2020年辽宁大连市中考数学试卷(word版)

合集下载

辽宁省大连市2020年中考数学试题(Word版,含答案与解析)

辽宁省大连市2020年中考数学试题(Word版,含答案与解析)

辽宁省大连市2020年中考数学试卷一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项正确)(共10题;共30分)1.下列四个数中,比-1小的数是( )C. 0D. 1A. -2B. −12【答案】A【考点】有理数大小比较<0<1.【解析】【解答】解:∵-2<-1<-12故答案为:A.【分析】把这些数按从小到大重新排列,即可得出结果.2.如图是由5个相同的小正方体组成的立体图形,它的主视图是( )A. B.C. D.【答案】B【考点】简单组合体的三视图【解析】【解答】解:由图可得,主视图下方是三个小正方形,右上方是一个小正方形.故答案为:B.【分析】主视图是由前向后看在正面所得的投影,据此分析即可判断.3.2020年6月23日,我国成功发射北斗系统第55颗导航卫星,暨北斗三号最后一颗全球组网卫星,该卫星驻守在我们上方36000公里的天疆,数36000用科学记数法表示为( )A. 360×102B. 36×103C. 3.6×104D. 0.36×105【答案】C【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:36000=3.6×104.故答案为:C.【分析】用科学记数法表示绝对值较大的数,一般表示为a×10n的形式,其中1≤|a|<10,n等于原数的整数位数-1.4.如图,OABC中,∠A=60°,∠B=40°,DE∥BC,则∠AED的度数是( )A. 50°B. 60°C. 70°D. 80°【答案】 D【考点】平行线的性质,三角形内角和定理【解析】【解答】解:∵∠C=180°-∠A-∠B=180°-60°-40°=80°,∵DE∥BC,∴∠AED=∠C=80°.故答案为:D.【分析】利用三角形内角和定理先求出∠C的度数,再根据平行线的性质定理得出∠AED=∠C,则∠AED 可求.5.平面直角坐标系中,点P(3,1)关于x轴对称的点的坐标是( )A. (3,1)B. (3,-1)C. (-3,1)D. (-3,-1)【答案】B【考点】关于坐标轴对称的点的坐标特征【解析】【解答】解:P(3,1)关于x轴对称的点的坐标是(3,-1).故答案为:B.【分析】关于x轴对称点的坐标特点是横坐标不变,纵坐标互为相反数,据此求解即可.6.下列计算正确的是( )A. a2+a3=a5B. a2·a3=a6C. (a2)3=a6D. (-2a2)3=-6a6【答案】C【考点】同底数幂的乘法,积的乘方,幂的乘方【解析】【解答】解: A、同底数幂相加不能套用同底数幂相乘的运算法则,不符合题意;B、a2·a3=a2+3= a5 , 不符合题意;C、(a2)3=a6,符合题意;D、(-2a2)3=-8a6,不符合题意;故答案为:C.【分析】同底数幂相乘底数不变,指数相加;幂的乘方,底数不变,指数相乘;积的乘方等于乘方的积;据此逐项计算判断即可.7.在一个不透明的袋子中有3个白球、4个红球,这些球除颜色不同外其他完全相同。

2020年辽宁省大连市中考数学试卷含答案解析

2020年辽宁省大连市中考数学试卷含答案解析

5
这个公司平均每人所创年利润是______万元. 13. 我国南宋数学家杨辉所著《田亩比类乘除算法》中记载了这样一道题:“直田积八
百六十四步,只云阔不及长一十二步,问阔及长各几步.”其大意为:一个矩形的
第 2 页,共 22 页
面积为 864 平方步,宽比长少 12 步,问宽和长各多少步?设矩形的宽为 x 步,根 据题意,可列方程为______. 14. 如图,菱形 ABCD 中,∠ACD=40°,则 ∠ABC=______°.
(1)当点 D 与点 A 重合时,求 t 的值; (2)求 S 关于 t 的函数解析式,并直接写出自变量 t 的取值范围.
D. (2,0)
A. 50°
B. 70°
C. 110°
D. 120°
二、填空题(本大题共 6 小题,共 18.0 分)
11. 不等式 5x+1>3x-1 的解集是______.
12. 某公司有 10 名员工,他们所在部门及相应每人所创年利润如下表所示.
部门
人数
每人所创年利润/万 元
A
1
10
B
2
8
C
7
第 5 页,共 22 页
22. 某化肥厂第一次运输 360 吨化肥,装载了 6 节火车车厢和 15 辆汽车;第二次运输 440 吨化肥,装载了 8 节火车车厢和 10 辆汽车.每节火车车厢与每辆汽车平均各 装多少吨化肥?
23. 甲、乙两个探测气球分别从海拔 5m 和 15m 处同时出发,匀速上升 60min.如图是 甲、乙两个探测气球所在位置的海拔 y(单位:m)与气球上升时间 x(单位:min) 的函数图象. (1)求这两个气球在上升过程中 y 关于 x 的函数解析式; (2)当这两个气球的海拔高度相差 15m 时,求上升的时间.

辽宁省大连市2020年中考数学试卷(II)卷

辽宁省大连市2020年中考数学试卷(II)卷

辽宁省大连市2020年中考数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题: (共8题;共16分)1. (2分)下列说法:①两个数互为倒数,则它们乘积为1;②若a、b互为相反数,则;③几个有理数相乘,如果负因数的个数为奇数个,则积为负;④-2×(-2)×(-2)×(-2)=(-2)4;⑤若,则。

