第一章 命题逻辑的基本概念资料

合集下载

离散数学第一章命题逻辑知识点总结

离散数学第一章命题逻辑知识点总结

数理逻辑部分第1章命题逻辑命题符号化及联结词命题: 判断结果惟一的陈述句命题的真值: 判断的结果真值的取值: 真与假真命题: 真值为真的命题假命题: 真值为假的命题注意: 感叹句、祈使句、疑问句都不是命题,陈述句中的悖论以及判断结果不惟一确定的也不是命题。

简单命题(原子命题):简单陈述句构成的命题复合命题:由简单命题与联结词按一定规则复合而成的命题简单命题符号化用小写英文字母p, q, r, … ,p i,q i,r i (i≥1)表示简单命题用“1”表示真,用“0”表示假例如,令p:是有理数,则p 的真值为 0q:2 + 5 = 7,则q 的真值为 1联结词与复合命题1.否定式与否定联结词“”定义设p为命题,复合命题“非p”(或“p的否定”)称为p的否定式,记作p. 符号称作否定联结词,并规定p为真当且仅当p为假.2.合取式与合取联结词“∧”定义设p,q为二命题,复合命题“p并且q”(或“p与q”)称为p与q 的合取式,记作p∧q. ∧称作合取联结词,并规定 p∧q为真当且仅当p 与q同时为真注意:描述合取式的灵活性与多样性分清简单命题与复合命题例将下列命题符号化.(1) 王晓既用功又聪明.(2) 王晓不仅聪明,而且用功.(3) 王晓虽然聪明,但不用功.(4) 张辉与王丽都是三好生.(5) 张辉与王丽是同学.解令p:王晓用功,q:王晓聪明,则(1) p∧q(2) p∧q(3) p∧q.令r : 张辉是三好学生,s :王丽是三好学生(4) r∧s.(5) 令t : 张辉与王丽是同学,t 是简单命题 .说明:(1)~(4)说明描述合取式的灵活性与多样性.(5) 中“与”联结的是两个名词,整个句子是一个简单命题.3.析取式与析取联结词“∨”定义设p,q为二命题,复合命题“p或q”称作p与q的析取式,记作p∨q. ∨称作析取联结词,并规定p∨q为假当且仅当p与q同时为假.例将下列命题符号化(1) 2或4是素数.(2) 2或3是素数.(3) 4或6是素数.(4) 小元元只能拿一个苹果或一个梨.(5) 王晓红生于1975年或1976年.解令p:2是素数, q:3是素数, r:4是素数, s:6是素数,则 (1), (2), (3) 均为相容或.分别符号化为: p∨r , p∨q, r∨s,它们的真值分别为 1, 1, 0.而 (4), (5) 为排斥或.令t :小元元拿一个苹果,u:小元元拿一个梨,则 (4) 符号化为 (t∧u) ∨(t∧u).令v :王晓红生于1975年,w:王晓红生于1976年,则 (5) 既可符号化为 (v∧w)∨(v∧w), 又可符号化为v∨w , 为什么?4.蕴涵式与蕴涵联结词“”定义设p,q为二命题,复合命题“如果p,则q” 称作p与q的蕴涵式,记作p q,并称p是蕴涵式的前件,q为蕴涵式的后件. 称作蕴涵联结词,并规定,p q为假当且仅当p 为真q 为假.p q 的逻辑关系:q 为p 的必要条件“如果p,则q ” 的不同表述法很多:若p,就q只要p,就qp 仅当q只有q 才p除非q, 才p 或除非q, 否则非p.当p 为假时,p q 为真常出现的错误:不分充分与必要条件5.等价式与等价联结词“”定义设p,q为二命题,复合命题“p当且仅当q”称作p与q的等价式,记作p q. 称作等价联结词.并规定p q为真当且仅当p与q同时为真或同时为假.说明:(1) p q 的逻辑关系:p与q互为充分必要条件(2) p q为真当且仅当p与q同真或同假联结词优先级:( ),, , , ,同级按从左到右的顺序进行以上给出了5个联结词:, , , , ,组成一个联结词集合{, , , , },联结词的优先顺序为:, , , , ; 如果出现的联结词同级,又无括号时,则按从左到右的顺序运算; 若遇有括号时,应该先进行括号中的运算.注意: 本书中使用的括号全为园括号.命题常项命题变项命题公式及分类命题变项与合式公式命题常项:简单命题命题变项:真值不确定的陈述句定义合式公式 (命题公式, 公式) 递归定义如下:(1) 单个命题常项或变项p,q,r,…,p i ,q i ,r i ,…,0,1是合式公式(2) 若A是合式公式,则 (A)也是合式公式(3) 若A, B是合式公式,则(A B), (A B), (A B), (A B)也是合式公式(4) 只有有限次地应用(1)~(3)形成的符号串才是合式公式说明: 元语言与对象语言, 外层括号可以省去合式公式的层次定义(1) 若公式A是单个的命题变项, 则称A为0层公式.(2) 称A是n+1(n≥0)层公式是指下面情况之一:(a) A=B, B是n层公式;(b) A=B C, 其中B,C分别为i层和j层公式,且n=max(i, j);(c) A=B C, 其中B,C的层次及n同(b);(d) A=B C, 其中B,C的层次及n同(b);(e) A=B C, 其中B,C的层次及n同(b).例如公式p 0层p 1层p q 2层(p q)r 3层((p q) r)(r s) 4层公式的赋值定义给公式A中的命题变项p1, p2, … , p n指定一组真值称为对A的一个赋值或解释成真赋值: 使公式为真的赋值成假赋值: 使公式为假的赋值说明:赋值=12…n之间不加标点符号,i=0或1.A中仅出现p1, p2, …, p n,给A赋值12…n是指p1=1, p2=2, …, p n=nA中仅出现p,q, r, …, 给A赋值123…是指p=1,q=2 , r= 3 …含n个变项的公式有2n个赋值.