中考专题复习(2)一次方程及方程组

合集下载

中考数学复习《二元一次方程组》

中考数学复习《二元一次方程组》

中考考点精讲精练
考点1 解二元一次方程组[5年1考:2013年(解答题)]
典型例题
1. 解方程组: x+y=5, 2x+3y=11.
解: x+y=5, ① 2x+3y=11. ②
①×3-②,得x=4. 把x=4代入①,得y=1. 则方程组的解为 x=4,
y=1.
2x+3y=12, 2. 解方程组:
y= -1.
4. 解方程组: x+3y=-1, 3x-2y=8.
解: x+3y=-1, ①
3x-2y=8. ②
由①得x=-1-3y. ③
把③代入②,得3(-1-3y)-2y=8.
解得y=-1.
则x=-1-3×(-1)=2. 故二元一次方程组的解为
x=2, y=-1.
考点点拨: 本考点是广东中考的高频考点,题型一般为计算题,难度简 单. 解答本考点的有关题目,关键在于熟练掌握消元法和代入法 解二元一次方程组. 注意以下要点: (1)用代入消元法解二元一次方程组的步骤; (2)用加减消元法解二元一次方程组的步骤.
பைடு நூலகம்
方法规律
1. 用代入消元法解二元一次方程组的一般步骤(概括为“变, 代,解,回代,联”五步) (1)从方程组中选出一个系数比较简单的方程,将这个方程中
的一个未知数(例如y)用含另一个未知数(例如x)的代数式表示 出来,即写成y=ax+b的形式,即“变”. (2)将y=ax+b代入到另一个方程中,消去y,得到一个关于x的
3. 列二元一次方程组解应用题的一般步骤(概括为“审,找, 列,解,答”五步) (1)审:通过审题,把实际问题抽象成数学问题,分析已知数 和未知数,并用字母表示其中的两个未知数. (2)找:找出能够表示题意的两个相等关系. (3)列:根据这两个相等关系列出必需的代数式,从而列出方 程组. (4)解:解这个方程组,求出两个未知数的值. (5)答:在对求出的方程组的解做出是否合理的判断的基础上, 写出答案.

人教版中考数学考点系统复习 第二章 方程(组)与不等式(组) 第一节 一次方程(组)及其应用

人教版中考数学考点系统复习 第二章 方程(组)与不等式(组) 第一节 一次方程(组)及其应用
①-②,得 2y=2,∴y=1, x=2, x=2,
∴原方程组的解为y=1,将y=1 代入 2kx-3y<5 得 2×k×2-3<5,解得 k<2.
命题点 2:一次方程(组)的应用(近 3 年考查 15 次)
7.(数学文化)(2021·武汉第 7 题 3 分)我国古代数学名著《九章算术》
中记载:“今有共买物,人出八,盈三;人出七,不足四,问人数,物价
32 人.2 艘大船与 1 艘小船一次共可以满载游客 46 人.则 1 艘大船与 1
艘小船一次共可以满载游客的人数为
( B)
A.30
B.26
C.24
D.22
11.★(2022·武汉第 10 题 3 分)幻方是古老的数学问题,我国古代的《洛 书》中记载了最早的幻方——九宫格.将 9 个数填入幻方的空格中,要 求每一横行、 每一竖列以及两条对角线上的 3 个数之和相等,例如图① 就是一个幻方.图②是一个未完成的幻方,则 x 与 y 的和是 ( D ) A.9 B.10 C.11 D.12
14.(2020·仙桃第 12 题 3 分)篮球联赛中,每场比赛都要分出胜负,每 队胜 1 场得 2 分,负 1 场得 1 分.某队 14 场比赛得到 23 分,则该队胜 了__99__场.
15.(2020·黄冈第 19 题 6 分)为推广黄冈各县市名优农产品,市政府组 织创办了“黄冈地标馆”,一顾客在“黄冈地标馆”发现,如果购买 6 盒 羊角春牌绿茶和 4 盒九孔牌藕粉,共需 960 元,如果购买 1 盒羊角春牌 绿茶和 3 盒九孔牌藕粉共需 300 元,请问每盒羊角春牌绿茶和每盒九孔 牌藕粉分别需要多少元?
【分层分析】设购进创意文具袋 x 个,由题干信息①得购进笔记本为
((2x2+x+10)个,由题干信息②可列方程为 xx++(2(x2+x1+0)1=0)190.