其中错误的有()A . 1个B . 2个C . 3个D . 4个2. (2分)丁丁做了以下4道计算题:①(﹣1)2010=2010;②0﹣(﹣1)=﹣1;③ ;④.请你帮他检查一下,他一共做对了()A . 1题B . 2题C . 3题D . 4题3. (2分)如图是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体()A . 主视图改变,左视图改变B . 俯视图不变,左视图不变C . 俯视图改变,左视图改变D . 主视图改变,左视图不变4. (2分)(2017·岱岳模拟) 某校九年级数学兴趣小组的同学调查了若干名家长对“初中学生带手机上学”现象的看法,统计整理并制作了如下的条形与扇形统计图.依据图中信息,得出下列结论:(1 )接受这次调查的家长人数为200人(2 )在扇形统计图中,“不赞同”的家长部分所对应的扇形圆心角大小为162°(3 )表示“无所谓”的家长人数为40人(4 )随机抽查一名接受调查的家长,恰好抽到“很赞同”的家长的概率是.其中正确的结论个数为()A . 4B . 3C . 2D . 15. (2分)已知x=2是方程x2﹣6x+m=0的根,则该方程的另一根为()A . 2B . 3C . 4D . 86. (2分)一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<0;②a>0;③当x<1时,y2<0;④当x<3时,y1<y2中正确的个数是()A . 0B . 1C . 2D . 37. (2分) (2018八下·乐清期末) 已知图2是由图1七巧板拼成的数字“0”,己知正方形ABCD的边长为4,则六边形EFGHMN的周长为()A .B .C .D . 128. (2分) (2017七下·柳州期末) 下列命题是真命题的是()A . 同位角相等B . 有且只有一条直线与已知直线垂直C . 垂线段最短D . 直线外一点到这条直线的垂线段,叫做点到直线的距离二、填空题: (共8题;共8分)9. (1分)(2018·东胜模拟) 分解因式:3x3-6x2+3x=________.10. (1分)分式方程﹣=1的解是________ .11. (1分)如图所示,AB∥CD,∠ABE=66°,∠D=54°,则∠E的度数为________度.12. (1分)规定sin(α﹣β)=sinα•cosβ﹣cosα•sinβ,则sin15°=________13. (1分) (2017八上·建昌期末) 点M(3,﹣4)关于x轴的对称点的坐标是________.14. (1分)(2016·齐齐哈尔) 如图,在边长为2的菱形ABCD中,∠A=60°,点M是AD边的中点,连接MC,将菱形ABCD翻折,使点A落在线段CM上的点E处,折痕交AB于点N,则线段EC的长为________.15. (1分)(2017·陵城模拟) 如图(a),有一张矩形纸片ABCD,其中AD=6cm,以AD为直径的半圆,正好与对边BC相切,将矩形纸片ABCD沿DE折叠,使点A落在BC上,如图(b).则半圆还露在外面的部分(阴影部分)的面积为________.16. (1分)若sin(α+5°)=1,则α=________°.三、解答题 (共8题;共87分)17. (5分)(2017·青浦模拟) 计算:20170+()﹣1+6cos30°﹣|2﹣ |.18. (5分) (2018八上·宁波月考) 如图,点D,E在△ABC的BC边上,AB=AC,AD=AE.求证:BD=CE.19. (11分)(2017·泰兴模拟) 某学校准备开展“阳光体育活动”,决定开设以下体育活动项目:足球、乒乓球、篮球和羽毛球,要求每位学生必须且只能选择一项,为了解选择各种体育活动项目的学生人数,随机抽取了部分学生进行调查,并将通过调查获得的数据进行整理,绘制出以下两幅不完整的统计图,请根据统计图回答问题:(1)这次活动一共调查了________名学生;(2)补全条形统计图,并求出扇形统计图中选择篮球项目的人数所在扇形的圆心角的度数;(3)若该学校有1200人,则该学校选择足球项目的学生人数约是多少?20. (10分) (2018七上·抚州期末) 七年级一班开展了一次“纪念抗日战争胜利七十周年”知识竞赛,竞赛题一共有20道题,下表是其中四位参赛选手的答对题数和不答或答错题数及得分情况,请你根据表格中所给的信息回答下列问题:(1)问答对一题得多少分,不答或答错一题扣多少分?(2)一位同学说他得了75分,请问可能吗?请说明理由.21. (16分)如图,在7×7网格中,每个小正方形的边长都为1.(1)建立适当的平面直角坐标系,使点A(3,4)、C(4,2),则点B的坐标为________;(2)求图中格点△ABC的面积;(3)判断格点△ABC的形状,并说明理由.(4)在x轴上有一点P,使得PA+PC最小,求PA+PC的最小值.22. (10分)(2019·泰州) 已知一次函数和反比例函数.(1)如图1,若,且函数、的图象都经过点.①求,的值;②直接写出当时的范围;(2)如图2,过点作轴的平行线与函数的图象相交于点,与反比例函数的图象相交于点.①若,直线与函数的图象相交点.当点、、中的一点到另外两点的距离相等时,求的值;②过点作轴的平行线与函数的图象相交于点.当的值取不大于1的任意实数时,点、间的距离与点、间的距离之和始终是一个定值.求此时的值及定值.23. (15分)(2017·深圳模拟) 如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.(1)求证:PC是⊙O的切线;(2)求证:BC= AB;(3)点M是的中点,CM交AB于点N,若AB=4,求MN•MC的值.24. (15分)(2019·定安模拟) 如图,直线y=﹣x+3与x轴、y轴分别交于B、C两点,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P.(1)求该抛物线的解析式;(2)当0<x<3时,在抛物线上求一点E,使△CBE的面积有最大值;(3)在该抛物线的对称轴上是否存在点M,使以C、P、M为顶点的三角形为等腰三角形?若存在,请写出所符合条件的点M的坐标;若不存在,请说明理由.参考答案一、选择题: (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题: (共8题;共8分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共8题;共87分)17-1、18-1、19-1、19-2、19-3、20-1、20-2、21-1、21-2、21-3、21-4、22-1、22-2、23-1、23-2、23-3、24-1、24-2、24-3、。

2020年辽宁省大连市中考数学试卷(含答案解析)

2020年辽宁省大连市中考数学试卷(含答案解析)

