣4a6D.4a65.如图,直线a,b被直线c所截,若直线a∥b,∠1=108°,则∠2的度数为()A.108°B.82°C.72°D.62°6.同时抛掷两枚质地均匀的硬币,两枚硬币全部正面向上的概率为()A.B.C.D.7.在平面直角坐标系xOy中,线段AB的两个端点坐标分别为A(﹣1,﹣1),B(1,2),平移线段AB,得到线段A′B′,已知A′的坐标为(3,﹣1),则点B′的坐标为()A.(4,2) B.(5,2) C.(6,2) D.(5,3)8.如图,在△ABC中,∠ACB=90°,CD⊥AB,垂足为D,点E是AB的中点,CD=DE=a,则AB的长为()A.2a B.2 a C.3a D.二、填空题(每小题3分,共24分)9.计算:﹣12÷3= .10.下表是某校女子排球队队员的年龄分布:年龄/岁13141516人数1452则该校女子排球队队员年龄的众数是岁.11.五边形的内角和为.12.如图,在⊙O中,弦AB=8cm,OC⊥AB,垂足为C,OC=3cm,则⊙O的半径为cm.13.关于x的方程x2+2x+c=0有两个不相等的实数根,则c的取值范围为.14.某班学生去看演出,甲种票每张30元,乙种票每张20元,如果36名学生购票恰好用去860元,设甲种票买了x张,乙种票买了y张,依据题意,可列方程组为.15.如图,一艘海轮位于灯塔P的北偏东60°方向,距离灯塔86n mile的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,此时,B 处与灯塔P的距离约为n mile.(结果取整数,参考数据:≈1.7,≈1.4)16.在平面直角坐标系xOy中,点A、B的坐标分别为(3,m)、(3,m+2),直线y=2x+b与线段AB有公共点,则b的取值范围为(用含m的代数式表示).三、解答题(17-19题各9分,20题12分,共39分)17.计算:(+1)2﹣+(﹣2)2.18.解不等式组:.19.如图,在▱ABCD中,BE⊥AC,垂足E在CA的延长线上,DF⊥AC,垂足F在AC 的延长线上,求证:AE=CF.20.某校为了解全校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机选取该校部分学生进行调查,要求每名学生从中只选出一类最喜爱的电视节目,以下是根据调查结果绘制的统计图表的一部分.类别A B C D E节目类型新闻体育动画娱乐戏曲人数1230m549请你根据以上的信息,回答下列问题:(1)被调查学生中,最喜爱体育节目的有人,这些学生数占被调查总人数的百分比为%.(2)被调查学生的总数为人,统计表中m的值为,统计图中n的值为.(3)在统计图中,E类所对应扇形的圆心角的度数为.(4)该校共有2000名学生,根据调查结果,估计该校最喜爱新闻节目的学生数.四、解答题(21、22小题各9分,23题10分,共28分)21.某工厂现在平均每天比原计划多生产25个零件,现在生产600个零件所需时间与原计划生产450个零件所需时间相同,原计划平均每天生产多少个零件?22.如图,在平面直角坐标系xOy中,双曲线y=经过▱ABCD的顶点B,D.点D的坐标为(2,1),点A在y轴上,且AD∥x轴,S▱ABCD=5.(1)填空:点A的坐标为;(2)求双曲线和AB所在直线的解析式.23.如图,AB是⊙O直径,点C在⊙O上,AD平分∠CAB,BD是⊙O的切线,AD 与BC相交于点E.(1)求证:BD=BE;(2)若DE=2,BD=,求CE的长.五、解答题(24题11分,25、26题各12分,共35分)24.如图,在△ABC中,∠C=90°,AC=3,BC=4,点D,E分别在AC,BC上(点D 与点A,C不重合),且∠DEC=∠A,将△DCE绕点D逆时针旋转90°得到△DC′E′.当△DC′E′的斜边、直角边与AB分别相交于点P,Q(点P与点Q不重合)时,设CD=x,PQ=y.(1)求证:∠ADP=∠DEC;(2)求y关于x的函数解析式,并直接写出自变量x的取值范围.25.如图1,四边形ABCD的对角线AC,BD相交于点O,OB=OD,OC=OA+AB,AD=m,BC=n,∠ABD+∠ADB=∠ACB.(1)填空:∠BAD与∠ACB的数量关系为;(2)求的值;(3)将△ACD沿CD翻折,得到△A′CD(如图2),连接BA′,与CD相交于点P.若CD=,求PC的长.26.在平面直角坐标系xOy中,抛物线y=ax2+bx+c的开口向上,且经过点A(0,)(1)若此抛物线经过点B(2,﹣),且与x轴相交于点E,F.①填空:b= (用含a的代数式表示);②当EF2的值最小时,求抛物线的解析式;(2)若a=,当0<x<1,抛物线上的点到x轴距离的最大值为3时,求b的值.辽宁省中考数学试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.在实数﹣1,0,3,中,最大的数是()A.﹣1 B.0 C.3 D.【考点】2A:实数大小比较.【分析】根据正实数都大于0,负实数都小于0,正实数大于一切负实数进行比较即可.【解答】解:在实数﹣1,0,3,中,最大的数是3,故选:C.2.一个几何体的三视图如图所示,则这个几何体是()A.圆锥B.长方体C.圆柱D.球【考点】U3:由三视图判断几何体.【分析】根据主视图与左视图,主视图与俯视图的关系,可得答案.【解答】解:由主视图与左视图都是高平齐的矩形,主视图与俯视图都是长对正的矩形,得几何体是矩形,故选:B.3.计算﹣的结果是()A. B. C. D.【考点】6B:分式的加减法.【分析】根据分式的运算法则即可求出答案.【解答】解:原式==故选(C)4.计算(﹣2a3)2的结果是()A.﹣4a5B.4a5C.﹣4a6D.4a6【考点】47:幂的乘方与积的乘方.【分析】根据幂的乘方和积的乘方进行计算即可.【解答】解:原式=4a6,故选D.5.如图,直线a,b被直线c所截,若直线a∥b,∠1=108°,则∠2的度数为()A.108°B.82°C.72°D.62°【考点】JA:平行线的性质.【分析】两直线平行,同位角相等.再根据邻补角的性质,即可求出∠2的度数.【解答】解:∵a∥b,∴∠1=∠3=108°,∵∠2+∠3=180°,∴∠2=72°,即∠2的度数等于72°.故选:C.6.同时抛掷两枚质地均匀的硬币,两枚硬币全部正面向上的概率为()A.B.C.D.【考点】X6:列表法与树状图法.【分析】画树状图展示所有4种等可能的结果数,再找出两枚硬币全部正面向上的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有4种等可能的结果数,其中两枚硬币全部正面向上的结果数为1,所以两枚硬币全部正面向上的概率=.故答案为.7.在平面直角坐标系xOy中,线段AB的两个端点坐标分别为A(﹣1,﹣1),B(1,2),平移线段AB,得到线段A′B′,已知A′的坐标为(3,﹣1),则点B′的坐标为()A.(4,2) B.(5,2) C.(6,2) D.(5,3)【考点】Q3:坐标与图形变化﹣平移.【分析】根据A点的坐标及对应点的坐标可得线段AB向右平移4个单位,然后可得B′点的坐标.【解答】解:∵A(﹣1,﹣1)平移后得到点A′的坐标为(3,﹣1),∴向右平移4个单位,∴B(1,2)的对应点坐标为(1+4,2),即(5,2).故选:B.8.如图,在△ABC中,∠ACB=90°,CD⊥AB,垂足为D,点E是AB的中点,CD=DE=a,则AB的长为()A.2a B.2 a C.3a D.【考点】KP:直角三角形斜边上的中线.【分析】根据勾股定理得到CE=a,根据直角三角形的性质即可得到结论.【解答】解:∵CD⊥AB,CD=DE=a,∴CE=a,∵在△ABC中,∠ACB=90°,点E是AB的中点,∴AB=2CE=2a,故选B.二、填空题(每小题3分,共24分)9.计算:﹣12÷3= ﹣4 .【考点】1D:有理数的除法.【分析】原式利用异号两数相除的法则计算即可得到结果.【解答】解:原式=﹣4.故答案为:﹣410.下表是某校女子排球队队员的年龄分布:年龄/岁13141516人数1452则该校女子排球队队员年龄的众数是15 岁.【考点】W5:众数.【分析】根据表格中的数据确定出人数最多的队员年龄确定出众数即可.【解答】解:根据表格得:该校女子排球队队员年龄的众数是15岁,故答案为:1511.五边形的内角和为540°.【考点】L3:多边形内角与外角.【分析】根据多边形的内角和公式(n﹣2)•180°计算即可.【解答】解:(5﹣2)•180°=540°.故答案为:540°.12.如图,在⊙O中,弦AB=8cm,OC⊥AB,垂足为C,OC=3cm,则⊙O的半径为 5 cm.【考点】M2:垂径定理;KQ:勾股定理.【分析】先根据垂径定理得出AC的长,再由勾股定理即可得出结论.【解答】解:连接OA,∵OC⊥AB,AB=8,∴AC=4,∵OC=3,∴OA===5.故答案为:5.13.关于x的方程x2+2x+c=0有两个不相等的实数根,则c的取值范围为c<1 .【考点】AA:根的判别式.【分析】根据方程的系数结合根的判别式,即可得出关于c的一元一次不等式,解之即可得出结论.【解答】解:∵关于x的方程x2+2x+c=0有两个不相等的实数根,∴△=22﹣4c=4﹣4c>0,解得:c<1.故答案为:c<1.14.某班学生去看演出,甲种票每张30元,乙种票每张20元,如果36名学生购票恰好用去860元,设甲种票买了x张,乙种票买了y张,依据题意,可列方程组为.【考点】99:由实际问题抽象出二元一次方程组.【分析】设甲种票买了x张,乙种票买了y张,根据“36名学生购票恰好用去860元”作为相等关系列方程组.【解答】解:设甲种票买了x张,乙种票买了y张,根据题意,得:,故答案为.15.如图,一艘海轮位于灯塔P的北偏东60°方向,距离灯塔86n mile的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,此时,B 处与灯塔P的距离约为102 n mile.(结果取整数,参考数据:≈1.7,≈1.4)【考点】TB:解直角三角形的应用﹣方向角问题;KU:勾股定理的应用.【分析】根据题意得出∠MPA=∠PAD=60°,从而知PD=AP•sin∠PAD=43,由∠BPD=∠PBD=45°根据BP=,即可求出即可.【解答】解:过P作PD⊥AB,垂足为D,∵一艘海轮位于灯塔P的北偏东60°方向,距离灯塔86n mile的A处,∴∠MPA=∠PAD=60°,∴PD=AP•sin∠PAD=86×=43,∵∠BPD=45°,∴∠B=45°.在Rt△BDP中,由勾股定理,得BP===43×≈102(n mile).故答案为:102.16.在平面直角坐标系xOy中,点A、B的坐标分别为(3,m)、(3,m+2),直线y=2x+b 与线段AB有公共点,则b的取值范围为m﹣6≤b≤m﹣4 (用含m的代数式表示).【考点】FF:两条直线相交或平行问题.【分析】由点的坐标特征得出线段AB∥y轴,当直线y=2x+b经过点A时,得出b=m ﹣6;当直线y=2x+b经过点B时,得出b=m﹣4;即可得出答案.【解答】解:∵点A、B的坐标分别为(3,m)、(3,m+2),∴线段AB∥y轴,当直线y=2x+b经过点A时,6+b=m,则b=m﹣6;当直线y=2x+b经过点B时,6+b=m+2,则b=m﹣4;∴直线y=2x+b与线段AB有公共点,则b的取值范围为m﹣6≤b≤m﹣4;故答案为:m﹣6≤b≤m﹣4.三、解答题(17-19题各9分,20题12分,共39分)17.计算:(+1)2﹣+(﹣2)2.【考点】79:二次根式的混合运算.【分析】首先利用完全平方公式计算乘方,化简二次根式,乘方,然后合并同类二次根式即可.【解答】解:原式=3+2﹣2+4=7.18.解不等式组:.【考点】CB:解一元一次不等式组.