分析化学第9章吸光光度法

合集下载

分析化学吸光光度法

分析化学吸光光度法

3. 稀溶液
浓度增大,分子之间作用增强
18
亚甲蓝阳离子 单体 max= 660 nm 二聚体 max= 610 nm
(nm)
亚甲蓝阳离子水溶液的吸收光谱 a. 6.36×10-6 mol/L b. 1.27×10-4 mol/L c. 5.97×10-4 mol/L
二聚体的生成破坏 了A与c的线性关系
It
s
b dx
A=lg(I0/It)=k1b
比尔定律(1852)
A=lg(I0/It)=k2c
A=lg(I0/It)=kbc
吸光度
介质厚 度(m)
12
T-透光率(透射比)
(Transmittance)
T=
It I0
A = lg (I0/It) = lg(1/T) = -lgT = kbc
-kbc -A T = 10 = 10
7
光学光谱区
远紫外
(真空紫外)
近紫外 可见
近红外
中红外
远红外
10nm~200nm 200nm ~380nm
380nm 780 nm ~ 780nm ~ 2.5 m
2.5 m ~ 50 m
50 m ~300 m
8
3. 溶液中溶质分子对光的吸收与吸收光谱
不同颜色的可见光波长及其互补光
/nm
19
朗伯-比尔定律的分析应用
溶液浓度的测定
A= bc
0.8
A
工作曲线法
0.6 0.4 0.2 0
*
(校准曲线)
0
1
2
3
4
mg/ml
20
6. 吸光度的加和性与吸光度的测量 A = A1 + A2 + … +An

浙江大学分析化学 9 吸光光度法(070612)

浙江大学分析化学 9 吸光光度法(070612)

一、朗伯—比尔定律 当一束平行的单色光照射到有色溶液时,光的一部分将 被溶液吸收,一部分透过溶液。
设入射光强度为I0,透过光强度为I,溶液的浓度为c, 液层宽度为b,经实验表明它们之间有下列关系:
A= lg(I0/I) = abc
此式为朗伯—比尔定律 的数学表达式。
A= lg(I0/I) = abc
吸收曲线: 用不同波长的单色光照射, 测定吸光度,如果以波长 为横坐标,吸光度为纵坐 标即可得一条曲线称为吸 收曲线(如右图)。
设入射光强度为I0, 透过光强度为I
A= lg(I0/I)
1,10 邻二氮杂菲亜铁不同波长光的
吸光度不同。吸光度最大处对应的波 长称为最大吸收波长λmax (2)不同浓度的同一种物质, 其吸收曲线形状相似λmax不变;
朗伯—比耳定律的前提条件之一是入射光为单色光。 分光光度计只能获得近乎单色的狭窄光带。例如 使用波长为b的复合光,由于1 和 2 处的k1和k2 不相同, 可导致对朗伯—比耳定律的正或负偏离。
•A= lg(I0/I)=k cb
入射光总强度为I01+I02, 透射光总强度为I1+I2
k1= k2, A= k cb 成线性关系
物质颜色和吸收光的关系
物质颜色 吸收光颜色 吸收光波长/nm 黄绿 紫 400~450 黄 蓝 450~480 橙 绿蓝 480~490 紫 红 蓝绿 490~500 紫红 绿 500~560 紫 黄绿 560~580 蓝 蓝 黄 580~600 绿蓝 橙 600~650 蓝绿 红 650~780 青蓝
25.0 106 g 4 c 5.0010(g L1 ) 50.0 103 L
则根据朗伯—比尔定律 A=abc,
A 0.300 a 3.0010-2 L.g-1.cm1 bc 2.0cm 5.00104 g L1