2020年辽宁省大连市中考数学试卷副标题得分1.下列四个数中,比−1小的数是()C. 0D. 1A. −2B. −122.如图是由5个相同的小正方体组成的立体图形,它的主视图是()A. B.C. D.3.2020年6月23日,我国成功发射北斗系统第55颗导航卫星,暨北斗三号最后一颗全球组网卫星,该卫星驻守在我们上方36000公里的天疆.数36000用科学记数法表示为()A. 360×102B. 36×103C. 3.6×104D. 0.36×1054.如图,△ABC中,∠A=60°,∠B=40°,DE//BC,则∠AED的度数是()A. 50°B. 60°C. 70°D. 80°5.平面直角坐标系中,点P(3,1)关于x轴对称的点的坐标是()A. (3,1)B. (3,−1)C. (−3,1)D. (−3,−1)6.下列计算正确的是()A. a2+a3=a5B. a2⋅a3=a6C. (a2)3=a6D. (−2a2)3=−6a67.在一个不透明的袋子中有3个白球、4个红球,这些球除颜色不同外其他完全相同.从袋子中随机摸出一个球,它是红球的概率是()A. 14B. 13C. 37D. 478.如图,小明在一条东西走向公路的O处,测得图书馆A在他的北偏东60°方向,且与他相距200m,则图书馆A到公路的距离AB为()A. 100mB. 100√2mC. 100√3mD. 200√33m 9.抛物线y=ax2+bx+c(a<0)与x轴的一个交点坐标为(−1,0),对称轴是直线x=1,其部分图象如图所示,则此抛物线与x轴的另一个交点坐标是()A. (72,0) B. (3,0) C. (52,0) D. (2,0)10.如图,△ABC中,∠ACB=90°,∠ABC=40°.将△ABC绕点B逆时针旋转得到△A′BC′,使点C的对应点C′恰好落在边AB上,则∠CAA′的度数是()A. 50°B. 70°C. 110°D. 120°11.不等式5x+1>3x−1的解集是______.12.某公司有10名员工,他们所在部门及相应每人所创年利润如下表所示.部门人数每人所创年利润/万元A110B28C75这个公司平均每人所创年利润是______万元.13.我国南宋数学家杨辉所著《田亩比类乘除算法》中记载了这样一道题:“直田积八百六十四步,只云阔不及长一十二步,问阔及长各几步.”其大意为:一个矩形的面积为864平方步,宽比长少12步,问宽和长各多少步?设矩形的宽为x步,根据题意,可列方程为______.14.如图,菱形ABCD中,∠ACD=40°,则∠ABC=______°.15.如图,在平面直角坐标系中,正方形ABCD的顶点A与D在函数y=kx(x>0)的图象上,AC⊥x轴,垂足为C,点B的坐标为(0,2),则k的值为______.16.如图,矩形ABCD中,AB=6,AD=8,点E在边AD上,CE与BD相交于点F.设DE=x,BF=y,当0≤x≤8时,y关于x的函数解析式为______.17.计算(√2+1)(√2−1)+√−83+√9.18.计算x2+4x+4x+2÷x2+2xx−2−1.19.如图,△ABC中,AB=AC,点D,E在边BC上,BD=CE.求证:∠ADE=∠AED.20.某校根据《教育部基础教育课程教材发展中心中小学生阅读指导目录(2020版)》公布的初中段阅读书目,开展了读书活动.六月末,学校对八年级学生在此次活动中的读书量进行了抽样调查,如图是根据调查结果绘制的统计图表的一部分.读书量频数(人)频率1本42本0.33本4本及以上10根据以上信息,解答下列问题:(1)被调查学生中,读书量为1本的学生数为______人,读书量达到4本及以上的学生数占被调查学生总人数的百分比为______%;(2)被调查学生的总人数为______人,其中读书量为2本的学生数为______人;(3)若该校八年级共有550名学生,根据调查结果,估计该校八年级学生读书量为3本的学生人数.21.某化肥厂第一次运输360吨化肥,装载了6节火车车厢和15辆汽车;第二次运输440吨化肥,装载了8节火车车厢和10辆汽车.每节火车车厢与每辆汽车平均各装多少吨化肥?22.四边形ABCD内接于⊙O,AB是⊙O的直径,AD=CD.(1)如图1,求证∠ABC=2∠ACD;(2)过点D作⊙O的切线,交BC延长线于点P(如图2).若tan∠CAB=5,BC=1,12求PD的长.23.甲、乙两个探测气球分别从海拔5m和15m处同时出发,匀速上升60min.如图是甲、乙两个探测气球所在位置的海拔y(单位:m)与气球上升时间x(单位:min)的函数图象.(1)求这两个气球在上升过程中y关于x的函数解析式;(2)当这两个气球的海拔高度相差15m时,求上升的时间.24.如图,△ABC中,∠ACB=90°,AC=6cm,BC=8cm,点D从点B出发,沿边BA→AC以2cm/s的速度向终点C运动,过点D作DE//BC,交边AC(或AB)于点E.设点D的运动时间为t(s),△CDE的面积为S(cm2).(1)当点D与点A重合时,求t的值;(2)求S关于t的函数解析式,并直接写出自变量t的取值范围.25.如图1,△ABC中,点D,E,F分别在边AB,BC,AC上,BE=CE,点G在线段CD上,CG=CA,GF=DE,∠AFG=∠CDE.(1)填空:与∠CAG相等的角是______;(2)用等式表示线段AD与BD的数量关系,并证明;(3)若∠BAC=90°,∠ABC=2∠ACD(如图2),求AC的值.AB26.在平面直角坐标系xOy中,函数F1和F2的图象关于y轴对称,它们与直线x=t(t>0)分别相交于点P,Q.(1)如图,函数F1为y=x+1,当t=2时,PQ的长为______;(2)函数F1为y=3,当PQ=6时,t的值为______;x(3)函数F1为y=ax2+bx+c(a≠0),①当t=√b时,求△OPQ的面积;b②若c>0,函数F1和F2的图象与x轴正半轴分别交于点A(5,0),B(1,0),当c≤x≤c+1时,设函数F1的最大值和函数F2的最小值的差为h,求h关于c的函数解析式,并直接写出自变量c的取值范围.答案和解析1.【答案】A【解析】解:根据有理数比较大小的方法,可得>−1,1>−1,−2<−1,0>−1,−12∴四个数中,比−1小的数是−2.故选:A.有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2.【答案】B【解析】解:从正面看,底层是三个小正方形,上层右边的一个小正方形.故选:B.从正面看所得到的图形是主视图,从左面看到的图形是左视图,从上面看到的图象是俯视图,画出从正面看所得到的图形即可.此题主要考查了三视图,关键是把握好三视图所看的方向.属于基础题,中考常考题型.3.【答案】C【解析】解:36000=3.6×104,故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法,表示时关键要正确确定a的值以及n的值.4.【答案】D【解析】解:∵∠C=180°−∠A−∠B,∠A=60°,∠B=40°,∴∠C=80°,∵DE//BC,∴∠AED=∠C=80°,故选:D.利用三角形内角和定理求出∠C,再根据平行线的性质求出∠AED即可.本题考查三角形内角和定理,平行线的性质,解题的关键是熟练掌握三角形内角和定理,平行线的性质解决问题,属于中考常考题型.5.【答案】B【解析】解:点P(3,1)关于x轴对称的点的坐标是(3,−1)故选:B.关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得答案.本题考查了关于x轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.6.【答案】C【解析】解:A.a2与a3不是同类项,所以不能合并,故本选项不合题意;B.a2⋅a3=a5,故本选项不合题意;C.(a2)3=a6,故本选项符合题意;D.(−2a2)3=−8a6,故本选项不合题意.故选:C.分别根据合并同类项法则,同底数幂的乘法法则,幂的乘方运算法则以及积的乘方运算法则逐一判断即可.本题主要考查了同底数幂的乘法,合并同类项以及幂的乘方与积的乘方,熟记相关运算法则是解答本题的关键.7.