中考复习数学几何最值问题
中考数学最值问题总结(含强化训练)

中考数学最值问题总结(含强化训练)在中学数学题中,最值题是常见题型,围绕最大(小)值所出的数学题是各种各样,就其解法,主要分为几何最值和代数最值两大部分。
一、解决几何最值问题的要领(1)两点之间线段最短;(2)直线外一点与直线上所有点的连线段中,垂线段最短;(3)三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值)。
二、解决代数最值问题的方法要领1.二次函数的最值公式二次函数y ax bx c =++2(a 、b 、c 为常数且a ≠0)其性质中有 ①若a >0当x b a=-2时,y 有最小值。
y ac b a min =-442; ②若a <0当x b a=-2时,y 有最大值。
y ac b a max =-442。
2.一次函数的增减性.一次函数y kx b k =+≠()0的自变量x 的取值范围是全体实数,图象是一条直线,因而没有最大(小)值;但当m x n ≤≤时,则一次函数的图象是一条线段,根据一次函数的增减性,就有最大(小)值。
3. 判别式法.根据题意构造一个关于未知数x 的一元二次方程;再根据x 是实数,推得∆≥0,进而求出y 的取值范围,并由此得出y 的最值。
4.构造函数法.“最值”问题中一般都存在某些变量变化的过程,因此它们的解往往离不开函数。
5. 利用非负数的性质.在实数范围内,显然有a b k k 22++≥,当且仅当a b ==0时,等号成立,即a b k 22++的最小值为k 。
6. 零点区间讨论法.用“零点区间讨论法”消去函数y 中绝对值符号,然后求出y 在各个区间上的最大值,再加以比较,从中确定出整个定义域上的最大值。
7. 利用不等式与判别式求解.在不等式x a ≤中,x a =是最大值,在不等式x b ≥中,x b =是最小值。
8. “夹逼法”求最值.在解某些数学问题时,通过转化、变形和估计,将有关的量限制在某一数值范围内,再通过解不等式获取问题的答案,这一方法称为“夹逼法”。
中考压轴题突破:几何最值问题大全(将军饮马、造桥选址、胡不归、阿波罗尼斯圆等)

中考压轴题突破:几何最值问题大全(将军饮马、造桥选址、胡不归、阿波罗尼斯圆等)一、基本图形最值问题在几何图形中分两大类:①[定点到定点]:两点之间,线段最短;②[定点到定线]:点线之间,垂线段最短。
由此派生:③[定点到定点]:三角形两边之和大于第三边;④[定线到定线]:平行线之间,垂线段最短;⑤[定点到定圆]:点圆之间,点心线截距最短(长);⑥[定线到定圆]:线圆之间,心垂线截距最短;⑦[定圆到定圆]:圆圆之间,连心线截距最短(长)。
举例证明:[定点到定圆]:点圆之间,点心线截距最短(长)。
已知⊙O半径为r,AO=d,P是⊙O上一点,求AP的最大值和最小值。
证明:由“两点之间,线段最短”得AP≤AO+PO,AO≤AP+PO,得d-r≤AP ≤d+r,AP最小时点P在B处,最大时点P在C处。
即过圆心和定点的直线截得的线段AB、AC分别最小、最大值。
(可用“三角形两边之和大于第三边”,其实质也是由“两点之间,线段最短”推得)。
上面几种是解决相关问题的基本图形,所有的几何最值问题都是转化成上述基本图形解决的。
二、考试中出现的问题都是在基本图形的基础上进行变式,如圆与线这些图形不是直接给出,而是以符合一定条件的动点的形式确定的;再如过定点的直线与动点所在路径不相交而需要进行变换的。
类型分三种情况:(1)直接包含基本图形;(2)动点路径待确定;(3)动线(定点)位置需变换。
(一)直接包含基本图形例1.在⊙O中,圆的半径为6,∠B=30°,AC是⊙O的切线,则CD的最小值是。
简析:由∠B=30°知弧AD一定,所以D是定点,C是直线AC上的动点,即为求定点D到定线AC的最短路径,求得当CD⊥AC时最短为3。
(二)动点路径待确定例2.,如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB边上的动点(不与点B重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A长度的最小值是。
中考数学----几何最值

中考数学————几何最值【知识梳理】1.常见的几何最值问题有:线段最值问题,线段和差最值问题,周长最值问题、面积最值问题等2.几何最值问题的基本原理。
①两点之间线段最短②垂线段最短 ③利用函数关系求最值一般处理方法:常用定理:两点之间,线段最短(已知两个定点时) 垂线段最短(已知一个定点、一条定直线时) 三角形三边关系(已知两边长固定或其和、差固定时)线段和(周长)最小 转化构造三角形两点之间,线段最短 垂线段最短 线段差最大 线段最大(小)值三角形三边关系定理 三点共线时取得最值平移 对称 旋转使点在线异侧(如下图)使点在线同侧(如下图) 使目标线段与定长线段构成三角形平移 对称 旋转P A +PB 最小,需转化,使点在线异侧|P A -PB |最大,需转化,使点在线同侧lB'ABPl B'BA P构建“对称模型”实现转化一次对称1. 如图,在锐角△ABC 中,AB =42,∠BAC =45°,∠BAC 的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM+MN 的最小值是____.2、如图,在△ABC 中,AC =BC =2,∠ACB =90°,D 是BC 边的中点,E 是AB 边上一动点,则EC +ED 的最小值为_______。
1题图 2题图 3题图 4题图 3.已知⊙O 的直径CD 为4,∠AOD 的度数为60°,点B 是AD ︵的中点,在直径CD 上找一点P ,使BP+AP 的值最小,并求BP+AP 的最小值.4.如图,圆柱形玻璃杯,高为12cm ,底面周长为18cm ,在杯内离杯底4cm 的点C 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm 与蜂蜜相对的点A 处,则蚂蚁到达蜂蜜的最短距离为______cm .蜂蜜蚂蚁AC正方形中的对称变换1、如图,正方形ABCD 的边长为8,M 在DC 上,且DM =2,N 是AC 上的一动点,DN +MN 的最小值为_________。
初中数学中考几何最值问题

. 张庄
桥.