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式2x﹣3>1,得:x>2,解不等式>﹣2,得:x<4,∴不等式组的解集为2<x<419.如图,在▱ABCD中,BE⊥AC,垂足E在CA的延长线上,DF⊥AC,垂足F在AC 的延长线上,求证:AE=CF.【考点】L5:平行四边形的性质;KD:全等三角形的判定与性质.【分析】由平行四边形的性质得出AB∥CD,AB=CD,由平行线的性质得出得出∠BAC=∠DCA,证出∠EAB=∠FAD,∠BEA=∠DFC=90°,由AAS证明△BEA≌△DFC,即可得出结论.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠BAC=∠DCA,∴180°﹣∠BAC=180°﹣∠DCA,∴∠EAB=∠FAD,∵BE⊥AC,DF⊥AC,∴∠BEA=∠DFC=90°,在△BEA和△DFC中,,∴△BEA≌△DFC(AAS),∴AE=CF.20.某校为了解全校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机选取该校部分学生进行调查,要求每名学生从中只选出一类最喜爱的电视节目,以下是根据调查结果绘制的统计图表的一部分.类别A B C D E节目类型新闻体育动画娱乐戏曲人数1230m549请你根据以上的信息,回答下列问题:(1)被调查学生中,最喜爱体育节目的有30 人,这些学生数占被调查总人数的百分比为20 %.(2)被调查学生的总数为150 人,统计表中m的值为45 ,统计图中n的值为36 .(3)在统计图中,E类所对应扇形的圆心角的度数为21.6°.(4)该校共有2000名学生,根据调查结果,估计该校最喜爱新闻节目的学生数.【考点】VB:扇形统计图;V5:用样本估计总体;VA:统计表.【分析】(1)观察图表休息即可解决问题;(2)根据百分比=,计算即可;(3)根据圆心角=360°×百分比,计算即可;(4)用样本估计总体的思想解决问题即可;【解答】解:(1)最喜爱体育节目的有30人,这些学生数占被调查总人数的百分比为20%.故答案为30,20.(2)总人数=30÷20%=150人,m=150﹣12﹣30﹣54﹣9=45,n%=×100%=36%,即n=36,故答案为150,45,36.(3)E类所对应扇形的圆心角的度数=360°×=21.6°.故答案为21.6°(4)估计该校最喜爱新闻节目的学生数为2000×=160人.答:估计该校最喜爱新闻节目的学生数为160人.四、解答题(21、22小题各9分,23题10分,共28分)21.某工厂现在平均每天比原计划多生产25个零件,现在生产600个零件所需时间与原计划生产450个零件所需时间相同,原计划平均每天生产多少个零件?【考点】B7:分式方程的应用.【分析】设原计划平均每天生产x个零件,现在平均每天生产(x+25)个零件,根据现在生产600个零件所需时间与原计划生产450个零件所需时间相同,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设原计划平均每天生产x个零件,现在平均每天生产(x+25)个零件,根据题意得:=,解得:x=75,经检验,x=75是原方程的解.答:原计划平均每天生产75个零件.22.如图,在平面直角坐标系xOy中,双曲线y=经过▱ABCD的顶点B,D.点D的坐标为(2,1),点A在y轴上,且AD∥x轴,S▱ABCD=5.(1)填空:点A的坐标为(0,1);(2)求双曲线和AB所在直线的解析式.【考点】G7:待定系数法求反比例函数解析式;FA:待定系数法求一次函数解析式;G5:反比例函数系数k的几何意义;L5:平行四边形的性质.【分析】(1)由D得坐标以及点A在y轴上,且AD∥x轴即可求得;(2)由平行四边形得面积求得AE得长,即可求得OE得长,得到B得纵坐标,代入反比例函数得解析式求得B得坐标,然后根据待定系数法即可求得AB所在直线的解析式.【解答】解:(1)∵点D的坐标为(2,1),点A在y轴上,且AD∥x轴,∴A(0,1);故答案为(0,1);(2)∵双曲线y=经过点D(2,1),∴k=2×1=2,∴双曲线为y=,∵D(2,1),AD∥x轴,∴AD=2,∵S▱ABCD=5,∴AE=,∴OE=,∴B点纵坐标为﹣,把y=﹣代入y=得,﹣=,解得x=﹣,∴B(﹣,﹣),设直线AB得解析式为y=ax+b,代入A(0,1),B(﹣,﹣)得:,解得,∴AB所在直线的解析式为y=x+1.23.如图,AB是⊙O直径,点C在⊙O上,AD平分∠CAB,BD是⊙O的切线,AD 与BC相交于点E.(1)求证:BD=BE;(2)若DE=2,BD=,求CE的长.【考点】MC:切线的性质;KQ:勾股定理;T7:解直角三角形.【分析】(1))设∠BAD=α,由于AD平分∠BAC,所以∠CAD=∠BAD=α,进而求出∠D=∠BED=90°﹣α,从而可知BD=BE;(2)设CE=x,由于AB是⊙O的直径,∠AFB=90°,又因为BD=BE,DE=2,FE=FD=1,由于BD=,所以tanα=,从而可求出AB==2,利用勾股定理列出方程即可求出x的值.【解答】解:(1)设∠BAD=α,∵AD平分∠BAC∴∠CAD=∠BAD=α,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ABC=90°﹣2α,∵BD是⊙O的切线,∴BD⊥AB,∴∠DBE=2α,∠BED=∠BAD+∠ABC=90°﹣α,∴∠D=180°﹣∠DBE﹣∠BED=90°﹣α,∴∠D=∠BED,∴BD=BE(2)设AD交⊙O于点F,CE=x,则AC=2x,连接BF,∵AB是⊙O的直径,∴∠AFB=90°,∵BD=BE,DE=2,∴FE=FD=1,∵BD=,∴tanα=,∴AB==2在Rt△ABC中,由勾股定理可知:(2x)2+(x+)2=(2)2,∴解得:x=﹣或x=,∴CE=;五、解答题(24题11分,25、26题各12分,共35分)24.如图,在△ABC中,∠C=90°,AC=3,BC=4,点D,E分别在AC,BC上(点D 与点A,C不重合),且∠DEC=∠A,将△DCE绕点D逆时针旋转90°得到△DC′E′.当△DC′E′的斜边、直角边与AB分别相交于点P,Q(点P与点Q不重合)时,设CD=x,PQ=y.(1)求证:∠ADP=∠DEC;(2)求y关于x的函数解析式,并直接写出自变量x的取值范围.【考点】R2:旋转的性质;E3:函数关系式;LD:矩形的判定与性质;T7:解直角三角形.【分析】(1)根据等角的余角相等即可证明;(2)分两种情形①如图1中,当C′E′与AB相交于Q时,即<x≤时,过P作MN∥DC′,设∠B=α.②当DC′交AB于Q时,即<x<3时,如图2中,作PM⊥AC于M,PN⊥DQ于N,则四边形PMDN是矩形,分别求解即可;【解答】(1)证明:如图1中,∵∠EDE′=∠C=90°,∴∠ADP+∠CDE=90°,∠CDE+∠DEC=90°,∴∠ADP=∠DEC.(2)解:如图1中,当C′E′与AB相交于Q时,即<x≤时,过P作MN∥DC′,设∠B=α∴MN⊥AC,四边形DC′MN是矩形,∴PM=PQ•cosα=y,PN=×(3﹣x),∴(3﹣x)+y=x,∴y=x﹣,当DC′交AB于Q时,即<x<3时,如图2中,作PM⊥AC于M,PN⊥DQ于N,则四边形PMDN是矩形,∴PN=DM,∵DM=(3﹣x),PN=PQ•sinα=y,∴(3﹣x)=y,∴y=﹣x+.综上所述,y=25.如图1,四边形ABCD的对角线AC,BD相交于点O,OB=OD,OC=OA+AB,AD=m,BC=n,∠ABD+∠ADB=∠ACB.(1)填空:∠BAD与∠ACB的数量关系为∠BAD+∠ACB=180°;(2)求的值;(3)将△ACD沿CD翻折,得到△A′CD(如图2),连接BA′,与CD相交于点P.若CD=,求PC的长.【考点】RB:几何变换综合题.【分析】(1)在△ABD中,根据三角形的内角和定理即可得出结论:∠BAD+∠ACB=180°;(2)如图1中,作DE∥AB交AC于E.由△OAB≌△OED,可得AB=DE,OA=OE,设AB=DE=CE=CE=x,OA=OE=y,由△EAD∽△ABC,推出===,可得=,可得4y2+2xy﹣x2=0,即()2+﹣1=0,求出的值即可解决问题;(3)如图2中,作DE∥AB交AC于E.想办法证明△PA′D∽△PBC,可得= =,可得=,即=,由此即可解决问题;【解答】解:(1)如图1中,在△ABD中,∵∠BAD+∠ABD+∠ADB=180°,又∵∠ABD+∠ADB=∠ACB,∴∠BAD+∠ACB=180°,故答案为∠BAD+∠ACB=180°.(2)如图1中,作DE∥AB交AC于E.∴∠DEA=∠BAE,∠OBA=∠ODE,∵OB=OD,∴△OAB≌△OED,∴AB=DE,OA=OE,设AB=DE=CE=CE=x,OA=OE=y,∵∠EDA+∠DAB=180°,∠BAD+∠ACB=180°,∴∠EDA=∠ACB,∵∠DEA=∠CAB,∴△EAD∽△ABC,∴===,∴=,∴4y2+2xy﹣x2=0,∴()2+﹣1=0,∴=(负根已经舍弃),∴=.(3)如图2中,作DE∥AB交AC于E.由(1)可知,DE=CE,∠DCA=∠DCA′,∴∠EDC=∠ECD=∠DCA′,∴DE∥CA′∥AB,∴∠ABC+∠A′CB=180°,∵△EAD∽△ACB,∴∠DAE=∠ABC=∠DA′C,∴∠DA′C+∠A′CB=180°,∴A′D∥BC,∴△PA′D∽△PBC,∴==,∴=,即=∵CD=,∴PC=1.26.在平面直角坐标系xOy中,抛物线y=ax2+bx+c的开口向上,且经过点A(0,)(1)若此抛物线经过点B(2,﹣),且与x轴相交于点E,F.①填空:b= ﹣2a﹣1 (用含a的代数式表示);②当EF2的值最小时,求抛物线的解析式;(2)若a=,当0<x<1,抛物线上的点到x轴距离的最大值为3时,求b的值.【考点】HF:二次函数综合题.【分析】(1)①由A点坐标可求得c,再把B点坐标代入可求得b与a的关系式,可求得答案;②用a可表示出抛物线解析式,令y=0可得到关于x的一元二次方程,利用根与系数的关系可用a表示出EF的值,再利用函数性质可求得其取得最小值时a 的值,可求得抛物线解析式;(2)可用b表示出抛物线解析式,可求得其对称轴为x=﹣b,由题意可得出当x=0、x=1或x=﹣b时,抛物线上的点可能离x轴最远,可分别求得其函数值,得到关于b 的方程,可求得b的值.【解答】解:(1)①∵抛物线y=ax2+bx+c的开口向上,且经过点A(0,),∴c=,∵抛物线经过点B(2,﹣),∴﹣=4a+2b+,∴b=﹣2a﹣1,故答案为:﹣2a﹣1;②由①可得抛物线解析式为y=ax2﹣(2a+1)x+,令y=0可得ax2﹣(2a+1)x+=0,∵△=(2a+1)2﹣4a×=4a2﹣2a+1=4(a﹣)2+>0,∴方程有两个不相等的实数根,设为x1、x2,∴x1+x2=,x1x2=,∴EF2=(x1﹣x2)2=(x1+x2)2﹣4x1x2==(﹣1)2+3,∴当a=1时,EF2有最小值,即EF有最小值,∴抛物线解析式为y=x2﹣3x+;(2)当a=时,抛物线解析式为y=x2+bx+,∴抛物线对称轴为x=﹣b,∴只有当x=0、x=1或x=﹣b时,抛物线上的点才有可能离x轴最远,当x=0时,y=,当x=1时,y=+b+=2+b,当x=﹣b时,y=(﹣b)2+b(﹣b)+ =﹣b2+,①当|2+b|=3时,b=1或b=﹣5,且顶点不在0<x<1范围内,满足条件;②当|﹣b2+|=3时,b=±3,对称轴为直线x=±3,不在0<x<1范围内,故不符合题意,综上可知b的值为1或﹣5.。
2020-2021大连市九年级数学下期中一模试卷带答案

一、选择题
1.如图,在矩形、三角形、正五边形、菱形的外边加一个宽度一样的外框,保证外框的边 界与原图形对应边平行,则外框与原图不一定相似的是( )
A.