【答案】D【解析】解:根据题意可得:袋子中有有3个白球,4个红球,共7个,.从袋子中随机摸出一个球,它是红球的概率47故选:D.根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率,即可求出答案.此题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中.事件A出现m种结果,那么事件A的概率P(A)=mn8.【答案】A【解析】解:由题意得,∠AOB=90°−60°=30°,OA=100(m),∴AB=12故选:A.根据题意求出∠AOB,根据直角三角形的性质解答即可.本题考查的是解直角三角形的应用−方向角问题,掌握方向角的概念、熟记锐角三角函数的定义是解题的关键.9.【答案】B【解析】解:设抛物线与x轴交点横坐标分别为x1、x2,且x1<x2,根据两个交点关于对称轴直线x=1对称可知:x1+x2=2,即x2−1=2,得x2=3,∴抛物线与x轴的另一个交点为(3,0),故选:B.根据抛物线的对称性和(−1,0)为x轴上的点,即可求出另一个点的交点坐标.本题考查了抛物线与x轴的交点,要知道抛物线与x轴的两交点关于对称轴对称.10.【答案】D【解析】解:∵∠ACB=90°,∠ABC=40°,∴∠CAB=90°−∠ABC=90°−40°=50°,∵将△ABC绕点B逆时针旋转得到△A′BC′,使点C的对应点C′恰好落在边AB上,∴∠A′BA=∠ABC=40°,A′B=AB,∴∠BAA′=∠BA′A=1(180°−40°)=70°,2∴∠CAA′=∠CAB+∠BAA′=50°+70°=120°.故选:D.根据旋转可得∠A′BA=∠ABC=40°,A′B=AB,得∠BAA′=70°,根据∠CAA′=∠CAB+∠BAA′,进而可得∠CAA′的度数.本题考查了旋转的性质,等腰三角形的性质,三角形内角和定理,解决本题的关键是掌握旋转的性质.11.【答案】x>−1【解析】解:5x+1>3x−1,移项得,5x−3x>−1−1,合并得,2x>−2,即x>−1,故答案为x>−1.先对不等式进行移项,合并同类项,再系数化1即可求得不等式的解集.本题考查了解简单不等式的能力,解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.12.【答案】6.1(10+2×8+7×5)=6.1(万).【解析】解:这个公司平均每人所创年利润是:110故答案为:6.1.直接利用表格中数据,求出10人的总收入进而求出平均收入.此题主要考查了加权平均数,正确利用表格获取正确信息是解题关键.13.【答案】x(x+12)=864【解析】解:∵矩形的宽为x,且宽比长少12,∴矩形的长为(x+12).依题意,得:x(x+12)=864.故答案为:x(x+12)=864.由矩形的宽及长与宽之间的关系可得出矩形的长为(x+12),再利用矩形的面积公式即可得出关于x的一元二次方程,此题得解.本题考查了由实际问题抽象出一元二次方程以及数学常识,找准等量关系,正确列出一元二次方程是解题的关键.14.【答案】100【解析】解:∵四边形ABCD是菱形,∴AB//CD,∠BCD=2∠ACD=80°,∴∠ABC+∠BCD=180°,∴∠ABC=180°−80°=100°;故答案为:100.由菱形的性质得出AB//CD,∠BCD=2∠ACD=80°,则∠ABC+∠BCD=180°,即可得出答案.本题考查了菱形的性质、平行线的性质;熟练掌握菱形的性质是解题的关键.15.【答案】8【解析】解:连接BD,与AC交于点O,∵四边形ABCD是正方形,AC⊥x轴,∴BD所在对角线平行于x轴,∵B(0,2),∴OC=2=BO=AO=DO,∴点A的坐标为(2,4),∴k=2×4=8,故答案为:8.连接BD,与AC交于点O,利用正方形的性质得到OA=OB=OC=OD=2,从而得到点A坐标,代入反比例函数表达式即可.本题考查了正方形的性质,反比例函数表达式的求法,解题的关键是利用正方形的性质求出点A的坐标.16.【答案】y=80x+8【解析】解:在矩形中,AD//BC,∴△DEF∽△BCF,∴DEBC =DFBF,∵BD=√BC2+CD2=10,BF=y,DE=x,∴DF=10−y,∴x8=10−yy,化简得:y=80x+8,∴y关于x的函数解析式为:y=80x+8,故答案为:y=80x+8.根据题干条件可证得△DEF∽△BCF,从而得到DEBC =DFBF,由线段比例关系即可求出函数解析式.本题主要考查的是相似三角形的判定与性质定理,难度不大,熟练掌握性质和判定定理是解得本题的关键,注意掌握数形结合思想与函数思想的应用.17.【答案】解:原式=2−1−2+3=2.【解析】原式利用平方差公式,立方根、算术平方根性质计算即可求出值.此题考查了平方差公式,以及实数的运算,熟练掌握公式及运算法则是解本题的关键.18.【答案】解:原式=(x+2)2x+2⋅x−2x(x+2)−1=x−2x−1=x−2−xx=−2x.【解析】直接利用分式的混合运算法则分别化简得出答案.此题主要考查了分式的混合运算,正确化简分式是解题关键.19.【答案】证明:∵AB=AC,∴∠B=∠C(等边对等角),在△ABD和△ACE中,{AB=AC ∠B=∠C BD=CE∴△ABD≌△ACE(SAS),∴AD=AE(全等三角形对应边相等),∴∠ADE =∠AED(等边对等角).【解析】根据等腰三角形等边对等角的性质可以得到∠B =∠C ,然后证明△ABD 和△ACE 全等,根据全等三角形对应边相等有AD =AE ,再根据等边对等角的性质即可证明. 本题考查了全等三角形的判定与性质以及等腰三角形的性质,找出已知边的夹角相等是证明三角形全等的关键,也是本题的突破点.20.【答案】4 20 50 15【解析】解:(1)由图表可知:被调查学生中,读书量为1本的学生数为4人,读书量达到4本及以上的学生数占被调查学生总人数的百分比为20%, 故答案为:4;20; (2)10÷20%=50, 50×0.3=15,∴被调查学生的总人数为50人,其中读书量为2本的学生数为15人, 故答案为:50;15;(3)(50−4−10−15)÷50×550=231, 该校八年级学生读书量为3本的学生有231人. (1)直接根据图表信息可得;(2)用4本及以上对应的频数除以所占百分比可得总人数,再乘以读书量为2本的频率即可;(3)求出读书量为3本的人数,除以样本人数50,再乘以全校总人数550可得结果. 本题考查了频数统计表和扇形统计图,解题的关键是熟练掌握基本概念,灵活运用所学知识解决问题,属于中考常考题型.21.【答案】解:设每节火车车厢平均装x 吨化肥,每辆汽车平均装y 吨化肥,依题意,得:{6x +15y =3608x +10y =440,解得:{x =50y =4.答:每节火车车厢平均装50吨化肥,每辆汽车平均装4吨化肥.【解析】设每节火车车厢平均装x 吨化肥,每辆汽车平均装y 吨化肥,根据“第一次运输360吨化肥,装载了6节火车车厢和15辆汽车;第二次运输440吨化肥,装载了8节火车车厢和10辆汽车”,即可得出关于x,y的二元一次方程组,解之即可得出结论.本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.22.【答案】(1)证明:∵AD=CD,∴∠DAC=∠ACD,∴∠ADC+2∠ACD=180°,又∵四边形ABCD内接于⊙O,∴∠ABC+∠ADC=180°,∴∠ABC=2∠ACD;(2)解:连接OD交AC于点E,∵PD是⊙O的切线,∴OD⊥DP,∴∠ODP=90°,又∵AD⏜=CD⏜,∴OD⊥AC,AE=EC,∴∠DEC=90°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ECP=90°,∴四边形DECP为矩形,∴DP=EC,∵tan∠CAB=512,BC=1,∴CBAC =1AC=512,∴AC=125,∴EC =12AC =65, ∴DP =65.【解析】(1)由等腰三角形的性质得出∠DAC =∠ACD ,由圆内接四边形的性质得出∠ABC +∠ADC =180°,则可得出答案;(2)由切线的性质得出∠ODP =90°,由垂径定理得出∠DEC =90°,由圆周角定理∠ACB =90°,可得出四边形DECP 为矩形,则DP =EC ,求出EC 的长,则可得出答案. 