分析化学 第九章 光谱分析法概论

分析化学 第九章 光谱分析法概论

散射
③运动方向改变
Raman散射 ①非弹性碰撞
Stokes线λ散<λ入
②有能量交换,光的频率改变
③运动方向改变
反Stokes线λ散>λ入
散射光强 I ∝ 1/λ λ散-λ入 为拉曼位移,与分子的振动频率有关。
h
10
三、电磁辐射与物质的相互作用
4.折射和反射
反射:当光从介质1照射到与介质2时,一部分 光在界面上改变方向返回介质1的现象。
Planck常数:h = 6.626 × 10 -34 J . S 光速:c = 2.997925×1010cm/s
h
5
⒋波长越小、频率越大,能量越大。 ⒌单色光:
单波长的光(由具有相同能量的光子组成)
⒍能量常用单位:eV erg J ⒎能量换算关系:
1 e V 1 .6 1 0 1 9 J 1 .6 0 2 2 1 0 1 2 e r g
2.发射
2
样品
1
E 21h21hC / 21 E2h2hC/2
火焰或电弧
0
E1h1hC/1
λ2 λ1
λ21
λ
火焰、电弧激发的发射光谱示意图
2
I0
样品
I
E 21h21hC / 21 2hC/2
E1h1hC/1
光致发光示意图
λ2 λ1
λ21
h
9
三、电磁辐射与物质的相互作用
3.散射
Rayleigh散射①弹性碰撞 ②无能量交换,光的频率不变
λmax不变。而对于不同物质,它们的吸收曲线形 状和λmax不同。
h
15
h
16
③吸收曲线可以提供物质的结构信息,并作为物质 定性分析的依据之一。

分析化学吸光光度法二

分析化学吸光光度法二

故T e 1 0.368, 即吸光度A 0.434时, 浓度测量的相对误差最小。
(二)测量条件的选择
选择适当的测量条件,是获得准确测定结 果的重要途径。择适合的测量条件,可从下列 几个方面考虑。 1.测量波长的选择 由于有色物质对光有选择性吸收,为了使 测定结果有较高的灵镀度和准确度,必须选择 溶液最大吸收波长的入射光。如果有干扰时, 则选用灵敏度较低但能避免干扰的入射光,就 能获得满意的酸度对被测物质存在状态的影响 大部分高价金属离子都容易水解,当溶液的酸度 降低时,最终将导致沉淀的生成。显然,金属离子的 水解,对于显色反应的进行是不利的,故溶液的酸度 不能太低。

(2) 酸度对显色剂浓度和颜色的影响 光度分析中所用的大部分显色剂都是有 机弱酸。 M + HR=MR + H+ 从反应式可以看出,溶液的酸度影响着 显色剂的离解,并影响着显色反应的完全程 度。

3.时间和温度 显色反应的速度有快有慢。实验方法是配制一份显色溶 液,从加入显色剂计算时间、每隔几分钟测定一次吸光度, 绘制A-t曲线,根据曲线来确定适宜的时间。 不同的显色反应需要不同的温度,一般显色反应可在室温 下完成。但是有些显色反应需要加热至一定的温度才能完成; 也有些有色络合物在较高温度下容易分解。因此,应根据不 同的情况选择适当的温度进行显色。温度对光的吸收及颜色 的深浅也有一定的影响,故标样和试样的显色温度应保持一 样。合适显色温度也必须通过实验确定 ,做A-C曲线即可求出。

(3)对络合物组成和颜色的影响 对于某些逐级形成络合物的显色反应、在不 同的酸度时,生成不同络合比的络合物。例如铁 与水杨酸的络合反应,当 pH<4 [Fe3+(C7H4O3)2-]+ 紫色 4<pH<9 [Fe3+(C7H4O3)22-]- 红色 pH>9 [Fe3+(C7H4O3)32-]3- 黄色 在这种情况下,必须控制合适的酸度,才可 获得好的分析结果。 合适酸度也必须通过实验确定,做A-pH曲线即可 求出

分析化学(第四版_高职高专化学教材编写组) 第九章 吸光光度法

分析化学(第四版_高职高专化学教材编写组) 第九章 吸光光度法

第二节 吸光光度法的基本原理
一、物质对光的选择性吸收
(一)光的基本特性 1.电磁波谱:光是一种电磁波

10-2 nm 10 nm
射 线 x 射 线
102 nm 104 nm
紫 外 光 红 外 光
0.1 cm 10cm
微 波
103 cm
105 cm
无 线 电 波



2.可见光、单色光和互补色光

物质呈现不同的颜色其本质是对光的选择性吸收;

颜色深浅随浓度而变化是对光的吸收程度不同。

通过比较溶液颜色的深浅来测定物质的含量的方法,称为 目视比色法。

目前普遍采用分光光度计测量吸光度以代替比较颜色深浅, 应用分光光度计的分析方法称为分光光度法。 分光光度法根据物质对不同波长的单色光的吸收程度不同
进行定性和定量分析。按照研究的波谱区域不同,可分为:
分光光度法

