最新高中数学(人教A版,必修二)第2章 2.3.2 课时作业(含答案)
高中数学(人教A版,必修二)第2章 2.2.1 课时作业(含答案)

§2.2 直线、平面平行的判定及其性质2.2.1直线与平面平行的判定【课时目标】1.理解直线与平面平行的判定定理的含义.2.会用图形语言、文字语言、符号语言准确描述直线与平面平行的判定定理,并知道其地位和作用.3.能运用直线与平面平行的判定定理证明一些空间线面关系的简单问题.1.直线与平面平行的定义:直线与平面______公共点.2.直线与平面平行的判定定理:______________一条直线与________________的一条直线平行,则该直线与此平面平行.用符号表示为____________________________.一、选择题1.以下说法(其中a,b表示直线,α表示平面)①若a∥b,b⊂α,则a∥α;②若a∥α,b∥α,则a∥b;③若a∥b,b∥α,则a∥α;④若a∥α,b⊂α,则a∥b.其中正确说法的个数是()A.0 B.1 C.2 D.32.已知a,b是两条相交直线,a∥α,则b与α的位置关系是()A.b∥αB.b与α相交C.b⊂αD.b∥α或b与α相交3.如果平面α外有两点A、B,它们到平面α的距离都是a,则直线AB和平面α的位置关系一定是()A.平行B.相交C.平行或相交D.AB⊂α4.在空间四边形ABCD中,E、F分别是AB和BC上的点,若AE∶EB=CF∶FB=1∶3,则对角线AC和平面DEF的位置关系是()A.平行B.相交C.在内D.不能确定5.过直线l外两点,作与l平行的平面,则这样的平面()A.不存在B.只能作出一个C.能作出无数个D.以上都有可能6.过平行六面体ABCD-A1B1C1D1任意两条棱的中点作直线,其中与平面DBB1D1平行的直线共有()A.4条B.6条C.8条D.12条二、填空题7.经过直线外一点有________个平面与已知直线平行.8.如图,在长方体ABCD-A1B1C1D1的面中:(1)与直线AB平行的平面是________;(2)与直线AA1平行的平面是______;(3)与直线AD平行的平面是______.9.在正方体ABCD-A1B1C1D1中,E为DD1的中点,则BD1与过点A,E,C的平面的位置关系是______.三、解答题10.如图所示,在正方体ABCD—A1B1C1D1中,E、F分别是棱BC、C1D1的中点.求证:EF∥平面BDD1B1.11.如图所示,P是▱ABCD所在平面外一点,E、F分别在P A、BD上,且PE∶EA=BF∶FD.求证:EF∥平面PBC.能力提升12.下列四个正方体图形中,A、B为正方体的两个顶点,M、N、P分别为其所在棱的中点,能得出AB∥面MNP的图形的序号是________.(写出所有符合要求的图形序号)13.正方形ABCD与正方形ABEF所在平面相交于AB,在AE,BD上各有一点P,Q,且AP=DQ.求证PQ∥平面BCE.(用两种方法证明)直线与平面平行的判定方法(1)利用定义:证明直线a与平面α没有公共点.这一点直接证明是很困难的,往往借助于反证法来证明.(2)利用直线和平面平行的判定定理:a⊄α,a∥b,b⊂α,则a∥α.使用定理时,一定要说明“不在平面内的一条直线和平面内的一条直线平行”,若不注明和平面内的直线平行,证明过程就不完整.因此要证明a∥平面α,则必须在平面α内找一条直线b,使得a∥b,从而达到证明的目的.证明线线平行时常利用三角形中位线、平行线分线段成比例定理等.§2.2直线、平面平行的判定及其性质2.2.1直线与平面平行的判定答案知识梳理1.无2.平面外此平面内a⊄α,b⊂α,且a∥b⇒a∥α作业设计1.A[①a⊂α也可能成立;②a,b还有可能相交或异面;③a⊂α也可能成立;④a,b 还有可能异面.]2.D3.C4.A5.D6.D[如图所示,与BD平行的有4条,与BB1平行的有4条,四边形GHFE的对角线与面BB1D1D平行,同等位置有4条,总共12条,故选D.]7.无数8.(1)平面A1C1和平面DC1(2)平面BC1和平面DC1(3)平面B1C和平面A1C19.平行解析 设BD 的中点为F ,则EF ∥BD 1. 10.证明 取D 1B 1的中点O , 连接OF ,OB .∵OF 綊12B 1C 1,BE 綊12B 1C 1,∴OF 綊BE .∴四边形OFEB 是平行四边形, ∴EF ∥BO . ∵EF ⊄平面BDD 1B 1, BO ⊂平面BDD 1B 1, ∴EF ∥平面BDD 1B 1.11.证明 连接AF 延长交BC 于G ,连接PG .在▱ABCD 中, 易证△BFG ∽△DFA . ∴GF FA =BF FD =PE EA , ∴EF ∥PG . 而EF ⊄平面PBC , PG ⊂平面PBC , ∴EF ∥平面PBC . 12.①③13.证明 方法一 如图(1)所示,作PM ∥AB 交BE 于M ,作QN ∥AB 交BC 于N ,连接MN .∵正方形ABCD 和正方形ABEF 有公共边AB , ∴AE =BD .又∵AP =DQ ,∴PE =QB .又∵PM ∥AB ∥QN ,∴PM AB =PE AE ,QN DC =BQBD .∴PM 綊QN .∴四边形PQNM 是平行四边形.∴PQ ∥MN .又MN ⊂平面BCE ,PQ ⊄平面BCE ,∴PQ ∥平面BCE .方法二 如图(2)所示,连接AQ 并延长交BC(或其延长线)于K ,连接EK .∵KB ∥AD ,∴DQ BQ =AQQK .∵AP =DQ ,AE =BD ,∴BQ =PE . ∴DQ BQ =AP PE .∴AQ QK =APPE.∴PQ ∥EK . 又PQ ⊄面BCE ,EK ⊂面BCE ,∴PQ ∥面BCE .。
高中数学(人教A版,必修二)第2章 2.3.1 课时作业(含答案)

§2.3 直线、平面垂直的判定及其性质2.3.1 直线与平面垂直的判定【课时目标】 1.掌握直线与平面垂直的定义.2.掌握直线与平面垂直的判定定理并能灵活应用定理证明直线与平面垂直.3.知道斜线在平面上的射影的概念,斜线与平面所成角的概念.1.直线与平面垂直(1)定义:如果直线l 与平面α内的________________直线都________,就说直线l 与平面α互相垂直,记作________.直线l 叫做平面α的________,平面α叫做直线l 的________.(2)判定定理文字表述:一条直线与一个平面内的________________________都垂直,则该直线与此平面垂直.符号表述:⎭⎪⎬⎪⎫l ⊥a l ⊥b⇒l ⊥α. 2.直线与平面所成的角(1)定义:平面的一条斜线和它在平面上的________所成的________,叫做这条直线和这个平面所成的角.如图所示,________就是斜线AP 与平面α所成的角. (2)当直线AP 与平面垂直时,它们所成的角的度数是90°;当直线与平面平行或在平面内时,它们所成的角的度数是________; 线面角θ的范围:________.一、选择题1.下列命题中正确的个数是( )①如果直线l 与平面α内的无数条直线垂直,则l ⊥α; ②如果直线l 与平面α内的一条直线垂直,则l ⊥α; ③如果直线l 不垂直于α,则α内没有与l 垂直的直线;④如果直线l 不垂直于α,则α内也可以有无数条直线与l 垂直. A .0 B .1 C .2 D .32.直线a ⊥直线b ,b ⊥平面β,则a 与β的关系是( ) A .a ⊥β B .a ∥βC .a ⊂βD .a ⊂β或a ∥β3.空间四边形ABCD 的四边相等,则它的两对角线AC 、BD 的关系是( ) A .垂直且相交 B .相交但不一定垂直 C .垂直但不相交 D .不垂直也不相交4.如图所示,定点A和B都在平面α内,定点P∉α,PB⊥α,C是平面α内异于A和B 的动点,且PC⊥AC,则△ABC为()A.锐角三角形B.直角三角形C.钝角三角形D.无法确定5.如图所示,P A⊥平面ABC,△ABC中BC⊥AC,则图中直角三角形的个数为()A.4 B.3 C.2 D.16.从平面外一点向平面引一条垂线和三条斜线,斜足分别为A,B,C,如果这些斜线与平面成等角,有如下命题:①△ABC是正三角形;②垂足是△ABC的内心;③垂足是△ABC的外心;④垂足是△ABC的垂心.其中正确命题的个数是()A.1 B.2 C.3 D.4二、填空题7.在正方体ABCD-A1B1C1D1中,(1)直线A1B与平面ABCD所成的角是________;(2)直线A1B与平面ABC1D1所成的角是________;(3)直线A1B与平面AB1C1D所成的角是________.8.在直三棱柱ABC—A1B1C1中,BC=CC1,当底面A1B1C1满足条件________时,有AB1⊥BC1(注:填上你认为正确的一种条件即可,不必考虑所有可能的情况).9.如图所示,在正方体ABCD-A1B1C1D1中,M、N分别是棱AA1和AB上的点,若∠B1MN是直角,则∠C1MN=________.三、解答题10.如图所示,在正方体ABCD—A1B1C1D1中,E、F分别是棱B1C1、B1B的中点.