真值表真值表: 公式A在所有赋值下的取值情况列成的表例给出公式的真值表A= (q p) q p的真值表例 B = (p q) q的真值表例C= (p q) r的真值表命题的分类重言式矛盾式可满足式定义设A为一个命题公式(1) 若A无成假赋值,则称A为重言式(也称永真式)(2) 若A无成真赋值,则称A为矛盾式(也称永假式)(3) 若A不是矛盾式,则称A为可满足式注意:重言式是可满足式,但反之不真.上例中A为重言式,B为矛盾式,C为可满足式A= (q p)q p,B =(p q)q,C= (p q)r等值演算等值式定义若等价式A B是重言式,则称A与B等值,记作A B,并称A B是等值式说明:定义中,A,B,均为元语言符号, A或B中可能有哑元出现.例如,在 (p q) ((p q) (r r))中,r为左边公式的哑元.用真值表可验证两个公式是否等值请验证:p(q r) (p q) rp(q r) (p q) r基本等值式双重否定律 : A A等幂律:A A A, A A A交换律: A B B A, A B B A结合律: (A B)C A(B C)(A B)C A(B C)分配律: A(B C)(A B)(A C)A(B C) (A B)(A C)德·摩根律: (A B)A B(A B)A B吸收律: A(A B)A, A(A B)A零律: A11, A00同一律: A0A, A1A排中律: A A1矛盾律: A A0等值演算:由已知的等值式推演出新的等值式的过程置换规则:若A B, 则(B)(A)等值演算的基础:(1) 等值关系的性质:自反、对称、传递(2) 基本的等值式(3) 置换规则应用举例——证明两个公式等值例1 证明p(q r) (p q)r证p(q r)p(q r) (蕴涵等值式,置换规则)(p q)r(结合律,置换规则)(p q)r(德摩根律,置换规则)(p q) r(蕴涵等值式,置换规则)说明:也可以从右边开始演算(请做一遍)因为每一步都用置换规则,故可不写出熟练后,基本等值式也可以不写出应用举例——证明两个公式不等值例2 证明: p(q r) (p q) r用等值演算不能直接证明两个公式不等值,证明两个公式不等值的基本思想是找到一个赋值使一个成真,另一个成假.方法一真值表法(自己证)方法二观察赋值法. 容易看出000, 010等是左边的的成真赋值,是右边的成假赋值.方法三用等值演算先化简两个公式,再观察.应用举例——判断公式类型例3 用等值演算法判断下列公式的类型(1) q(p q)解q(p q)q(p q) (蕴涵等值式)q(p q) (德摩根律)p(q q) (交换律,结合律)p0 (矛盾律)0 (零律)由最后一步可知,该式为矛盾式.(2) (p q)(q p)解 (p q)(q p)(p q)(q p) (蕴涵等值式)(p q)(p q) (交换律)1由最后一步可知,该式为重言式.问:最后一步为什么等值于1?(3) ((p q)(p q))r)解 ((p q)(p q))r)(p(q q))r(分配律)p1r(排中律)p r(同一律)这不是矛盾式,也不是重言式,而是非重言式的可满足式.如101是它的成真赋值,000是它的成假赋值.总结:A为矛盾式当且仅当A0A为重言式当且仅当A1说明:演算步骤不惟一,应尽量使演算短些对偶与范式对偶式与对偶原理定义在仅含有联结词, ∧,∨的命题公式A中,将∨换成∧, ∧换成∨,若A中含有0或1,就将0换成1,1换成0,所得命题公式称为A的对偶式,记为A*.从定义不难看出,(A*)* 还原成A定理设A和A*互为对偶式,p1,p2,…,p n是出现在A和A*中的全部命题变项,将A和A*写成n元函数形式,则 (1) A(p1,p2,…,p n) A* (p1, p2,…, p n) (2) A(p1, p2,…, p n) A* (p1,p2,…,p n) 定理(对偶原理)设A,B为两个命题公式,若A B,则A* B*.析取范式与合取范式文字:命题变项及其否定的总称简单析取式:有限个文字构成的析取式如p, q, p q, p q r, …简单合取式:有限个文字构成的合取式如p, q, p q, p q r, …析取范式:由有限个简单合取式组成的析取式A 1A2Ar, 其中A1,A2,,A r是简单合取式合取范式:由有限个简单析取式组成的合取式A 1A2Ar, 其中A1,A2,,A r是简单析取式范式:析取范式与合取范式的总称公式A的析取范式: 与A等值的析取范式公式A的合取范式: 与A等值的合取范式说明:单个文字既是简单析取式,又是简单合取式p q r, p q r既是析取范式,又是合取范式(为什么?)命题公式的范式定理任何命题公式都存在着与之等值的析取范式与合取范式.求公式A的范式的步骤:(1) 消去A中的, (若存在)(2) 否定联结词的内移或消去(3) 使用分配律对分配(析取范式)对分配(合取范式)公式的范式存在,但不惟一求公式的范式举例例求下列公式的析取范式与合取范式(1) A=(p q)r解 (p q)r(p q)r(消去)p q r(结合律)这既是A的析取范式(由3个简单合取式组成的析取式),又是A的合取范式(由一个简单析取式组成的合取式)(2) B=(p q)r解 (p q)r(p q)r(消去第一个)(p q)r(消去第二个)(p q)r(否定号内移——德摩根律)这一步已为析取范式(两个简单合取式构成)继续: (p q)r(p r)(q r) (对分配律)这一步得到合取范式(由两个简单析取式构成)极小项与极大项定义在含有n个命题变项的简单合取式(简单析取式)中,若每个命题变项均以文字的形式在其中出现且仅出现一次,而且第i(1i n)个文字出现在左起第i位上,称这样的简单合取式(简单析取式)为极小项(极大项).