紫外分光光度法——200-400nm
可见分光光度法—— 400-780nm 红外分光光度法——780-3.0×104nm
吸光光度法是基于物质对光的选择性吸收而建立起来的 分析方法。
吸光光度法

比色分析法 分光光度法
二、吸光光度法特点
理解分光光度计的基本结构和工作原理。
掌握定量分析方法和测量条件的选择。
能力目标 能绘制吸收曲线。 能正确选择显色条件和光度测量条件。 能应用吸光光度法对样品中的微量成分进行定量分析。
知识回顾
前面所学滴定分析和质量分析都属于化学分析法,适用于 含量高于1%常量组分的测定,测定结果的相对误差可控制在 0.2%以内。但不宜测定含量低于1%的微量成分。 实例:含Fe约0.05%的样品 称0.2 g试样, 则mFe≈0.1 mg

分析化学—— 吸光光度法

分析化学—— 吸光光度法
Ι0 Ιt
λ1 λ2 λ3 λ4 λ5
A1 A2 A3 A4 A5
17
KMnO4吸收曲线(吸收525nm的绿光而呈紫色)
吸收曲线的讨论:
(1)同一种物质对不同 波长光的吸光度不同。吸 光度最大处对应的波长称 为最大吸收波长λmax (2)对于不同物质,它们的吸收曲线形状和λmax则 不同。吸收曲线可以提供物质的结构信息,并作为 物质定性分析的依据之一。 (3)同一种物质、不同浓度时,其吸收曲线形状相 似、λmax不变;吸光度与浓度成正比。定量分析
例12–3 有一浓度为1.0μg • mL–1的Fe2+溶液,以邻 二氮菲显色后,用分光光度计测定,比色皿厚度为 2.0cm,在波长510nm处测得吸光度A=0.380,计算 该显色反应的吸光系数a和摩尔吸光系数ε。
(2) Fe2+的浓度用mol • L–1表示时, 1.0 10 3 g L-1 c 1.8mol L1 -1 55.85 g mol
(4)不同浓度的同一种 物质,在λmax处吸光度 随浓度变化的幅度最大, 所以测定最灵敏。此特 性可作为物质定量分析 的依据。
吸收曲线是定量分析 中选择入射光波长的重 要依据。
§12-2
光吸收的基本定律
1.朗伯—比耳定律***
当一束平行单色光通过任何均匀、非散射的固体、 液体或气体介质时,一部分被吸收,一部分透过介质,一 部分被器皿的表面反射则它们之间的关系为:
溶液的颜色由透射光的波长所决定。 透射光与吸收光为互补色光。 如CuSO4溶液因吸收了白光中的黄色 光的互补:蓝 黄 光而呈现蓝色
3. 吸收曲线
用不同波长的单色光照射某一物质测定吸光度 A(物质对光的吸收程度),以波长为横坐标,以吸光度 为纵坐标,绘制吸收曲线,可描述物质对不同波长光 的吸收能力。

分析化学吸光光度法M

分析化学吸光光度法M
• 参比溶液— 调节光度计T=100%,A=0的溶液。 • 参比溶液的作用— 扣除比色皿对光的反射以及试液中其他 成分吸收入射光对测量造成的影响。 用参比溶液调节A1=0的 实质是设定仪器,使参 参 比液的: I 比 I
0
1
溶 液
A1=lg(I0/I1)
I 0 I1
I0 I1 A2 lg lg I2 I2
一、目视比色法
用眼睛比较溶液颜色的深浅以测定物质含量的 方法。
标准系列法
优点 缺点
二、光度计的基本部件
光电比色法:使用光电比色计测定溶液吸光度进行 定量分析的方法。 分光光度法:——分光光度计——————。
不同仅在于获得单色光的方法:
光电:滤光片 分光:棱镜或光栅 优点:准确度高、选择性高、分析速度快
l l
工作曲线将偏 离比耳定律
2. 由于溶液中的化学反应引起的偏离 例: Cr2O72- + H2O 2H+ + 2CrO42(橙) (黄) 消除方法:使作工作曲线和测量时的条 件一致 3. 被测溶液浓度太大 消除方法:稀释溶液 4. 介质不均匀 消除方法:使溶液澄清、透明
§9-2 目视比色法及光度计的基本部件
p258 式(9-7)
结论: 不同透光度或吸光度下的分析误差是不同的。为了使分析误差 在2.0%以下,应控制读数T =10~70%(A=1.0~0.15)之间。
当T=36.8% (A=0.434)时,分析误差最小,约为1.4%。→
1.光源
2.单色器
3.吸收池
4.检测系统:
光电管、读数装置
光源