人教版初中数学中考复习 一轮复习-一次方程及其解法(含参)(2)

人教版初中数学中考复习 一轮复习-一次方程及其解法(含参)(2)

x y 3的解,求a的值。
考点二:二元一次方程含参问题
已知方程组2mxx5nyy246, 与n3xx m5 yy
8 ,
36
有相同的解,求m,
n的值。
考点二:二元一次方程含参问题
类型二:解的性质
1.如果关于x、y的二元一次方程组2ax3x
2y 5 (a 2) y
的x与y的值相等, 4
那么a
D.无法判断
追问:m的值是多少?
考点三:二元一次方程与一次函数
2.在二元一次方程组
2x 3y 1 0 6x my 3 0
中,当m=
无数组解。
追问:请你讨论该方程解的情况。
时,这个方程有
考点三:二元一次方程与一次函数
3.已知方程组
2x ky 4
x
2
y
0
有正数解,则k的取值范围是

考点三:二元一次方程与一次函数
练习1.
已知xy
21是二元一次方程组mmxx nnyy
7的解,则m 1
n
考点二:二元一次方程含参问题
练习2.
已知xy
25和
x 1 是方程ax y 10
by
15的两个解,则a
考点二:二元一次方程含参问题
类型二:方程同解
1.已知关于x、y的二元一次方程组4xxayy
1 的解也是二元一次方程 3
x2 y 1
考点一:二元一次方程(组)及其解法
例2. 用代入法解方程组2xxyy1106
① ②
解:由①得x=10-y ③ 把③代入②,得2(10-y)+y=16 y=4 把y=4代入③,得x=6
所以这个方程的解为 xy
6 4