. 李庄
利用对称点、平移研究最值
已知:点M(2,3) ,点N(4,5) ,线段AB在X 轴上,线段AB的长为2,当点B坐标为 多少时,四边形MNBA的周长 最小。
N
M
AB
∟
M1
M2
利用对称点、平移研究最值
已知:等腰直角三角形ABC和等腰直角三 角形EFH的直角边长分别为2 2 和 2 ,斜
A
P
0
B
在菱形中的运用
(2018贵港)已知:菱形ABCD的边长为4 ,
B=600 . E为BC上的一动点,F为AB上的
一动点,P为AC上一个定点,则PE+PF的
最小值为 (
)
A
F
∟
F1
B
D
P E
C
在角中的运用
已知: AOB=450,点P是 AOB内一点,
PO= 10,Q、R分别是OA和OB上的动点,
A A
B
B
模型二:如图,A、B两点在直线l同侧,
请在l上找一点P1,使AP1+BP1最小;在l 上找一点P2,使AP2-BP2最大。
A
A
B
B
在正方形中的运用
(2017泰安)如图 所示,正方形ABCD的面积 为12,△ABE是等边三角形,点E在正方形 ABCD内,在对角线AC上有一点P,使 PD+PE 的和最小,则这个最小值为( )
BC,CD的动点(均不与顶点重合),当 四边形AEPQ的周长取最小值时, 求:四边形AEPQ的面积。
D
C
Байду номын сангаас
A
EB
三、从平移的角度研究最值问题
从平移角度研究最值
中考压轴题突破:几何最值问题大全(将军饮马、造桥选址、胡不归、阿波罗尼斯圆等)

中考压轴题突破:几何最值问题大全(将军饮马、造桥选址、胡不归、阿波罗尼斯圆等)一、基本图形所有问题的老祖宗只有两个:①[定点到定点]:两点之间,线段最短;②[定点到定线]:点线之间,垂线段最短。
由此派生:③[定点到定点]:三角形两边之和大于第三边;④[定线到定线]:平行线之间,垂线段最短;⑤[定点到定圆]:点圆之间,点心线截距最短(长);⑥[定线到定圆]:线圆之间,心垂线截距最短;⑦[定圆到定圆]:圆圆之间,连心线截距最短(长)。
余不赘述,下面仅举一例证明:[定点到定圆]:点圆之间,点心线截距最短(长)。
已知⊙O半径为r,AO=d,P是⊙O上一点,求AP的最大值和最小值。
证明:由“两点之间,线段最短”得AP≤AO+PO,AO≤AP+PO,得d-r≤AP≤d+r,AP最小时点P在B处,最大时点P在C处。
即过圆心和定点的直线截得的线段AB、AC分别最小、最大值。
(可用“三角形两边之和大于第三边”,其实质也是由“两点之间,线段最短”推得)。
上面几种是解决相关问题的基本图形,所有的几何最值问题都是转化成上述基本图形解决的。
二、考试中出现的问题都是在基本图形的基础上进行变式,如圆与线这些图形不是直接给出,而是以符合一定条件的动点的形式确定的;再如过定点的直线与动点所在路径不相交而需要进行变换的。
类型分三种情况:(1)直接包含基本图形;(2)动点路径待确定;(3)动线(定点)位置需变换。
(一)直接包含基本图形例 1.在⊙O中,圆的半径为6,∠B=30°,AC是⊙O的切线,则CD的最小值是。
(二)动点路径待确定例2.,如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB边上的动点(不与点B 重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A长度的最小值是。
(三)动线(定点)位置需变换线段变换的方法:(1)等值变换:翻折、平移;(2)比例变换:三角、相似。
中考数学《最值问题》及参考答案

中考数学《最值问题》及参考答案一、轴对称求最小值1.如图,四边形ABCD是边长为6的正方形,△ABC是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的值最小,求这个最小值.2.四边形ABCD中,∠BAD=122°,∠B=∠D=90°,在BC、CD上分别找一点M、N,当△AMN周长最小时,求∠MAN的度数.3.如图,∠AOB =45°,OC为∠AOB内部一条射线,点D为射线OC上一点,OD=√2,点E、F分别为射线0A、OB上的动点,求△DEF周长的最小值.二、垂线段最短求最值4.如图,矩形ABCD中,AD=3,AB=4,M为线段BD上一动点,MP⊥CD于点P,MQ⊥BC于点Q,求PQ 的最小值.5.如图,边长为6的等边三角形ABC中,E是对称轴AD上一个动点,连接EC,将线段EC绕点C逆时针旋转60°得到FC,连接DF,则在点E运动的过程中,求DF的最小值.6.如图所示,在RtΔABC中,∠C=90°,AC=4,BC=3,P为AB上一动点(不与A、 B重合),作PE ⊥AC于点E,PF⊥BC于点F,连接EF,求EF的最小值.7.如图,在ΔABC中,∠BAC=90,AB=6,BC=10,BD平分∠ABC,若P,Q分别是BD,AB上的动点,求PA+PQ的最小值.8.如图,Rt△ABC中,∠C=90°,以AB为边在AB上方作正方形ABDE,过点D作DF⊥CB,交CB的延长线于点F,连接BE,P,N分别为AC,BE上的动点,连接AN, PN,若DF=5,AC=9,求AN+PN的最小值.二、两点之间,线段最短求最值9.如图,等边△ABC的边长为4,过点B的直线l⊥AB,且△ABC与△A´B´C´公关于直线l对称,D为线段BC´上一动点,求AD+CD的最小值是( )10.如图,在长方形ABCD中,AB=3,AD=4,动点P满足S△PCD=14S长方形ABCD´,求点P到A,B两点的距离之和PA+PB的最小值.三、三角形三边的关系求最值问题11.如图,在平面直角坐标系中,平行四边形ABCD的坐标分别为A(-1,0)、B(0,2)、 C(4,2)、D(3,0),点P是AD边上的一个动点,若点A关于BP的对称点为A´,求则A´C的最小值.参考答案1.析:连接BP.因为点B 与点D 关于直线AC 对称,所以PB=PD .所以PD+PE =PB+PE≥BE,所以PD+PE 的最小值即为BE 的长.BE =AB =6,则PD+PE 的值最小为6.2.