求证:CF⊥平面EAB.11.如图所示,在四棱锥P—ABCD中,底面ABCD是矩形,侧棱P A垂直于底面,E、F 分别是AB,PC的中点,P A=AD.求证:(1)CD⊥PD;(2)EF⊥平面PCD.能力提升12.如图所示,在正方体ABCD-A1B1C1D1中,P为DD1的中点,O为ABCD的中心,求证B1O⊥平面P AC.13.如图所示,△ABC中,∠ABC=90°,SA⊥平面ABC,过点A向SC和SB引垂线,垂足分别是P、Q,求证:(1)AQ⊥平面SBC;(2)PQ⊥SC.1.运用化归思想,将直线与平面垂直的判定转化为直线与平面内两条相交直线的判定,而同时还由此得到直线与直线垂直.即“线线垂直⇔线面垂直”.2.直线和平面垂直的判定方法(1)利用线面垂直的定义. (2)利用线面垂直的判定定理. (3)利用下面两个结论:①若a ∥b ,a ⊥α,则b ⊥α; ②若α∥β,a ⊥α,则a ⊥β. 3.线线垂直的判定方法 (1)异面直线所成的角是90°. (2)线面垂直,则线线垂直.§2.3 直线、平面垂直的判定及其性质2.3.1 直线与平面垂直的判定答案知识梳理1.(1)任意一条 垂直 l ⊥α 垂线 垂面 (2)两条相交直线 a ⊂α b ⊂α a ∩b =A 2.(1)射影 锐角 ∠PAO (2)0° [0°,90°] 作业设计1.B [只有④正确.] 2.D3.C [取BD 中点O ,连接AO ,CO , 则BD ⊥AO ,BD ⊥CO , ∴BD ⊥面AOC ,BD ⊥AC , 又BD 、AC 异面,∴选C .]4.B [易证AC ⊥面PBC ,所以AC ⊥BC .]5.A [ ⎭⎪⎬⎪⎫PA ⊥平面ABC BC ⊂平面ABC ⇒⎭⎪⎬⎪⎫PA ⊥BC AC ⊥BC ⇒BC ⊥平面PAC ⇒BC ⊥PC ,∴直角三角形有△PAB 、△PAC 、△ABC 、△PBC .] 6.A [PO ⊥面ABC .则由已知可得,△PAO 、△PBO 、△PCO 全等, OA =OB =OC , O 为△ABC 外心. 只有③正确.] 7.(1)45° (2)30° (3)90° 解析(1)由线面角定义知∠A 1BA 为A 1B 与平面ABCD 所成的角,∠A 1BA =45°. (2)连接A 1D 、AD 1,交点为O ,则易证A 1D ⊥面ABC 1D 1,所以A 1B 在面ABC 1D 1内的射影为OB ,∴A 1B 与面ABC 1D 1所成的角为∠A 1BO ,∵A 1O =12A 1B ,∴∠A 1BO =30°.(3)∵A 1B ⊥AB 1,A 1B ⊥B 1C 1,∴A 1B ⊥面AB 1C 1D ,即A 1B 与面AB 1C 1D 所成的角为90°. 8.∠A 1C 1B 1=90° 解析如图所示,连接B 1C ,由BC =CC 1,可得BC 1⊥B 1C ,因此,要证AB 1⊥BC 1,则只要证明BC 1⊥平面AB 1C ,即只要证AC ⊥BC 1即可,由直三棱柱可知,只要证AC ⊥BC 即可. 因为A 1C 1∥AC ,B 1C 1∥BC ,故只要证A 1C 1⊥B 1C 1即可. (或者能推出A 1C 1⊥B 1C 1的条件,如∠A 1C 1B 1=90°等) 9.90°解析 ∵B 1C 1⊥面ABB 1A 1, ∴B 1C 1⊥MN . 又∵MN ⊥B 1M , ∴MN ⊥面C 1B 1M , ∴MN ⊥C 1M . ∴∠C 1MN =90°.10.证明 在平面B 1BCC 1中, ∵E 、F 分别是B 1C 1、B 1B 的中点, ∴△BB 1E ≌△CBF , ∴∠B 1BE =∠BCF , ∴∠BCF +∠EBC =90°,∴CF ⊥BE ,又AB ⊥平面B 1BCC 1,CF ⊂平面B 1BCC 1, ∴AB ⊥CF ,AB ∩BE =B ,∴CF ⊥平面EAB . 11.证明 (1)∵PA ⊥底面ABCD , ∴CD ⊥PA .又矩形ABCD 中,CD ⊥AD ,且AD ∩PA =A , ∴CD ⊥平面PAD , ∴CD ⊥PD .(2)取PD 的中点G ,连接AG ,FG . 又∵G 、F 分别是PD ,PC 的中点,∴GF 綊12CD ,∴GF 綊AE ,∴四边形AEFG 是平行四边形, ∴AG ∥EF .∵PA =AD ,G 是PD 的中点,∴AG ⊥PD ,∴EF ⊥PD ,∵CD ⊥平面PAD ,AG ⊂平面PAD . ∴CD ⊥AG .∴EF ⊥CD .∵PD ∩CD =D ,∴EF ⊥平面PCD .12.证明 连接AB 1,CB 1,设AB =1. ∴AB 1=CB 1=2,∵AO =CO ,∴B 1O ⊥AC . 连接PB 1.∵OB 21=OB 2+BB 21=32, PB 21=PD 21+B 1D 21=94, OP 2=PD 2+DO 2=34,∴OB 21+OP 2=PB 21.∴B 1O ⊥PO , 又∵PO ∩AC =O , ∴B 1O ⊥平面PAC .13.证明 (1)∵SA ⊥平面ABC ,BC ⊂平面ABC , ∴SA ⊥BC .又∵BC ⊥AB ,SA ∩AB =A , ∴BC ⊥平面SAB . 又∵AQ ⊂平面SAB ,∴BC ⊥AQ .又∵AQ ⊥SB ,BC ∩SB =B , ∴AQ ⊥平面SBC .(2)∵AQ ⊥平面SBC ,SC ⊂平面SBC , ∴AQ ⊥SC .又∵AP ⊥SC ,AQ ∩AP =A ,∴SC ⊥平面APQ .∵PQ ⊂平面APQ ,∴PQ ⊥SC .。
新教材人教A版高中数学必修第二册全册课时练习(一课一练,含解析)

人教A版高中数学必修第二册全册课时练习6.1 平面向量的概念 .............................................................................................................. - 2 - 6.2.1 向量的加法运算........................................................................................................ - 5 - 6.2.2 向量的减法运算........................................................................................................ - 8 - 6.2.3 向量的数乘运算...................................................................................................... - 11 - 6.2.4 向量的数量积............................................................................................................ - 14 - 6.3.1 平面向量基本定理.................................................................................................... - 18 - 6.3.2 平面向量的正交分解及坐标表示............................................................................ - 21 - 6.3.3 平面向量加、减运算的坐标表示............................................................................ - 21 - 6.3.4 平面向量数乘运算的坐标表示.............................................................................. - 24 - 6.3.5 平面向量数量积的坐标表示.................................................................................. - 27 - 6.4 平面向量的应用........................................................................................................ - 30 -7.1.1 数系的扩充和复数的概念...................................................................................... - 34 - 7.1.2 复数的几何意义...................................................................................................... - 37 - 7.2.1 复数的加、减运算及其几何意义.......................................................................... - 39 -7.2.2 复数的乘、除运算.................................................................................................. - 43 -8.1.1 棱柱、棱锥、棱台的结构特征................................................................................ - 46 - 8.1.2 圆柱、圆锥、圆台、球、简单组合体的结构特征................................................ - 49 - 8.2 立体图形的直观图........................................................................................................ - 51 - 8.3.1 棱柱、棱锥、棱台的表面积和体积...................................................................... - 55 - 8.3.2 圆柱、圆锥、圆台、球的表面积和体积.............................................................. - 59 - 8.4.1 平面 ......................................................................................................................... - 62 - 8.4.2 空间点、直线、平面之间的位置关系.................................................................. - 66 - 8.5.1 直线与直线平行...................................................................................................... - 69 - 8.5.2 直线与平面平行...................................................................................................... - 73 - 8.5.3 平面与平面平行...................................................................................................... - 76 - 8.6.1 直线与直线垂直...................................................................................................... - 80 - 8.6.2 直线与平面垂直...................................................................................................... - 85 -8.6.3平面与平面垂直 ....................................................................................................... - 89 -9.1.1简单随机抽样 ........................................................................................................... - 94 - 9.1.2 分层随机抽样 ............................................................................................................. - 96 - 9.1.3 获取数据的途径 ......................................................................................................... - 96 - 9.2.1总体取值规律的估计 ............................................................................................. - 100 - 9.2.2 总体百分位数的估计 ............................................................................................... - 105 - 9.2.3 总体集中趋势的估计 ............................................................................................... - 105 -9.2.4 总体离散程度的估计 ............................................................................................... - 105 -10.1.1有限样本空间与随机事件.................................................................................... - 110 - 10.1.2事件的关系和运算 ............................................................................................... - 112 - 10.1.3古典概型 ............................................................................................................... - 115 - 10.1.4概率的基本性质 ................................................................................................... - 118 - 10.2事件的相互独立性 .................................................................................................. - 121 - 10.3频率与概率 .............................................................................................................. - 126 -6.1 平面向量的概念一、选择题1.下列物理量:①质量;②速度;③位移;④力;⑤加速度;⑥路程;⑦密度;⑧功.其中不是向量的有( )A .1个B .2个C .3个D .4个【解析】一个量是不是向量,就是看它是否同时具备向量的两个要素:大小和方向.由于速度、位移、力、加速度都是由大小和方向确定的,所以是向量;而质量、路程、密度、功只有大小而没有方向,所以不是向量. 【答案】D2.下列命题中,正确命题的个数是( ) ①单位向量都共线; ②长度相等的向量都相等; ③共线的单位向量必相等;④与非零向量a 共线的单位向量是a|a |.A .3B .2C .1D .0【解析】根据单位向量的定义,可知①②③明显是错误的,对于④,与非零向量a 共线的单位向量是a |a |或-a|a |,故④也是错误的.【答案】D3.如图,等腰梯形ABCD 中,对角线AC 与BD 交于点P ,点E ,F 分别在两腰AD ,BC 上,EF 过点P ,且EF ∥AB ,则( )A.AD →=BC →B.AC →=BD →C.PE →=PF →D.EP →=PF →【解析】由平面几何知识知,AD →与BC →方向不同, 故AD →≠BC →;AC →与BD →方向不同,故AC →≠BD →; PE →与PF →的模相等而方向相反,故PE →≠PF →. EP →与PF →的模相等且方向相同,∴EP →=PF →.