B.
C.
D.
2.下列判断中,不正确的有( )
A.三边对应成比例的两个三角形相似
B.两边对应成比例,且有一个角相等的两个三角形相似
G,则 S DEG : SCFG =( )
A.2:3
B.3:2
C.9:4
8.如图,∠APD=90°,AP=PB=BC=CD,则下列结论成立的是(
D.4:9 )
A.△PAB∽△PCA B.△ABC∽△DBA C.△PAB∽△PDA D.△ABC∽△DCA 9.如图,△ABC 中 AB 两个顶点在 x 轴的上方,点 C 的坐标是(﹣1,0),以点 C 为位似 中心,在 x 轴的下方作△ABC 的位似图形△A′B′C′,且△A′B′C′与△ABC 的位似比为 2: 1.设点 B 的对应点 B′的横坐标是 a,则点 B 的横坐标是( )
3.D
解析:D 【解析】
A 选项:∵1×(-1)=-1≠1,∴点(1,-1)不在反比例函数 y= 1 的图象上,故本选项错 x
误; B 选项:反比例函数的图象关于原点中心对称,故本选项错误; C 选项:∵k=1>0,∴图象位于一、三象限,故本选项错误; D 选项:∵k=1>0,∴当 x<0 时,y 随 x 的增大而减小,故是正确的. 故选 B.
∴ BE 2ห้องสมุดไป่ตู้F ,即 BE 2BF ,
3
5
∵ AF ∥ BC ,
∴ BM BC 3a 1, MF AF 3a
∴ BM MF ,即 BM BF , 2
2020年大连市中考数学模拟试卷及答案解析

2020年大连市中考数学模拟试卷一.选择题(共10小题,满分30分)1.(3分)若|a|=﹣a,则a一定是()A.正数B.负数C.正数或零D.负数或零2.(3分)点(2,3),(2,﹣3),(1,0),(0,﹣3),(0,0),(﹣2,3)中,不属于任何象限的有()A.1个B.2个C.3个D.4个3.(3分)计算(﹣ab2)3的结果是()A.﹣a3b5B.﹣a3b6C.﹣ab6D.﹣3ab24.(3分)如图是用直尺和一个等腰直角三角尺画平行线的示意图,图中∠α的度数为()A.45°B.60°C.90°D.135°5.(3分)如图是一个几何体的主视图和俯视图,则这个几何体是()A.三棱柱B.正方体C.三棱锥D.长方体6.(3分)如图,已知菱形ABCD的对角线交于点O,DB=6,AD=5,则菱形ABCD的面积为()A.20B.24C.30D.367.(3分)现有三张分别标有数字1,2,3的牌,它们除数字外完全相同,把牌背面朝上洗匀后,甲、乙两人进行摸牌游戏甲从中随机抽取一张,记下数字后放回洗匀,乙再从中随机抽取一张,若两人抽取的数字之和为偶数,则甲胜,否则乙胜甲获胜的概率是( )A .13B .23C .49D .59 8.(3分)要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划7天,每天安排4场比赛.设比赛组织者应邀请x 个队参赛,则x 满足的关系式为( )A .12x(x −1)=28B .12x(x +1)=28C .x (x ﹣1)=28D .x (x +1)=289.(3分)观察图中给出的直线y =k 1x +b 和反比例函数y =k 2x 的图象,下列结论中错误的是( )A .k 2>b >k 1>0B .当﹣6<x <2时,有k 1x +b >k 2xC .直线y =k 1x +b 与坐标轴围成的△ABO 的面积是4D .直线y =k 1x +b 与反比例函数y =k 2x 的图象的交点坐标为(﹣6,﹣1),(2,3)10.(3分)如图,将△ABC 绕点B 逆时针旋转α,得到△EBD ,若点A 恰好在ED 的延长线上,则∠CAD 的度数为( )A .90°﹣αB .αC .180°﹣αD .2α二.填空题(共6小题,满分18分,每小题3分)11.(3分)如图,长方形的长宽分别为a ,b ,且a 比b 大5,面积为10,则a 2b ﹣ab 2的值。
2021年大连初三模拟数学答案

⎩ ⎩一、选择题大连市 2020 年初中毕业升学模拟考试数学参考答案与评分标准1.D ; 2.A ; 3.C ; 4.B ; 5.A ; 6.D ; 7.B ; 8.C ; 9.A ; 10.D . 二、填空题11.x >-2; 12.6; 13.14; 14.26; 15. 2 3 ; 16. y =38 - 2x 0<x <4). 三、解答题17.解:原式= 2 +12+3- 2 - 3 . ……………………………………………………………………8 分= 2 3 . …………………………………………………………………………………………9 分18.解:原式=1÷a + 2 (a - 2)2 (a + 2)(a - 2) - 2 .……………………………………………………………6 分 a - 2= 1 (a + 2)(a - 2) - 2 .a + 2(a - 2)2a - 2= 1 -a - 2 2 a - 2.………………………………………………………………………………8 分= - 1 a - 2.……………………………………………………………………………………9 分 19.证明:∵四边形 ABCD 是平行四边形,∴AD ∥BC ,AB =DC .∴∠ADE =∠DEC .………………………………………5 分 ∵AF=AB ,∴AF =DC .………………………………………………6 分 ∵∠AFD =∠DCE , ∴△AFD ≌△DCE .∴AD =DE .………………………………………………9 分ADBE(第 19 题)20.解:(1)20,40;………………………………………………………………………………………4 分(2)100,10; …………………………………………………………………………………………8 分(3) 100 - 20 - 40 -10 ⨯ 360 = 108 .100答:估计最喜欢“阅读”的学生人数为 108 人.……………………………………………………12 分四、解答题21.解:设甲、乙种两种卡车一次可以分别运土 x 立方米、y 立方米.则⎧3x + 2 y = 48,⎨2x + 3y = 52. ⎧x = 8, 解得 ⎨ y = 12. …………………………………………………………………8 分所以 4x +y =4×8+12=44.答:4 辆甲种卡车与 1 辆乙种卡车一次共可运土 44 立方米.……………………………………9 分F= = 22.(1)证明:连接 OC (如图 1). ∵PB 、PC 是⊙O 的切线,AB 为直径, ∴PB ⊥AB ,PC ⊥OC .∴∠PBA =∠PCO =90°.…………………………………………2 分 ∴∠COB +∠CPB =360°-90°-90°=180° . ∵∠COB +∠AOC =180°,. ∴∠CPB =∠AOC . ∵∠AOC =2∠ABC ,∴∠CPB =2∠ABC . …………………………………………5 分 (2)解:连接 OC (如图 2). ∵PB 、PC 是⊙O 的切线,∴PB =PC . ………………………………………………………6 分 由(1)知,∠PBO =∠PCO =90°. ∵sin ∠PDB =OC, OD(第 22 题图 1)∴ OD = OC sin ∠PDB = 2 = 3. 23CD = = 5.(第 22 题图 2)∵ PB 2 + BD 2 = PD 2,即 PC 2 + 52 = (PC + 5 )2. 解得PC = 2 5.……………………………………………………………10 分23.解:(1)在甲商场购物当 0<x ≤100 时,y 甲=x ;当 x >100 时,y 甲= 100 + 0.(8 x -100)= 0.8x + 20. 在乙商场购物当 0<x ≤50 时, y = x ;乙当 x >50 时, y = 50 + 0.(9 x - 50)= 0.9x + 5.乙…………………………………………………………2 分综上,y ⎧x ,0 < x ≤ 100, ⎨ ⎧x ,0 < x ≤ 50, y ⎨……………………………………………………4 分 甲 ⎩0.8x + 20,x > 100. 乙⎩0.9x + 5,x > 50.(2)当 0<x ≤50 时,y 甲=y 乙,购物花费一样多.当 50<x ≤100 时,乙商场购物有优惠,而甲商场没有优惠,因此到乙商场购物花费少. 当 x >100 时,①若到乙商场购物花费少,即 y 甲>y 乙.则 0.8x +20>0.9x +5.解得 x <150. ②若到甲商场购物花费少,即 y 甲<y 乙.则 0.8x +20<0.9x +5.解得 x >150.③若到甲、乙商场购物花费一样多,即 y 甲=y 乙.则 0.8x +20=0.9x +5. 解得 x =150.综上所述,当 0<x ≤50 或 x =150 时,到甲、乙两商场花费一样多;当 50<x <150 时,到乙商场购物花费少;当 x >150 时,到甲商场购物花费少. …………………………………………………………10 分32 - 22OA 2 + OB 2 32 + 42 ( S = 24.解:(1)当 x =0 时,y =3.得 OA =3. 当 y =0 时, - 3x + 3 = 0 .x =4.得 OB =4.4∴ AB = = = 5 .………………………………………………………………………2 分(2)证明:∵ΔECD 是由ΔACD 翻折得到的, ∴AC =CE ,AD =DE . ∵AC =AD , ∴AC =CE =DE =AD .∴四边形 ACED 是菱形.…………………………………………………………………………………4 分 (3)在 Rt △AOB 中, sin ∠OAB = 4. sin ∠OBA = 3 , cos ∠OBA = 4 .5 5 5当 9≤ m ≤ 3 时,作 DF ⊥OA ,垂足为 F (如图 1).8∵sin ∠OAB =DF, AD∴DF =AD sin ∠OAB = 4 3 - m ).5(第 24 题图 1)∴ S = S △ACD = 1 3 - m )⋅ 4 3 - m )= 2 m 2 - 12 m + 18 .……………………………………………………7 分( ( 2 55 5 5当 0 ≤ m < 9时,设 CE 、DE 分别交 x 轴于点 G 、H (如图 2).8∵四边形 ACED 是菱形, ∴DE ∥AC ,CE ∥AD . ∴∠EHG =∠DHB =∠AOB =90°.3 4∴DH =BD sin ∠OBA = (m + 2),B H =BD co s ∠OBA = (m + 2).55∴EH =DE -DH =(3 - m )- 3m + 2)= - 8m + 9.∵CE ∥AD , (555(第 24 题图 2)∴GH = EH . ∴ GH = - 32 m + 12. HB DH 15 5∴S= S- S= 2 m 2 - 12 m + 18 - 1 ⎛ - 8 m + 9 ⎫⎛ - 32 m + 12 ⎫ = - 98 m 2 + 36 m + 36 .∆ECD∆EGH555 2 ⎝ 5⎪ 5 ⎭⎝ 15⎪ 5 ⎭7525 25⎧ 2 m 2 - 12 m + 18 , 9≤ m ≤ 3, 综上, ⎪ 5 5 5 8 …………………………………………………………………11 分 ⎨98 3636 9 ⎪- m 2 + m + , 0 ≤ m < . ⎩⎪ 75 25 25 8五、解答题a 2 + k 2a 225.(1)证明:∵AF ⊥CE ,∴∠F AC+∠ACE =90°. ∵∠BAC =90°,∴∠BAH+∠FAC =90°.∴∠ACE =∠BA H .………………………………………………………………………………………2 分 (2)与 CE 相等的线段是 AH .