析:如图,延长AB 到A ´使得BA ´=AB,延长AD 到A ´使得DA"=AD,连接A ´A"与BC 、CD 分别交于点M 、N.∵∠ABC=∠ADC=90° ∴ A 、A ´关于BC 对称,A 、A"关于CD 对称,此时ΔAMN 的周长最小∵BA=BA ´,MB ⊥ AB ∴MA =MA ´同理:NA=NA" ∴∠A ´=∠MAB,∠A"=∠NAD∵∠AMN =∠A ´+∠MAB =2∠A ´,∠ANM =∠A"+∠NAD =2∠A"∴∠AMN +∠ANM = 2(∠A ´+∠A")∵∠BAD=122° ∴ ∠A ´+LA"=180°-∠BAD=58° ∴∠AMN +∠ANM=2x58°=116∴∠MAN =180-116°=64°3.析:作点D 作关于OA 的对称点P,点D 关于OB 的对称点Q,连接PQ,与OA 的交点为点E,与OB 的交点为点F.△DEF 的最小周长为DE +EF +QF =PE+EF+QF =PQ连接OP 、OQ,则OP=0Q=√2 ∵∠POQ =2∠AOB=90°∴ΔOPQ 是等腰直角三角形∴PQ =√2OD=2∴ΔDEF 的周长的最小值是2.4.析:如图,连接CM∵MP ⊥CD 于点P,MQ ⊥BC 于点Q ∴∠CPM =∠CQM=90°∴四边形ABCD 是矩形∴BC=AD=3,CD=AB=4,∠BCD=90°∴四边形PCQM 是矩形,PQ =CM∴BD =√32+42=5当CM ⊥BD 时,CM 最小,则PQ 最小,此时,S △BCD =1 2BD ·CM=12BC ·CD ∴PQ 的最小值为125.5.析:取线段AC 的中点G,连接EG∵ΔABC 为等边三角形,AD 为△ABC 的对称轴∴CD=CG=1 2AB=3,∠ACD =60° ∵ ∠ECF =60°∴∠FCD =∠ECG在ΔFCD 和ΔECG 中,FC =EC,∠FCD=∠ECG,DC=GC∴ΔFCD ≌AECG ∴DF =GE当EG ⊥AD 时,EG 最短,即DF 最短∵点G 为AC 的中点,EG=DF=1 2CD=32 6.析: 连接CP.∵∠C=90,AC=3,BC =4 ∴AB =√32+42=5∵PE ⊥AC,PF ⊥BC,∠C=90°∴四边形CFPE 是矩形∴EF =CP由垂线段最短可得CP ⊥AB 时,线段EF 的值最小S △ABC=1 2BC ·AC=12AB ·CP ∴1 2×4×3=12×5·CP ∴CP =2.4 7.如图,作点Q 关于直线BD 的对称点Q ´∵BD 平分∠ABC ∴点Q 在BC 上连接PQ ´,则PA+PQ 的最小值即为PA+PQ ´的最小值∴当A 、P 、Q ´三点共线且AQ ´⊥BC 时,PA+PQ 的值最小过点A 作AM ⊥BC 于点M,则PA+PQ 的最小值即为AM 的长∵AB=6,BC=10 ∴AC ²=10²-6²=64 ∴AC=8∵ S △ABC =1 2AM ·BC=1 2AB ·AC ∴AM=AB·AC BC =48 10=4.88.析:连接AD ,与BE 交于点O∵四边形ABDE 是正方形 ∴BE ⊥AD,OD =OA ,点A 与点D 关于直线BE 对称 求PN + AN 的最小值,只需D ,N ,P 在同一条直线上,由于P ,N 分别是AC 和BE 上的动点,过点D 作DP ⊥AC 于P 交BE 于点 N ,此时PN + AN =PN+ND=PD ,由△ABC ≌ △BDF 可知,BF= AC = 9,BC=DF=5,易知四边形DFCP 是矩形,CF=PD=BF+BC=9+5=149.析:如图,连接AD∵△ABC 是边长为4的等边三角形 ∴AB =BC=4,∠ABC=60° ∵△ABC 与△ A ´B ´C ´关于直线l 对称∴A ´B=BC,∠AB ´C ´=60°∴∠CBC ´=60°=∠A ´BD∴△BCD ≌△BA ´D(SAS)∴A ´D=CD ∴CD +AD =AD +A ´D当A 、D 、A ´三点共线时,AD+A ´D 最小,此时CD+AD 最小,最小为4+4=8.10.析:如图,设APC 的CD 边上的高是h.∵S △PCD =1 2S 长形ABCD ,AD=4 ∴1 2·CD ·h =1 4CD ·AD ∴h=12AD=2 ∵动点P 在与CD 平行且与CD 的距离是2的直线l 上连接AC 交直线l 于点P ´∵l//CD,AD=4,四边形ABCD 是长方形 ∴l ⊥AD,l ⊥BC∴直线l 是BC 边的垂直平分线 ∴BP ´=CP ´∴AP ´+BP ´=AP ´+CP ´ ∴ AC 的长是最短距离∴AC=√32+4=5,PA +PB 的最小值为5.11.析:连接BA ´∵AB=√5,BC =4若点A 关于BP 的对称点为A ´ ∴BA ´=BA=√5在△BA ´C 中,A ´C ≥BC-BA ´,即AC ´≥4-√5∴AC ´的最小值为4-√5。
中考常见的几何最值问题

中考常见的几何最值问题1. 已知单位正方形ABCD 内或边界上有一点P ,则PD PC PB PA ⋅⋅⋅的最大值为__________.(165)2. 如图,在矩形ABCD 中,AB =4,BC =3,E 、F 分别为AB 、CD 边的中点,动点P 从点E 出发沿EA 向点A 运动,同时,动点Q 从点F 出发沿FC 向点C 运动,连接PQ ,过点B 作BH ⊥PQ 于点H ,连接DH ,若点P 的速度是点Q 速度的2倍,在点P 从点E 运动至点A 的过程中,线段PQ 长度的最大值为__________,线段DH 长度的最小值为__________.(213,23-)3. 如图,在矩形纸片ABCD 中,AB =8,BC =6,E 是AD 的中点,F 是AB 上一动点,将△AEF 沿直线EF 折叠,点A 落在点'A 处,在EF 上任取一点G ,连接',',CA GA GC ,则'CGA ∆的周长的最小值为__________.(737+)4. 