【答案】D4.若|AB →|=|AD →|且BA →=CD →,则四边形ABCD 的形状为( ) A .正方形 B .矩形 C .菱形 D .等腰梯形【解析】由BA →=CD →,知AB =CD 且AB ∥CD ,即四边形ABCD 为平行四边形.又因为|AB →|=|AD →|,所以四边形ABCD 为菱形. 【答案】C 二、填空题5.如图,已知正方形ABCD 的边长为2,O 为其中心,则|OA →|=________.【解析】因为正方形的对角线长为22,所以|OA →|= 2. 【答案】 2 6.如图,四边形ABCD 是平行四边形,E ,F 分别是AD 与BC 的中点,则在以A 、B 、C 、D 四点中的任意两点为始点和终点的所有向量中,与向量EF →方向相反的向量为________.【解析】因为AB ∥EF ,CD ∥EF ,所以与EF →平行的向量为DC →,CD →,AB →,BA →,其中方向相反的向量为BA →,CD →. 【答案】BA →,CD →7.给出下列命题:①若AB →=DC →,则A 、B 、C 、D 四点是平行四边形的四个顶点; ②在▱ABCD 中,一定有AB →=DC →; ③若a =b ,b =c ,则a =c ; ④若a ∥b ,b ∥c ,则a ∥c .其中所有正确命题的序号为________.【解析】AB →=DC →,A 、B 、C 、D 四点可能在同一条直线上,故①不正确;在▱ABCD 中,|AB →|=|DC →|,AB →与DC →平行且方向相同,故AB →=DC →,故②正确;a =b ,则|a |=|b |,且a 与b 方向相同;b =c ,则|b |=|c |,且b 与c 方向相同,则a 与c 长度相等且方向相同,故a =c ,故③正确;对于④,当b =0时,a 与c 不一定平行,故④不正确. 【答案】②③ 三、解答题8.在如图的方格纸(每个小方格的边长为1)上,已知向量a . (1)试以B 为起点画一个向量b ,使b =a ;(2)画一个以C 为起点的向量c ,使|c |=2,并说出c 的终点的轨迹是什么.【解析】(1)根据相等向量的定义,所作向量b 应与a 同向,且长度相等,如下图所示. (2)由平面几何知识可作满足条件的向量c ,所有这样的向量c 的终点的轨迹是以点C 为圆心,2为半径的圆,如下图所示.9.一辆汽车从A 点出发向西行驶了100千米到达B 点,然后又改变了方向向北偏西40°走了200千米到达C 点,最后又改变方向,向东行驶了100千米到达D 点. (1)作出向量AB →,BC →,CD →; (2)求|AD →|.【解析】(1)如图所示.(2)由题意,易知AB →与CD →方向相反,故AB →与CD →共线,即AB ∥CD . 又|AB →|=|CD →|,所以四边形ABCD 为平行四边形. 所以|AD →|=|BC →|=200(千米).10.如图,在△ABC 中,已知向量AD →=DB →,DF →=EC →,求证:AE →=DF →.证明:由DF →=EC →,可得DF =EC 且DF ∥EC , 故四边形CEDF 是平行四边形,从而DE ∥FC . ∵AD →=DB →,∴D 为AB 的中点. ∴AE →=EC →,∴AE →=DF →.6.2.1 向量的加法运算一、选择题1.点O 是平行四边形ABCD 的两条对角线的交点,则AO →+OC →+CB →等于( )A.AB →B.BC →C.CD →D.DA →【解析】因为点O 是平行四边形ABCD 的两条对角线的交点,则AO →+OC →+CB →=AC →+CB →=AB →.故选A. 【答案】A2.设a 表示“向东走5 km”,b 表示“向南走5 km”,则a +b 表示( ) A .向东走10 km B .向南走10 km C .向东南走10 km D .向东南走5 2 km 【解析】如图所示,AC →=a +b ,|AB →|=5,|BC →|=5,且AB ⊥BC ,则|AC →|=52,∠BAC =45°. 【答案】D3.已知向量a ∥b ,且|a |>|b |>0,则向量a +b 的方向( ) A .与向量a 方向相同 B .与向量a 方向相反 C .与向量b 方向相同 D .不确定【解析】如果a 和b 方向相同,则它们的和的方向应该与a (或b )的方向相同;如果它们的方向相反,而a 的模大于b 的模,则它们的和的方向与a 的方向相同. 【答案】A4.如图所示的方格纸中有定点O ,P ,Q ,E ,F ,G ,H ,则OP →+OQ →=( )A.OH →B.OG →C.FO →D.EO →【解析】设a =OP →+OQ →,以OP ,OQ 为邻边作平行四边形,则OP 与OQ 之间的对角线对应的向量即向量a =OP →+OQ →,由a 和FO →长度相等,方向相同,得a =FO →,即OP →+OQ →=FO →. 【答案】C 二、填空题5.在△ABC 中,AB →=a ,BC →=b ,CA →=c ,则a +b +c =________.【解析】由向量加法的三角形法则,得AB →+BC →=AC →,即a +b +c =AB →+BC →+CA →=0. 【答案】06.化简(AB →+MB →)+(BO →+BC →)+OM →=________.【解析】原式=(AB →+BO →)+(OM →+MB →)+BC →=AO →+OB →+BC →=AB →+BC →=AC →. 【答案】AC →7.在菱形ABCD 中,∠DAB =60°,|AB →|=1,则|BC →+CD →|=________. 【解析】在菱形ABCD 中,连接BD , ∵∠DAB =60°,∴△BAD 为等边三角形, 又∵|AB →|=1,∴|BD →|=1,|BC →+CD →|=|BD →|=1. 【答案】1 三、解答题8.如图,已知向量a 、b ,求作向量a +b .【解析】(1)作OA →=a ,AB →=b ,则OB →=a +b ,如图(1); (2)作OA →=a ,AB →=b ,则OB →=a +b ,如图(2); (3)作OA →=a ,AB →=b ,则OB →=a +b ,如图(3).9.如图所示,设O 为正六边形ABCDEF 的中心,作出下列向量: (1)OA →+OC →; (2)BC →+FE →.【解析】(1)由图可知,四边形OABC 为平行四边形,所以由向量加法的平行四边形法则,得OA →+OC →=OB →.(2)由图可知,BC →=FE →=OD →=AO →,所以BC →+FE →=AO →+OD →=AD →.10.如图,在重300 N 的物体上拴两根绳子,这两根绳子在铅垂线的两侧,与铅垂线的夹角分别为30°,60°,当整个系统处于平衡状态时,求两根绳子的拉力.【解析】如图,作▱OACB ,使∠AOC =30°,∠BOC =60°, 则∠ACO =∠BOC =60°,∠OAC =90°.设向量OA →,OB →分别表示两根绳子的拉力,则CO →表示物体所受的重力,且|OC →|=300 N. 所以|OA →|=|OC →|cos 30°=1503(N), |OB →|=|OC →|cos 60°=150 (N).所以与铅垂线成30°角的绳子的拉力是150 3 N ,与铅垂线成60°角的绳子的拉力是150 N.6.2.2 向量的减法运算一、选择题1.下列运算中正确的是( ) A.OA →-OB →=AB → B.AB →-CD →=DB → C.OA →-OB →=BA → D.AB →-AB →=0【解析】根据向量减法的几何意义,知OA →-OB →=BA →,所以C 正确,A 错误;B 显然错误;对于D ,AB →-AB →应该等于0,而不是0.【答案】C2.下列四式中不能化简为PQ →的是( ) A.AB →+(PA →+BQ →) B .(AB →+PC →)+(BA →-QC →) C.QC →-QP →+CQ → D.PA →+AB →-BQ →【解析】D 中,PA →+AB →-BQ →=PB →-BQ →=PB →+QB →不能化简为PQ →,其余选项皆可. 【答案】D3.在△ABC 中,D 是BC 边上的一点,则AD →-AC →等于( ) A.CB → B.BC → C.CD → D.DC →【解析】在△ABC 中,D 是BC 边上一点,则由两个向量的减法的几何意义可得AD →-AC →=CD →. 【答案】C4.如图,在四边形ABCD 中,设AB →=a ,AD →=b ,BC →=c ,则DC →=( ) A .a -b +c B .b -(a +c ) C .a +b +c D .b -a +c【解析】DC →=DA →+AB →+BC →=a -b +c . 【答案】A 二、填空题5.EF →+DE →-DB →=________.【解析】EF →+DE →-DB →=EF →+BE →=BF →. 【答案】BF →6.