中考考点复习之一次函数专题

中考考点复习之一次函数专题

中考考点复习之一次函数专题考点精讲1.结合具体情境体会一次函数的意义,能根据已知条件确定一次函数的表达式。

2.会利用待定系数法确定一次函数的表达式。

3.能画出一次函数的图象,根据一次函数的图象和表达式()0≠+=k b kx y 探索并理解0>k 和0<k 时,图象的变化情况。

4.理解正比例函数。

5.体会一次函数和二元一次方程的关系。

考点解读考点1:一次函数图像与性质(1)概念:一般来说,形如y =kx +b (k ≠0)的函数叫做一次函数.特别地,当b =0时,称为正比例函数.(2)图象形状:一次函数y =kx +b 是一条经过点(0,b )和(-b /k ,0)的直线.特别地,正比例函数y =kx 的图象是一条恒经过点(0,0)的直线.(3)一次函数与坐标轴交点坐标1.求一次函数与x 轴的交点,只需令y =0,解出x 即可;2.求与y 轴的交点,只需令x =0,求出y 即可.故一次函数y =kx +b (k ≠0)的图象与x 轴的交点是)0,(kb -,与y 轴的交点是(0,b ); 3.正比例函数y =kx (k ≠0)的图象恒过点(0,0).考点2:一次函数解析式的确定(1)常用方法:待定系数法,其一般步骤为:①设:设函数表达式为y =kx +b (k ≠0);②代:将已知点的坐标代入函数表达式,解方程或方程组;③解:求出k 与b 的值,得到函数表达式.(2)常见类型:①已知两点确定表达式;②已知两对函数对应值确定表达式;③平移转化型:如已知函数是由y =2x 平移所得到的,且经过点(0,1),则可设要求函数的解析式为y =2x +b ,再把点(0,1)的坐标代入即可.考点3:一次函数图像的平移规律:“左加右减,上加下减”①一次函数图象平移前后k 不变,或两条直线可以通过平移得到,则可知它们的k 值相同. ②若向上平移h 单位,则b 值增大h ;若向下平移h 单位,则b 值减小h .考点4:一次函数与方程不等式的关系(1)一次函数与方程:一元一次方程kx +b =0的根就是一次函数y =kx +b (k 、b 是常数,k ≠0)的图象与x 轴交点的横坐标.(2)一次函数与方程组:二元一次方程组⎩⎨⎧+=+=bx k y b x k y 21的解⇔两个一次函数b x k y +=1和b x k y +=2图象的交点坐标.(3)一次函数与不等式(1)函数y =kx +b 的函数值y >0时,自变量x 的取值范围就是不等式kx +b >0的解集(2)函数y =kx +b 的函数值y <0时,自变量x 的取值范围就是不等式kx +b <0的解集 考点5:一次函数的应用.1.一般步骤:(1)设出实际问题中的变量;(2)建立一次函数关系式;(3)利用待定系数法求出一次函数关系式;(4)确定自变量的取值范围;(5)利用一次函数的性质求相应的值,对所求的值进行检验,是否符合实际意义;(6)做答.2.常见题型(1)求一次函数的解析式.(2)利用一次函数的性质解决方案问题.考点突破1.(2021秋•驻马店期末)若函数y=(m﹣1)x|m|﹣5是一次函数,则m的值为()A.±1B.﹣1C.1D.22.(2021秋•中原区校级期末)下列问题中,两个变量之间成正比例关系的是()A.圆的面积S(cm2)与它的半径r(cm)之间的关系B.某水池有水15m3,现打开进水管进水,进水速度为5m3/h,xh后这个水池有水ym3C.三角形面积一定时,它的底边a(cm)和底边上的高h(cm)之间的关系D.汽车以60km/h的速度匀速行驶,行驶路程y与行驶时间x之间的关系3.(2021秋•驿城区校级期末)在同一直角坐标系中,当ab>0时,y=ax2与y=ax+b的图象大致是()A.B.C.D.4.(2021春•新蔡县期末)正比例函数y=kx(k≠0)和一次函数y=k(1﹣x)在同一个直角坐标系内的图象大致是下图中的()A.B.C.D.5.(2021秋•白银期末)关于函数y=﹣2x+1,下列结论正确的是()A.图象必经过(﹣2,1)B.y随x的增大而增大C.图象经过第一、二、三象限D.当x>时,y<06.(2021春•巨野县期末)已知正比例函数y=kx(k≠0),函数值随x的增大而增大,则一次函数y=﹣kx+k的图象大致是()A.B.C.D.7.(2021秋•任城区校级期末)两个一次函数y1=mx+n,y2=nx+m,它们在同一坐标系中的图象可能是图中的()A.B.C.D.8.(2021秋•驿城区期末)一次函数y=﹣2x+6的图象与两坐标轴围成的三角形的面积是()A.6B.9C.12D.189.(2021秋•新郑市期末)若函数y=(m﹣3)x|m﹣2|+m﹣1是一次函数,则m的值为.10.(2021秋•驿城区校级期末)当k=时,函数y=(k﹣1)x+k2﹣1是一个正比例函数.11.(2021春•舞阳县期末)若式子+(k﹣1)0有意义,则一次函数y=(k﹣1)x+1﹣k的图象可能是.(填字母代号)A.B.C.D.12.(2019春•安阳期末)函数y=2x与y=6﹣kx的图象如图所示,则k=.13.(2021秋•东城区校级期末)请写出一个图象经过第一、第三象限的一次函数关系式.(写出一个即可).14.(2021•河南)请写出一个图象经过原点的函数的解析式.15.(2018春•确山县期末)点P(x,y)在第一象限,且x+y=8,点A的坐标为(6,0).设△OP A的面积为S.(1)用含x的解析式表示S为,其中x的范围是.(2)画出函数S的图象.(3)当点P的横坐标为5时,△OP A的面积为.(4)△OP A的面积能大于24吗?为什么?16.(2021春•会昌县期末)先完成下列填空,再在同一平面直角坐标系中画出以下函数的图象(不必再列表)(1)正比例函数y=2x的图象过(0,)和(1,);(2)一次函数y=﹣x+3的图象过(0,)和(,0).17.(2021秋•金水区校级期末)请根据学习“一次函数”时积累的经验和方法研究函数y =﹣|x|+2的图象和性质,并解决问题.(1)填空:①当x=0时,y=﹣|x|+2=;②当x>0时,y=﹣|x|+2=;③当x<0时,y=﹣|x|+2=;(2)在平面直角坐标系中作出函数y=﹣|x|+2的图象;(3)观察函数图象,写出关于这个函数的两条结论;(4)进一步探究函数图象发现:①函数图象与x轴有个交点,方程﹣|x|+2=0有个解;②方程﹣|x|+2=2有个解;③若关于x的方程﹣|x|+2=a无解,则a的取值范围是.18.(2021•禹州市模拟)如图1,在菱形ABCD中,AB=5,某数学兴趣小组从函数的角度对菱形ABCD的对角线长度进行如下探究:利用几何画板,测量出以下几组值:AC 1.00 2.00 3.00 4.00 5.00 6.007.008.009.009.549.809.95 BD9.959.809.549.168.668.007.14a 4.36 3.00 2.00 1.00(1)表格中a的值为.(2)设AC的长为自变量x,BD的长是关于自变量x的函数,记为y BD,现已在图2所示的平面直角坐标系中描出了表格中各组数据的对应点(x,y BD).①画出函数y BD的图象;②请在同一平面直角坐标系中画出直线y=x,结合所绘制的函数图象,写出函数y BD的一条性质.(3)在平面直角坐标系中,将三角板(含30°角的直角三角板)按如图3所示方式放置,顶点和坐标原点重合,斜边在x轴上,画出射线OA.若OA与绘制的函数图象交于点M,则此时菱形ABCD的面积为.。

中考二轮专题复习 含参方程(组)、不等式(组)