本题考查了切线的性质,圆周角定理的应用,圆内接四边形的性质,垂径定理,解直角三角形等知识,熟练切线的性质是解题的关键.23.【答案】解:(1)设甲气球的函数解析式为:y =kx +b ,乙气球的函数解析式为:y =mx +n ,分别将(0,5),(20,25)和(0,15),(20,25)代入, {5=b 25=20k +b ,{15=n 25=20m +n , 解得:{k =1b =5,{m =12n =15,∴甲气球的函数解析式为:y =x +5,乙气球的函数解析式为:y =12x +15;(2)由初始位置可得:当x 大于20时,两个气球的海拔高度可能相差15m , 且此时甲气球海拔更高, ∴x +5−(12x +15)=15, 解得:x =50,∴当这两个气球的海拔高度相差15m 时,上升的时间为50min .【解析】(1)根据图象中坐标,利用待定系数法求解;(2)根据分析可知:当x 大于20时,两个气球的海拔高度可能相差15m ,可得方程x +5−(12x +15)=15,解之即可.本题考查了一次函数的实际应用,解题的关键是结合实际情境分析函数图象.24.【答案】解:(1)∵△ABC 中,∠ACB =90°,AC =6cm ,BC =8cm ,∴AB =√AC 2+BC 2=√62+82=10(cm), 当点D 与点A 重合时,BD =AB =10cm ,∴t =102=5(s);(2)当0<t <5时,(D 在AB 上), ∵DE//BC , ∴△ADE∽△ABC , ∴DEBC =ADAB =AEAC , ∴DE 8=10−2t 10=6−CE 6,解得:DE =40−8t 5,CE =65t ,∵DE//BC ,∠ACB =90°, ∴∠CED =90°, ∴S =12DE ⋅CE =12×40−8t 5×65t =−2425t 2+245;如图2,当5<t <8时,(D 在AC 上), 则AD =2t −10, ∴CD =16−2t , ∵DE//BC , ∴△ADE∽△ACB , ∴DE CB =AE AB=AD AC,∴DE 8=2t−106, ∴DE =8t−403,∴S =12DE ⋅CD =12×8t−403×(16−2t)=−83t 2+1043t −3203,综上所述,S 关于t 的函数解析式为S ={−2425t 2+245t(0<t <5)−83t 2+1043t −3203(5<t <8).【解析】(1)根据各过各的了即可得到结论;(2)根据相似三角形的判定和性质以及三角形的面积公式即可得到结论.本题考查了函数关系式,相似三角形的判定和性质,勾股定理,正确的理解题意是解题的关键.25.【答案】∠CGA【解析】解:(1)∵CA=CG,∴∠CAG=∠CGA,故答案为:∠CGA;(2)AD=12BD,理由是:如图,在CG上取点M,使GM=AF,连接AM,EM,∵∠CAG=∠CGA,AG=GA,∴△AGM≌△GAF(SAS),∴AM=GF,∠AFG=∠AMG,∵GF=DE,∠AFG=∠CDE,∴AM=DE,∠AMG=∠CDE,∴AM//DE,∴四边形AMED为平行四边形,∴AD=EM,AD//EM,∵BE=CE,即点E为BC中点,∴ME为△BCD的中位线,∴AD=ME=12BD;(3)延长BA至点N,使AD=AN,连接CN,∵∠BAC=∠NAC=90°,∴AC垂直平分DN,∴CD=CN,∴∠ACD=∠ACN,设∠ACD=α=∠ACN,则∠ABC=2α,则∠ANC=90−α,∴∠BCN=180−2α−(90−α)=90−α,∴BN=BC,即△BCN为等腰三角形,设AD=1,则AN=1,BD=2,∴BC=BN=4,AB=3,∴AC=√BC2−AB2=√7,∴ACAB =√73.(1)根据等腰三角形等边对等角回答即可;(2)在CG 上取点M ,使GM =AF ,连接AM ,EM ,证明△AGM≌△GAF ,得到AM =GF ,∠AFG =∠AMG ,从而证明四边形AMED 为平行四边形,得到AD =EM ,AD//EM ,最后利用中位线定理得到结论;(3)延长BA 至点N ,使AD =AN ,连接CN ,证明△BCN 为等腰三角形,设AD =1,可得AB 和BC 的长,利用勾股定理求出AC ,即可得到ACAB 的值.本题考查了全等三角形的判定和性质,等腰三角形的判定和性质,平行四边形的判定和性质,中位线定理,解题的关键是根据题意构造平行四边形,转化已知条件.26.【答案】4 1【解析】解:(1)∵F 1:y =x +1, F 1和F 2关于y 轴对称, ∴F 2:y =−x +1,分别令x =2,则2+1=3,−2+1=−1, ∴P(2,3),Q(2,−1), ∴PQ =3−(−1)=4, 故答案为:4; (2)∵F 1:y =3x , 可得:F 2:y =−3x ,∵x =t ,可得:P(t,3t ),Q(t,−3t),∴PQ =3t −−3t=6t =6,解得:t =1,经检验:t =1是原方程的解, 故答案为:1;(3)①∵F1:y=ax2+bx+c,∴F2:y=ax2−bx+c,∵t=√bb,分别代入F1,F2,可得:P(√bb ,ab+√b+c),Q(√bb,ab−√b+c),∴PQ=|ab +√b+c−(ab−√b+c)|=2√b,∴S△OPQ=12×2√b×√bb=1;②∵函数F1和F2的图象与x轴正半轴分别交于点A(5,0),B(1,0),而函数F1和F2的图象关于y轴对称,∴函数F1的图象经过A(5,0)和(−1,0),∴设F1:y=a(x+1)(x−5)=ax2−4ax−5a,则F2:y=ax2+4ax−5a,∴F1的图象的对称轴是直线x=2,且c=−5a,∴a=−c5,∵c>0,则a<0,c+1>1,而F2的图象在x>0时,y随x的增大而减小,当0<c<1时,F1的图象y随x的增大而增大,F2的图象y随x的增大而减小,∴当x=c+1时,y=ax2−4ax−5a的最大值为a(c+1)2−4a(c+1)−5a,y=ax2+4ax−5a的最小值为a(c+1)2+4a(c+1)−5a,则ℎ=a(c+1)2−4a(c+1)−5a−[a(c+1)2+4a(c+1)−5a]=−8ac−8a,又∵a=−c5,∴ℎ=85c2+85c;当1≤c≤2时,F1的最大值为4a×(−5a)−(−4a)24a=−9a,F2的图象y随x的增大而减小,∴F2的最小值为:a(c+1)2+4a(c+1)−5a,则ℎ=−9a−[a(c+1)2+4a(c+1)−5a]=−a(c+1)2−4a(c+1)−4a=−ac2−6ac−9a,又∵a=−c5,∴ℎ=15c3+65c2+95c,第19页,共22页第20页,共22页 当c >2时,F 1的图象y 随x 的增大而减小,F 2的图象y 随x 的增大而减小,∴当x =c 时,y =ax 2−4ax −5a 的最大值为ac 2−4ac −5a ,当x =c +1时,y =ax 2+4ax −5a 的最小值为a(c +1)2−4a(c +1)−5a , 则ℎ=ac 2−4ac −5a −[a(c +1)2−4a(c +1)−5a]=3a −2ac ,又∵a =−c 5,∴ℎ=25c 2−35c ; 综上:h 关于x 的解析式为:{ 85c 2+85c(0<c <1)15c 3+65c 2+95c(1≤c ≤2)25c 2−35c(c >2). (1)根据F 1和F 2关于y 轴对称得出F 2的解析式,求出P 、Q 两点坐标,即可得到PQ ;(2)根据F 1和F 2关于y 轴对称得出F 2的解析式,求出P 、Q 两点坐标,根据PQ =6得出方程,解出t 值即可;(3)①根据F 1和F 2关于y 轴对称得出F 2的解析式,将x =√b b代入解析式,求出P 、Q 两点坐标,从而得出△OPQ 的面积;②根据题意得出两个函数的解析式,再分当0<c <1时,当1≤c ≤2时,当c >2时,三种情况,分析两个函数的增减性,得出最值,相减即可.本题是二次函数综合题,考查了一次函数,反比例函数,以及二次函数的图象与性质,二次函数的最值,解题的关键是要理解题意,尤其(3)问中要读懂题干,结合图象进行分析求解.。