若a ,b 为相反向量,且|a |=1,|b |=1,则|a +b |=________,|a -b |=________.【解析】若a ,b 为相反向量,则a +b =0,所以|a +b |=0,又a =-b ,所以|a |=|-b |=1,因为a 与-b 共线同向,所以|a -b |=2. 【答案】0 27.设点M 是线段BC 的中点,点A 在直线BC 外,且|BC →|=4,|AB →+AC →|=|AB →-AC →|,则|AM →|=________.【解析】以AB ,AC 为邻边作平行四边形ACDB ,由向量加减法几何意义可知,AD →=AB →+AC →,CB →=AB →-AC →,∵|AB →+AC →|=|AB →-AC →|,平行四边形ABCD 为矩形,∴|AD →|=|CB →|,又|BC →|=4,M 是线段BC 的中点, ∴|AM →|=12|AD →|=12|BC →|=2.【答案】2 三、解答题8.如图,已知向量a ,b ,c 不共线,求作向量a +b -c .【解析】方法一:如图①,在平面内任取一点O ,作OA →=a ,AB →=b ,则OB →=a +b ,再作OC →=c ,则CB →=a +b -c .方法二:如图②,在平面内任取一点O ,作OA →=a ,AB →=b ,则OB →=a +b ,再作CB →=c ,连接OC ,则OC →=a +b -c .9.化简下列各式:(1)(AB →+MB →)+(-OB →-MO →); (2)AB →-AD →-DC →.【解析】(1)方法一 原式=AB →+MB →+BO →+OM →=(AB →+BO →)+(OM →+MB →)=AO →+OB →=AB →. 方法二 原式=AB →+MB →+BO →+OM →=AB →+(MB →+BO →)+OM →=AB →+MO →+OM →=AB →+0=AB →. (2)方法一 原式=DB →-DC →=CB →.方法二 原式=AB →-(AD →+DC →)=AB →-AC →=CB →. 10.如图,解答下列各题:(1)用a ,d ,e 表示DB →; (2)用b ,c 表示DB →; (3)用a ,b ,e 表示EC →; (4)用d ,c 表示EC →.【解析】由题意知,AB →=a ,BC →=b ,CD →=c ,DE →=d ,EA →=e ,则 (1)DB →=DE →+EA →+AB →=a +d +e . (2)DB →=CB →-CD →=-BC →-CD →=-b -c . (3)EC →=EA →+AB →+BC →=a +b +e . (4)EC →=-CE →=-(CD →+DE →)=-c -d .6.2.3 向量的数乘运算一、选择题1.4(a -b )-3(a +b )-b 等于( ) A .a -2b B .a C .a -6b D .a -8b【解析】原式=4a -4b -3a -3b -b =a -8b .2.点C 在直线AB 上,且AC →=3AB →,则BC →等于( ) A .-2AB → B.13AB →C .-13AB →D .2AB →【解析】如图,AC →=3AB →,所以BC →=2AB →. 【答案】D3.已知向量a ,b 是两个不共线的向量,且向量m a -3b 与a +(2-m )b 共线,则实数m 的值为( )A .-1或3 B. 3 C .-1或4 D .3或4【解析】因为向量m a -3b 与a +(2-m )b 共线,且向量a ,b 是两个不共线的向量,所以m =-32-m ,解得m =-1或m =3. 【答案】A 4.如图,已知AB →=a ,AC →=b ,BD →=3DC →,用a ,b 表示AD →,则AD →=( ) A .a +34bB.34a +14bC.14a +14bD.14a +34b 【解析】AD →=AB →+BD →=AB →+34BC →=AB →+34(AC →-AB →)=14AB →+34AC →=14a +34b .【答案】D5.已知|a |=4,|b |=8,若两向量方向同向,则向量a 与向量b 的关系为b =________a . 【解析】由于|a |=4,b =8,则|b |=2|a |,又两向量同向,故b =2a . 【答案】26.点C 在线段AB 上,且AC CB =32,则AC →=________AB →,BC →=________AB →.【解析】因为C 在线段AB 上,且AC CB =32,所以AC →与AB →方向相同,BC →与AB →方向相反,且AC AB =35,BC AB =25,所以AC →=35AB →,BC →=-25AB →. 【答案】35 -257.已知向量a ,b 满足|a |=3,|b |=5,且a =λb ,则实数λ的值是________. 【解析】由a =λb ,得|a |=|λb |=|λ||b |.∵|a |=3,|b |=5, ∴|λ|=35,即λ=±35.【答案】±35三、解答题 8.计算(1)13(a +2b )+14(3a -2b )-12(a -b ); (2)12⎣⎢⎡⎦⎥⎤3a +2b-23a -b -76⎣⎢⎡⎦⎥⎤12a +37⎝ ⎛⎭⎪⎫b +76a . 【解析】(1)原式=⎝ ⎛⎭⎪⎫13+34-12a +⎝ ⎛⎭⎪⎫23-12+12b =712a +23b . (2)原式=12⎝ ⎛⎭⎪⎫73a +b -76⎝ ⎛⎭⎪⎫a +37b =76a +12b -76a -12b =0. 9.已知E ,F 分别为四边形ABCD 的对角线AC ,BD 的中点,设BC →=a ,DA →=b ,试用a ,b 表示EF →.【解析】如图所示,取AB 的中点P ,连接EP ,FP .在△ABC 中,EP 是中位线, 所以PE →=12BC →=12a .在△ABD 中,FP 是中位线,所以PF →=12AD →=-12DA →=-12b .在△EFP 中,EF →=EP →+PF →=-PE →+PF →=-12a -12b =-12(a +b ).10.已知e ,f 为两个不共线的向量,若四边形ABCD 满足AB →=e +2f ,BC →=-4e -f ,CD →=-5e -3f .(1)用e 、f 表示AD →;(2)证明:四边形ABCD 为梯形.【解析】(1)AD →=AB →+BC →+CD →=(e +2f )+(-4e -f )+(-5e -3f )=(1-4-5)e +(2-1-3)f =-8e -2f .(2)证明:因为AD →=-8e -2f =2(-4e -f )=2BC →, 所以AD →与BC →方向相同,且AD →的长度为BC →的长度的2倍, 即在四边形ABCD 中,AD ∥BC ,且AD ≠BC , 所以四边形ABCD 是梯形.6.2.4 向量的数量积一、选择题1.若|m |=4,|n |=6,m 与n 的夹角为45°,则m ·n =( ) A .12 B .12 2 C .-12 2 D .-12【解析】m ·n =|m ||n |cos θ=4×6×cos 45°=24×22=12 2. 【答案】B2.已知a ·b =-122,|a |=4,a 和b 的夹角为135°,则|b |=( ) A .12 B .3 C .6 D .3 3【解析】a ·b =|a ||b |cos 135°=-122,又|a |=4,解得|b |=6. 【答案】C3.已知向量a ,b 满足|a |=2,|b |=3,a ·(b -a )=-1,则a 与b 的夹角为( ) A.π6 B.π4 C.π3 D.π2【解析】因为|a |=2,a ·(b -a )=-1, 所以a ·(b -a )=a ·b -a 2=a ·b -22=-1, 所以a ·b =3.又因为|b |=3,设a 与b 的夹角为θ,则cos θ=a ·b |a ||b |=32×3=12.又θ∈[0,π],所以θ=π3. 【答案】C4.若a ·b >0,则a 与b 的夹角θ的取值范围是( )A.⎣⎢⎡⎭⎪⎫0,π2B.⎣⎢⎡⎭⎪⎫π2,πC.⎝⎛⎦⎥⎤π2,π D.⎝ ⎛⎭⎪⎫π2,π 【解析】因为a ·b >0,所以cos θ>0,所以θ∈⎣⎢⎡⎭⎪⎫0,π2.【答案】A 二、填空题5.如图所示,在Rt△ABC 中,∠A =90°,AB =1,则AB →·BC →的值是________.【解析】方法一 AB →·BC →=|AB →||BC →|cos(180°-∠B )=-|AB →||BC →|cos∠B =-|AB →||BC→|·|AB →||BC →|=-|AB →|2=-1.方法二 |BA →|=1,即BA →为单位向量,AB →·BC →=-BA →·BC →=-|BA →||BC →|cos∠B ,而|BC →|·cos∠B =|BA →|,所以AB →·BC →=-|BA →|2=-1. 【答案】-16.已知向量a ,b 满足|a |=1,|b |=4,且a ·b =2,则a 与b 的夹角为________.