说明:n个命题变项产生2n个极小项和2n个极大项2n个极小项(极大项)均互不等值用m i表示第i个极小项,其中i是该极小项成真赋值的十进制表示. 用M i 表示第i个极大项,其中i是该极大项成假赋值的十进制表示, m i(M i)称为极小项(极大项)的名称.m与M i的关系: m i M i , M i m ii主析取范式与主合取范式主析取范式: 由极小项构成的析取范式主合取范式: 由极大项构成的合取范式例如,n=3, 命题变项为p, q, r时,(p q r)(p q r) m1m3是主析取范式(p q r)(p q r) M1M5 是主合取范式A的主析取范式: 与A等值的主析取范式A的主合取范式: 与A等值的主合取范式.定理任何命题公式都存在着与之等值的主析取范式和主合取范式, 并且是惟一的.用等值演算法求公式的主范式的步骤:(1) 先求析取范式(合取范式)(2) 将不是极小项(极大项)的简单合取式(简单析取式)化成与之等值的若干个极小项的析取(极大项的合取),需要利用同一律(零律)、排中律(矛盾律)、分配律、幂等律等.(3) 极小项(极大项)用名称m i(M i)表示,并按角标从小到大顺序排序.求公式的主范式例求公式A=(p q)r的主析取范式与主合取范式.(1) 求主析取范式(p q)r(p q)r , (析取范式)①(p q)(p q)(r r)(p q r)(p q r)m 6m7,r(p p)(q q)r(p q r)(p q r)(p q r)(p q r)m 1m3m5m7③②, ③代入①并排序,得(p q)r m1m3m5m6m7(主析取范式)(2) 求A的主合取范式(p q)r(p r)(q r) , (合取范式)①p rp(q q)r(p q r)(p q r)M 0M2,②q r(p p)q r(p q r)(p q r)M 0M4③②, ③代入①并排序,得(p q)r M0M2M4 (主合取范式)主范式的用途——与真值表相同(1) 求公式的成真赋值和成假赋值例如 (p q)r m1m3m5m6m7,其成真赋值为001, 011, 101, 110, 111,其余的赋值 000, 010, 100为成假赋值.类似地,由主合取范式也可立即求出成假赋值和成真赋值.(2) 判断公式的类型设A含n个命题变项,则A为重言式A的主析取范式含2n个极小项A的主合取范式为1.A为矛盾式A的主析取范式为0A的主合取范式含2n个极大项A为非重言式的可满足式A的主析取范式中至少含一个且不含全部极小项A的主合取范式中至少含一个且不含全部极大项例某公司要从赵、钱、孙、李、周五名新毕业的大学生中选派一些人出国学习. 选派必须满足以下条件:(1)若赵去,钱也去;(2)李、周两人中至少有一人去;(3)钱、孙两人中有一人去且仅去一人;(4)孙、李两人同去或同不去;(5)若周去,则赵、钱也去.试用主析取范式法分析该公司如何选派他们出国?解此类问题的步骤为:①将简单命题符号化②写出各复合命题③写出由②中复合命题组成的合取式④求③中所得公式的主析取范式解①设p:派赵去,q:派钱去,r:派孙去,s:派李去,u:派周去.② (1) (p q)(2) (s u)(3) ((q r)(q r))(4) ((r s)(r s))(5) (u(p q))③ (1) ~ (5)构成的合取式为A=(p q)(s u)((q r)(q r))((r s)(r s))(u(p q))④ A (p q r s u)(p q r s u)结论:由④可知,A的成真赋值为00110与11001,因而派孙、李去(赵、钱、周不去)或派赵、钱、周去(孙、李不去).A的演算过程如下:A (p q)((q r)(q r))(s u)(u(p q)) ((r s)(r s)) (交换律) B1= (p q)((q r)(q r))((p q r)(p q r)(q r)) (分配律)B2= (s u)(u(p q))((s u)(p q s)(p q u)) (分配律)B 1B2(p q r s u)(p q r s u) (q r s u)(p q r s)(p q r u)再令B3 = ((r s)(r s))得A B1B2B3(p q r s u)(p q r s u)注意:在以上演算中多次用矛盾律要求:自己演算一遍推理理论推理的形式结构推理的形式结构—问题的引入推理举例:(1) 正项级数收敛当且仅当部分和有上界.(2) 若推理: 从前提出发推出结论的思维过程上面(1)是正确的推理,而(2)是错误的推理.证明: 描述推理正确的过程.判断推理是否正确的方法•真值表法•等值演算法判断推理是否正确•主析取范式法•构造证明法证明推理正确说明:当命题变项比较少时,用前3个方法比较方便, 此时采用形式结构“” . 而在构造证明时,采用“前提: , 结论: B”.推理定律与推理规则推理定律——重言蕴涵式构造证明——直接证明法例构造下面推理的证明:若明天是星期一或星期三,我就有课. 若有课,今天必备课. 我今天下午没备课. 所以,明天不是星期一和星期三.解设p:明天是星期一,q:明天是星期三,r:我有课,s:我备课推理的形式结构为例构造下面推理的证明:2是素数或合数. 若2是素数,则是无理数.若是无理数,则4不是素数. 所以,如果4是素数,则2是合数.用附加前提证明法构造证明解设p:2是素数,q:2是合数,r:是无理数,s:4是素数推理的形式结构前提:p∨q, p r, r s结论:s q证明① s附加前提引入②p r前提引入③r s前提引入④p s②③假言三段论⑤p①④拒取式⑥p∨q前提引入⑦q⑤⑥析取三段论请用直接证明法证明之。