如图,在□ABCD 中,56=BC ,对角线BD =10,21tan =∠DBC ,E 是线段BC 上的动点,连接DE ,过点D 作DP ⊥DE ,在射线DP 上取点F ,使得∠DFE =∠DBC ,连接CF ,则△DCF 周长的最小值为__________.(210102+)5. 如图,在矩形ABCD 中,已知AB =3,BC =4,P 是边BC 上一动点(点P 不与点B 、C 重合),连接AP ,作点B 关于直线AP 的对称点M ,连接MP ,作∠MPC 的平分线交边CD 于点N ,则线段MN 的最小值为__________.(34)6. 如图,点O 是矩形ABCD 的对角线的交点,AB =15,BC =8,直线EF 经过点O ,分别与边CD 、AB 相交于点E 、F (其中2150<<DE ),现将四边形ADEF 沿直线EF 折叠得到四边形EF D A '',点A 、D 的对应点分别为','D A ,过点'D 作GD G D ⊥'于点G ,则线段G D '的长的最大值是__________,此时折痕EF 的长为__________.(534829,)7. 如图,在平面直角坐标系中,)3,0(,)0,1(B A ,过点B 作直线BC ∥x 轴,点P 是直线BC 上的一个动点,以AP 为边在AP 右侧作Rt △APQ ,使∠APQ =90°,且PQ AP : 3:1=,连接AB 、BQ ,则△ABQ 周长的最小值为__________.(2132+)8. 如图,在Rt △ABC 中,∠ACB =90°,∠A =60°,32=AC ,P 为AB 边上的一个动点,连接PC ,过点P 作PQ ⊥PC 交BC 边于点Q ,则BQ 的最大值为__________.(2)9. 如图,在矩形ABCD 中,AB =4,BC =3,以点C 为圆心作⊙C 与直线BD 相切,点P 是⊙C 上一点,连接AP 交BD 于点T ,则TAPA 的最大值是__________.(3)10. 将一个平行四边形放入平面直角坐标系中,它的四个顶点坐标分别表示如下:),(,),(,)4,0(,)0,8(b a D n n C B A -,其中n b a ,,为任意满足条件的实数,则线段CD 长的最小值为__________.(26)11. 如图,在∠ABC 内部有一点M ,过点M 作MA ∥BC 交AB 边于点A ,作MC ∥AB 交BC 边于点C ,若∠ABC =45°,23=AB ,BC =6,D 为线段AB 中点,P 为线段BC 上一动点,连接DP ,将线段DP 绕点D 逆时针旋转90°至'DP ,连接','CP MP ,则''CP MP +的最小值是__________.(103)12. 在△ABC 中,BC =2,高AD =2,点P 、E 、F 分别在边BC 、AC 、AB 上,且四边形PEAF 是平行四边形,则四边形PEAF 的面积的最大值为__________.(1)13. 在四边形ABCD 中,AD =DC =2,∠DAB =∠DCB =90°,BC ,AD 的延长线交于点P ,则PAB S AB ∆⋅的最小值为__________.(32)14. 已知边长为6的等边△ABC 中,E 是高AD 所在直线上的一个动点,连接BE ,将线段BE 绕点B 顺时针旋转60°得到BF ,连接DF ,则在点E 运动的过程中,当线段DF 长度最小时,2DE 的值为__________.(427)15. 如图,△ABC 中,AB =CB ,AC =10,60=∆ABC S ,E 为AB 上一动点,连接CE ,过A 作AF ⊥CE 于F ,连接BF ,则BF 的最小值是__________.(7)16. 如图,在矩形ABCD 中,AB =4,AD =2,M 是AD 边的中点,N 是AB 边上的一动点,将△AMN 沿MN 所在直线翻折得到MN A '∆,连接C A ',在MN 上存在一动点P ,连接CP P A ,',则PC A '∆周长的最小值是__________.(15217-+)17. 如图,在△ABC 中,∠ACB =90°,AC =5,BC =3,点P 是线段AC 上的一个动点,连接BP ,将线段BP 绕点P 逆时针旋转90°得到线段PD ,连接AD ,则线段AD 的最小值是__________.(2)18. 如图,长方形ABCD 中,AB =2,BC =4,正方形AEFG 的边长为1,正方形AEFG 绕点A 旋转的过程中,线段CF 的长的最小值为__________.(252-)19. 如图,P 为∠MBN 内部一定点,PD ⊥BN ,PD =3,BD =5,过点P 的直线与BM 和BN 分别相交于点E 和点F ,A 是BM 边上任意一点,过点A 作AC ⊥BN 于点C ,有3=BCAC ,则△BEF 面积的最小值是__________.(24)20. 如图,在长方形纸片ABCD 中,3,31=+=CD AD ,将长方形纸片折叠,使B 点落在AD 上的点E 处,折痕为AF ,打开纸片,再沿DF 折叠,使C 点落在点G 处,在折痕FD 上有一动点H ,连接GH ,则DH GH +2的最小值是__________.(3)21. 如图,在△ABC 中,∠ABC =45°,∠ACB =60°,434+=BC ,D 是BC 边上异于点B 、C 的一动点,将△ABD 沿AB 翻折得到1ABD ∆,将△ACD 沿AC 翻折得到2ACD ∆,连接21D D ,则四边形21BCD D 的面积最大值为__________.(31636+)22. 如图,在△ABC 中,AB =AC =8,∠ABC =30°,点M 、N 分别在AB 、AC 上,将 △AMN 沿MN 翻折,点A 落在点'A 处,则线段'BA 长度的最小值为__________.(838-)23. 如图所示,点O 是边长为1的等边△ABC 的中心,直线EF 经过点O ,分别与边BC 、AC 相交于点E 、F ,现将△CEF 沿直线EF 折叠得到△DEF ,点C 的对应点为点D ,则 △ABD 周长的最大值是__________.(1332+)24. 如图,在△ABC 中,∠B =45°,232,22+==BC AB ,等腰直角△DAE 中,∠DAE =90°,且点D 是边BC 上一点.(1)求AC 的长;(2)如图1,当点E 恰在AC 上时,求点E 到BC 的距离;(3)如图2,当点D 从点B 向点C 运动时,求点E 到BC 的距离的最大值。