单色器

吸收池

检测系统
§9-3Βιβλιοθήκη 显色反应及显色条件的选择进行光度分析时,首先要把待测组分转变为有色化合物 显色反应:将待测组分转变为有色化合物的反应

《分析化学》下册武汉大学等编(第五版)作业参考答案

《分析化学》下册武汉大学等编(第五版)作业参考答案

《仪器分析》作业参考答案第2章 光谱分析法导论2-1 光谱仪一般由几部分组成?它们的作用分别是什么? 参考答案:(1)稳定的光源系统—提供足够的能量使试样蒸发、原子化、激发,产生光谱; (2)试样引入系统(3)波长选择系统(单色器、滤光片)—将复合光分解成单色光或有一定宽度的谱带; (4)检测系统—是将光辐射信号转换为可量化输出的信号; (5)信号处理或读出系统—在显示器上显示转化信号。

2-2 单色器由几部分组成,它们的作用分别是什么? 参考答案:(1)入射狭缝—限制杂散光进入;(2)准直装置—使光束成平行光线传播,常采用透镜或反射镜; (3)色散装置—将复合光分解为单色光;(4)聚焦透镜或凹面反射镜—使单色光在单色器的出口曲面上成像; (5)出射狭缝—将额定波长范围的光射出单色器。

2-5 对下列单位进行换算:(1)150pm Z 射线的波数(cm -1) (2)Li 的670.7nm 谱线的频率(Hz )(3)3300 cm -1波数对应的波长(nm ) (4)Na 的588.995nm 谱线相应的能量(eV ) 参考答案:(1)171101067.61015011---⨯=⨯==cm cm λσ (2))(1047.4)(107.670100.314710Hz Hz c⨯=⨯⨯==-λν (3))(3030)(1003.3)(3300114nm cm cm =⨯===-νλ (4))(1.2)(10602.110995.588100.310625.6199834eV eV ch E =⨯⨯⨯⨯⨯⨯==---λ 2-6 下列种类型跃迁所涉及的能量(eV )范围各是多少?(1)原子内层电子跃迁; (4)分子振动能级跃迁; (2)原子外层电子跃迁; (5)分子转动能级跃迁; (3)分子的电子跃迁 参考答案跃迁类型 波长范围 能量范围/eV 原子内层电子跃迁 10-1 ~ 10nm 1.26×106 ~1.2×102原子外层电子跃迁 200 ~ 750nm 6~1.7 分子的电子跃迁 200 ~ 750nm 6~1.7 分子振动能级跃迁 0.75 ~ 50μm 1.7~0.02 分子转动能级跃迁50 ~ 1000μm2×10-2~4×10-7第10章 吸光光度法(上册)2、某试液用2cm 吸收池测量时,T=60%。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年9月18日1时25 分
摩尔吸收系数κ的讨论
(1)吸收物质在一定波长和溶剂条件下的特征常数; (2)不随浓度c和光程长度b的改变而改变。在温度和波 长等条件一定时, κ仅与吸收物质本身的性质有关,与
待测物浓度无关;
(3)同一吸收物质在不同波长下的κ值是不同的。在最
大吸收波长λmax处的摩尔吸收系数κmax表明了该吸收物质
光的互补:蓝 黄
表9-1 物质颜色与吸收光颜色的互补关系
吸收光 物质颜色 颜色 黄绿 黄 橙 红 紫 红 紫 蓝 绿 蓝 蓝 绿 波长/nm 400~450 450~480 480~490 490~500 500~560 560~580 580~600 600~650 650~780
绿 黄绿 黄 橙 红
第九章 吸光光度法
spectrophotometry
§9.1 吸光光度法基本原理 §9.2 光度计及其基本部件 §9.3 显色反应与条件的选择 §9.4 吸光度测量条件的选择
§9.5 吸光光度法的应用
§9.6 紫外吸收光谱法简介
2018年9月18日1时 25分
2018年9月18日1时25 分
吸光光度法概述
等相互作用,直接影响了对光的吸收。
故:朗伯—比耳定律只适用于稀溶液。
溶液中存在着离解、聚合、互变异构、配合物的形