辽宁省大连市2020年中考数学试题

辽宁省大连市2020年中考数学试题

到答案.
【详解】
解:A、 a 2 a 3 不能合并,故 A 错误;
B、 a 2 a 3 a 5 ,故 B 错误;
C、 a 2 3 a 6 ,故 C 正确; D、 2a 2 3 8a 6 ,故 D 错误;
故选:C. 【点睛】 本题考查了合并同类项、同底数幂相乘、幂的乘方、积的乘方的运算法则,解题的关键 是熟练掌握运算法则进行判断. 7.在一个不透明的袋子中有 3 个白球、4 个红球,这些球除颜色不同外其他完全相同.从 袋子中随机摸出一个球,它是红球的概率是( )
…………○…………内…………○…………装…………○…………订…………○…………线…………○………… ※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※
…………○…………外…………○…………装…………○…………订…………○…………线…………○…………
A.
7 2
,
0
B. (3, 0 )
2.下列四个数中,比 1 小的数是(
A. 2 【答案】A
B. 1 2
) C.0
D.1
【解析】
【分析】
试卷第 1 页,总 28 页
…………○…………内…………○…………装…………○…………订…………○…………线…………○………… ※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※
…………○…………外…………○…………装…………○…………订…………○…………线…………○…………
2 ∴CAA ' CAB BAA ' 50+70=120 ; 故选:D. 【点睛】 本题考查了旋转的性质,三角形的内角和定理,以及余角的性质,解题的关键是掌握所 学的性质,正确求出 B A A 7 0 .

2020年大连市初中毕业升学统一考试初中数学

2020年大连市初中毕业升学统一考试初中数学

2020年大连市初中毕业升学统一考试初中数学数 学〔课改地区〕本试卷总分值150分。

考试时刻120分钟。

一、选择题:〔此题共8小题,每题3分,共24分〕讲明:下面各题都给出代号为A 、B 、C 、D 的四个答案,请把唯独正确的答案代号填到题后的括号内。

1.在平面直角坐标系中,以下各点在第二象限的是〔 〕 A 、〔2,1〕 B 、〔2,-1〕 C 、〔-2,1〕 D 、〔-2,-1〕 2.以下各式运算正确的选项是〔 〕A 、325x x x += B 、32x x x -= C 、326x x x ⋅= D 、32x x x ÷= 3.在Rt △ABC 中,∠C =90°,AB =5,AC =3,那么sinB 的值是〔 〕 A 、35 B 、45 C 、34 D 、434.两圆的半径分不为1和4,圆心距为3,那么两圆的位置关系是〔 〕 A 、外离 B 、外切 C 、相交 D 、内切5.张华同学的身高为1.6米,某一时刻他在阳光下的影长为2米,与他邻近的一棵树的影长为6米,那么这棵树的高为〔 〕A 、3.2米B 、4.8米C 、5.2米D 、5.6米6.要调查某校初三学生周日的睡眠时刻,选取调查对象最合适的是〔 〕 A 、 选取一个班级的学生 B 、选取50名男生 C 、选取50名女生 D 、随机选取50名初三学生 7.如图1,A 、C 、B 是⊙O 上三点,假设∠AOC =40°,那么 ∠ABC 的度数是〔 〕A 、10°B 、20°C 、40°D 、80°8.图2是甲、乙、丙三人玩跷跷板的示意图〔支点在中点处〕, 那么甲的体重的取值范畴在数轴上表示正确的选项是〔 〕B图1A BC D二、填空题〔此题共6小题,每题3分,共18分〕 讲明:将以下各题结果填到题后的横线上。

9.假如水位上升1.2米,记作+1.2米,那么水位下降0.8米记作_______米。

2020年辽宁省大连市初中毕业升学统一考试初中数学

2020年辽宁省大连市初中毕业升学统一考试初中数学

2020年辽宁省大连市初中毕业升学统一考试初中数学数 学〔本试卷共150分,考试时刻120分钟〕请考生预备好圆规,直尺、三角板、运算器等答题工具,祝愿所有考生都能发挥最正确水平。

一、选择题(此题8小题,每题3分,共24分)讲明:将以下各题唯独正确的答案代号A 、B 、C 、D 填到题后的括号内。

1.-8的相反数是 ( ) A .8 B .-8 C .81 D .-81 2.在平面直角坐标系中,点P (-2,3)在 ( )A .第一象限B .第二象限C .第三象限D .第四象限3.在一条东西向的跑道上,小亮先向东走了8米,记作〝+8米〞,又向西走了10米,现在他的位置可记作 ( ) A .+2米 B .-2米 C .+18米 D .-18米4.如图1,在矩形ABCD 中,对角线AC 、BD 相交于点O ,假设O A = 2,那么BD 的长为 ( )A .4B .3C .2D .1 5.以下图形能折成正方体的是 ()DC B A6.如图2,AB 、A C 是⊙O 的两条切线,B 、C 是切点,假设∠A = 70°,那么∠BOC 的度数为 ( )A .130°B .120°C .110°D .100°7.五箱苹果的质量分不为(单位:千克):18,20,21,22,19,那图 1DCBA 图 2C OB A么这五箱苹果质量的平均数和中位数分不为 ( ) A .19和20 B .20和19 C .20和20 D .20和218.如图3,直线b kx y +=通过点A 、B ,那么k 的值为 ( ) A . 3 B .23 C .32 D .23- 二、填空题(此题共7小题,每题3分,共21分) 讲明:将答案直截了当填在题后的横线上。