中考二轮专题复习  含参方程(组)、不等式(组)
解的和为-9, 且关于y的分式方程 1
件的所有整数a.
2

4−2
+
=
−2
的所有整数
有整数解,求符合条
中考第二轮复习 --专题复习
含参方程(组)、不等式(组)
一、解题依据
初中阶段方程(组)与不等式(组)体系所学内容为一元一次方程、二元
一次方程(组)、一元二次方程、分式方程、一元一次个等式(组)共五个
分支,既有单独的考查、综合方程与不等式的考查,也有与函数相关、实
际应用的考查.此类问题需要在明确主元与参数(字母系数)的前提下进行
6.一元一次不等式 本求解方法代入步骤.
二、解题方法(模型)
此类问题通常将参数(字母系数)作为常数进行未知数的求解,再根据题意
求解参数取值(范围).
1.整数解问题:分离常数法、数形结
合等.
2.同解问题:可先求解方程(组)或不等式(组),再根据题意理清对应关系,列出
方程(组)或不等式(组).
3.一元二次方程的根的问题:可根据根的判别式“A”及根系关系得出关于参
=3
( + ) − ( − ) = 47

的解?如果能,请求出方程组的解.
( + ) + 3( − ) = −39
2.若相异的实数a,b满足
则 ab =
.

22−1

= 2
2 −1
,
类型三 分式方程的解的问题

例3:若关于x的分式方程
2
−1
=

无解,则m=
2
−1
+1
8 + 9 = 10.
+ 3 = 4 −

(初中)九年级数学《二元一次方程》中考专题阶段复习讲解教学课件

(初中)九年级数学《二元一次方程》中考专题阶段复习讲解教学课件

【解析】设入住A类旅游饭店的会议x次,入住B类旅游饭店的
会议y次.
根据题意,得
x y 18, 2x y 28,
解得
x y
10, 8.
答:此旅行社入住A类旅游饭店的会议10次,入住B类旅游饭店
的会议8次.
(初中)数学中考专题阶段复习讲解教学课件
谢谢
9 5
.
,
mx ny 7, nx my 1,
则 m 3n 13 3 9 8,所以3 m 3n 3 8 2.
55
答案:2
3.(中考)已知关于x,y的方程组
mx ny 7, 2mx 3ny
4的解为xy
1, 2,
求m,n的值.
【解析】把
x y
1, 2
代入
mx ny 7, 2mx 3ny
人数多22人”所得的方程是x-y=22;调查的吸烟的人数是
x 不,吸烟的人数是
2.5%
根y据共,调查了10 000人,列方
0.5%
程得 x y 10 000,
2.5% 0.5%
x y 22,
所以可列方程组
x 2.5%
y 0.5%
10
000.
2.(中考)学校举行“大家唱大家跳”文艺汇演,设置了歌唱
①-②,得2y=2,y=1,所以原方程组的解为xy
2, 1.
答案:xy
2, 1
2.(中考)解方程组:
2x y 3,① x y 0.②
【解析】①+②,得3x=3,x=1.
把x=1代入②,得y=1.原方程组的解为xy
1, 1.
3.(中考)解方程组
x 3y 12,① 2x 3y 6.②
与舞蹈两类节目,全校师生一共表演了30个节目,其中歌唱类

中考数学 精讲篇 考点系统复习 第二章 方程(组)与不等式(组) 第一节 一次方程(组)及其应用


5.(数学文化)《九章算术》是中国古代数学著作之一,书中有这样的一 个问题:五只雀、六只燕共重一斤,雀重燕轻,互换一只,恰好一样重.问: 每只雀、燕的质量各为多少?设一只雀的质量为 x 斤,一只燕的质量为 y
5x+6y=1, 斤,则可列方程组为__4x+y=5y+__x.
【考情分析】广西近 6 年主要考查解一元一次方程或二元一次方程组, 应用一元一次方程或二元一次方程组解决简单的实际问题,难度小,分 值 3-10 分,常在解答题中与不等式、一次函数的实际应用结合考查.
x=1, 则方程组的解为y=-1.
x-3y=-2, 5.(2020·玉林第 20 题 6 分)解方程组:2x+y=3.
x-3y=-2①, 解:2x+y=3②. ①+②×3 得 x+6x=-2+3×3, 解得 x=1, 将 x=1 代入②得 2+y=3, 解得 y=1.
x=1, 则方程组的解为y=1.
根据题意可列方程组为
y=3x-2, A.y=2x+9
y=3x-2, C.y=2x-9
y=3(x-2), B.y=2x+9
y=3(x-2), D.y=2x-9
( B)
7.(2021·桂林第 24 题 8 分)为了美化环境,建设生态桂林,某社区需 要进行绿化改造,现有甲、乙两个绿化工程队可供选择,已知甲队每天 能完成的绿化改造面积比乙队多 200 m2,甲队与乙队合作一天能完成 800 m2 的绿化改造面积. (1)甲、乙两工程队每天各能完成多少 m2的绿化改造面积? (2)该社区需要进行绿化改造的区域共有 12 000 m2,甲队每天的施工费 用为 600 元,乙队每天的施工费用为 400 元,比较以下三种方案: ①甲队单独完成;②乙队单独完成;③甲、乙两队全程合作完成. 哪一种方案的施工费用最少?