【解析】设a 与b 的夹角为θ,cos θ=a ·b |a |·|b |=21×4=12,又因为θ∈[0,π],所以θ=π3. 【答案】π37.已知|a |=3,向量a 与b 的夹角为π3,则a 在b 方向上的投影为________.【解析】向量a 在b 方向上的投影为|a |cos θ=3×cos π3=32.【答案】32三、解答题8.已知|a |=3,|b |=4,a 与b 的夹角为120°,求: (1)a 2-b 2;(2)(2a -b )·(a +3b ).【解析】(1)a 2-b 2=|a |2-|b |2=32-42=-7.(2)(2a -b )·(a +3b )=2a 2+5a ·b -3b 2=2|a |2+5|a ||b |·cos 120°-3|b |2=2×32+5×3×4×⎝ ⎛⎭⎪⎫-12-3×42=-60. 9.(1)已知|a |=|b |=5,向量a 与b 的夹角为π3,求|a +b |,|a -b |,|3a +b |;(2)已知|a |=|b |=5,且|3a -2b |=5,求|3a +b |的值;(3)如图,已知在▱ABCD 中,AB =3,AD =1,∠DAB =π3,求对角线AC 和BD 的长.【解析】(1)a ·b =|a ||b |cos π3=5×5×12=252,∴|a +b |=a +b 2=|a |2+2a ·b +|b |2=25+2×252+25=53,|a -b |=a -b2=|a |2+|b |2-2a ·b =25=5, |3a +b |=3a +b2=9a 2+b 2+6a ·b =325=513.(2)∵|3a -2b |2=9|a |2-12a ·b +4|b |2=9×25-12a ·b +4×25=325-12a ·b ,又|3a -2b |=5,∴325-12a ·b =25,则a ·b =25.∴|3a +b |2=(3a +b )2=9a 2+6a ·b +b 2=9×25+6×25+25=400.故|3a +b |=20. (3)设AB →=a ,AD →=b ,则|a |=3,|b |=1,a 与b 的夹角θ=π3.∴a ·b =|a ||b |cos θ=32.又∵AC →=a +b ,DB →=a -b , ∴|AC →|=AC →2=a +b 2=a 2+2a ·b +b 2=13,|DB →|=DB →2=a -b2=a 2-2a ·b +b 2=7.∴AC =13,BD =7.10.已知|a |=2|b |=2,且向量a 在向量b 方向上的投影为-1. (1)求a 与b 的夹角θ; (2)求(a -2b )·b ;(3)当λ为何值时,向量λa +b 与向量a -3b 互相垂直? 【解析】(1)由题意知|a |=2,|b |=1. 又a 在b 方向上的投影为|a |cos θ=-1, ∴cos θ=-12,∴θ=2π3.(2)易知a ·b =-1,则(a -2b )·b =a ·b -2b 2=-1-2=-3. (3)∵λa +b 与a -3b 互相垂直,∴(λa +b )·(a -3b )=λa 2-3λa ·b +b ·a -3b 2 =4λ+3λ-1-3=7λ-4=0, ∴λ=47.6.3.1 平面向量基本定理一、选择题1.已知向量a =e 1-2e 2,b =2e 1+e 2,其中e 1,e 2不共线,则a +b 与c =6e 1-2e 2的关系是( ) A .不共线 B .共线 C .相等 D .不确定 【解析】∵a +b =3e 1-e 2, ∴c =2(a +b ).∴a +b 与c 共线. 【答案】B2.已知AD 是△ABC 的中线,AB →=a ,AD →=b ,以a ,b 为基底表示AC →,则AC →=( ) A.12(a -b ) B .2b -a C.12(b -a ) D .2b +a【解析】如图,AD 是△ABC 的中线,则D 为线段BC 的中点,从而AD →=12(AB →+AC →),则AC →=2AD→-AB →=2b -a . 【答案】B3.在正方形ABCD 中,AC →与CD →的夹角等于( ) A .45° B.90° C .120° D.135° 【解析】如图所示,将AC →平移到CE →,则CE →与CD →的夹角即为AC →与CD →的夹角,夹角为135°. 【答案】D4.若D 点在三角形ABC 的边BC 上,且CD →=4DB →=rAB →+sAC →,则3r +s 的值为( ) A.165 B.125 C.85 D.45【解析】∵CD →=4DB →=rAB →+sAC →, ∴CD →=45CB →=45(AB →-AC →)=rAB →+sAC →,∴r =45,s =-45.∴3r +s =125-45=85.【答案】C 二、填空题5.已知向量a ,b 是一组基底,实数x ,y 满足(3x -4y )a +(2x -3y )b =6a +3b ,则x -y 的值为________.【解析】因为a ,b 是一组基底,所以a 与b 不共线, 因为(3x -4y )a +(2x -3y )b =6a +3b ,所以⎩⎪⎨⎪⎧3x -4y =6,2x -3y =3,解得⎩⎪⎨⎪⎧x =6,y =3,所以x -y =3.【答案】36.已知O ,A ,B 是平面上的三个点,直线AB 上有一点C ,满足2AC →+CB →=0,若OA →=a ,OB →=b ,用a ,b 表示向量OC →,则OC →=________.【解析】AC →=OC →-OA →,CB →=OB →-OC →,∵2AC →+CB →=0,∴2(OC →-OA →)+(OB →-OC →)=0,∴OC →=2OA →-OB →=2a -b . 【答案】2a -b7.在正方形ABCD 中,E 是DC 边上的中点,且AB →=a ,AD →=b ,则BE →=________.【解析】BE →=BC →+CE →=AD →-12AB →=b -12a .【答案】b -12a三、解答题8.已知e 1,e 2是平面内两个不共线的向量,a =3e 1-2e 2,b =-2e 1+e 2,c =7e 1-4e 2,试用向量a 和b 表示c .【解析】因为a ,b 不共线,所以可设c =x a +y b , 则x a +y b =x (3e 1-2e 2)+y (-2e 1+e 2) =(3x -2y )e 1+(-2x +y )e 2=7e 1-4e 2. 又因为e 1,e 2不共线,所以⎩⎪⎨⎪⎧3x -2y =7,-2x +y =-4,解得⎩⎪⎨⎪⎧x =1,y =-2,所以c =a -2b .9.如图所示,设M ,N ,P 是△ABC 三边上的点,且BM →=13BC →,CN →=13CA →,AP →=13AB →,若AB →=a ,AC→=b ,试用a ,b 将MN →、NP →、PM →表示出来. 【解析】NP →=AP →-AN →=13AB →-23AC →=13a -23b ,MN →=CN →-CM →=-13AC →-23CB →=-13b -23(a -b )=-23a +13b ,PM →=-MP →=-(MN →+NP →)=13(a +b ).10.若点M 是△ABC 所在平面内一点,且满足:AM →=34AB →+14AC →.(1)求△ABM 与△ABC 的面积之比;(2)若N 为AB 中点,AM 与CN 交于点O ,设BO →=xBM →+yBN →,求x ,y 的值. 【解析】(1)由AM →=34AB →+14AC →可知M ,B ,C 三点共线,如图,令BM →=λBC →⇒AM →=AB →+BM →=AB →+λBC →=AB →+λ(AC →-AB →)=(1-λ)AB →+λAC →⇒λ=14,所以S △ABM S △ABC =14,即面积之比为1 4. (2)由BO →=xBM →+yBN →⇒BO →=xBM →+y 2BA →,BO →=x 4BC →+yBN ,由O ,M ,A 三点共线及O ,N ,C 三点共线⇒⎩⎪⎨⎪⎧ x +y2=1,x4+y =1⇒⎩⎪⎨⎪⎧x =47,y =67.6.3.2 平面向量的正交分解及坐标表示 6.3.3 平面向量加、减运算的坐标表示一、选择题1.设i ,j 是平面直角坐标系内分别与x 轴,y 轴正方向相同的两个单位向量,O 为坐标原点,若OA →=4i +2j ,OB →=3i +4j ,则2OA →+OB →的坐标是( ) A .(1,-2) B .(7,6) C .(5,0) D .(11,8)【解析】因为OA →=(4,2),OB →=(3,4), 所以2OA →+OB →=(8,4)+(3,4)=(11,8). 【答案】D2.已知向量a =(-1,2),b =(1,0),那么向量3b -a 的坐标是( ) A .(-4,2) B .(-4,-2) C .(4,2) D .(4,-2)【解析】3b -a =3(1,0)-(-1,2)=(4,-2).【答案】D3.已知向量a =(1,2),2a +b =(3,2),则b =( ) A .(1,-2) B .(1,2) C .(5,6) D .