中考几何最值问题含答案

几何最值问题一.选择题〔共6小题〕1.〔2021 •孝感一模〕如图,等边△ABC的边长为6,点D为AC 的中点,点E为BC的中点,点P为BD上一点,那么PE+PC的最小值为〔〕A.3B.3C.2D.3考点:轴对称-最短路线问题.分析:由题意可知点A、点C关于BD对称,连接AE交BD于点P,由对称的性质可得,PA=PC,故PE+PC=AE,由两点之间线段最短可知,AE即为PE+PC的最小值.解答:解:∵△ABC是等边三角形,点D为AC的中点,点E为BC 的中点,∴BD⊥AC,EC=3,连接AE,线段AE的长即为PE+PC最小值,∵点E是边BC的中点,∴AE⊥BC,∴AE===3,∴PE+PC的最小值是3.应选D.点评:此题考察的是轴对称﹣最短路线问题,熟知等边三角形的性质是解答此题的关键.2.〔2021•鄂城区校级模拟〕如图,在直角坐标系中有线段AB,AB=50cm,A、B到x轴的距离分别为10cm与40cm,B点到y 轴的距离为30cm,现在在x轴、y轴上分别有动点P、Q,当四边形PABQ的周长最短时,那么这个值为〔〕A.50B.50C.50﹣50D.50+50考点:轴对称-最短路线问题;坐标与图形性质.专题:压轴题.分析:过B点作BM⊥y轴交y轴于E点,截取EM=BE,过A点作AN⊥x轴交x轴于F点,截取NF=AF,连接MN交X,Y轴分别为P,Q点,此时四边形PABQ的周长最短,根据题目所给的条件可求出周长.解答:解:过B点作BM⊥y轴交y轴于E点,截取EM=BE,过A 点作AN⊥x轴交x轴于F点,截取NF=AF,连接MN交x,y 轴分别为P,Q点,过M点作MK⊥x轴,过N点作NK⊥y轴,两线交于K点.MK=40+10=50,作BL⊥x轴交KN于L点,过A点作AS⊥BP交BP于S点.∵LN=AS==40.∴KN=60+40=100.∴MN==50.∵MN=MQ+QP+PN=BQ+QP+AP=50.∴四边形PABQ的周长=50+50.应选D.点评:此题考察轴对称﹣最短路线问题以及坐标与图形的性质,此题关键是找到何时四边形的周长最短,以及构造直角三角形,求出周长.3.〔2021秋•贵港期末〕如图,AB⊥BC,AD⊥DC,∠BAD=110°,在BC、CD上分别找一点M、N,当△AMN周长最小时,∠MAN 的度数为〔〕A.30°B.40°C.50°D.60°考点:轴对称-最短路线问题.分析:根据要使△AMN的周长最小,即利用点的对称,使三角形的三边在同一直线上,作出A关于BC与CD的对称点A′,A″,即可得出∠AA′M+∠A″=∠HAA′=70°,进而得出∠MAB+∠NAD=70°,即可得出答案.解答:解:作A关于BC与CD的对称点A′,A″,连接A′A″,交BC于M,交CD于N,那么A′A″即为△AMN的周长最小值,作DA延长线AH,.∵∠DAB=110°,∴∠HAA′=70°,∴∠AA′M+∠A″=∠HAA′=70°,∵∠MA′A=∠MAB,∠NAD=∠A″,∴∠MAB+∠NAD=70°,∴∠MAN=110°﹣70°=40°.应选B.点评:此题考察的是轴对称﹣最短路线问题,涉及到平面内最短路线问题求法以及三角形的外角的性质与垂直平分线的性质等知识,根据得出M,N的位置是解题关键.4.〔2021•无锡模拟〕如图,∠MON=90°,矩形ABCD的顶点A,B分别在OM、ON上,当B在边ON上运动时,A随之在边OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=.运动过程中,当点D到点O的距离最大时,OA长度为〔〕A.B.C.2D.考点:勾股定理;三角形三边关系;直角三角形斜边上的中线.分析:取AB的中点,连接OE、DE,根据直角三角形斜边上的中线等于斜边的一半求出OE,利用勾股定理列式求出DE,然后根据三角形的任意两边之与大于第三边判断出O、E、D三点共线时点D到点O的距离最大,过点A作AF⊥OD于F,利用∠ADE的余弦列式求出DF,从而得到点F是OD的中点,判断出AF垂直平分OD,再根据线段垂直平分线上的点到两端点的距离相等可得OA=AD.解答:解:如图,取AB的中点,连接OE、DE,∵∠MON=90°,∴OE=AE=AB=×2=1,∵三边形ABCD是矩形,∴AD=BC=,在Rt△ADE中,由勾股定理得,DE===2,由三角形的三边关系得,O、E、D三点共线时点D到点O的距离最大,此时,OD=OE+DE=1+2=3,过点A作AF⊥OD于F,那么cos∠ADE==,即=,解得DF=,∵OD=3,∴点F是OD的中点,∴AF垂直平分OD,∴OA=AD=.应选B.点评:此题考察了勾股定理,三角形的任意两边之与大于第三边,直角三角形斜边上的中线等于斜边的一半的性质,线段垂直平分线上的点到两端点的距离相等的性质,作辅助线并判断出OD最大时的情况是解题的关键,作出图形更形象直观.5.〔2021 •鞍山一模〕如图,正方形ABCD的边长为4,点E在边BC上且CE=1,长为的线段MN在AC上运动,当四边形BMNE 的周长最小时,那么tan∠MBC的值是〔〕A.B.C.D.1考点:轴对称-最短路线问题;正方形的性质.分析:根据题意得出作EF∥AC且EF=,连结DF交AC于M,在AC上截取MN=,此时四边形BMNE的周长最小,进而利用相似三角形的判定与性质得出答案.解解:作EF∥AC且EF=,连结DF交AC于M,在AC上截答:取MN=,延长DF交BC于P,作FQ⊥BC于Q,那么四边形BMNE的周长最小,由∠FEQ=∠ACB=45°,可求得FQ=EQ=1,∵∠DPC=∠FPQ,∠DCP=∠FQP,∴△PFQ∽△PDC,∴=,∴=,解得:PQ=,∴PC=,由对称性可求得tan∠MBC=tan∠PDC==.应选:A.点评:此题主要考察了正方形的性质以及相似三角形的判定与性质,得出M,N的位置是解题关键.6.