中考总复习:《一次方程及方程组》知识网络及经典例题解析

中考总复习:《一次方程及方程组》知识网络及经典例题解析【考纲要求】1.了解等式、方程、一元一次方程的概念,会解一元一次方程;2.了解二元一次方程组的定义,会用代入消元法、加减消元法解二元一次方程组;3.能根据具体问题中的数量关系列出方程(组),体会方程思想和转化思想.【知识网络】【考点梳理】考点一、一元一次方程 1.等式性质(1)等式的两边都加上(或减去)同一个数(或式子),结果仍是等式. (2)等式的两边都乘以(或除以)同一个数(除数不为零),结果仍是等式. 2.方程的概念(1)含有未知数的等式叫做方程.(2)使方程两边相等的未知数的值,叫做方程的解(一元方程的解也叫做根). (3)求方程的解的过程,叫做解方程. 3.一元一次方程(1)只含有一个未知数,且未知数的次数是一次的整式方程叫做一元一次方程.(2)一元一次方程的一般形式:0(0)ax b a +=≠.(3)解一元一次方程的一般步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化成1;⑥检验(检验步骤可以不写出来). 要点诠释:解一元一次方程的一般步骤 步骤名 称 方 法依 据注 意 事 项1去分母在方程两边同时乘以所有分母的最小公倍数(即把每个含分母的部分和不含分母的部分都乘以所有分母的最小公倍数)等式性质21、不含分母的项也要乘以最小公倍数;2、分子是多项式的一定要先用括号括起来.2 去括号 去括号法则(可先分配再去括号)乘法分配律 注意正确的去掉括号前带负数的括号3移项把未知项移到方程的一边(左边),常数项移到另一边等式性质1移项一定要改变符号说明:(1)上表仅说明了在解一元一次方程时经常用到的几个步骤,但并不是说,解每一个方程都必须经过六个步骤;(2)解方程时,一定要先认真观察方程的形式,再选择步骤和方法;(3)对于形式较复杂的方程,可依据有效的数学知识将其转化或变形成我们常见的形式,再依照一般方法解.考点二、二元一次方程组 1. 二元一次方程组的定义两个含有两个未知数,且未知数的次数是一次的整式方程组成的一组方程,叫做二元一次方程组. 要点诠释:判断一个方程组是不是二元一次方程组应从方程组的整体上看,若一个方程组内含有两个未知数,并且未知数的次数都是1次,这样的方程组都叫做二元一次方程组. 2.二元一次方程组的一般形式111222a xb yc a x b y c +=⎧⎨+=⎩ 要点诠释:a 1、a 2不同时为0,b 1、b 2不同时为0,a 1、b 1不同时为0,a 2、b 2不同时为0. 3. 二元一次方程组的解法(1) 代入消元法; (2) 加减消元法. 要点诠释:(1)二元一次方程组的解有三种情况,即有唯一解、无解、无限多解.教材中主要是研究有唯一解的情况,对于其他情况,可根据学生的接受能力给予渗透.(2)一元一次方程与一次函数、一元一次不等式之间的关系:当二元一次方程中的一个未知数的取值确定范围时,可利用一元一次不等式组确定另一个未知数的取值范围,由于任何二元一次方程都可以转化为一次函数的形式,所以解二元一次方程可以转化为:当y =0时,求x 的值.从图象上看,这相当于已知纵坐标,确定横坐标的值.考点三、一次方程(组)的应用列方程(组)解应用题的一般步骤:1.审:分析题意,找出已知、未知之间的数量关系和相等关系;2.设:选择恰当的未知数(直接或间接设元),注意单位的统一和语言完整;3.列:根据数量和相等关系,正确列出代数式和方程(组);4.解:解所列的方程(组);5.验: (有三次检验 ①是否是所列方程(组)的解;②是否使代数式有意义;③是否满足实际意义);6.答:注意单位和语言完整.要点诠释:列方程应注意:(1)方程两边表示同类量;(2)方程两边单位一定要统一;(3)方程两边的数值相等.【典型例题】类型一、一元一次方程及其应用1.如果方程2n 731x 157--=是关于x 的一元一次方程,则n 的值为( ). A.2 B.4 C.3 D.1 【思路点拨】未知数x 的指数是1即可. 【答案】B ;【解析】由题意可知2n-7=1,∴n=4.【总结升华】根据一元一次方程的定义求解. 举一反三:【变式1】已知关于x 的方程4x-3m=2的解是x=5,则m 的值为 . 【答案】由题意可知4×5-3m =2,∴m=6.【变式2】若a ,b 为定值,关于x 的一元一次方程2632=--+bxx x ka 无论k 为何值时,它的解总是1,求a ,b 的值.【答案】a=0,b=11.2.一收割机收割一块麦田,上午收割了麦田的25%,下午收割了剩下麦田的20%,结果还剩下6公顷麦田未收割.这块麦田一共有多少公顷?【思路点拨】设这块麦田一共有x 公顷,根据上午收割了麦田的25%,则剩余x (1﹣25%)公顷,再利用下午收割了剩下麦田的20%,则剩余x (1﹣25%)(1﹣20%)公顷,进而求出即可. 【答案与解析】解:设这块麦田一共有x 公顷, 根据题意得出:x (1﹣25%)(1﹣20%)=6, 解得:x=10,答:这块麦田一共有10公顷.【总结升华】此题主要考查了一元一次方程的应用,正确表示出两次剩余小麦的亩数是解题关键.举一反三:【变式】“五一”期间,某电器按成本价提高30%后标价,再打8折(标价的80%)销售,售价为2080元.设该电器的成本价为x 元,根据题意,下面所列方程正确的是( ) A .