…………………………………………………………………………3 分 证明:在 AC 上截取 AM =AE ,连接 EM (如图 1). ∵∠BAC =90°,AM =AE , ∴∠AME =∠AEM =45°. ∴∠CME =135°. ∵AB =AC ,∠BAC =90°, ∴∠ABC =∠ACB =45°. ∵DG ∥BC ,∴∠AGD =∠ABC =45°,∠ADG =∠ACB . ∴∠AGH =135°,∠AGD =∠ADG . ∴∠AGH=∠CME ,AG =AD . ∵CD =AE =AM , ∴CM =AD . ∴AG =CM . ∵∠BAH =∠ACE , ∴△AGH ≌△CME .(第25 题图1)∴AH =CE .…………………………………………………………………………………………………7 分 (3)解:连接 BH (如图 2). ∵AH =CE ,AB =AC ,∠BAH =∠ACE , ∴△ABH ≌△CAE .∴BH =AE ,∠ABH =∠CAE =∠BAC = 90°. ∴BH ∥AC . ∵HD ∥BC ,∴四边形 BCDH 是平行四边形. ∴DH =BC .∵∠BAH =∠EAF ,∠ABH =∠AFE =90°, ∴△ABH ∽△AFE . ∴AH= AB. (第25 题图2) AE AF 设 AB =AC =a .则 BC = 2a . ∴GH =kDH= 2ka . ∴BH =GH sin45°=ka .∴ AH =AB 2 + BH 2 = . AF =AB ⋅ AE AH ka 2 ∴ AH = k 2 +1.…………………………………………………………………………………………11 分AF ka 2 + k 2a 2 = .yA BOx⎪ 42 26.(1) y = -1x -1 (x >-2).………………………………………………………………………………1 分2⎧⎪ 2, x > 0, (2)解:图象 F 的解析式为 y = ⎪ x ⎨⎪- , x < 0. ⎩ x把 y =2 分别代入,得 2 = 2或2 = - 2 .解得 x =1 或 x =-1.x x∴该点的横坐标为-1 或 1.………………………………………………………………………………3 分⎧⎪-ax 2+ 4ax - 3a , (3)①解:图象 F 的解析式为 y = ⎨⎪⎩ax 2 - 4ax + 3a ,把 x = - 1 代入 y = ax 2 - 4ax + 3a 中,得 y =21a .x > 0,x ≤ 0,24把 x =0 代入 y = ax 2 - 4ax + 3a ,得 y =3a .把 x = 5 代入 y = -ax 2 + 4ax - 3a 中,得 y = 3a .(第 26 题图 1)2 4当图象 F 2 与线段 AB 只有一个公共点时(如图 1).⎧ 21a ≥ 1, ⎨ ⎪⎩3a ≤ 1.解得 4 21≤ a ≤ 1 . 3 当图象 F 1 顶点在线段 AB 上时,F 1 与线段 AB 只有一个公共点(如图 2).y = -ax 2 + 4ax - 3a = -a (x - 2)2 + a .∴a =1.当图象 F 1 对称轴左侧抛物线与线段 AB 只有一个公共点时(如图 3).3 a > 1 . 解得 a > 4.(第26 题图2)4 3综上所述,a 的取值范围是 4 ≤ a ≤ 1 21 3 或 a =1 或 a > 43.……………………9 分② 3 - 2 ≤ t ≤ 2 .………………………………………………………………12 分yABOxyA BOx。
2020-2021大连市九年级数学下期中第一次模拟试卷带答案

2020-2021大连市九年级数学下期中第一次模拟试卷带答案一、选择题1.如图,用放大镜看△ABC,若边BC的长度变为原来的2倍,那么下列说法中,不正确的是().A.边AB的长度也变为原来的2倍;B.∠BAC的度数也变为原来的2倍;C.△ABC的周长变为原来的2倍;D.△ABC的面积变为原来的4倍;2.如图,点D,E分别在△ABC的AB,AC边上,增加下列条件中的一个:①∠AED=∠B,②∠ADE=∠C,③AE DEAB BC=,④AD AEAC AB=,⑤AC2=AD•AE,使△ADE与△ACB一定相似的有()A.①②④B.②④⑤C.①②③④D.①②③⑤3.反比例函数kyx=与1(0)y kx k=-+≠在同一坐标系的图象可能为()A.B.C.D.4.在小孔成像问题中,如图所示,若为O到AB的距离是18 cm,O到CD的距离是6 cm,则像CD的长是物体AB长的()A.13B.12C.2倍D.3倍5.如图,一张矩形纸片ABCD的长BC=xcm,宽AB=ycm,以宽AB为边剪去一个最大的正方形ABEF,若剩下的矩形ECDF与原矩形ABCD相似,则xy的值为()A .512-B .512+C .2D .212+ 6.如图所示,在平行四边形ABCD 中,AC 与BD 相交于点O ,E 为OD 的中点,连接AE 并延长交DC 于点F ,则DF :FC=( )A .1:3B .1:4C .2:3D .1:27.在ABC 中,点D ,E 分别在边AB ,AC 上,:1:2AD BD =,那么下列条件中能够判断//DE BC 的是( )A .12DE BC =B .31DE BC = C .12AE AC =D .31AE AC = 8.已知点P 是线段AB 的黄金分割点(AP >PB ),AB=4,那么AP 的长是( ) A .252- B .25- C .251- D .52-9.如图,BC 是半圆O 的直径,D ,E 是BC 上两点,连接BD ,CE 并延长交于点A ,连接OD ,OE ,如果70A ∠︒=,那么DOE ∠的度数为( )A .35︒B .38︒C .40︒D .42︒10.如图,在以O 为原点的直角坐标系中,矩形OABC 的两边OC 、OA 分别在x 轴、y 轴的正半轴上,反比例函数k y x=(x >0)与AB 相交于点D ,与BC 相交于点E ,若BD=3AD ,且△ODE 的面积是9,则k 的值是( )A .92B .74C .245D .1211.如图,是我们数学课本上采用的科学计算器面板,利用该型号计算器计算cos55°,按键顺序正确的是()A.B.C.D.12.如图所示,在△ABC 中,AB=6,AC=4,P 是AC 的中点,过 P 点的直线交AB 于点Q,若以 A、P、Q 为顶点的三角形和以A、B、C为顶点的三角形相似,则AQ 的长为 ( )A.3B.3或43C.3或34D.43二、填空题13.《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:“今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?”意思就是:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆(如图所示),它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为_____.14.在△ABC中,∠ABC=90°,已知AB=3,BC=4,点Q是线段AC上的一个动点,过点Q作AC的垂线交直线AB于点P,当△PQB为等腰三角形时,线段AP的长为_____.15.计算:cos245°-tan30°sin60°=______.16.将三角形纸片△ABC按如图所示的方式折叠,使点B落在边AC上,记为点B′,折痕为EF.已知AB=AC=8,BC=10,若以点B′,F,C为顶点的三角形与△ABC相似,那么BF的长度是______________.17.如图,在直角坐标系中,正方形的中心在原点O,且正方形的一组对边与x轴平行,点P(3a,a)是反比例函数kyx=(k>0)的图象上与正方形的一个交点.若图中阴影部分的面积等于9,则这个反比例函数的解析式为▲.18.如图,已知△ABC中,D为边AC上一点,P为边AB上一点,AB=12,AC=8,AD=6,当AP的长度为__时,△ADP和△ABC相似.19.如图,l1∥l2∥l3,直线a、b与l1、l2、l3分别相交于点A、B、C和点D、E、F.若AB=3,DE=2,BC=6,则EF=______.20.如果点P把线段AB分割成AP和PB两段(AP PB>),其中AP是AB与PB的比例中项,那么:AP AB的值为________.三、解答题21.如图,直线y=12x+2与双曲线y=kx相交于点A(m,3),与x轴交于点C.(1)求双曲线的解析式;(2)点P 在x 轴上,如果△ACP 的面积为3,求点P 的坐标.22.实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y (毫克/百毫升)与时间x (时)成正比例;1.5小时后(包括1.5小时)y 与x 成反比例.根据图中提供的信息,解答下列问题:(1)写出一般成人喝半斤低度白酒后,y 与x 之间的函数关系式及相应的自变量取值范围;(2)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上21:00在家喝完半斤低度白酒,第二天早上7:00能否驾车去上班?请说明理由.23.如图,已知反比例函数11k y x=(k 1>0)与一次函数2221(0)y k x k =+≠相交于A 、B 两点,AC ⊥x 轴于点C . 若△OAC 的面积为1,且tan ∠AOC =2 .(1)求出反比例函数与一次函数的解析式;(2)请直接写出B 点的坐标,并指出当x 为何值时,反比例函数y 1的值大于一次函数y 2的值.24.如图,AB 与CD 相交于点O ,△OBD ∽△OAC ,OD OC =35,OB =6,S △AOC =50,求:(1)AO的长;(2)求S△BOD25.如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b的图象和反比例函数y=m的图象的两个交点.x(1)求反比例函数和一次函数的解析式;(2)求直线AB与x轴的交点C的坐标及△AOB的面积;(3)直接写出一次函数的值小于反比例函数值的x的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据相似三角形的判定和性质,可得出这两个三角形相似,相似三角形的周长之比等于相似比,面积之比等于相似比的平方.【详解】解:∵用放大镜看△ABC,若边BC的长度变为原来的2倍,∴放大镜内的三角形与原三角形相似,且相似比为2∴边AB的长度也变为原来的2倍,故A正确;∴∠BAC的度数与原来的角相等,故B错误;∴△ABC的周长变为原来的2倍,故C正确;∴△ABC的面积变为原来的4倍,故D正确;【点睛】本题考查了相似三角形的性质,相似三角形的周长之比等于相似比,面积之比等于相似比的平方.2.A解析:A【解析】①AED B ∠=∠,且DAE CAB ∠=∠,∴ADE ACB ∽,成立.②ADE C ∠=∠且DAE CAB ∠=∠,∴ADE ACB ∽,成立. ③AE DE AB BC=,但AED 比一定与B 相等,故ADE 与ACD 不一定相似. ④AD AE AC AB=且DAE CAB ∠=∠, ∴ADE ACB ∽,成立.⑤由2AC AD AE =⋅,得AC AE AD AC=无法确定出ADE , 故不能证明:ADE 与ABC 相似.故答案为A . 点睛:本题考查了相似三角形的判定定理:(1)两角对应相等的两个三角形相似;(2)两边对应成比例且夹角相等的两个三角形相似;(3)三边对应成比例的两个三角形相似;(4)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.3.B解析:B【解析】【分析】根据反比例函数和一次函数的性质逐个对选项进行分析即可.【详解】A 根据反比例函数的图象可知,k >0,因此可得一次函数的图象应该递减,但是图象是递增的,所以A 错误;B 根据反比例函数的图象可知,k >0,,因此一次函数的图象应该递减,和图象吻合,所以B 正确;C 根据反比例函数的图象可知,k <0,因此一次函数的图象应该递增,并且过(0,1)点,但是根据图象,不过(0,1),所以C 错误;D 根据反比例函数的图象可知,k <0,因此一次函数的图象应该递增,但是根据图象一次函数的图象递减,所以D 错误.故选B【点睛】本题主要考查反比例函数和一次函数的性质,关键点在于系数的正负判断,根据系数识别图象.