9.把780 000用科学记数法表示为_______________________. 10.方程022=-x 的解为____________________________. 11.如图4,在△ABC 中,∠C = 90°,AB = 10cm ,54sin =A ,那么BC 的长为_________cm . 12.运算:x x xx 112-⋅-=_____________. 13.如图5,为测量学校旗杆的高度,小东用长为3.2m 的竹竿做测量工具.移动竹竿,全竹竿、旗杆顶端的影子恰好落在地面的同一点,现在,竹竿与这一点相距8m ,与旗杆相距22米,那么旗杆的高为_____________m .14.钟面上分针的长是6cm ,通过10分钟,分针在钟面上扫过的面积是______________cm 2.(结果用含π代数式表示)15.如图6,A 、B 是双曲线xky =的一个分支上的两点,且点B (a ,b ) 在点A 的右侧,那么b 的取值范畴是___________________. 三、解答题(此题共5小题,其中16、17题各9分,18、 19、20题各10分,共48分)16.如图7,在△ABC 中,AB = AC ,点D 、E 分不是AB 、AC 的中点,点F 是BE 、CD 的交点,请写出图中两组全等的三角形,并选出其中一组加以证明. (要求:写出证明过程中的重要依据)图 33-2yxAB O 图 4ABC21Oyx图 7FEDCBA17.解方程:13112=++xx x 18.某学校为丰富大课间自由活动的内容,随机选取本校100名学生进行调查,调查内容是〝你最喜爱的自由活动项目是什么〞,整理收集到的数据,绘制成图8. ⑴学校采纳的调查方式是______________________;⑵求喜爱〝踢毽子〞的学生人数,并中图8中将〝踢毽子〞部分的图形补充完整; ⑶该校共有800名学生,请估量喜爱〝跳绳〞的学生人数.图 819.如图9,在直角坐标系中,图形①与图形②关于点P 成中心对称. ⑴画出对称中心P ,并写出点P 的坐标;⑵将图形②向下平移4个单位,画出平移后的图形③,并判定图形③与图形①的位置关系.(直截了当写出结果)图 920.为丰富学生的校园文化生活,振兴中学举办了一次学生才艺竞赛,三个年级都有男、女各一名选手进入决赛.初一年级选手编号为男1号、女1号,初二年级选手编号为男2号、女2号,初三年级选手编号为男3号、女3号.竞赛规那么是男、女各一名选手组成搭档展现才艺.⑴用列举法讲明所有可能显现搭档的结果;⑵求同一年级男、女选手组成搭档的概率;⑶求高年级男选手与低年级女选手组成搭档的概率.四、解答题(此题共3小题,21、22题各8分,其中23题7分,共23分)21.星期天,小强骑自行车到郊外与同学一起游玩.从家动身2小时到达目的地,游玩3小时后按原路以原速返回,小强离家4小时40分钟后,妈妈驾车沿相同路线迎接小强,图10是他们离家的路程y(千米)与时刻x(时)的函数图象.小强骑车的速度为15千米/时,妈妈驾车的速度为60千米/时.⑴小强家与游玩地的距离是多少?⑵妈妈动身多长时刻与小强相遇?图 1022.某班级为预备元旦联欢会,欲购买价格分不为2元、4元和10元的三种奖品,每种奖品至少购买一件,共买16件,恰好用50元.假设2元的奖品购买a 件. ⑴用含a 的代数式表示另外两种奖品的件数; ⑵请你设计购买方案,并讲明理由.23.如图11-1,小明在研究正方形ABCD 的有关咨询题时,得出:〝在正方形ABCD 中,假如点E 是CD 的中点,点F 是BC 边上的一点,且∠F AE =∠EAD ,那么EF ⊥AE 〞.他又将〝正方形〞改为〝矩形〞、〝菱形〞和〝任意平行四边形〞(如图11-2、11-3、图11-4),其他条件不变,发觉仍旧有〝EF ⊥AE 〞的结论.你同意小明的观点吗?假设同意,请结合图11-4加以证明;假设不同意,请讲明理由. 图11-4图11-3图11-2图11-1ABCDE F A BCDE F ABCDF EF EDC BA五、解答题和附加题(此题共3小题,24、25题各12分,26题10分,共34分,附加题5分,全卷累积不超过150分,建议考生最后答附加题) 24.抛物线22++=x ax y .⑴当a =-1时,求此抛物线的顶点坐标和对称轴; ⑵假设代数式22++-x x 的值为正整数,求x 的值;⑶当1a a =时,抛物线22++=x ax y 与x 轴的正半轴相交于点M (m ,0);当2a a =时,抛物线22++=x ax y 与x 轴的正半轴交于点N (n ,0).假设点M 在点N 的左边,试比较1a 与2a 的大小.25.两个全等的Rt △ABC 和Rt △EDA 如图12放置,点B 、A 、D 在同一直线上. 操作:在图12中,作∠ABC 的平分线BF ,过点D 作DF ⊥BF ,垂足为F ,连结CE . 探究:线段BF 、CE 的关系,并证明你的结论.讲明:假如你无法证明探究所得的结论,能够将〝两个全等的Rt △ABC 和Rt △EDA 〞改为〝两个全等的等腰直角△ABC 和等腰直角△EDA(点C 、A 、E 在同一直线上)〞,其他条件不变,完成你的证明,此证明过程最多得...2.分.. 图12EDCB A26.如图13,直线AB 交x 轴于点A (2,0),交抛物线2ax y =于点B(1,3),点C 到△OAB各顶点的距离相等,直线AC 交y 轴于点D .当x > 0时,在直线OC 和抛物线2ax y =上是否分不存在点P 和点Q ,使四边形DOPQ 为专门的梯形?假设存在,求点P 、Q 的坐标;假设不存在,讲明理由.附加题:在第26题中,抛物线的解析式和点D 的坐标不变(如图14).当x > 0时,在直线kx y =(0 < k < 1)和这条抛物线上,是否分不存在点P 和点Q ,使四边形DOPQ 为以OD 为底的等腰梯形.假设存在,求点P、Q的坐标;假设不存在,讲明理由.图14。

大连市中考数学试卷(1)

大连市中考数学试卷(1)