第1章 命题逻辑

第1章 命题逻辑
28
第一章 命题逻辑(Propositional Logic)
1.2逻辑联结词(Logical Connectives)
联结词“∨”的定义真值表
P
Q
P∨Q
0
0
0
0
1
1
1
0
1
1
1
1
29
第一章 命题逻辑(Propositional Logic)
1.2逻辑联结词(Logical Connectives)
1.2 逻辑联结词(Logical Connectives) 1.2.1 否定联结词(Negation) ┐ 1.2.2 合取联结词(Conjunction)∧ 1.2.3 析取联结词(Disjunction)∨ 1.2.4 条件联结词(蕴涵联结词Conditional)→ 1.2.5 双条件联结(等值联结词Biconditional)
1.2逻辑联结词(Logical Connectives)
例3. 将下列命题符号化. (1) 李平既聪明又用功. (2) 李平虽然聪明, 但不用功. (3) 李平不但聪明,而且用功. (4) 李平不是不聪明,而是不用功.
解: 设 P:李平聪明. Q:李平用功. 则 (1) P∧Q (2) P∧┐Q
个值:真(用 T(true)或1 表 示)、假 (用F(false) 或0表 示) 。 ✓ 真命题:判断为正确的命题,即真值为真的命题。 ✓ 假命题:判断为错误的命题,即真值为假的命题。
5
第一章 命题逻辑(Propositional Logic)
1.1 命题及其表示
因而又可以称命题是具有唯一真值的陈述句。
说明:“∧” 属于二元(binary)运算符. 合取运算特点:只有参与运算的二命题全为真 时,运算结果才为真,否则为假。