解析:A【解析】【分析】作OE⊥AB于E,OF⊥CD于F,根据题意得到△AOB∽△COD,根据相似三角形的对应高的比等于相似比计算即可.【详解】作OE⊥AB于E,OF⊥CD于F,由题意得,AB∥CD,∴△AOB∽△COD,∴CDAB=OFOE=13,∴像CD的长是物体AB长的1 3 .故答案选:A.【点睛】本题考查了相似三角形的应用,解题的关键是熟练的掌握相似三角形的应用. 5.B解析:B【解析】【分析】根据相似多边形对应边的比相等,可得到一个方程,解方程即可求得.【详解】∵四边形ABCD是矩形,∴AD=BC=xcm,∵四边形ABEF是正方形,∴EF=AB=ycm,∴DF=EC=(x﹣y)cm,∵矩形FDCE与原矩形ADCB相似,∴DF:AB=CD:AD,即:x y y y x -=∴xy=5+12,故选B.本题考查了相似多边形的性质、矩形的性质、翻折变换的性质;根据相似多边形对应边的比相等得出方程是解决本题的关键.6.D解析:D【解析】解:在平行四边形ABCD中,AB∥DC,则△DFE∽△BAE,∴DF:AB=DE:EB.∵O为对角线的交点,∴DO=BO.又∵E为OD的中点,∴DE=14DB,则DE:EB=1:3,∴DF:AB=1:3.∵DC=AB,∴DF:DC=1:3,∴DF:FC=1:2.故选D.7.D解析:D【解析】【分析】可先假设DE∥BC,由平行得出其对应线段成比例,进而可得出结论.【详解】如图,可假设DE∥BC,则可得12AD AEDB EC,13AD AEAB AC==,但若只有13DE ADBC AB==,并不能得出线段DE∥BC.故选D.【点睛】本题主要考查了由平行线分线段成比例来判定两条直线是平行线的问题,能够熟练掌握并运用.8.A解析:A【解析】根据黄金比的定义得:51APAB-=,得514252AP-== .故选A.9.C解析:C 【解析】【分析】连接CD ,由圆周角定理得出∠BDC=90°,求出∠ACD=90°-∠A=20°,再由圆周角定理得出∠DOE=2∠ACD=40°即可,【详解】连接CD ,如图所示:∵BC 是半圆O 的直径,∴∠BDC=90°,∴∠ADC=90°,∴∠ACD=90°-∠A=20°,∴∠DOE=2∠ACD=40°,故选C .【点睛】本题考查了圆周角定理、直角三角形的性质;熟练掌握圆周角定理是解题的关键.10.C解析:C【解析】【分析】设B 点的坐标为(a ,b ),由BD=3AD ,得D (4a ,b ),根据反比例函数定义求出关键点坐标,根据S △ODE =S 矩形OCBA -S △AOD -S △OCE -S △BDE = 9求出k.【详解】 ∵四边形OCBA 是矩形,∴AB=OC ,OA=BC ,设B 点的坐标为(a ,b ),∵BD=3AD ,∴D (4a ,b ), ∵点D ,E 在反比例函数的图象上, ∴4ab =k , ∴E (a , k a), ∵S △ODE =S 矩形OCBA -S △AOD -S △OCE -S △BDE =ab-12•4ab -12•4ab -12•34a •(b-k a )=9,∴k=245, 故选:C 【点睛】 考核知识点:反比例函数系数k 的几何意义. 结合图形,分析图形面积关系是关键.11.C解析:C【解析】【分析】【详解】利用如图所示的计算器计算2cos55°,按键顺序正确的是.故答案选C . 12.B解析:B【解析】AP AQ AB AC =,264AQ =,AQ=43,AP AQ AC AB =,246AQ =,AQ =3.故选B.点睛:相似常见图形(1)称为“平行线型”的相似三角形(如图,有“A 型”与“X 型”图)(2)如图:其中∠1=∠2,则△ADE∽△ABC称为“斜交型”的相似三角形,有“反A共角型”、“反A共角共边型”、“蝶型”,如下图:二、填空题13.四丈五尺【解析】【分析】根据同一时刻物高与影长成正比可得出结论【详解】解:设竹竿的长度为x尺∵竹竿的影长=一丈五尺=15尺标杆长=一尺五寸=15尺影长五寸=05尺∴=解得x=45(尺)故答案为:四丈解析:四丈五尺【解析】【分析】根据同一时刻物高与影长成正比可得出结论.【详解】解:设竹竿的长度为x尺,∵竹竿的影长=一丈五尺=15尺,标杆长=一尺五寸=1.5尺,影长五寸=0.5尺,∴x15=1.50.5,解得x=45(尺).故答案为:四丈五尺.【点睛】本题考查的是相似三角形的应用,熟知同一时刻物髙与影长成正比是解答此题的关键.14.或6【解析】【分析】当△PQB为等腰三角形时有两种情况需要分类讨论:①当点P在线段AB上时如图1所示由三角形相似(△AQP∽△ABC)关系计算AP的长;②当点P在线段AB的延长线上时如图2所示利用角解析:53或6.【解析】当△PQB 为等腰三角形时,有两种情况,需要分类讨论:①当点P 在线段AB 上时,如图1所示.由三角形相似(△AQP ∽△ABC )关系计算AP 的长;②当点P 在线段AB 的延长线上时,如图2所示.利用角之间的关系,证明点B 为线段AP 的中点,从而可以求出AP .【详解】解:在Rt △ABC 中,AB =3,BC =4,由勾股定理得:AC =5.∵∠QPB 为钝角,∴当△PQB 为等腰三角形时,当点P 在线段AB 上时,如题图1所示:∵∠QPB 为钝角,∴当△PQB 为等腰三角形时,只可能是PB =PQ ,由(1)可知,△AQP ∽△ABC , ∴,PA PQ AC BC = 即3,54PB PB -= 解得:43PB =, ∴45333AP AB PB =-=-=; 当点P 在线段AB 的延长线上时,如题图2所示:∵∠QBP 为钝角,∴当△PQB 为等腰三角形时,只可能是PB =BQ .∵BP =BQ ,∴∠BQP =∠P ,∵90,90BQP AQB A P ,∠+∠=∠+∠= ∴∠AQB =∠A ,∴BQ =AB ,∴AB =BP ,点B 为线段AP 中点,∴AP =2AB =2×3=6. 综上所述,当△PQB 为等腰三角形时,AP 的长为53或6. 故答案为53或6.本题考查相似三角形的判定和性质、等腰三角形的性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.15.0【解析】【分析】直接利用特殊角的三角函数值代入进而得出答案【详解】=故答案为0【点睛】此题主要考查了特殊角的三角函数值正确记忆相关数据是解题关键解析:0【解析】【分析】直接利用特殊角的三角函数值代入进而得出答案.【详解】2cos 45tan30sin60︒-︒︒=223311()023222-⨯=-= . 故答案为0.【点睛】 此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.16.5或(答对一个得1分)【解析】根据△B′FC 与△ABC 相似时的对应情况有两种情况:①B′FC∽△ABC 时B′FAB=CF/BC 又因为AB=AC=8BC=10BF=BF 所以解得BF=;②△B′CF∽△解析:5或(答对一个得1分) 【解析】根据△B ′FC 与△ABC 相似时的对应情况,有两种情况:① B′FC ∽△ABC 时,B′F AB ="CF/BC" ,又因为AB=AC=8,BC=10,B'F=BF ,所以10810BF BF -=, 解得BF=; ②△B ′CF ∽△BCA 时,B′F/BA ="CF/CA" ,又因为AB=AC=8,BC=10,B'F=CF ,BF=B′F ,又BF+FC=10,即2BF=10,解得BF=5.故BF 的长度是5或.17.【解析】待定系数法曲线上点的坐标与方程的关系反比例函数图象的对称性正方形的性质【分析】由反比例函数的对称性可知阴影部分的面积和正好为小正方形面积的设小正方形的边长为b 图中阴影部分的面积等于9可求出b解析:3yx =.【解析】待定系数法,曲线上点的坐标与方程的关系,反比例函数图象的对称性,正方形的性质.【分析】由反比例函数的对称性可知阴影部分的面积和正好为小正方形面积的,设小正方形的边长为b,图中阴影部分的面积等于9可求出b的值,从而可得出直线AB的表达式,再根据点P(3a,a)在直线AB上可求出a的值,从而得出反比例函数的解析式:∵反比例函数的图象关于原点对称,∴阴影部分的面积和正好为小正方形的面积.设正方形的边长为b,则b2=9,解得b=6.∵正方形的中心在原点O,∴直线AB的解析式为:x=3.∵点P(3a,a)在直线AB上,∴3a=3,解得a=1.∴P(3,1).∵点P在反比例函数3yx=(k>0)的图象上,∴k=3×1=3.∴此反比例函数的解析式为:.18.4或9【解析】当△ADP∽△ACB时需有∴解得AP=9当△ADP∽△ABC时需有∴解得AP=4∴当AP的长为4或9时△ADP和△ABC相似解析:4或9.【解析】当△ADP∽△ACB时,需有AP ADAB AC=,∴6128AP=,解得AP=9.当△ADP∽△ABC时,需有AP ADAC AB=,∴6812AP=,解得AP=4.∴当AP的长为4或9时,△ADP和△ABC相似.19.4【解析】【分析】利用平行线分线段成比例定理列出比例式求出EF结合图形计算即可【详解】∵∥∥∴又DE=2∴EF=4故答案为:4【点睛】本题考查的是平行线分线段成比例定理灵活运用定理找准对应关系是解题解析:4【解析】【分析】利用平行线分线段成比例定理列出比例式,求出EF,结合图形计算即可.【详解】∵1l ∥2l ∥3l , ∴36DE AB EF BC == 又DE=2,∴EF=4,故答案为:4.【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.20.【解析】【分析】根据黄金分割的概念和黄金比是解答即可【详解】∵点把线段分割成和两段()其中是与的比例中项∴点P 是线段AB 的黄金分割点∴=故填【点睛】此题考察黄金分割是与的比例中项即点P 是线段AB 的黄【解析】【分析】解答即可. 【详解】∵点P 把线段AB 分割成AP 和PB 两段(AP PB >),其中AP 是AB 与PB 的比例中项, ∴点P 是线段AB 的黄金分割点,∴:AP AB =12,. 【点睛】此题考察黄金分割,AP 是AB 与PB 的比例中项即点P 是线段AB 的黄金分割点,即可得到:AP AB . 三、解答题21.(1)6y x=(2)(-6,0)或(-2,0). 【解析】分析:(1)把A 点坐标代入直线解析式可求得m 的值,则可求得A 点坐标,再把A 点坐标代入双曲线解析式可求得k 的值,可求得双曲线解析式;(2)设P (t ,0),则可表示出PC 的长,进一步表示出△ACP 的面积,可得到关于t 的方程,则可求得P 点坐标.详解:(1)把A 点坐标代入y =12x +2,可得:3=12m +2,解得:m =2,∴A (2,3).∵A 点也在双曲线上,∴k =2×3=6,∴双曲线解析式为y =6x ; (2)在y =12x +2中,令y =0可求得:x =﹣4,∴C (﹣4,0).∵点P 在x 轴上,∴可设P 点坐标为(t ,0),∴CP =|t +4|,且A (2,3),∴S △ACP =12×3|t +4|.∵△ACP 的面积为3,∴12×3|t +4|=3,解得:t =﹣6或t =﹣2,∴P 点坐标为(﹣6,0)或(﹣2,0). 点睛:本题主要考查函数图象的交点,掌握函数图象的交点坐标满足每个函数解析式是解题的关键.22.(1)100(0 1.5)225( 1.5)x x y x x⎧⎪=⎨⎪⎩;(2)第二天早上7:00不能驾车去上班,见解析. 【解析】【分析】(1)直接利用待定系数法分别求出反比例函数以及一次函数的解析式得出答案; (2)根据题意得出x =10时y 的值进而得出答案.【详解】(1)由题意可得:当0≤x ≤1.5时,设函数关系式为:y =kx ,则150=1.5k ,解得:k =100,故y =100x ,当1.5≤x 时,设函数关系式为:y a x =,则a =150×1.5=225,解得:a =225,故y 225x=(x ≥1.5). 综上所述:y 与x 之间的两个函数关系式为:y ()()1000 1.5225 1.5x x x x ⎧≤≤⎪=⎨≥⎪⎩; (2)第二天早上7:00不能驾车去上班.