成等化学平衡时。使吸光质点的浓度发生变化。 例: CrO42- + 2H+ = Cr2O72- + H2O
2018年9月18日1时25 分
§9.2 光度计及其基本部件
1.分光光度计
2018年9月18日1时25 分
最大限度的吸光能力,也反映了光度法测定该物质可能 达到的最大灵敏度。
2018年9月18日1时25 分
摩尔吸收系数ε的讨论
(4)可作为定性鉴定的参数; (5)物质的吸光能力的度量 κmax越大表明该物质的吸光能力越强,用光度法测 定该物质的灵敏度越高。 κ >105:超高灵敏; κ = (6~10)×104 :高灵敏; κ = 104~ 103 :中等灵敏; κ < 103 :不灵敏。 (6) κ在数值上等于浓度为1 mol · L-1、液层厚度为1cm 时该溶液在某一波长下的吸光度。
2018年9月18日1时25 分
讨论: A总 =A1 + lg2 - lg(1+10-κbc ) (1) = 0; 即: κ1= κ2 = κ 则: A总 =lg(Io /It)= κbc (2) κ ≠0 若 κ <0 ;即κ2< κ1 ; - κbc>0,
lg(1+10 κbc )值随c值增大而增大,则标准曲线
(动画)
2018年9月18日1时25 分
(动画) 吸收曲线的讨论:
(1)同一种物质对不同 波长光的吸光度不同。吸 光度最大处对应的波长称 为最大吸收波长λmax
(2)不同浓度的同一种 物质,其吸收曲线形状相 似λmax不变。而对于不同 物质,它们的吸收曲线形 状和λmax则不同。
2018年9月18日1时25 分
物理性因素:
难以获得真正的纯单色光。 分光光度计只能获得近乎单色的狭窄光带。复合 光可导致对朗伯—比耳定律的正或负偏离。 非单色光、杂散光、非平行入
射光都会引起对朗伯—比耳定律的
偏离,最主要的是非单色光作为入 射光引起的偏离。
2018年9月18日1时25 分
非单色光作为入射光引起的偏离: 假设由波长为λ1和λ2的两单色光
3.氧化还原显色反应 某些元素的氧化态,如Mn(Ⅶ)、Cr(Ⅵ)在 紫外或可见光区能强烈吸收,可利用氧化还原反应对 待测离子进行显色后测定。 例如:钢中微量锰的测定,
2 Mn2+ +5 S2O82-+8 H2O =2 MnO4+ + 10 SO42-+ 16H+
将Mn2+ 氧化成紫红色的MnO4+后,在525 nm处 进行测定。
2018年9月18日1时25 分
9.1.2 光的吸收基本定律 ──朗伯-比耳(Larnbert-Beer)定律
1.朗伯—比耳定律
吸光度与液层厚度 A∝b
(动画1)
吸光度与物质浓度
A∝ c
A∝ c b
(动画2)
2018年9月18日1时25 分
朗伯—比耳定律数学表达式
I0 A lg bc I
紫 蓝 绿 蓝 蓝 绿
ห้องสมุดไป่ตู้
2018年9月18日1时25 分
电子能级间跃迁
电子能级间跃迁的同 时总伴随有振动和转 动能级间的跃迁。即 电子光谱中总包含有 振动能级和转动能级
间跃迁产生的若干谱
线而呈现宽谱带。
2018年9月18日1时25 分
吸收曲线与最大吸收波长
分子结构的复杂性使其对不同波长光的吸收程度 不同,用不同波长的单色光照射,测吸光度— 吸收曲 线与最大吸收波长 max;
2018年9月18日1时25 分
§9.1 吸光光度法基本原理
9.1.1 物质对光的选择性吸收
M + h M* M + 热 M + 荧光或磷光
基态 激发态 E1 (△E) E2 E = E2 - E1 = h
量子化 ;选择性吸收;
分子结构的复杂性使其对不
同波长光的吸收程度不同;
2018年9月18日1时25 分
2018年9月18日1时25 分
9.1.3 偏离比耳定律的原因
1. 现象 标准曲线法测定未知溶液的浓度时,发现:标准 曲线常发生弯曲(尤其当溶液浓度较高时),这种现 象称为对朗伯—比耳定律的偏离。 2. 引起偏离的因素(两大类) (1)物理性因素, 即仪器的非理想引起的; (2)化学性因素。
2018年9月18日1时25 分
分光光度计
2018年9月18日1时25 分