大连市2020年初中毕业升学考试数学注意事项:1.请在答题卡上作答,在试卷上作答无效。

2.本试卷共五大题,26小题,满分150分。

考试时间120分钟。

一、选择题(本题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一个选项正确)1.-12的相反数是 ( )A.-2 B.-12C.12D.22.在平面直角坐标系中,点P(-3,2)所在象限为 ( )A.第一象限B.第二象限C.第三象限D.第四象限3( )A.2 B.3 C.4 D.54.图1是由四个完全相同的正方体组成的几何体,这个几何体的左视图是 ( )A. B.C.D.5.不等式组24010xx-⎧⎨+⎩<≥的解集是 ( )A.-1≤x<2 B.-1<x≤2C.-1≤x≤2D.-1<x<26.下列事件是必然事件的是 ( )A.抛掷一次硬币,正面朝上 B.任意购买一张电影票,座位号恰好是“7排8号”图1C .某射击运动员射击一次,命中靶心D .13名同学中,至少有两名同学出生的月份相同7.某农科院对甲、乙两种甜玉米各用10块相同条件的试验田进行试验,得到两个品种每公顷产量的两组数据,其方差分别为s 甲2=0.002、s 乙2=0.03,则 ( ) A .甲比乙的产量稳定B .乙比甲的产量稳定C .甲、乙的产量一样稳定D .无法确定哪一品种的产量更稳定8.如图2,矩形ABCD 中,AB =4,BC =5,AF 平分∠DAE,EF⊥AE, 则CF 等于A .23B .1C .32D .2二、填空题(本题共8小题,每小题3分,共24分) 9.如图3,直线a∥b,∠1=115°,则∠2=_________°.10.在平面直角坐标系中,将点(-2,-3)向上平移3个单位,则平移后的点的坐标为_______.11.化简:2111a a a -⎛⎫÷+ ⎪⎝⎭=___________. 12.已知反比例函数ky x=的图象经过点(3,-4),则这个函数的解析式为___________.13.某家用电器经过两次降价,每台零售价由350元下降到299元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中毕业升学考试(数学)
一、选择题(本题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一个选项正确)
1. 2-的绝对值等于()
A. 12-
B. 1
2
C. 2-
D.2
2.下列运算正确的是()
A. 236a a a ⨯=
B. 44()a a -=
C. 235a a a +=
D. 235()a a = 3.下列四个几何体中,其左视图为圆的是()
A. B. C. D.
4.
A.1和2
B.2和3
C.3和4
D.4和5
5.已知两圆半径分别为4和7,圆心距为3,那么这两个圆的位置关系是() A.内含 B.内切 C.相交 D.外切
6.在一个不透明的盒里,装有10个红球和5个蓝球,它们除颜色不同外,其余均相同,从中随机摸出一个球,它为蓝球的概率是() A.
23 B. 12 C. 13 D. 15
7.如图1,35A ∠=︒,90B C ∠=∠=︒,则D ∠的度数是() A.35︒ B.45︒ C.55︒ D.65︒
8.如图2,反比例函数1
1k y x
=和正比例函数22y k x =的图像都经过点(1,2)A -,若12y y >,则x 的取值范围是()
A. 10x -<<
B. 11x -<<
C. 1x <-或01x <<
D. 10x -<<或1x > 二、填空题(本题共9小题,每小题3分,共27分) 9. 5-的相反数是
10.不等式35x +>的解集为
11.为了参加市中学生篮球比赛,某校篮球队准备购买10双运动鞋,尺码(单位:厘米)如下:25 25 27 25.5 25.5 25.5 26.5 25.5 26 26则这10双运动鞋尺码的众数是 12.方程
211
x
x =-的解是 13.如图3,AB//CD ,160∠=︒,FG 平分,则∠EFD ,则2∠= ︒
14.如图4,正方形ABCD 的边长为2,E 、F 、G 、H 分别为各边中点,EG 、FH 相交于点O ,以O 为圆心,OE 为半径画圆,则图中阴影部分的面积为
B
A
O
C
D
图1
x
y
O
A
图2
E 1
2
B
A D
C
F
G
图3
15.投掷一个质地均匀的骰子,向上的面的点数是6的概率为
16.图5是一张长9cm 、宽5cm 的矩形纸板,将纸板四个角各剪去一个同样的正方形,可制成底面积是12 2cm 的一个无盖长方体纸盒,设剪去的正方形边长为xcm ,则可列出关于x 的方程为
17.如图6,直线1:33y x =-+与x 轴、y 轴分别相交于点A 、B ,△AOB 与△ACB 关于直线l 对称,则点C 的坐标为
三、解答题(本题共3小题,每小题12分,共36分)
18.如图7,点A 、B 、C 、D 在同一条直线上,AB=DC ,AE//DF ,AE=DF ,求证:EC=FB 19.先化简,再求值:
2
1(1)121
a
a a a -
-+++,其中31a =- 20.某品牌电器生产商为了了解某市顾客对其商品售后服务的满意度,随机调查了部分使用该品牌电器的顾客,将调查结果按非常满意、基本满意、说不清楚、不满意四个选项进行统计,并绘制成不完整的统计图(如图8、如图9),根据图中所给信息解答下列问题:
O
G
H
D
C F B E
A
图4
图5
O
A
x
y L
B C
图6
E
C
B
D
F
A
图7
(1)此次调查的顾客总数是 人,其中对此品牌电器售后服务“非常满意” 的顾客有 人,“不满意”的顾客有 人;
(2)该市约有6万人使用此品牌电器,请你对此品牌电器售后服务非常满意的顾客的人数
四、解答题(本题共3小题,其中21、22题各9分,23题10分,共28分) 21.如图10,△ABC 内接于⊙O 的直径,点D 在AB 的延长线上,30A D ∠=∠=︒ (1)判断DC 是否为⊙O 的切线,并说明理由; (2)证明:△AOC ≌△DBC
22.如图11,一艘海轮位于灯塔C 的北偏东30︒方向,距离灯塔80海里的A 处,海轮沿正南方向匀速航行一段时间后,到达位于灯塔C 的东南方向上的B 处
非常 满意 人数 200 160 120 80 40 0
基本 满意 说不 清楚 不满意 200
80
图8
选项
图9 非常满意 26%
不 满 意
说不
清楚
基本满意
50%
C
D
B
图10
A
O

A
B
C
图11
(1)求灯塔C 到航线AB 的距离;
(2)若海轮的速度为20海里/时,求海轮从A 处到B 处所用的时间(结果精确到0.1小时) (参考数据:2 1.41≈,3 1.73≈)
23.如图12,∠ACB=90︒,CD ⊥AB ,垂足为D ,点E 在AC 上,BE 交CD 于点G ,EF ⊥BE 交AB 于点F ,若AC=mBC ,CE=kEA ,探索线段EF 与EG 的数量关系,并证明你的结论 说明:如果你反复探索没有解决问题,可以选取(1)或(2)中的条件,选(1)中的条件完成解答满分为7分;选(2)中的条件完成解答满分为5分 (1) m=1(如图13) (2) m=1,k=1(如图14)
F
D E
G
B
C
A
图12
B
D F G
E
C
A 图13
五、解答题(本题共3小题,其中24题11分,25、26题各12分,共35分)
24.如图15,在△ABC 中,AB=AC=5,BC=6,动点P 从点A 出发沿AB 向点B 移动,(点P 与点A 、B 不重合),作PD//BC 交AC 于点D ,在DC 上取点E ,以DE 、DP 为邻边作平行四边形PFED ,使点F 到PD 的距离1
6
FH PD =,连接BF ,设AP x = (1)△ABC 的面积等于
(2)设△PBF 的面积为y ,求y 与x 的函数关系,并求y 的最大值; (3)当BP=BF 时,求x 的值
25.某物流公司的甲、乙两辆货车分别从A 、B 两地同时相向而行,并以各自的速度匀速行驶,途径配货站C ,甲车先到达C 地,并在C 地用1小时配货,然后按原速度开往B 地,乙车从B 地直达A 地,图16是甲、乙两车间的距离y (千米)与乙车出发x (时)的函数的部分图像
(1)A 、B 两地的距离是 千米,甲车出发 小时到达C 地;
(2)求乙车出发2小时后直至到达A 地的过程中,y 与x 的函数关系式及x 的取值范围,并在图16中补全函数图像;
(3)乙车出发多长时间,两车相距150千米
F D B
G E
C A 图14
F
H P A
C
B
E
D
图15
26.如图17,抛物线F :2(0)y ax bx c a =++>与y 轴相交于点C ,直线1L 经过点C 且平行于x 轴,将1L 向上平移t 个单位得到直线2L ,设1L 与抛物线F 的交点为C 、D ,2L 与抛物线F 的交点为A 、B ,连接AC 、BC (1)当12a =
,3
2
b =-,1
c =,2t =时,探究△ABC 的形状,并说明理由; (2)若△ABC 为直角三角形,求t 的值(用含a 的式子表示);
(3)在(2)的条件下,若点A 关于y 轴的对称点A’恰好在抛物线F 的对称轴上,连接A’C ,BD ,求四边形A’CDB 的面积(用含a 的式子表示)
1.5
2
300
x (时)
O y (千米)
30 图16
y
O
C
A
B
D
x
图17。

相关文档
最新文档