理由如下:∵晚上21:00到第二天早上7:00,有10小时,∴x =10时,y 22510==22.5>20,∴第二天早上7:00不能驾车去上班.【点睛】本题考查了反比例函数的应用、一次函数的应用等知识,解题的关键是灵活掌握待定系数法确定函数解析式,学会利用函数解决实际问题,属于中考常考题型.23.(1)12y x =;21y x =+;(2)B 点的坐标为(-2,-1);当0<x <1和x <-2时,y 1>y 2.【解析】【分析】(1)根据tan ∠AOC =AC OC=2,△OAC 的面积为1,确定点A 的坐标,把点A 的坐标分别代入两个解析式即可求解;(2)根据两个解析式求得交点B 的坐标,观察图象,得到当x 为何值时,反比例函数y 1的值大于一次函数y 2的值.【详解】解:(1)在Rt △OAC 中,设OC =m .∵tan ∠AOC =AC OC =2,∴AC =2×OC =2m . ∵S △OAC =12×OC×AC =12×m×2m =1,∴m 2=1.∴m =1(负值舍去). ∴A 点的坐标为(1,2).把A 点的坐标代入11k y x=中,得k 1=2. ∴反比例函数的表达式为12y x =. 把A 点的坐标代入221y k x =+中,得k 2+1=2,∴k 2=1.∴一次函数的表达式21y x =+.(2)B 点的坐标为(-2,-1).当0<x <1和x <-2时,y 1>y 2.【点睛】本题考查反比例及一次函数的的应用;待定系数法求解析式;图象的交点等,掌握反比例及一次函数的性质是本题的解题关键.24.(1)10;(2)18.【解析】【分析】(1)根据相似三角形对应边之比相等可得BO AO =DO CO =35,再代入BO =6可得AO 长; (2)根据相似三角形的面积的比等于相似比的平方可得BOD AOC S S =925,进而可得S △BOD . 【详解】解:(1)∵△OBD ∽△OAC , ∴BO AO =DO CO =35∵BO =6,∴AO =10;(2)∵△OBD ∽△OAC ,DO CO =35 ∴BOD AOC S S =925∵S △AOC =50,∴S △BOD =18.【点睛】此题主要考查相似三角形的性质,解题的关键是熟知相似三角形的面积之比等于相似比的平方.25.(1)y =﹣x ﹣2;(2)C (﹣2,0),△AOB =6,,(3)﹣4<x <0或x >2.【解析】【分析】(1)先把B 点坐标代入代入y =m x,求出m 得到反比例函数解析式,再利用反比例函数解析式确定A 点坐标,然后利用待定系数法求一次函数解析式; (2)根据x 轴上点的坐标特征确定C 点坐标,然后根据三角形面积公式和△AOB 的面积=S △AOC +S △BOC 进行计算;(3)观察函数图象得到当﹣4<x <0或x >2时,一次函数图象都在反比例函数图象下方.【详解】解:∵B (2,﹣4)在反比例函数y =m x 的图象上, ∴m =2×(﹣4)=﹣8,∴反比例函数解析式为:y =﹣8x , 把A (﹣4,n )代入y =﹣8x, 得﹣4n =﹣8,解得n =2,则A 点坐标为(﹣4,2).把A (﹣4,2),B (2,﹣4)分别代入y =kx +b ,得4224k b k b -+=⎧⎨+=-⎩,解得12k b =-⎧⎨=-⎩, ∴一次函数的解析式为y =﹣x ﹣2;(2)∵y =﹣x ﹣2,∴当﹣x ﹣2=0时,x =﹣2,∴点C 的坐标为:(﹣2,0),△AOB 的面积=△AOC 的面积+△COB 的面积=12×2×2+12×2×4 =6;(3)由图象可知,当﹣4<x<0或x>2时,一次函数的值小于反比例函数的值.【点睛】本题考查的是一次函数与反比例函数的交点问题以及待定系数法的运用,灵活运用待定系数法是解题的关键,注意数形结合思想的正确运用.。
2021年辽宁省大连市中考数学模拟试卷解析版

2021年辽宁省大连市中考数学模拟试卷解析版一.选择题(共10小题,每小题3分,满分30分)1.﹣2020的绝对值是()A.﹣2020B.2020C.−12020D.12020解:根据绝对值的概念可知:|﹣2020|=2020,故选:B.2.如图所示的几何体,它的左视图是()A.B.C.D.解:如图所示的几何体的左视图为:.故选:D.3.我国倡导的“一带一路”地区覆盖的总人口为4400000000人,这个数用科学记数法表示为()A.44×108B.4.4×108C.4.4×109D.44×1010解:4 400 000 000用科学记数法表示为:4.4×109,故选:C.4.在平面直角坐标系中,线段AB的端点分别为A(2,0),B(0,4),将线段AB平移到A1B1,且点A1的坐标为(8,4),则线段A1B1的中点的坐标为()A.(7,6)B.(6,7)C.(6,8)D.(8,6)解:∵线段AB的端点分别为A(2,0),B(0,4),将线段AB平移到A1B1,且点A1的坐标为(8,4),∴B1的坐标为:(6,8),则线段A1B1的中点的坐标为:(7,6).故选:A .5.把不等式2﹣x <1的解集在数轴上表示正确的是( ) A .B .C .D .解:不等式移项合并得:﹣x <﹣1, 解得:x >1,表示在数轴上,如图所示故选:A .6.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .解:A 、是轴对称图形,又是中心对称图形,故此选项正确; B 、不是轴对称图形,不是中心对称图形,故此选项错误; C 、是轴对称图形,不是中心对称图形,故此选项错误; D 、不是轴对称图形,是中心对称图形,故此选项错误; 故选:A .7.化简(﹣x 3)2的结果是( ) A .﹣x 6 B .﹣x 5 C .x 6 D .x 5解:原式=x 6, 故选:C .8.一个不透明的袋子里装有两双只有颜色不同的手套,小明已经摸出一只手套,他再任意摸取一只,恰好两只手套凑成同一双的概率为( ) A .14B .13C .12D .1解:设两双只有颜色不同的手套的颜色为红和绿, 列表得:(红,绿)(红,绿) (绿,绿) ﹣(红,绿)(红,绿)﹣(绿,绿)(红,红)﹣(绿,红)(绿,红)﹣(红,红)(绿,红)(绿,红)∵一共有12种等可能的情况,恰好是一双的有4种情况,∴恰好是一双的概率412=13.故选:B.9.如图,在长方形纸片ABCD中,AB=4,AD=6.点E是AB的中点,点F是AD边上的一个动点.将△AEF沿EF所在直线翻折,得到△GEF.则GC长的最小值是()A.2√10−2B.2√10−1C.2√13D.2√10解:以点E为圆心,AE长度为半径作圆,连接CE,当点G在线段CE上时,GC的长取最小值,如图所示根据折叠可知:GE=AE=12AB=2.在Rt△BCE中,BE=12AB=2,BC=6,∠B=90°,∴CE=√BE2+BC2=2√10,∴GC的最小值=CE﹣GE=2√10−2.故选:A.10.如图一段抛物线:y=﹣x2+3x(0≤x≤3),记为C1,它与x轴交于点O和A1;将C1绕A1旋转180°得到C2,交x轴于A2;将C2绕A2旋转180°得到C3,交x轴于A3,如此进行下去,若点P(2020,m)在某段抛物线上,则m的值为()A.1B.﹣1C.2D.﹣2解:当y=0时,﹣x2+3x=0,解得:x1=0,x2=3,∴点A1的坐标为(3,0).由旋转的性质,可知:点A2的坐标为(6,0).∵2020=336×6+4,∴当x=4时,y=m.∵2×3﹣4=2,∴当x=2时的y值与当x=4时的y值互为相反数,∴m=﹣(﹣22+3×2)=﹣2.故选:D.二.填空题(共6小题,满分18分,每小题3分)11.如图,l1∥l2,则α+β﹣γ=180°.解:∵l1∥l2,∴∠1=α,∵∠1=180°﹣β﹣γ,∴α=180°﹣β﹣γ,即α+β﹣γ=180°.故答案为:180°.12.在九年级体育考试中,某校某班参加仰卧起坐测试的8名女生成绩如下(单位:次/分):44,45,42,48,46,43,47,45,则这组数据的众数为45.解:∵45出现了2次,出现的次数最多,∴这组数据的众数为45;故答案为:45.13.在四边形ABCD中,∠A=∠ABC=90°,△BCD为等边三角形,且AD=2,则四边形ABCD的周长为2√3+10.解:∵△BCD为等边三角形,∴∠DBC=60°,DB=BC=CD,∵∠ABC=90°,∴∠ABD=30°,∵在Rt△ABC中,∠ABD=30°,AD=2∴DB=4,∴CD=BC=4,在Rt△ABC中,由勾股定理,得AB=√BD2−AD2=√42−22=2√3,∴四边形ABCD的周长=AB+BC+CD+DA=2√3+4+4+2=2√3+10,故答案为:2√3+10.14.我国元朝数学家朱世杰的数学著作《四元玉鉴》中有一个“二果问价”问题:九百九十九文钱甜果苦果买一千甜果九个十一文苦果七个四文钱试问甜苦果几个又问各该几个钱若设买甜果、苦果的个数分别是x个和y个,根据题意,可列方程组为{x +y =1000119x +47y =999. 解:设买甜果、苦果的个数分别是x 个和y 个, 由题意可得,{x +y =1000119x +47y =999, 故答案为{x +y =1000119x +47y =999. 15.如图,某兴趣小组用无人机进行航拍测高,无人机从1号楼和2号楼的地面正中间B 点垂直起飞到高度为50米的A 处,测得1号楼顶部E 的俯角为60°,测得2号楼顶部F 的俯角为45°.已知1号楼的高度为20米,则2号楼的高度为 (50﹣10√3) 米(结果保留根号).解:过点E 作EG ⊥AB 于G ,过点F 作FH ⊥AB 于H , 则四边形ECBG ,HBDF 是矩形, ∴EC =GB =20,HB =FD , ∵B 为CD 的中点, ∴EG =CB =BD =HF ,由已知得:∠EAG =90°﹣60°=30°,∠AFH =45°. 在Rt △AEG 中,AG =AB ﹣GB =50﹣20=30米, ∴EG =AG •tan30°=30×√33=10√3米,在Rt △AHP 中,AH =HF •tan45°=10√3米, ∴FD =HB =AB ﹣AH =50﹣10√3(米). 答:2号楼的高度为(50﹣10√3)米. 故答案为:(50﹣10√3).16.疫情之下,中华儿女共抗时艰,重庆和湖北同饮长江水,为更好地驰援武汉,打赢防疫攻坚战,我市某公益组织收集社会捐献物资.甲、乙两人先后从A地沿相同路线出发徒步前往B地进行物资捐献,甲出发1分钟后乙再出发,一段时间后乙追上甲,这时甲发现有东西落在A地,于是原路原速返回A地去取(甲取东西的时间忽略不计),而乙继续前行,甲乙两人到达B地后原地帮忙.已知在整个过程中,甲乙均保持各自的速度匀速行走,甲、乙两人相距y(米)与甲出发的时间x(分钟)之间的函数关系如图所示,则当乙到达B地时,甲距A地的路程是160米.解:由函数图象知,当x=1min时,y=80m,∵甲出发1分钟后乙再出发,∴甲的速度为80m/min,由图象知,当x=5min时,y=16m,∴乙的速度为:80+(80﹣16)÷(5﹣1)=96(m/min),两人第一次相遇的时间为:1+80÷(96﹣80)=6(min),当甲返回A地时,返回路程为:80×6=480(m),由函数图象知,当甲返回A地前,乙已到达B地,当甲返回A地时,两人相距864m,即A、B两地距离为864m,∴乙从两人相遇时至乙到达B地时所行时间为:(864﹣480)÷96=4(min),此时,甲距A地还有6﹣4(min)的路程,∴当乙到达B 地时,甲距A 地的路程是:80×2=160(m ). 故答案为:160.三.解答题(共4小题,满分39分) 17.(9分)计算题:(1)(4√3−6√13+3√12)÷2√3; (2)(√13−1)2+(2+√3)(2−√3).解:(1)原式=4√3÷2√3−6√13÷2√3+3√12÷2√3=2﹣1+3=4; (2)原式=13−2√33+1+4﹣3=73−2√33. 18.(9分)计算: (1)a a+2−4a 2+2a(2)x 2−8x+16x−2÷(x +2−4x−4x−2) 解:(1)原式=a 2−4a(a+2) =(a−2)(a+2)a(a+2) =a−2a .