〔2021 •江干区一模〕如图,△ABC中,CA=CB,AB=6,CD=4,E是高线CD的中点,以CE为半径⊙C.G是⊙C上一动点,P是AG中点,那么DP的最大值为〔〕A.B.C.2D.考圆的综合题.点:分析:根据等腰三角形的性质可得点D是AB的中点,然后根据三角形中位线定理可得DP=BG,然后利用两点之间线段最短就可解决问题.解答:解:连接BG,如图.∵CA=CB,CD⊥AB,AB=6,∴AD=BD=AB=3.又∵CD=4,∴BC=5.∵E是高线CD的中点,∴CE=CD=2,∴CG=CE=2.根据两点之间线段最短可得:BG≤CG+CB=2+5=7.当B、C、G三点共线时,BG取最大值为7.∵P是AG中点,D是AB的中点,∴PD=BG,∴DP 最大值为.应选A.点评:此题主要考察了圆的综合题,涉及了等腰三角形的性质、三角形中位线定理、勾股定理、两点之间线段最短等知识,利用三角形中位线定理将DP转化为BG是解决此题的关键.二.填空题〔共3小题〕7.〔2021•江阴市校级模拟〕如图,线段AB的长为4,C为AB上一动点,分别以AC、BC为斜边在AB的同侧作等腰直角△ACD与等腰直角△BCE,那么DE长的最小值是 2 .考点:等腰直角三角形.分析:设AC=x,BC=4﹣x,根据等腰直角三角形性质,得出CD=x,CD′=〔4﹣x〕,根据勾股定理然后用配方法即可求解.解答:解:设AC=x,BC=4﹣x,∵△ABC,△BCD′均为等腰直角三角形,∴CD=x,CD′=〔4﹣x〕,∵∠ACD=45°,∠BCD′=45°,∴∠DCE=90°,∴DE2=CD2+CE2=x2+〔4﹣x〕2=x2﹣4x+8=〔x﹣2〕2+4,∴当x取2时,DE取最小值,最小值为:4.故答案为:2.点评:此题考察了二次函数最值及等腰直角三角形,难度不大,关键是掌握用配方法求二次函数最值.8.〔2021•河南校级模拟〕如图,矩形ABCD中,AB=4,BC=8,E为CD边的中点,点P、Q为BC边上两个动点,且PQ=2,当BP= 4 时,四边形APQE的周长最小.考点:轴对称-最短路线问题.专题:压轴题.分析:要使四边形APQE的周长最小,由于AE与PQ都是定值,只需AP+EQ的值最小即可.为此,先在BC边上确定点P、Q的位置,可在AD上截取线段AF=DE=2,作F点关于BC的对称点G,连接EG与BC交于一点即为Q点,过A点作FQ的平行线交BC于一点,即为P点,那么此时AP+EQ=EG最小,然后过G点作BC的平行线交DC的延长线于H点,那么先证明∠GEH=45°,再由CQ=EC即可求出BP的长度.解答:解:如图,在AD上截取线段AF=DE=2,作F点关于BC的对称点G,连接EG与BC交于一点即为Q点,过A点作FQ的平行线交BC于一点,即为P点,过G点作BC的平行线交DC 的延长线于H点.∵GH=DF=6,EH=2+4=6,∠H=90°,∴∠GEH=45°.设BP=x,那么CQ=BC﹣BP﹣PQ=8﹣x﹣2=6﹣x,在△CQE中,∵∠QCE=90°,∠CEQ=45°,∴CQ=EC,∴6﹣x=2,解得x=4.故答案为4.点评:此题考察了矩形的性质,轴对称﹣最短路线问题的应用,题目具有一定的代表性,是一道难度较大的题目,对学生提出了较高的要求.9.〔2021•武汉〕如图,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF交BD于点G,连接BE交AG于点H.假设正方形的边长为2,那么线段DH长度的最小值是﹣1 .考点:正方形的性质.专压轴题.题:分析:根据正方形的性质可得AB=AD=CD,∠BAD=∠CDA,∠ADG=∠CDG,然后利用“边角边〞证明△ABE与△DCF全等,根据全等三角形对应角相等可得∠1=∠2,利用“SAS〞证明△ADG与△CDG全等,根据全等三角形对应角相等可得∠2=∠3,从而得到∠1=∠3,然后求出∠AHB=90°,取AB的中点O,连接OH、OD,根据直角三角形斜边上的中线等于斜边的一半可得OH=AB=1,利用勾股定理列式求出OD,然后根据三角形的三边关系可知当O、D、H三点共线时,DH的长度最小.解答:解:在正方形ABCD中,AB=AD=CD,∠BAD=∠CDA,∠ADG=∠CDG,在△ABE与△DCF中,,∴△ABE≌△DCF〔SAS〕,∴∠1=∠2,在△ADG与△CDG中,,∴△ADG≌△CDG〔SAS〕,∴∠2=∠3,∴∠1=∠3,∵∠BAH+∠3=∠BAD=90°,∴∠1+∠BAH=90°,∴∠AHB=180°﹣90°=90°,取AB的中点O,连接OH、OD,那么OH=AO=AB=1,在Rt△AOD中,OD===,根据三角形的三边关系,OH+DH>OD,∴当O、D、H三点共线时,DH的长度最小,最小值=OD﹣OH=﹣1.〔解法二:可以理解为点H是在Rt△AHB,AB 直径的半圆上运动当O、H、D三点共线时,DH长度最小〕故答案为:﹣1.点评:此题考察了正方形的性质,全等三角形的判定与性质,直角三角形斜边上的中线等于斜边的一半的性质,三角形的三边关系,确定出DH最小时点H的位置是解题关键,也是此题的难点.三.解答题〔共1小题〕10.〔2021 •黄冈中学自主招生〕阅读下面材料:小伟遇到这样一个问题:如图1,在△ABC〔其中∠BAC是一个可以变化的角〕中,AB=2,AC=4,以BC为边在BC的下方作等边△PBC,求AP的最大值.小伟是这样思考的:利用变换与等边三角形将边的位置重新组合.他的方法是以点B为旋转中心将△ABP逆时针旋转60°得到△A′BC,连接A′A,当点A落在A′C上时,此题可解〔如图2〕.请你答复:AP 的最大值是 6 .参考小伟同学思考问题的方法,解决以下问题:如图3,等腰Rt△ABC.边AB=4,P为△ABC内部一点,那么AP+BP+CP的最小值是〔或不化简为〕.〔结果可以不化简〕考点:旋转的性质;全等三角形的判定与性质;等边三角形的性质;勾股定理;等腰直角三角形.专题:几何综合题.分析:〔1〕根据旋转的性质知A′A=AB=BA′=2,AP=A′C,所以在△AA′C中,利用三角形三边关系来求A′C即AP的长度;〔2〕以B为中心,将△APB逆时针旋转60°得到△A'P'B.