()130%80%2080x +⨯= B . 30%80%2080x ⋅⋅= C . 208030%80%x ⨯⨯= D . 30%208080%x ⋅=⨯【答案】成本价提高30%后标价为()130%x +,打8折后的售价为()130%80%x +⨯.根据题意,列方程得()130%80%2080x +⨯=,故选A .类型二、二元一次方程组及其应用3.解下列方程组. (1)(2).【思路点拨】代入消元法或加减消元法均可. 【答案与解析】 解:(1),将②代入①得:2(﹣2y+3)+3y=7, 去括号得:﹣4y+6+3y=7, 解得:y=﹣1,将y=﹣1代入②得:x=2+3=5, 则方程组的解;(2),①×4+②×3得:17m=34, 解得:m=2,将m=2代入①得:4+3n=13, 解得:n=3, 则方程组的解为.【总结升华】解方程组要善于观察方程组的特点,灵活选用适当的方法,提高解题速度.举一反三:① ②【变式1解方程组【答案】方程②化为,再用加减法解,答案:【变式2】解方程组⎩⎨⎧=++=.36,5:4:3::c b a c b a【答案】a=9,b=12,c=15.4.小王购买了一套经济适用房,他准备将地面铺上地砖,地面结构如图所示.根据图中的数据(单位:m ),解答下列问题:(1)写出用含x 、y 的代数式表示的地面总面积;(2)已知客厅面积比卫生间面积多21m 2,且地面总面积是卫生间面积的15倍,铺1m 2地砖的平均费用为80元,求铺地砖的总费用为多少元?【思路点拨】根据题意找出等量关系式,列出方程或方程组解题. 【答案与解析】(1)地面总面积为:(6x +2y +18)m 2; (2)由题意,得6221,6218152.x y x y y -=⎧⎨++=⨯⎩解之,得4,3.2x y =⎧⎪⎨=⎪⎩∴地面总面积为:6x +2y +18=6×4+2×32+18=45(m 2). ∵铺1m 2地砖的平均费用为80元,∴铺地砖的总费用为:45×80=3600(元). 【总结升华】注意不要丢掉题中的单位. 举一反三:【变式】利用两块长方体木块测量一张桌子的高度.首先按图①方式放置,再交换两木块的位置,按图②方式放置.测量的数据如图,则桌子的高度是( )A.73cm B.74cm C.75cm D.76cm【答案】设桌子高度为acm,木块竖放为bcm,木块横放为ccm.则80,a=7570a b ca c b+-=⎧⎨+-=⎩解得.故选C.类型三、一次方程(组)的综合运用5.某县为鼓励失地农民自主创业,在2012年对60位自主创业的失地农民进行奖励,共计划奖励10万元.奖励标准是:失地农民自主创业连续经营一年以上的给予1000元奖励;自主创业且解决5人以上失业人员稳定就业一年以上的,再给予2000元奖励.问:该县失地农民中自主创业连续经营一年以上的和自主创业且解决5人以上失业人员稳定就业一年以上的农民分别有多少人?【思路点拨】根据失地农民自主创业连续经营一年以上的给予1000元奖励:自主创业且解决5人以上失业人员稳定就业一年以上的,再给予2000元奖励列方程求解.【答案与解析】方法一:设失地农民中自主创业连续经营一年以上的有x人,则根据题意列出方程 1000x+(60–x)(1000+2000)=100000,解得:x=40,∴60-x =60-40=20答:失地农民中自主创业连续经营一年以上的有40人,自主创业且解决5人以上失业人员稳定就业一年以上的农民有20人.方法二:设失地农民中自主创业连续经营一年以上的和自主创业且解决5人以上失业人员稳定就业一年以上的农民有分别有x,y人,根据题意列出方程组:601000(10002000)100000 x yx y+=⎧⎨++=⎩解得:2040 yx=⎧⎨=⎩答:失地农民中自主创业连续经营一年以上的有40,自主创业且解决5人以上失业人员稳定就业一年以上的农民有20人.【总结升华】本题考查理解题意的能力,关键是找到人数和钱数作为等量关系.举一反三:【变式】某公园的门票价格如下表所示:购票人数1~50人51~100人100人以上票价10元/人8元/人5元/人某校七年级甲、乙两班共100多人去该公园举行联欢活动,其中甲班50多人,乙班不足50人.如果以班为单位分别买票,两个班一共应付920元;如果两个班联合起来作为一团体购票,一共只要付515元.问:甲、乙两班分别有多少人? 【答案】设甲班有x 人,乙班有y 人,由题意得:8109205()515x y x y +=⎧⎨+=⎩ 解得:5548x y =⎧⎨=⎩. 答:甲班有55人,乙班有48人.6.在社会实践活动中,某校甲、乙、丙三位同学一同调查了高峰时段北京的二环路、三环路、四环路的车流量(每小时通过观测点的汽车车辆数),三位同学汇报高峰时段的车流量情况如下:甲同学说:“二环路车流量为每小时10000辆”; 乙同学说:“四环路比三环路车流量每小时多2000辆”;丙同学说:“三环路车流量的3倍与四环路车流量的差是二环路车流量的2倍”; 请你根据他们所提供的信息,求出高峰时段三环路、四环路的车流量各是多少? 【思路点拨】根据甲、乙、丙三位同学提供的信息找出等量关系列出方程组求解. 【答案与解析】设高峰时段三环路的车流量为每小时辆,四环路的车流量为每小时辆,根据题意得:解得答:高峰时段三环路的车流量为每小时11000辆,四环路的车流量为每小时13000辆. 【总结升华】通过甲、乙、丙三位同学调查结果找到车流量的等量关系式是解题的关键.。