(2)原式=(x−4)2x−2÷x 2−4xx−2=(x−4)2x−2•x−2x(x−4)=x−4x19.(9分)如图,点A 、E 、F 、C 在一直线上,DE ∥BF ,DE =BF ,AE =CF .求证:AB ∥CD .证明:∵DE ∥BF ∴∠DEF =∠BFE ∵AE =CF∴AF=CE,且DE=BF,∠DEF=∠BFE∴△AFB≌△CED(SAS)∴∠A=∠C∴AB∥CD20.(12分)某校决定加强羽毛球,篮球,乒乓球,排球,足球五项球类运动,每位同学必须且只能选择一项球类运动.对该校学生随机抽取5%进行调查,根据调查结果绘制了如下不完整的频数分布表和扇形统计图:运动项目频数(人数)羽毛球30篮球a乒乓球36排球b足球12请根据以上图表信息解答下列问题:(1)频数分布表中的a=24,b=18;(2)在扇形统计图中,“排球”所在的扇形的圆心角为54度;(3)估计全校有多少名学生选择参加羽毛球运动?解:(1)抽取的人数是36÷30%=120(人),则a=120×20%=24,b=120﹣30﹣24﹣36﹣12=18.故答案是:24,18;(2)“排球”所在的扇形的圆心角为360°×18120=54°,故答案是:54;(3)全校总人数是120÷5%=2400(人),∴选择参加羽毛球运动的人数为2400×30120=600(人).四.解答题(共3小题,满分28分)21.(9分)一家水果店以每千克2元的价格购进某种水果若干千克,然后以每千克4元的价格出售,每天可售出100千克,通过调查发现,这种水果每千克的售价每降低1元,每天可多售出200千克.(1)若将这种水果每千克的售价降低x元,则每天销售量是多少千克?(结果用含x的代数式表示)(2)若想每天盈利300元,且保证每天至少售出260千克,那么水果店需将每千克的售价降低多少元?解:(1)每天的销售量是100+x0.1×20=100+200x(千克).故每天销售量是(100+200x)千克;(2)设这种水果每斤售价降低x元,根据题意得:(4﹣2﹣x)(100+200x)=300,解得:x1=0.5,x2=1,当x=0.5时,销售量是100+200×0.5=200<260;当x=1时,销售量是100+200=300(斤).∵每天至少售出260斤,∴x=1.答:水果店需将每千克的售价降低1元.22.(9分)如图,点A(5,2),B(m,n)(m<5)在反比例函数y=kx的图象上,作AC⊥y轴于点C.(1)求反比例函数的表达式;(2)若△ABC的面积为10,求点B的坐标.解:(1)∵点A(5,2)在反比例函数y=kx图象上,∴k =10,∴反比例函数的解析式为y =10x .(2)由题意:12×5×(n ﹣2)=10, ∴n =6,∴B (53,6). 23.(10分)已知四边形ABCD 内接于⊙O ,AB 为⊙O 的直径,∠BCD =148°.(1)如图①,若E 为AB 上一点,延长DE 交⊙O 于点P ,连接AP ,求∠APD 的大小;(2)如图②,过点A 作⊙O 的切线,与DO 的延长线交于点P ,求∠APD 的大小.解:(1)连接BD ,∵四边形ABCD 内接于⊙O ,∴∠BCD +∠BAD =180°,∵∠BCD =148°,∴∠BAD =32°,∵AB 为⊙O 的直径,∴∠BDA =90°,∴∠BAD +∠ABD =90°,∴∠ABD =58°,∴∠APD =∠ABD =58°;(2)连接AD ,由(1)知∠BAD =32°,∵OA =OD ,∴∠ADO =∠OAD =32°,∵DP切⊙O于A,∴OA⊥P A,∴∠P AO=90°,∴∠P AD=∠P AO+∠OAD=122°,∵∠P AD+∠ADO+∠APD=180°,∴∠APD=26°.五.解答题(共3小题,满分35分)24.(11分)在平面直角坐标系内,平行四边形ABCD的边AB∥x轴,点B、D均在y轴上,点A、D在直线y=2x﹣1上,且点B的坐标为(0,1),求点A、C、D的坐标及S▱ABCD.解:∵点A、D在直线y=2x﹣1上,且点B的坐标为(0,1),点B、D均在y轴上,平行四边形ABCD的边AB∥x轴,∴当x=0时,y=﹣1,当y=1时,1=2x﹣1,得x=1,∴点D(0,﹣1),点A(1,1),∴AB=1,∵AB=CD,∴点C的坐标为(﹣1,﹣1),∵AB=1﹣0=1,BD=1﹣(﹣1)=2,∴S▱ABCD=1×2=2,即点A(1,1),点C(﹣1,﹣1),点D(0,﹣1),S▱ABCD的值是2.25.(12分)问题发现:(1)如图1,在Rt△ABC中,∠A=90°,AB=k•AC(k>1),D是AB上一点,DE∥BC,则BD,EC的数量关系为BD=k•EC.类比探究(2)如图2,将△AED绕着点A顺时针旋转,旋转角为a(0°<a<90°),连接CE,BD ,请问(1)中BD ,EC 的数量关系还成立吗?说明理由拓展延伸:(3)如图3,在(2)的条件下,将△AED 绕点A 继续旋转,旋转角为a (a >90°).直线BD ,CE 交于F 点,若AC =1,AB =√3,则当∠ACE =15°时,BF •CF 的值为 1或2 .解:问题发现:(1)∵DE ∥BC ,∴BD AB =CE AC ,AD AB =AE AC∵AB =k •AC ,∴BD =k •EC ,故答案为:BD =k •EC ;类比探究:(2)成立,理由如下:连接BD由旋转的性质可知,∠BAD =∠CAE∵AD AE =AB AC ,∴△ABD ∽△ACE ,∴BD CE =AB AC =k ,故BD =k •EC ;拓展延伸:(3)BF •CF 的值为2或1;由旋转的性质可知∠BAD =∠CAE∵AD AE =AB AC ,∴△ABD ∽△ACE∴∠ACE =15°=∠ABD∵∠ABC +∠ACB =90°∴∠FBC +∠FCB =90°∴∠BFC =90°∵∠BAC =90°,AC =1,AB =√3,∴tan ∠ABC =√33,∴∠ABC =30°∴∠ACB =60°分两种情况分析:①如图2,∴在Rt △BAC 中,∠ABC =30°,AC =1,∴BC =2AC =2,∵在Rt △BFC 中,∠CBF =30°+15°=45°,BC =2∴BF =CF =√2∴BF •CF =(√2)2=2②如图3,设CF=a,在BF上取点G,使∠BCG=15°∵∠BCF=60°+15°=75°,∠CBF=∠ABC﹣∠ABD=30°﹣15°=15°,∴∠CFB=90°∴∠GCF=60°∴CG=BG=2a,GF=√3a.∵CF2+BF2=BC2∴a2+(2a+√3a2=22,解得a2=2−√3,∴BF•CF=(2+√3)a•a=(2+√3)•a2=1,即:BF•CF=1或2.故答案为:1或2.26.(12分)如图,直线y=34x+c与x轴交于点B(4,0),与y轴交于点C,抛物线y=34x2+bx+c经过点B,C,与x轴的另一个交点为点A.(1)求抛物线的解析式;(2)点P是直线BC下方的抛物线上一动点,求四边形ACPB的面积最大时点P的坐标;(3)若点M是抛物线上一点,请直接写出使∠MBC=12∠ABC的点M的坐标.解:(1)将点B 坐标代入y =34x +c 并解得:c =﹣3,故抛物线的表达式为:y =34x 2+bx ﹣3,将点B 坐标代入上式并解得:b =−94,故抛物线的表达式为:y =34x 2−94x ﹣3;(2)过点P 作PH ∥y 轴交BC 于点H ,设点P (x ,34x 2−94x ﹣3),则点H (x ,34x ﹣3),S 四边形ACPB =S △AOC +S △PCB ,∵S △AOC 是常数,故四边形面积最大,只需要S △PCB 最大即可,S △PCB =12×OB ×PH =12×2(34x ﹣3−34x 2+94x +3)=−34x 2+3x , ∵−34<0,∴S △PCB 有最大值,此时,点P (2,−92);(3)过点B 作∠ABC 的角平分线交y 轴于点G ,交抛物线于M ′,设∠MBC =12∠ABC =2α,过点B 在BC 之下作角度数为α的角,交抛物线于点M ,过点G 作GK ⊥BC 交BC 于点K ,延长GK 交BM 于点H ,则GH =GN ,BC 是GH 的中垂线,OB =4,OC =3,则BC =5,设:OG =GK =m ,则CK =CB ﹣HB =5﹣4=1, 由勾股定理得:(3﹣m )2=m 2+1,解得:m =43,则OG =ON =43,GH =GN =2OG =83,点G (0,−43), 在Rt △GCK 中,GK =OG =43,GC =OC ﹣OG =3−43=53, 则cos ∠CGK =GK GC =45,sin ∠CGK =35,则点K (45,−3615),点K 是点GH 的中点,则点H (85,−5215), 则直线BH 的表达式为:y =139x −529⋯②, 同理直线BG 的表达式为:y =13x −43⋯③联立①②并整理得:27x 2﹣135x +100=0,解得:x =2527或4(舍去4),则点M (2527,−1079233); 联立①③并解得:x =−59,故点M ′(−59,−21754); 故点M (2527,−1079233)或(−59,−21754).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学试卷一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项正确)1.﹣3的绝对值是()A.3 B.﹣3 C.D.解:|﹣3|=﹣(﹣3)=3.故选A.2.在平面直角坐标系中,点(﹣3,2)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限解:点(﹣3,2)所在的象限在第二象限.故选B.3.计算(x3)2的结果是()A.x5B.2x3C.x9D.x6解:(x3)2=x6.故选D.4.如图是用直尺和一个等腰直角三角尺画平行线的示意图,图中∠α的度数为()A.45°B.60°C.90°D.135°解:如图,∵△ABC是等腰直角三角形,∴∠1=45°.∵l∥l',∴∠α=∠1=45°.故选A.5.一个几何体的三视图如图所示,则这个几何体是()A.圆柱B.圆锥C.三棱柱D.长方体解:由三视图知这个几何体是三棱柱.故选C.6.如图,菱形ABCD中,对角线AC,BD相交于点O,若AB=5,AC=6,则BD的长是()A.8 B.7 C.4 D.3解:∵四边形ABCD是菱形,∴OA=OC=3,OB=OD,AC⊥BD.在Rt△AOB中,∠AOB=90°,根据勾股定理,得:OB===4,∴BD=2OB=8.故选A.7.一个不透明的袋子中有三个完全相同的小球,把它们分别标号为1,2,3,随机摸出一个小球,记下标号后放回,再随机摸出一个小球并记下标号,两次摸出的小球标号的和是偶数的概率是()A.B.C.D.解:列表得:123123423453456所有等可能的情况数有9种,它们出现的可能性相同,其中两次摸出的小球标号的和是偶数的有5种结果,所以两次摸出的小球标号的和是偶数的概率为.故选D.8.如图,有一张矩形纸片,长10cm,宽6cm,在它的四角各减去一个同样的小正方形,然后折叠成一个无盖的长方体纸盒.若纸盒的底面(图中阴影部分)面积是32cm2,求剪去的小正方形的边长.设剪去的小正方形边长是xcm,根据题意可列方程为()A.10×6﹣4×6x=32 B.(10﹣2x)(6﹣2x)=32 C.(10﹣x)(6﹣x)=32D.10×6﹣4x2=32解:设剪去的小正方形边长是xcm,则纸盒底面的长为(10﹣2x)cm,宽为(6﹣2x)cm,根据题意得:(10﹣2x)(6﹣2x)=32.故选B.9.如图,一次函数y=k1x+b的图象与反比例函数y=的图象相交于A(2,3),B(6,1)两点,当k1x+b <时,x的取值范围为()A.x<2 B.2<x<6 C.x>6 D.0<x<2或x>6解:由图象可知,当k1x+b<时,x的取值范围为0<x<2或x>6.故选D.10.如图,将△ABC绕点B逆时针旋转α,得到△EBD,若点A恰好在ED的延长线上,则∠CAD的度数为()A.90°﹣αB.αC.180°﹣αD.2α解:由题意可得:∠CBD=α,∠ACB=∠EDB.