命题逻辑

命题逻辑

第一章命题逻辑内容:命题及命题联结词、命题公式的基本概念,真值表、基本等价式及永真蕴涵式,命题演算的推理理论中常用的直接证明、条件证明、反证法证明等方法教学目的:1.熟练掌握命题、联结词、复合命题、命题公式及其解释的概念。

2.熟练掌握常用的基本等价式及其应用。

3.熟练掌握(主)析/合取范式的求法及其应用。

4.熟练掌握常用的永真蕴涵式及其在逻辑推理中的应用。

5.熟练掌握形式演绎的方法。

教学重点:1.命题的概念及判断2.联结词,命题的翻译3.主析(合)取范式的求法4.逻辑推理教学难点:1.主析(合)取范式的求法2.逻辑推理1.1命题及其表示法1.1.1 命题的概念数理逻辑将能够判断真假的陈述句称作命题。

1.1.2 命题的表示命题通常使用大写字母A,B,…,Z或带下标的大写字母或数字表示,如A i,[10],R等,例如A1:我是一名大学生。

A1:我是一名大学生.[10]:我是一名大学生。

R:我是一名大学生。

1.2命题联结词(1) P↑P⇔﹁(P∧P)⇔﹁P;(2)(P↑Q)↑(P↑Q)⇔﹁(P↑Q)⇔ P∧Q;(3)(P↑P)↑(Q↑Q)⇔﹁P↑﹁Q⇔ P∨Q。

(1)P↓P⇔﹁(P∨Q)⇔﹁P;(2)(P↓Q)↓(P↓Q)⇔﹁(P↓Q)⇔P∨Q;(3)(P↓P)↓(Q↓Q)⇔﹁P↓﹁Q⇔﹁(﹁P∨﹁Q)⇔P∧Q。

1.3 命题公式、翻译与解释1.3.1 命题公式定义命题公式,简称公式,定义为:(1)单个命题变元是公式;(2)如果P 是公式,则﹁P是公式;(3)如果P、Q是公式,则P∧Q、P∨Q、P→Q、 P↔Q 都是公式;(4)当且仅当能够有限次的应用(1) 、(2)、(3) 所得到的包括命题变元、联结词和括号的符号串是公式。

例如,下面的符号串都是公式:((((﹁P)∧Q)→R)∨S)((P→﹁Q)↔(﹁R∧S))(﹁P∨Q)∧R以下符号串都不是公式:((P∨Q)↔(∧Q))(∧Q)1.3.2 命题的翻译可以把自然语言中的有些语句,转变成数理逻辑中的符号形式,称为命题的翻译。

命题逻辑的基本概念

命题逻辑的基本概念

命题逻辑的基本概念命题逻辑(propositional logic),又称命题演算,是数理逻辑的一个分支,它研究命题与命题之间的逻辑关系。

在命题逻辑中,命题是语句或陈述,可以判断为真或假。

命题逻辑的基础概念包括命题、联结词和复合命题等。

一、命题在命题逻辑中,命题是用来陈述某种事实或陈述的语句,可以判断为真或假。

命题通常用字母表示,如p、q、r等。

下面是一些例子:1. p:今天是晴天。

2. q:明天会下雨。

3. r:1+1=2。

二、联结词联结词是用来连接命题的词语,它们可以表示不同的逻辑关系。

常见的联结词有否定、合取、析取、条件、双条件等。

1. 否定(¬):表示命题的否定,将命题的真值取反。

例如,¬p表示命题p的否定。

2. 合取(∧):表示逻辑与的关系,表示两个命题都为真时,结果命题才为真。

例如,p∧q表示命题p和命题q都为真。

3. 析取(∨):表示逻辑或的关系,表示两个命题中至少一个为真时,结果命题为真。

例如,p∨q表示命题p或命题q至少一个为真。

4. 条件(→):表示逻辑蕴含的关系,表示命题p成立时,命题q也必定成立。

例如,p→q表示命题p蕴含命题q。

5. 双条件(↔):表示逻辑等价的关系,表示命题p和命题q有相同的真值。

即当p和q同时为真或同时为假时,结果命题为真。

例如,p↔q表示命题p和命题q等价。

三、复合命题复合命题是由多个命题通过联结词构成的新命题。

复合命题的真假取决于其组成命题的真假以及联结词的逻辑关系。

例如:1. (p∧q)→r:表示命题p和命题q的合取蕴含命题r。

2. ¬(p∨q):表示命题p和命题q的析取的否定。

3. p↔q∧r:表示命题p和命题q等价,并且命题r为真。

在命题逻辑中,通过运用联结词的组合和推理规则,可以进行逻辑推理和推断。

命题逻辑为我们提供了分析和解决复杂问题的思维工具。

总结:命题逻辑是数理逻辑的一个重要分支,研究命题与命题之间的逻辑关系。

1命题逻辑基本概念

1命题逻辑基本概念
6
东南大学
Introduction
Assume a very fast PC:

1 flop = 1 nanosecond = 10-9 sec. = 1,000,000,000 ops/sec = 1 GHz.
7
东南大学
Introduction
If n=8, T(n) = 7•8! = 282,240 flops < 1/3 sec. If n=50, T(n) = 49•50! = 1.48 1066 = 1.49 1057 seconds = 2.48 1055 minutes = 4.13 1053 hours = 1.72 1052 days = 2.46 1051 weeks = 4.73 1049 years.
定义1.1 设原子命题为p,则复合命题“p的否定” 或“非p”称为p的否定式。记做¬p,符号 ¬称 作否定联结词。规定¬p为真当且仅当p为假。
15
东南大学
1.1 命题与联结词
(2)严格由真值表定义 (3)举例: 北京是一座城市。 p 北京不是一座城市。 ¬p 每一种生物均是动物。 q 有一些生物不是动物。 ¬q 不是每一种生物均是动物。¬q 每一种生物均不是动物。 p ¬p T F F T

circuit design many other CS problems n cities c1, c2, . . . , cn distance between city i and j, dij
Given:

Find the shortest tour.
5
东南大学
Introduction
A tour requires n-1 additions. How many different tours?

命题的基本概念

命题的基本概念
指派
当命题变元P用一个特定的简单命题取代时,P才能确定真值,这时也称对P进行指派。
本章小结
只有陈述句才有可能是命题,但并不是所有的陈述句都能成为命题。 本小节的思维形式注记图:
• 意味着P表示“今天下雨”这个命题的名。 • 也可用数字表示此命题 例如:[12]:今天下雨 表示命题的符号称为命题标识符,P和[12]就是命题标识符。
1.1.3 命题标识符
命题常元
一个命题标识符如果表示确定的简单命题,就称为命题常元。
命题变元
如果一个命题标识符只表示任意简单命题的位置标志,就称它为命题变元。 因为命题变元可以表示任意简单命题,所以它不能确定真值,故命题变元不是命题。
命题
判断给定的句子是否为命题的基本步骤
首先应是陈述句; 其次要有唯一的真值。
68%
80%
Sed ut perspiciatis unde omnis.
Sed ut perspiciatis unde omnis.
180
175
案例
1)该吃早饭了! 祈使句,不是命题。
2)多漂亮的花呀! 感叹句,不是命题。
我正在说谎,二者也相矛盾。这其实是一个语义上的悖论。悖论不是命题。
5) x-y >2。
Sed ut perspiciatis
Sed ut perspiciatis
unde omnis.
unde omnis.
不是命题。因为x, y的值不确定,某些x, y使x−y>2为真,某些x, y使x−y>2为假,即
复合命题的基本性质是:其真值可以由其原子命题的真值以及它们复合成该复合
命题的联结方式确定。
1.1.3 命题标识符
命题标识符
• 为了能用数学的方法来研究命题之间的逻辑关系和推理,需要将命题符号化。 • 通常使用大写字母P, Q, R…或用带下标的大写字母或用数字,如Pi,[12]等表

离散数学-第1章

离散数学-第1章
27
练习1解答
提示: 分清复合命题与简单命题 分清相容或与排斥或 分清必要与充分条件及充分必要条件
答案: (1) 是简单命题
(2) 是合取式
(3) 是析取式(相容或)(4) 是析取式(排斥或)
设 p: 交通阻塞,q: 他迟到
(5) pq,
(6) pq或qp
(7) qp 或pq, (8) qp或pq
假命题 真命题 不是命题 不是命题
不是命题 不是命题
命题,但真值现在不知道
5
命题分类
命题分类:简单命题(也称原子命题)与复合命题 简单命题符号化
用小写英文字母 p, q, r, …, pi, qi, ri (i1)表示简单命题
用“1”表示真,用“0”表示假 例如,令
p: 2是有理数,则 p 的真值为0,
p q p pq (pq) (pq)q
00 1 1
0
0
01 1 1
0
0
10 0 0
1
0
11 0 1
0
0
成假赋值:00,01,10,11; 无成真赋值
24
公式的类型
定义1.10 (1) 若A在它的任何赋值下均为真, 则称A为重言式或永真式; (2) 若A在它的任何赋值下均为假, 则称A为矛盾式或永假式; (3) 若A不是矛盾式, 则称A是可满足式.
30
练习3解答
(1) pr(qp)
pqr
qp (qp) pr(qp)
000
1
0
0
001
1
0
0
010
0
1
0
011
0
1
0
100
1
0
0
101