中考数学 考点系统复习 第二章 方程(组)与不等式(组) 第一节 一次方程(组)及其应用

x+y=40, x+y=12, A.4x+3y=12 B.4x+3y=40
x+y=40, x+y=12, C.3x+4y=12 D.3x+4y=40
6.(2019·岳阳第 15 题 4 分)我国古代的数学名著《九章算术》中有下 列问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”其意思 为:今有一女子很会织布,每日加倍增长,5 日共织布 5 尺.问每日各织 多少布?根据此问题中的已知条件,可求得该女子第一天织布335115 尺.
8. (2019·娄底第 23 题 9 分)某商场用 14 500 元购进甲、乙两种矿泉水
共 500 箱,矿泉水的成本价与销售价如表所示:
类别
成本价(元/箱)
销售价(元/箱)

25
35

35
48
求:(1)购进甲、乙两种矿泉水各多少箱?
解:设购进甲矿泉水 x 箱,购进乙矿泉水 y 箱,依题意,得
x+y=500, 25x+35y=14 500,
2 次,2020 年考查 2 次)
2x-y=5, 1.(2021·郴州第 6 题 3 分)已知二元一次方程组x-2y=1,则 x-y 的
值为
( A)
A.2
B.6
C.-2
D.-6
2.(2021·株洲第 2 题 4 分)方程x2-1=2 的解是 A.x=2 B.x=3 C.x=5 D.x=6
( D)
3.(2019·湘潭第 6 题 4 分)若关于 x 的方程 3x-kx+2=0 的解为 2,则 k 的值为 44 .
m=8,m=5, m=2, ∴n=2,n=6,或n=10, ∴共有 3 种运输方案,
方案 1:安排 A 型车 8 辆,B 型车 2 辆, 所需费用:500×8+400×2=4 800(元); 方案 2:安排 A 型车 5 辆,B 型车 6 辆, 所需费用:500×5+400×6=4 900(元); 方案 3:安排 A 型车 2 辆,B 型车 10 辆, 所需费用:500×2+400×10=5 000(元). ∵4 800<4 900<5 000, ∴安排 A 型车 8 辆,B 型车 2 辆最省钱,最省钱的运输费用为 4 800 元.