∵∠EDB+∠ADB=180°,∴∠ADB+∠ACB=180°.∵∠ADB+∠DBC+∠BCA+∠CAD=360°,∠CBD=α,∴∠CAD=180°﹣α.故选C.二、填空题(本题共6小题,每小题3分,共18分)11.因式分解:x2﹣x= .解:x2﹣x=x(x﹣1).故答案为:x(x﹣1).12.五名学生一分钟跳绳的次数分别为189,195,163,184,201,该组数据的中位数是.解:这5名学生跳绳次数从小到大排列为163、184、189、195、201,所以该组数据的中位数是189.故答案为:189.13.一个扇形的圆心角为120°,它所对的弧长为6πcm,则此扇形的半径为cm.解:∵L=,∴R==9.故答案为:9.14.《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?设有x匹大马,y匹小马,根据题意可列方程组为.解:由题意可得:.故答案为:.15.如图,小明为了测量校园里旗杆AB的高度,将测角仪CD竖直放在距旗杆底部B点6m的位置,在D 处测得旗杆顶端A的仰角为53°,若测角仪的高度是1.5m,则旗杆AB的高度约为m.(精确到0.1m.参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)解:过D作DE⊥AB,∵在D处测得旗杆顶端A的仰角为53°,∴∠ADE=53°.∵BC=DE=6m,∴AE=DE•tan53°≈6×1.33≈7.98m,∴AB=AE+BE=AE+CD=7.98+1.5=9.48m≈9.5m.故答案为:9.5.16.如图,矩形ABCD中,AB=2,BC=3,点E为AD上一点,且∠ABE=30°,将△ABE沿BE翻折,得到△A′BE,连接CA′并延长,与AD相交于点F,则DF的长为.解:如图作A′H⊥BC于H.∵∠ABC=90°,∠ABE=∠EBA′=30°,∴∠A′BH=30°,∴A′H=BA′=1,BH=A′H=,∴CH=3﹣.∵△CDF∽△A′HC,∴=,∴=,∴DF=6﹣2.故答案为:6﹣2.三、解答题(本题共4小题,其中17、18、19题各9分,20题12分,共39分)17.计算:(+2)2﹣+2﹣2解:原式=3+4+4﹣4+=.18.解不等式组:解:∵解不等式①得:x≤﹣1,解不等式②得:x≤3,∴不等式组的解集为x≤﹣1.19.如图,▱ABCD的对角线AC,BD相交于点O,点E、F在AC上,且AF=CE.求证:BE=DF.证明:∵四边形ABCD是平行四边形,∴OA=OC,OD=OB.∵AE=CF,∴OE=OF.在△BEO和△DFO中,,∴△BEO≌△DFO,∴BE=DF.20.某校为了解学生最喜欢的球类运动情况,随机选取该校部分学生进行调查,要求每名学生只写一类最喜欢的球类运动.以下是根据调查结果绘制的统计图表的一部分.类别A B C D E F类型足球羽毛球乒乓球篮球排球其他人数10462根据以上信息,解答下列问题:(1)被调查的学生中,最喜欢乒乓球的有人,最喜欢篮球的学生数占被调查总人数的百分比为%;(2)被调查学生的总数为人,其中,最喜欢篮球的有人,最喜欢足球的学生数占被调查总人数的百分比为%;(3)该校共有450名学生,根据调查结果,估计该校最喜欢排球的学生数.解:(1)由题可得:被调查的学生中,最喜欢乒乓球的有4人,最喜欢篮球的学生数占被调查总人数的百分比为32%.故答案为:4;32;(2)被调查学生的总数为10÷20%=50人,最喜欢篮球的有50×32%=16人,最喜欢足球的学生数占被调查总人数的百分比=×100%=24%;故答案为:50;16;24;(3)根据调查结果,估计该校最喜欢排球的学生数为×450=54人.四、解答题(本题共3小题,其中21、22题各9分,23题10分,共28分)21.甲、乙两名学生练习打字,甲打135个字所用时间与乙打180个字所用时间相同.已知甲平均每分钟比乙少打20个字,求甲平均每分钟打字的个数.解:设甲平均每分钟打x个字,则乙平均每分钟打(x+20)个字,根据题意得:=,解得:x=60,经检验,x=60是原分式方程的解.答:甲平均每分钟打60个字.22.【观察】1×49=49,2×48=96,3×47=141,…,23×27=621,24×26=624,25×25=625,26×24=624,27×23=621,…,47×3=141,28×2=96,49×1=49.【发现】根据你的阅读回答问题:(1)上述内容中,两数相乘,积的最大值为;(2)设参与上述运算的第一个因数为a,第二个因数为b,用等式表示a与b的数量关系是.【类比】观察下列两数的积:1×59,2×58,3×57,4×56,…,m×n,…,56×4,57×3,58×2,59×1.猜想mn的最大值为,并用你学过的知识加以证明.解:【发现】(1)上述内容中,两数相乘,积的最大值为625.故答案为:625;(2)设参与上述运算的第一个因数为a,第二个因数为b,用等式表示a与b的数量关系是a+b=50.故答案为:a+b=50;【类比】由题意,可得m+n=60,将n=60﹣m代入mn,得mn=﹣m2+60m=﹣(m﹣30)2+900,∴m=30时,mn的最大值为900.故答案为:900.23.如图,四边形ABCD内接于⊙O,∠BAD=90°,点E在BC的延长线上,且∠DEC=∠BAC.(1)求证:DE是⊙O的切线;(2)若AC∥DE,当AB=8,CE=2时,求AC的长.解:(1)如图,连接BD.∵∠BAD=90°,∴点O必在BD上,即:BD是直径,∴∠BCD=90°,∴∠DEC+∠CDE=90°.∵∠DEC=∠BAC,∴∠BAC+∠CDE=90°.∵∠BAC=∠BDC,∴∠BDC+∠CDE=90°,∴∠BDE=90°,即:BD⊥DE.∵点D在⊙O上,∴DE是⊙O的切线;(2)∵DE∥AC.∵∠BDE=90°,∴∠BFC=90°,∴CB=AB=8,AF=CF=AC.∵∠CDE+∠BDC=90°,∠BDC+∠CBD=90°,∴∠CDE=∠CBD.∵∠DCE=∠BCD=90°,∴△BCD∽△DCE,∴,∴,∴CD=4.在Rt△BCD中,BD==4同理:△CFD∽△BCD,∴,∴,∴CF=,∴AC=2AF=.五、解答题(本题共3小题,其中24题11分,25、26题各12分,共35分)24.如图1,直线AB与x轴、y轴分别相交于点A、B,将线段AB绕点A顺时针旋转90°,得到AC,连接BC,将△ABC沿射线BA平移,当点C到达x轴时运动停止.设平移距离为m,平移后的图形在x轴下方部分的面积为S,S关于m的函数图象如图2所示(其中0<m≤a,a<m≤b时,函数的解析式不同).(1)填空:△ABC的面积为;(2)求直线AB的解析式;(3)求S关于m的解析式,并写出m的取值范围.解:(1)结合△ABC的移动和图2知,点B移动到点A处,就是图2中,m=a时,S=S△A'B'D=,点C移动到x轴上时,即:m=b时,S=S△A'B'C'=S△ABC=.故答案为:,.(2)如图2,过点C作CE⊥x轴于E,∴∠AEC=∠BOA=90°.∵∠BAC=90°,∴∠OAB+∠CAE=90°.∵∠OAB+∠OBA=90°,∴∠OBA=∠CAE,由旋转知,AB=AC,∴△AOB≌△CEA,∴AE=OB,CE=OA,由图2知,点C的纵坐标是点B纵坐标的2倍,∴OA=2OB,∴AB2=5OB2,由(1)知,S△ABC==AB2=×5OB2,∴OB=1,∴OA=2,∴A(2,0),B(0,1),∴直线AB的解析式为y=﹣x+1;(3)由(2)知,AB2=5,∴AB=,①当0≤m≤时,如图3.∵∠AOB=∠AA'F,∠OAB=∠A'AF,∴△AOB∽△AA'F,∴,由运动知,AA'=m,∴,∴A'F=m,∴S=AA'×A'F=m2,②当<m≤2时,如图4同①的方法得:A'F=m,∴C'F=﹣m,过点C作CE⊥x轴于E,过点B作BM⊥CE于E,∴BM=3,CM=1,易知,△ACE∽△FC'H,∴,∴∴C'H=.在Rt△FHC'中,FH=C'H=由平移知,∠C'GF=∠CBM.∵∠BMC=∠GHC',∴△BMC∽△GHC',∴,∴∴GH=,∴GF=GH﹣FH=∴S=S△A'B'C'﹣S△C'FG=﹣××=﹣(2﹣m)2,即:S=.25.阅读下面材料:小明遇到这样一个问题:如图1,△ABC中,∠ACB=90°,点D在AB上,且∠BAC=2∠DCB,求证:AC=AD.小明发现,除了直接用角度计算的方法外,还可以用下面两种方法:方法1:如图2,作AE平分∠CAB,与CD相交于点E.方法2:如图3,作∠DCF=∠DCB,与AB相交于点F.(1)根据阅读材料,任选一种方法,证明AC=AD.用学过的知识或参考小明的方法,解决下面的问题:(2)如图4,△ABC中,点D在AB上,点E在BC上,且∠BDE=2∠ABC,点F在BD上,且∠AFE=∠BAC,延长DC、FE,相交于点G,且∠DGF=∠BDE.①在图中找出与∠DEF相等的角,并加以证明;②若AB=kDF,猜想线段DE与DB的数量关系,并证明你的猜想.解:(1)方法一:如图2中,作AE平分∠CAB,与CD相交于点E.∵∠CAE=∠DAE,∠CAB=2∠DCB,∴∠CAE=∠CDB.∵∠CDB+∠ACD=90°,∴∠CAE+∠ACD=90°,∴∠AEC=90°.∵AE=AE,∠AEC=∠AED=90°,∴△AEC≌△AED,∴AC=AD.方法二:如图3中,作∠DCF=∠DCB,与AB相交于点F.∵∠DCF=∠DCB,∠A=2∠DCB,∴∠A=∠BCF.∵∠BCF+∠ACF=90°,∴∠A+∠ACF=90°,∴∠AFC=90°.∵∠ACF+∠BCF=90°,∠BCF+∠B=90°,∴∠ACF=∠B.∵∠ADC=∠DCB+∠B=∠DCF+∠ACF=∠ACD,∴AC=AD.(2)①如图4中,结论:∠DEF=∠FDG.理由:在△DEF中,∵∠DEF+∠EFD+∠EDF=180°.在△DFG中,∵∠GFD+∠G+∠FDG=180°.∵∠EFD=∠GFD,∠G=∠EDF,∴∠DEF=∠FDG.②结论:BD=k•DE.理由:如图4中,如图延长AC到K,使得∠CBK=∠ABC.∵∠ABK=2∠ABC,∠EDF=2∠ABC,∴∠EDF=∠ABK.∵∠DFE=∠A,∴△DFE∽△BAK,∴==,∴BK=k•DE,∴∠AKB=∠DEF=∠FDG.∵BC=BC,∠CBD=∠CBK,∴△BCD≌△BCK,∴BD=BK,∴BD=k•DE26.如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,AB∥x轴,∠ABC=135°,且AB=4.(1)填空:抛物线的顶点坐标为(用含m的代数式表示);(2)求△ABC的面积(用含a的代数式表示);(3)若△ABC的面积为2,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m的值.解:(1)∵y=ax2﹣2amx+am2+2m﹣5=a(x﹣m)2+2m﹣5,∴抛物线的顶点坐标为(m,2m﹣5).故答案为:(m,2m﹣5).(2)过点C作直线AB的垂线,交线段AB的延长线于点D,如图所示.∵AB∥x轴,且AB=4,∴点B的坐标为(m+2,4a+2m﹣5).∵∠ABC=135°,∴设BD=t,则CD=t,∴点C的坐标为(m+2+t,4a+2m﹣5﹣t).∵点C在抛物线y=a(x﹣m)2+2m﹣5上,∴4a+2m﹣5﹣t=a(2+t)2+2m﹣5,整理,得:at2+(4a+1)t=0,解得:t1=0(舍去),t2=﹣,∴S△ABC=AB•CD=﹣.(3)∵△ABC的面积为2,∴﹣=2,解得:a=﹣,∴抛物线的解析式为y=﹣(x﹣m)2+2m﹣5.分三种情况考虑:①当m>2m﹣2,即m<2时,有﹣(2m﹣2﹣m)2+2m﹣5=2,整理,得:m2﹣14m+39=0,解得:m1=7﹣(舍去),m2=7+(舍去);②当2m﹣5≤m≤2m﹣2,即2≤m≤5时,有2m﹣5=2,解得:m=;③当m<2m﹣5,即m>5时,有﹣(2m﹣5﹣m)2+2m﹣5=2,整理,得:m2﹣20m+60=0,解得:m3=10﹣2(舍去),m4=10+2.综上所述:m的值为或10+2.。