(2,0)【解析】b =(3,2)-2a =(3,2)-(2,4)=(1,-2). 【答案】A4.已知向量i =(1,0),j =(0,1),对坐标平面内的任一向量a ,给出下列四个结论: ①存在唯一的一对实数x ,y ,使得a =(x ,y );②若x 1,x 2,y 1,y 2∈R ,a =(x 1,y 1)≠(x 2,y 2),则x 1≠x 2,且y 1≠y 2; ③若x ,y ∈R ,a =(x ,y ),且a ≠0,则a 的起点是原点O ; ④若x ,y ∈R ,a ≠0,且a 的终点坐标是(x ,y ),则a =(x ,y ). 其中正确结论的个数是( ) A .1 B .2 C .3 D .4【解析】由平面向量基本定理知①正确;若a =(1,0)≠(1,3),但1=1,故②错误;因为向量可以平移,所以a =(x ,y )与a 的起点是不是原点无关,故③错误;当a 的终点坐标是(x ,y )时,a =(x ,y )是以a 的起点是原点为前提的,故④错误.【答案】A 二、填空题5.在平面直角坐标系内,已知i 、j 是两个互相垂直的单位向量,若a =i -2j ,则向量用坐标表示a =________.【解析】由于i ,j 是两个互相垂直的单位向量,所以a =(1,-2). 【答案】(1,-2)6.如右图所示,已知O 是坐标原点,点A 在第一象限,|OA →|=43,∠xOA =60°,则向量OA →的坐标为________.【解析】设点A (x ,y ),则x =|OA →|·cos 60°=43cos 60°=23,y =|OA →|·sin 60°=43sin 60°=6,即A (23,6),所以OA →=(23,6). 【答案】(23,6)7.已知向量a =(x +3,x 2-3x -4)与AB →相等,其中A (1,2),B (3,2),则x =________.【解析】易得AB →=(2,0),由a =(x +3,x 2-3x -4)与AB →相等得⎩⎪⎨⎪⎧x +3=2,x 2-3x -4=0,解得x =-1.【答案】-1 三、解答题8.如图,取与x 轴、y 轴同向的两个单位向量i ,j 作为基底,分别用i ,j 表示OA →,OB →,AB →,并求出它们的坐标.【解析】由图形可知,OA →=6i +2j ,OB →=2i +4j ,AB →=-4i +2j ,它们的坐标表示为OA →=(6,2),OB →=(2,4),AB →=(-4,2).9.已知a =(2,-4),b =(-1,3),c =(6,5),p =a +2b -c . (1)求p 的坐标 ;(2)若以a ,b 为基底,求p 的表达式.【解析】(1)p =(2,-4)+2(-1,3)-(6,5)=(-6,-3). (2)设p =λa +μb (λ,μ∈R ),则(-6,-3)=λ(2,-4)+μ(-1,3)=(2λ-μ,-4λ+3μ),所以⎩⎪⎨⎪⎧2λ-μ=-6,-4λ+3μ=-3,所以⎩⎪⎨⎪⎧λ=-212,μ=-15,所以p =-212a -15b .10.已知O 是△ABC 内一点,∠AOB =150°,∠BOC =90°,设OA →a ,OB →=b ,OC →=c ,且|a |=2,|b|=1,|c |=3,试用a ,b 表示c .【解析】如图,以O 为原点,OA →为x 轴的非负半轴建立平面直角坐标系,由三角函数的定义,得B (cos 150°,sin 150°),C (3cos 240°,3sin 240°). 即B ⎝ ⎛⎭⎪⎫-32,12,C ⎝ ⎛⎭⎪⎫-32,-332,又∵A (2,0), 故a =(2,0),b =⎝ ⎛⎭⎪⎫-32,12,c =⎝ ⎛⎭⎪⎫-32,-332. 设c =λ1a +λ2b (λ1,λ2∈R ),∴⎝ ⎛⎭⎪⎫-32,-332=λ1(2,0)+λ2⎝ ⎛⎭⎪⎫-32,12=⎝⎛⎭⎪⎫2λ1-32λ2,12λ2,∴⎩⎪⎨⎪⎧2λ1-32λ2=-32,12λ2=-332,∴⎩⎨⎧λ1=-3,λ2=-33,∴c =-3a -33b .6.3.4 平面向量数乘运算的坐标表示一、选择题1.已知平面向量a =(1,2),b =(-2,m ),且a ∥b ,则2a +3b =( ) A .(-2,-4) B .(-3,-6) C .(-4,-8) D .(-5,-10)【解析】由a =(1,2),b =(-2,m ),且a ∥b ,得1×m =2×(-2),解得m =-4,所以b =(-2,-4),所以2a +3b =2(1,2)+3(-2,-4)=(-4,-8). 【答案】C2.已知向量a =(1,2),b =(λ,1),若(a +2b )∥(2a -2b ),则λ的值等于( ) A.12 B.13 C .1 D .2【解析】a +2b =(1,2)+2(λ,1)=(1+2λ,4),2a -2b =2(1,2)-2(λ,1)=(2-2λ,2),由(a +2b )∥(2a -2b ),可得2(1+2λ)-4(2-2λ)=0,解得λ=12,故选A.【答案】A3.已知A (1,-3),B ⎝ ⎛⎭⎪⎫8,12,且A ,B ,C 三点共线,则点C 的坐标可以是( ) A .(-9,1) B .(9,-1) C .(9,1) D .(-9,-1) 【解析】设点C 的坐标是(x ,y ), 因为A ,B ,C 三点共线, 所以AB →∥AC →.因为AB →=⎝ ⎛⎭⎪⎫8,12-(1,-3)=⎝ ⎛⎭⎪⎫7,72,AC →=(x ,y )-(1,-3)=(x -1,y +3),所以7(y +3)-72(x -1)=0,整理得x -2y =7,经检验可知点(9,1)符合要求,故选C. 【答案】C4.已知向量OA →=(3,-4),OB →=(6,-3),OC →=(2m ,m +1),若AB →∥OC →,则实数m 的值为( ) A.35 B .-35 C .3 D .-3【解析】向量OA →=(3,-4),OB →=(6,-3), ∴AB →=(3,1),∵OC →=(2m ,m +1),AB →∥OC →, ∴3m +3=2m ,解得m =-3,故选D.【答案】D 二、填空题5.已知向量a =(3x -1,4)与b =(1,2)共线,则实数x 的值为________.【解析】因为向量a =(3x -1,4)与b =(1,2)共线,所以2(3x -1)-4×1=0,解得x =1. 【答案】16.已知A (2,1),B (0,2),C (-2,1),O (0,0),给出下列结论: ①直线OC 与直线BA 平行; ②AB →+BC →=CA →; ③OA →+OC →=OB →; ④AC →=OB →-2OA →.其中,正确结论的序号为________.【解析】①因为OC →=(-2,1),BA →=(2,-1),所以OC →=-BA →,又直线OC ,BA 不重合,所以直线OC ∥BA ,所以①正确;②因为AB →+BC →=AC →≠CA →,所以②错误;③因为OA →+OC →=(0,2)=OB →,所以③正确;④因为AC →=(-4,0),OB →-2OA →=(0,2)-2(2,1)=(-4,0),所以④正确. 【答案】①③④7.已知向量a =(1,2),b =(1,λ),c =(3,4).若a +b 与c 共线,则实数λ=________. 【解析】因为a +b =(1,2)+(1,λ)=(2,2+λ),所以根据a +b 与c 共线得2×4-3×(2+λ)=0,解得λ=23.【答案】23三、解答题8.已知a =(x,1),b =(4,x ),a 与b 共线且方向相同,求x . 【解析】∵a =(x,1),b =(4,x ),a ∥b . ∴x 2-4=0,解得x 1=2,x 2=-2.当x =2时,a =(2,1),b =(4,2),a 与b 共线且方向相同; 当x =-2时,a =(-2,1),b =(4,-2),a 与b 共线且方向相反. ∴x =2.9.已知A ,B ,C 三点的坐标分别为(-1,0),(3,-1),(1,2),并且AE →=13AC →,BF →=13BC →,求证:EF →∥AB →.证明:设E (x 1,y 1),F (x 2,y 2),依题意有AC →=(2,2),BC →=(-2,3),AB →=(4,-1). ∵AE →=13AC →,∴AE →=⎝ ⎛⎭⎪⎫23,23,∵BF →=13BC →,∴BF →=⎝ ⎛⎭⎪⎫-23,1.∵AE →=(x 1+1,y 1)=⎝ ⎛⎭⎪⎫23,23,∴E ⎝ ⎛⎭⎪⎫-13,23,∵BF →=(x 2-3,y 2+1)=⎝ ⎛⎭⎪⎫-23,1,∴F ⎝ ⎛⎭⎪⎫73,0, ∴EF →=⎝ ⎛⎭⎪⎫83,-23.又∵4×⎝ ⎛⎭⎪⎫-23-83×(-1)=0,∴EF →∥AB →. 10.已知a =(1,0),b =(2,1). (1)当k 为何值时,k a -b 与a +2b 共线?(2)若AB →=2a +3b ,BC →=a +m b 且A ,B ,C 三点共线,求m 的值. 【解析】(1)k a -b =k (1,0)-(2,1)=(k -2,-1),a +2b =(1,0)+2(2,1)=(5,2).