根据旋转的性质推知PA+PB+PC=P'A′+P'B+PC.当A'、P'、P、C四点共线时,〔P'A′+P'B+PC〕最短,即线段A'C最短.然后通过作辅助线构造直角三角形A′DC,在该直角三角形内利用勾股定理来求线段A′C的长度.解答:解:〔1〕如图2,∵△ABP逆时针旋转60°得到△A′BC,∴∠A′BA=60°,A′B=AB,AP=A′C∴△A′BA是等边三角形,∴A′A=AB=BA′=2,在△AA′C中,A′C<AA′+AC,即AP<6,那么当点A′A、C三点共线时,A′C=AA′+AC,即AP=6,即AP的最大值是:6;故答案是:6.〔2〕如图3,∵Rt△ABC是等腰三角形,∴AB=BC.以B为中心,将△APB逆时针旋转60°得到△A'P'B.那么A'B=AB=BC=4,PA=P′A′,PB=P′B,∴PA+PB+PC=P′A′+P'B+PC.∵当A'、P'、P、C四点共线时,〔P'A+P'B+PC〕最短,即线段A'C最短,∴A'C=PA+PB+PC,∴A'C长度即为所求.过A'作A'D⊥CB延长线于D.∵∠A'BA=60°〔由旋转可知〕,∴∠1=30°.∵A'B=4,∴A'D=2,BD=2,∴CD=4+2.在Rt△A'DC中A'C====2+2;∴AP+BP+CP的最小值是:2+2〔或不化简为〕.故答案是:2+2〔或不化简为〕.点评:此题综合考察了旋转的性质、等腰直角三角形的性质、勾股定理以及等边三角形的判定与性质.注意:旋转前、后的图形全等.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几何最值问题一、垂线段最短1、已知抛物线y=x2+1具有如下性质:该抛物线上任意一点到定点F(0,2)的距离与到x轴的距离始终相等,如图,点M的坐标为(,3),P是抛物线y=x2+1上一个动点,则△PMF周长的最小值是()2、如图,在RT三角形ABC中,∠ABC=90°,∠C=30°,点D是BC上的动点,将线段AD绕点A 顺时针旋转60°至AD,连接BD,若AB=2cm,则BD’的最小值为__________3、如图,在锐角△ABC中,AB=4,BC=5,∠ACB=45°,将△ABC绕点B按逆时针方向旋转,得到△A1B1C1.点E为线段AB中点,点P是线段AC上的动点,在△ABC绕点B按逆时针方向旋转过程中,点P的对应点是点P1,线段EP1长度的最小值与最大值分别是.4\如图,线段AB的长为2,C为AB上一个动点,分别以AC、BC为斜边在AB的同侧作两个等腰直角三角形△ACD和△BCE,那么DE长的最小值是▲.5、如图,点C 是线段AB 上的一点,且AB= ,分别以AC,BC 为底作等腰ΔAEC 和等腰ΔBCF,且∠AEC=∠BFC=120°,点P 为EF 的中点,求线段PC 长度的最小值。
6、已知菱形ABCD 的对角线AC 和BD 交于点O ,︒=∠120BAD ,4=AB ,E 为OB 上的一个动点,将AE 绕点A 逆时针旋转60°,得AF ,则点F 到O 的最短距离为 .7、如图,已知∠MON=30°,B 为OM 上一点,BA ⊥ON ,四边形ABCD 为正方形,P 为射线BM 上一动点,连结CP ,将CP 绕点C 顺时针方向旋转90°得CE ,连结BE ,若AB=4,则BE 的最小值为__________8、 如图,在△ABC 中,∠A=75°,∠C=45°,BC=4,点M 是AC 边上的动点,点M 关于直线AB 、BC 的对称点分别为P 、Q ,则线段PQ 长的取值范围是______.二、两点之间线段最短1、如图,在ABC △中,︒=∠90C ,2,4==BC AC ,点A 、C 分别在x 轴、y 轴上,当点A 在x 轴上运动时,点C 随之在y 轴上运动.在运动过程中点B 到原点O 的最大距离为 .2、ΔABC 中,AB=4,AC=2,以BC 为边在ΔABC 外作正方形BCDE ,BD 、CE 交于点O ,则线段AO 的最大值为 .三、轴对称求最值1、如图,菱形ABCD 中,AB=2,∠A=120°,点P ,Q ,K 分别为线段BC ,CD ,BD 上的任意一点,则PK+QK 的最小值为( ) A . 1 B . C . 2 D . +12、如图,∠AOB=60°,点P是∠AOB内的定点且OP=,若点M、N分别是射线OA、OB上异于点O的动点,则△PMN周长的最小值是()3、如图,∠MON=20°,A、B分别为射线OM、ON上两定点,且OA=2,OB=4,点P、Q分别为射线OM、ON两动点,当P、Q运动时,线段AQ+PQ+PB的最小值是()4、如图,∠AOB=30°,点M、N分别在边OA、OB上,且OM=1,ON=3,点P、Q分别在边OB、OA上,则MP+PQ+QN的最小值是_________5、如图在四边形ABCD中,AB=2,BC=6,CD=1,E是BC的中点,∠AED=120°,求AD长度的最大值。
6、如图,AB是⊙O的直径,AB=2,点C在⊙O上,∠CAB=30°,D为弧BC的中点,P是直径AB 上一动点,则PC+PD的最小值为.四、圆中求最值①圆中利用切线性质构造勾股定理1、如图,⊙O的半径为2,点O到直线l的距离为3,点P是直线l上的一个动点,PQ切⊙O于点Q,则PQ的最小值为()2、如图,直线与x轴、y轴分别交于点A、B;点Q是以C(0,﹣1)为圆心、1为半径的圆上一动点,过Q点的切线交线段AB于点P,则线段PQ的最小是______.②直径是圆中最长的弦1、如图,AB是⊙O的一条弦,点C是⊙O上一动点,且∠ACB=30°,点E、F分别是AC、BC的中点,直线EF与⊙O交于G、H两点,若⊙O的半径为7,则GE+FH的最大值为___________。
2、如图,AB是圆O的弦,,是圆O上的一个动点,︒ACB,若点、分别是AB、∠45=BC的中点,则MN长的最大值是_____ 。