01命题基本概念及联接词

01命题基本概念及联接词

解:这9个句子中,(7)~(9)都不是陈述句, 因而都不是命题。 (1)是真命题,(2)是假命题。 (3)的真值虽然现在还不能判断,到2100年就能 判断了,因而是命题。 (4)在十进制中为假,在二进制中为真,当确定 了进位制时其真值就确定了,因而是命题。 (5)是命题,真值视具体情况惟一确定(不是真 就是假)。 (6)是陈述句,但无法给出真假值。这种自相矛 盾的判断称为悖论,以后再讲。
1.2.2 合取联结词∧
定义1.2.2 设P,Q为二命题,复合命题“P并且Q”(或 “ P 与 Q” )称为 P 与 Q 的合取式,记作 P∧Q ,符号 “∧” 称为合取联结词 . P属于二元 ∧Q为真当且仅当 P和Q同时为真 . 说明:1、“∧” (binary)运算符 . 2、联结词“∧”的定义真值表如下:
从上述例子可以看出,原命题与逆否命题意思相同, 即等价:
P Q Q P
逆命题与反命题意思相同。 这一点非常重要,在推理过程中,有时按原命题进 行推导比较困难,而用逆否命题却可收到事半功倍 的效果。
1.2.5 双条件联结词(等价联结词)
定义1.2.5 设P,Q为二命题,复合命题“P当且仅当Q” 称为P与Q的双条件命题,记作P iff Q或PQ,符号 称为双条件(等价)联结词。PQ为真当且仅当
Q:今天天下雨。
定义1-3 如果一个命题标识符代表任意未知命题,则 称该命题标识符为命题变元(命题变项).如果一 个命题标识符代表一个确定的命题,则称之为命 题常元。
命题变元类似代数中的变量,命题常元类似
常量,但两者有着本质的区别。命题变元或常元
代表的是命题元素,而变量和常量代表的是一个
数值。
例如,x+y≥ 5 这是一个代数表达式,其中x和y是 变量,不是命题变元,但该表达式也可以作为一 个命题变元。假设代表该表达式的命题变元为z, 当变量x和y的值确定后,表达式成为一个命题常 元,命题变元z被该命题常元所取代成为命题,且 命题的真值随变量x和y不同取值而变化。 当用确定的命题代入命题变元时称为对命题 变元的代入。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
于是,当时多个国家几乎同时出现了关 于继电器接点线路结构的符号方法及数理逻 辑的命题演算在其中的应用。
1943年,数理逻辑又应用于所有开关线 路的理论中。以后,又在计算机科学和控制 论方面获得应用,成为基础理论之一。
12
数理逻辑在计算机科学技术中的应用
数理逻辑是计算理论的基础,而计算理 论又是计算机科学的核心基础,在编译原理、 复杂性分析中有广泛的应用;
10
1879年,《概念语言》,建立 第一个比较严格的逻辑演算系统。
《数学原理》,当时数理逻辑 的成果总结,使得数理逻辑形成了 专门的学科。
11
1930年以前,数理逻辑的发展主要是针 对纯数学的。从20世纪40年代起,自动化和 计算技术的发展要求建立包含数百个甚至数 千个继电器的复杂系统,人们难以进行分析 和综合。
序号
句子
是否为命题 原因
(8) 明年10月1日是晴天.

真值唯一
(9) 地球外的星球上有人.

真值唯一
(10) 11+1=100.
×
真值不确定
(8)、(9)的真值虽然现在还不知道,但它的真 值是唯一的,因而是命题。 (10)在二进制中为真,在十进制中为假,需根据 上下文才能确定其真值,因而不是命题。
5
《离散数学》是现代数学的一个重要分支, 是构筑于数学和计算机学科之间的桥梁,是计 算机科学的理论基础。
作为核心基础课程,该课程在计算机及相 关专业课程体系中扮演着重要的角色,是构筑 于数学和计算机学科之间的桥梁,。
它以研究离散量的结构及相互关系为主要 目标,充分描述了计算机科学离散性的特点。
6
与后续课程的关系
例 判断下列句子是否为命题:
序号
句子
是否为命题 原因
(1)
2 是无理数.

真命题
(2)
2 + 5 =8.