9.2.1 基本组成
光源
单色器
(动画)
样品室 检测器 显示
2018年9月18日1时25 分
9.2.2 主要部件
1. 光源 在整个紫外光区或可见光谱区可以发射连续光谱, 具有足够的辐射强度、较好的稳定性、较长的使用寿 命。 可见光区:钨灯作为 光源,其辐射波长范围在 320~2500 nm。 紫外区:氢、氘灯。 发射185~400 nm的连续 光谱。
3. 样品室
样品室放置各种 类型的吸收池(比色皿) 和相应的池架附件。吸 收池主要有石英池和玻 璃池两种。在紫外区须 采用石英池,可见区一 般用玻璃池。
2018年9月18日1时25 分
4. 检测系统
将光强度转换成电流来进行测量。光电检测器。
要求:对测定波长范围内的光有快速、灵敏的响应,
产生的光电流应与照射于检测器上的光强度成正比。
2018年9月18日1时25 分
9.3.2 显色剂
无机显色剂:硫氰酸盐、钼酸铵等。 有机显色剂:种类繁多 偶氮类显色剂:性质稳定、显色反应灵敏度高、选择 性好、对比度大,应用最广泛。偶氮胂III、PAR等。 三苯甲烷类:铬天青S、二甲酚橙等
2018年9月18日1时25 分
9.3.3 显色反应条件的选择
2018年9月18日1时25 分
2. 单色器
将光源发射的复合光分解成单色光并可从中选出一
任意波长单色光的光学系统。
①入射狭缝:光源的光由此进入单色器;
②准光装置:透镜或
返射镜使入射光成为 平行光束; ③色散元件:将复合 光分解成单色光;棱
镜或光栅
2018年9月18日1时25 分
光栅
2018年9月18日1时25 分
吸光光度法:基于物质对光的选择性吸收的分析方法 比色法 可见分光光度法(visible spectrophotometry) 紫外分光光度法(ultraviolet spectrophotometry)
其他
2018年9月18日1时25 分
特点:
(1) 具有较高的灵敏度,适用于微量组分的测定。 (2) 通常所测试液的浓度下限达10-5~10-6 mol· L-1。 (3) 吸光光度法测定的相对误差约为2%~5%。 (4) 测定迅速,仪器操作简单,价格便宜,应用广泛 (5) 几乎所有的无机物质和许多有机物质的微量成分都 能用此法进行测定。 (6) 还常用于化学平衡等的研究。
(3)吸收曲线可以提供物 质的结构信息,并作为物质 定性分析的依据之一。
(动画) 吸收曲线的讨论:
(4)不同浓度的同一种 物质,在某一定波长下吸 光度 A 有差异,在λmax处 吸光度A 的差异最大。此 特性可作为物质定量分析 的依据。
(5)在λmax处吸光度随浓度变化的幅度最大,所以测 定最灵敏。吸收曲线是定量分析中选择入射光波长的 重要依据。
(1)光电管
2018年9月18日1时25 分
(2)光电二极管阵列
光照射
电容器 充电
再次充电 测量周期
电容器 放电
电容器再次充电的电量与每个二 极管检测到的光子数目成正比, 而光子数又与光强成正比。通过 测量整个波长范围内光强的变化 就可得到吸收光谱。
2018年9月18日1时25 分
§9.3 显色反应与条件的选择
式中 A:吸光度;描述溶液对光的吸收程度; b:液层厚度(光程长度),通常以cm为单位;
c:溶液的摩尔浓度,单位 mol· L-1;
κ:摩尔吸收系数,单位 L· mol-1· cm-1; 或: A = lg(I0/It) = a b c
c:溶液的浓度,单位g· L-1 a:吸收系数,单位L· g-1· cm-1
2018年9月18日1时25 分
a与κ的关系为: a = κ /M (M为摩尔质量)
透射比T 透过度T : 描述入射光透过溶液的程度 T = I / I0 吸光度A与透射比T 的关系:
I0 A lgT lg bc I
(1) 吸光光度法的理论基础和定量测定的依据。 (2) 摩尔吸收系数κ在数值上等于浓度为1 mol · L-1、液层 厚度为1cm时该溶液在某一波长下的吸光度; (3) 吸光度具有加和性。 A总 A1 A 2 An 1bc1 2 bc2 n bcn
相关文档
最新文档