中考数学复习:第二章:方程与不等式专题复习


分式方程及其应用
•中考预知 •1、分式方程的解法; •2、分式方程实际的应用。
考点1:分式方程的解法
• 1.分式方程:分母中含有字母的方程叫分式方程. • 2.解分式方程的一般步骤: • (1)去分母,在方程的两边都乘以分母的最小公倍数,约去分母,
化成整式方程;
• (2)解这个整式方程; • (3)验根,把整式方程的根代入最简公分母,看结果是不是零,使
一次方程,它们的解就是原一元二次方程的解.
典例精讲
• 1、下列方程是一元二次方程的是( )
• A.ax2 bx c 0
• B.x2 2x x2 1
• C.x 1x 3 0
• D. 1 x 2 x2
• 2、分别用下列方法解方程
• (1)(2x 1) 2 9(直接开平方法)
(2)4x2–8x+1=0(配方法)
2cx+a=0,cx2+2ax+b=0,不可能都有两个相等的实数根.
• 七、判定三角形的形状 • 例7 设a、b、c是△ABC的三边长,且关于x的方程c(x2+n)+b(x2-n)
-2ax=0(n>0)有两个相等的实数根,试判断△ABC的形状.
• 八、讨论方程有理根的问题 • 例8 m为有理数,讨论后为何值时,方程x2+4(1-m)x+3m2-2m+4k=0
典例精讲
• 1、已知a,b,c均为实数,若a>b,c≠0,下列结论不一定正确的 是( )
• A.a+c>b+c
B.c-a<c-b
• C.
D.a2>ab>b2
• 2、若a>b,则下列不等关系一定成立的是( )
• A. ac bc
B. a b cc
C. c a c b D. a c b c
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考专题复习(2)一次方程及方程组
3、当x=____时,代数式3x+2 与6-5x 的值相等。

5、3 名同学参加乒乓球赛,每两名同学之间赛一场,一共需要
____场比赛,则5 名同学一共需要____比赛。

6、如图,是一个正方形算法图,□里缺的数是____,
并总结出规律:________________。

7、一轮船从重庆到上海要5 昼夜,而从上海到重庆要7
昼夜,那么一个竹排从重庆顺流漂到上海要___昼夜。

8、已知3-x+2y=0,则2x-4y-3 的值为()
A、-3
B、3
C、1
D、0
9、用“加减法”将方程组2x-3y=9
2x+4y=-1
中的x 消去后得到的方程是()
A、y=8
B、7y=10
C、-7y=8
D、-7y=10
10、某商品因换季准备打折出售,若按定价的七五折出售将赔25 元,若按定价的九折出售将赚20 元,则这种商品的定价为()
A、280 元
B、300 元
C、320 元
D、200 元
11、小辉只带了2 元和5 元两种面额的人民币,他买了一件物品只需付27 元,如果不麻烦售货员找零钱,他有几种不同的付款方法()
A、一种
B、两种
C、三种
D、四种
12、为了防沙治沙,政府决定投入资金,鼓励农民植树种草,经测算,植树1 亩需资金200 元,种草1 亩需资金100 元,某组农民计划在一年内完成2400 亩绿化任务,在实施中由于实际情况所限,植树完成了计划的90%,但种草超额完成了计划的20%,恰好完成了计划的绿化任务,那么计划植树、种草各多少亩?若设该组农民计划植树x 亩,种草y 亩,则可列方程组为()
A、x+y=2400
x-90%+y (1-20%)=2400
B、
x+y=2400
(1-90%) x+(1+20%) y=2400
C、x+y=2400
(1+90%) x+(1+20%) y=2400
D、
x+y=2400
90%x+(1+20%) y=2400
13.解下列方程(组):
(1)、1
2
x-1=
1
3
(x-2)(2)、
x-3
0.2

x+4
0.1
=5
(3)、7
2

5
3
(
6
5
x-3)-1]=10x(4)、
x+2
3

y-1
2
=3
x+2
3

1-y
2
=1
14、当x 为何值时,代数式x+1
2
的值比
5-x
3
的值大1。

共计44
共计26
15、在等于 S =V 0t +12
at 2 中,当 t =1 时,S =5,当 t =2 时,S =14, ① 求 V 0、a 的值。

②当 t =3 时,求 S 的值。

16、初一⑶班课外活动小组买了个篮球,若每人付 9 元,则多了 5 元,后来组长收了每人 8 元,自己多付了 2 元,问这个篮球价值多少?
17、根据下图给出的信息,求每件 T 恤衫和每瓶矿泉水的价格。

18.某电厂规定该厂家属区的每户居民如果一个月的用电量不超过 A 度,那么这个月这户只需交 10 元用电费,如果超过 A 度,则这个月除了仍要交 10 元用电费外,超过部分还要按每度 0.5 元交费。

①该厂某户居民 2 月份用电 90 度,超过了规定的 A 度,则超过部分应该交电费多少元(用 A 表示)?
②下表是这户居民 3 月、4 月的用电情况和交费情况:
A
19.小明参加“开心词典”答题的活动中,在回答第五道题时,被难住了,题目如下:如图所示,天平两端能保持平衡。

请回答在右图中,天平的右边应放几个圆形,才能使天平保持平衡,你能通过计算,并给他一个正确的答案吗?请说出你的做法。

○ ▲▲ ▲▲ □□ □ ▲▲▲ ▲▲ ▲ ▲ ○○ ○
△ △
□□
△。

相关文档
最新文档