假命题
(3)
x + 5 > 3.
×
真值不确定
பைடு நூலகம்(4)
你有铅笔吗?
×
疑问句
(5) 这只兔子跑得真快呀! ×
感叹句
(6)
请不要讲话!
×
祈使句
(7)
我正在说谎话.
×
悖论
(7)这种由真能推出假、又由假能推出真,从而既 不能为真、也不能为假的陈述句称为悖论。悖论不 是命题。
“计算思维” 图1 自动计算、形式化与“计算思维”的关系
4
中学数学
数学分析
离散数学
形式语言与 自动机理论
具体、静止
变量、运动
离散、抽象
形式、模型
(基本运算系统) (计算系统)
运算范围
实数
抽象集合
特征
孤立、单一的计算 (实例计算)
一般、形式化的计算 (类计算、模型计算)
图2 “计算思维”梯度训练系统
另外,数理逻辑也是形式语言、程序设 计方法、机器证明、人工智能等学科的基础。
下面将介绍一些数理逻辑的典型应用, 供参考。
13
命题逻辑的知识在日常生活和工程技术 中都有着广泛的应用。电子计算机是数理逻 辑和电子学相结合的产物。实际上,无论是 作为计算机雏形的图灵机,还是作为程序设 计的语言等,无不涉及它的知识和理论。
离散数学
计算机1501-04 赵曦
教材
《离散数学》 屈婉玲、耿素云、张立昂, 高等教育出版社, 2015年3月第二版
2
学科地位
计算机相关专业,需具备的专业能力: • 计算思维能力; • 算法设计与分析能力; • 程序设计与实现能力; • 计算机系统的认知、分析、开发和应用能
力,简称系统能力。
3
被有效地自动计算 形式化
• 数理逻辑——在人工智能、程序理论和数据 库理论等的研究中有重要的应用。
• 集合论、图论——为数据结构和算法分析奠 定了数学基础,也为许多问题从算法角度如 何加以解决提供了继续抽象和描述的一些重 要方法。
• 代数结构——代数结构中的代数方法被广泛 应用,如可计算性与计算复杂性、形式语言 与自动机、密码学、网络与通信理论、程序 理论和形式语义学等计算机分支学科。
7
第一部分 数理逻辑
数理逻辑 用数学方法研究推理的一门科学。
命题逻辑
第一章 命题逻辑的基本概念 第二章 命题逻辑等值演算 第三章 命题逻辑的推理理论
一阶逻辑
第四章 一阶逻辑基本概念 第五章 一阶逻辑等值演算与推理
要想把这种推理规则应用到各个学科领 域中去,就必须使用一种概括性较强,并且 又是独立于任何特定的论证或者所涉及的学 科的语言。
14
命题逻辑的知识逻辑结构
3.2 3.1
2.2
2.1
1.2 1.1
15
第一章 命题逻辑的基本概念
§1.1 命题与联结词 §1.2 命题公式及其赋值
16
§1.1 命题与联结词
一、命题与真值 二、命题的分类 三、命题与真值的符号化 四、常用联结词及其符号 五、基本复合命题 六、复合命题
返回
17
一、命题与真值
1. 命题
判断结果惟一的陈述句。
2. 命题的真值 判断的结果。
3. 真命题
真值为真的命题。
4. 假命题
真值为假的命题。
18
命题的注意事项
• 非假即真的陈述句。 • 一切没有判断内容,不分真假的句子,都不是命题。 • 陈述句能否分辨真假,和是否知道它的真假,是两回事。 • 命题不能是疑问句或是祈使句等其他类型的句子。 •一个命题的真值只能是真或是假,不能兼而有之。
这种语言是一种符号化的形式语言,它 没有二义性。
第一至五章将介绍这套符号化形式体系 的制定,以及它在数理逻辑中的应用。
数理逻辑的发展
在17世纪,曾经设想创造一种 “通用的科学语言”,能够像数学 一样利用公式对推理过程进行计算, 但没有实现。是数理逻辑的先驱。
1847年,《逻辑的数学分析》, 建立了“布尔代数”,并创造了一 套符号系统,初步奠定了数理逻辑 的基础。
q:2 + 5 = 7,则 q 的真值为 1。
注意:书P4 例1.2
返回
23
四、常用联结词及其符号
1. 否定(定义1.1) 规定 p为真当且仅当p为假.
2. 合取∧(定义1.2) 规定 p∧q为真当且仅当p与q
同时为真.
3.
析取∨(定义1.3)
规定p∨q为假当且仅当p与q同时 为假.
4. 蕴涵→(定义1.4)规定pq为假当且仅当 p 为真 q 为假.
返回
21
二、命题的分类
1. 简单命题(原子命题) 不能被分解成更简单命题。
简单命题是最小的基本单位。 2. 复合命题
由简单命题通过联接词联接而成。
返回
22
三、命题与真值的符号化
1. 命题的符号化
用p、q、r等表示命题。
2. 真值的符号化
用数字1代表真,0代表假。
例如,令
p:2是有理数,则 p 的真值为 0。
相关文档
最新文档