4,点C为半圆AB上一动点,以BC为边向O外作正△BCD(点D在直5、如图,AB为O的直径,AB=3线AB的上方),连接OD,则线段OD的最大值为.③圆外(内)一点到圆上距离最值问题1、如图,已知边长为2的正三角形ABC 顶点A 的坐标为(0,6),BC 的中点D 在y 轴上,且在A 的下方,点E 是边长为2,中心在原点的正六边形的一个顶点,把这个正六边形绕中心旋转一周,在此过程中DE 的最小值为( )(2013台州卷选择题9) A.3 B.34- C.4 D.326-2、如图,正方形ABCD 的边长为1,中心为点O ,有一边长大小不定的正六边形EFGHIJ 绕点O 可任意旋转,在旋转过程中,这个正六边形始终在正方形ABCD 内(包括正方形的边),当这个六边形的边长最大时,AE 的最小值为 (2015台州卷选择题16)3、如图,在△ABC 中,AB=10,AC=8,BC=6,以边AB 的中点O 为圆心,作半圆与AC 相切,点P ,Q 分别是边BC 和半圆上的动点,连接PQ ,则PQ 长的最大值与最小值的和是( )(2016台州卷选择题10)4、在△ABC 中,若O 为BC 边的中点,则必有:AB 2+AC 2=2AO 2+2BO 2成立.依据以上结论,解决如下问题:如图,在矩形DEFG 中,已知DE=4,EF=3,点P 在以DE 为直径的半圆上运动,则PF 2+PG 2的最小值为( )5、如图,在平面直角坐标系中,已知点A(1,0),B(1﹣a,0),C(1+a,0)(a>0),点P 在以D(4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则a的最大值是______.6、如图,在平面直角坐标系中,已知点A(0,1)、点B(0,1+t)、C(0,1−t)(t>0),点P在以D(3,3)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则t的最大值是。
7、如图,已知正方形ABCD的边长为2,以点A为圆心,1为半径作圆,E是A上的任意一点,将点E绕点D按逆时针方向旋转90°,得到点F,连接AF,则AF的最大值是。
8、已知⊙O的半径为4,等腰直角△ABC的直角顶点B为⊙O上一定点,当点A在圆上运动时(不与点B重合),则OC的最小值为.9、如图,已知以BC为直径的⊙O,A为BC中点,P为AC上任意一点,AD⊥AP交BP于D.连CD.若BC=8,则CD的最小值为④圆上一点到直线距离最值问题1、如图,直线与x轴、y轴分别交于A、B两点,点P是以C(﹣1,0)为圆心,1为半径的圆上一点,连接PA,PB,则△PAB面积的最小值是()五、隐圆问题①定点+定长1、如图1,四边形ABCD中,AB=AC=AD=2,BC=1,AB∥CD,则BD的长为。
2、如图,在边长为2的菱形ABCD 中,︒=∠60A ,M 是AD 边的中点,N 是AB 边上的一动点,将AMN △沿MN 所在直线翻折得到MN A '△,连接C A ',则C A '长度的最小值是_____ 。
②定角+定长1、如图,在平面直角坐标系中,等边△OAB 的边OB 在x 轴正半轴上,点A(3, m), m >0,点D 、E 分别从B 、0以相同的速度向O 、A 运动,连接AD 、BE 交点为F. M 是y 轴上一点,则FM 的最小值是( )2、如图,Rt △ABC 中,AC=2,∠CAB=30°,点D 和点B 分别在线段AC 的异侧,且∠ADC=30°,连BD ,则BD 的最大值为3、如图3,∠XOY = 45°,等边三角形ABC的两个顶点A、B分别在OX、OY上移动,AB = 2,那么OC的最大值为。
③直角所对的是直径1、如图,已知正方形ABCD的边长是4,点E是AB边上一动点,连接CE,过点B作BG⊥CE于点G,点P是AB边上另一动点,则PD+PG的最小值为_____.2、如图,正方形ABCD中,AB=8,O为AB的中点,P为正方形ABCD外一动点,且AP⊥CP,则线段OP的最大值为()3、如图,E ,F 是正方形ABCD 的边AD 上两个动点,满足AE=DF 。
连接CF 交BD 于点G ,连接BE 交AG 于点H 。
若正方形的边长为2,则线段DH 长度的最小值是_____。
4、如图,在平面直角坐标系中,抛物线a ax ax y 432--=的图象经过点C(0, 2),交轴于点A 、B ,(A 点在点左侧),顶点为D.①求抛物线的解析式及点A 、B 的坐标;②将ΔABC 沿直线BC 对折,点A 的对称点为A',试求A'的坐标;③抛物线的对称轴上是否存在点P,使∠BPC=∠BAC ?若存在,求出点P 的坐标;若不存在,请说明理由.④四点共圆1、如图, △ABC中, ∠ABC=90°, AB=6, BC=8, O为AC的中点, 过O作OE⊥OF, OE、OF 分别交射线AB、BC于E、F, 则EF的最小值为 .2、如图,△ABC、△EFG均是边长为2的等边三角形,点D是边BC、EF的中点,直线AG、FC 相交于点M.当△EFG绕点D旋转时,线段BM长的最小值是()A.33-2-B.13+C.2D.1五、函数最值问题1、如图,等边△ABC的边长为3,F为BC边上的动点,FD⊥AB于D,FE⊥AC于E,则DE的最大值为()2、如图,Rt△ABC中,∠BAC=90°,AB=6,AC=8,AD是BC上的高,另有一Rt△DEF(其直角顶点在D点)绕D点旋转,在旋转过程中,DE,DF分别与边AB,AC交于M、N点,则线段MN 的最小值为.3、(2019年台州)如图,直线l1∥l2∥l3,A,B,C分别为直线l1,l2,l3上的动点,连接AB,BC,AC,线段AC交直线l2于点D.设直线l1,l2之间的距离为m,直线l2,l3之间的距离为n,若∠ABC=90°,BD=4,且23mn,则m+n的最大值为.l1l2l3DBA4、(2018台州)如图,△ABC是⊙O的内接三角形,点D在BC上,点E在弦AB上(E不与A重合),且四边形BDCE为菱形.(1)求证:AC=CE;(2)求证:BC2﹣AC2=AB•AC;(3)已知⊙O的半径为3.①若ABAC=53,求BC的长;②当ABAC为何值时,AB•AC的值最大?。