因为k a -b 与a +2b 共线,所以2(k -2)-(-1)×5=0,得k =-12.(2)因为A ,B ,C 三点共线, 所以AB →=λBC →,λ∈R , 即2a +3b =λ(a +m b ),所以⎩⎪⎨⎪⎧2=λ,3=mλ,解得m =32.6.3.5 平面向量数量积的坐标表示一、选择题1.若向量a =(3,m ),b =(2,-1),a ·b =0,则实数m 的值为( )A .-32 B.32C .2D .6【解析】依题意得6-m =0,m =6,选D. 【答案】D2.向量a =(1,-1),b =(-1,2),则(2a +b )·a =( ) A .-1 B .0 C .1 D .2【解析】a =(1,-1),b =(-1,2), ∴(2a +b )·a =(1,0)·(1,-1)=1. 【答案】C3.已知a ,b 为平面向量,且a =(4,3),2a +b =(3,18),则a ,b 夹角的余弦值等于( ) A.865 B .-865 C.1665 D .-1665【解析】∵a =(4,3),∴2a =(8,6).又2a +b =(3,18), ∴b =(-5,12),∴a ·b =-20+36=16. 又|a |=5,|b |=13, ∴cos〈a ,b 〉=165×13=1665.【答案】C4.已知向量a =(-1,2),b =(3,1),c =(k,4),且(a -b )⊥c ,则k =( ) A .-6 B .-1 C .1 D .6【解析】∵a =(-1,2),b =(3,1),∴a -b =(-4,1),∵(a -b )⊥c ,∴-4k +4=0,解得k =1. 【答案】C 二、填空题5.a =(-4,3),b =(1,2),则2|a |2-3a ·b =________. 【解析】因为a =(-4,3),所以2|a |2=2×(-42+32)2=50.a ·b =-4×1+3×2=2.所以2|a |2-3a ·b =50-3×2=44. 【答案】446.设向量a =(1,0),b =(-1,m ).若a ⊥(m a -b ),则m =________.【解析】由题意得,m a -b =(m +1,-m ),根据向量垂直的充要条件可得1×(m +1)+0×(-m )=0,所以m =-1.【答案】-17.已知平面向量a =(1,2),b =(4,2),c =m a +b (m ∈R ),且c 与a 的夹角等于c 与b 的夹角,则m =________.【解析】c =(m +4,2m +2),|a |=5,|b |=25, 设c ,a 的夹角为α,c ,b 的夹角为θ,又因为cos α=c ·a |c ||a |,cos θ=c ·b |c ||b |,由题意知c ·a |a |=c ·b |b |,即5m +85=8m +2025. 解得m =2. 【答案】2 三、解答题8.已知平面向量a =(1,x ),b =(2x +3,-x ),x ∈R . (1)若a ⊥b ,求x 的值; (2)若a ∥b ,求|a -b |.【解析】(1)若a ⊥b ,则a ·b =(1,x )·(2x +3,-x )=1×(2x +3)+x (-x )=0,即x 2-2x -3=0,解得x =-1或x =3.(2)若a ∥b ,则1×(-x )-x (2x +3)=0, 即x (2x +4)=0,解得x =0或x =-2. 当x =0时,a =(1,0),b =(3,0), |a -b |=|(1,0)-(3,0)|=|(-2,0)|=2. 当x =-2时,a =(1,-2),b =(-1,2), |a -b |=|(1,-2)-(-1,2)|=|(2,-4)|=2 5.9.已知向量a ,b ,c 是同一平面内的三个向量,其中a =(1,-1). (1)若|c |=32,且c ∥a ,求向量c 的坐标;(2)若b 是单位向量,且a ⊥(a -2b ),求a 与b 的夹角θ.【解析】(1)设c =(x ,y ),由|c |=32,c ∥a 可得⎩⎪⎨⎪⎧y +x =0,x 2+y 2=18,所以⎩⎪⎨⎪⎧x =-3,y =3,或⎩⎪⎨⎪⎧x =3,y =-3,故c =(-3,3)或c =(3,-3).(2)因为|a |=2,且a ⊥(a -2b ),所以a ·(a -2b )=0,即a 2-2a ·b =0,∴a ·b =1,故cos θ=a ·b |a |·|b |=22,∵θ∈[0,π], ∴θ=π4.10.在△PQR 中,PQ →=(2,3),PR →=(1,k ),且△PQR 的一个内角为直角,求k 的值. 【解析】(1)当∠P 为直角时,PQ ⊥PR , ∴PQ →·PR →=0,即2+3k =0,∴k =-23.(2)当∠Q 为直角时,QP ⊥QR ,易知QP →=(-2,-3),QR →=PR →-PQ →=(-1,k -3). 由QP →·QR →=0,得2-3(k -3)=0,∴k =113.(3)当∠R 为直角时,RP ⊥RQ ,易知RP →=(-1,-k ),RQ →=PQ →-PR →=(1,3-k ). 由RP →·RQ →=0,得-1-k (3-k )=0,∴k =3±132.综上所述,k 的值为-23或113或3+132或3-132.6.4 平面向量的应用一、选择题1.已知三个力F 1=(-2,-1),F 2=(-3,2),F 3=(4,-3)同时作用于某物体上的一点,为使物体保持平衡,现加上一个力F 4,则F 4等于( ) A .(-1,-2) B .(1,-2) C .(-1,2) D .(1,2)【解析】F 4=-(F 1+F 2+F 3)=-[(-2,-1)+(-3,2)+(4,-3)]=(1,2). 【答案】D2.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若b 2=ac ,c =2a ,则cos C =( ) A.24 B .-24C.34 D .-34【解析】由题意得,b 2=ac =2a 2,即b =2a ,∴cos C =a 2+b 2-c 22ab =a 2+2a 2-4a 22a ×2a=-24.【答案】B3.河水的流速为2 m/s ,一艘小船以垂直于河岸方向10 m/s 的速度驶向对岸,则小船在静水中的速度大小为( ) A .10 m/s B .226 m/s C .4 6 m/s D .12 m/s【解析】由题意知|v 水|=2 m/s ,|v 船|=10 m/s ,作出示意图如右图. ∴小船在静水中的速度大小|v |=102+22=104=226 (m/s). 【答案】B4.在△ABC 中,AB =3,AC 边上的中线BD =5,AC →·AB →=5,则AC 的长为( ) A .1 B .2 C .3 D .4【解析】因为BD →=AD →-AB →=12AC →-AB →,所以BD →2=⎝ ⎛⎭⎪⎫12AC →-AB →2=14AC →2-AC →·AB →+AB →2,即14AC →2=1,所以|AC →|=2,即AC =2. 【答案】B 二、填空题5.如图所示,一力作用在小车上,其中力F 的大小为10牛,方向与水平面成60°角,当小车向前运动10米时,力F 做的功为________焦耳. 【解析】设小车位移为s ,则|s |=10米,W F =F ·s =|F ||s |·cos 60°=10×10×12=50(焦耳).【答案】506.若AB →=3e ,DC →=5e ,且|AD →|=|BC →|,则四边形ABCD 的形状为________. 【解析】由AB →=3e ,DC →=5e ,得AB →∥DC →,AB →≠DC →,又因为ABCD 为四边形,所以AB ∥DC ,AB ≠DC . 又|AD →|=|BC →|,得AD =BC , 所以四边形ABCD 为等腰梯形. 【答案】等腰梯形7.某同学骑电动车以24 km/h 的速度沿正北方向的公路行驶,在点A 处测得电视塔S 在电动车的北偏东30°方向上,15 min 后到点B 处,测得电视塔S 在电动车的北偏东75°方向上,则点B 与电视塔的距离是________ km.【解析】如题图,由题意知AB =24×1560=6,在△ABS 中,∠BAS =30°,AB =6,∠ABS =180°-75°=105°,∴∠ASB =45°,由正弦定理知BS sin 30°=AB sin 45°,∴BS =AB ·sin 30°sin 45°=32(km). 【答案】3 2 三、解答题 8.如图所示,在正方形ABCD 中,P 为对角线AC 上任一点,PE ⊥AB ,PF ⊥BC ,垂足分别为E ,F ,连接DP ,EF ,求证:DP ⊥EF .证明:方法一 设正方形ABCD 的边长为1,。
高中数学 全册综合检测试题课时作业(含解析)新人教A版必修第二册-新人教A版高一第二册数学试题

全册综合检测试题时间:120分钟 分值:150分第Ⅰ卷(选择题,共60分)一、单项选择题每小题5分,共40分 1.下列命题为假命题的是( D ) A .复数的模是非负实数B .复数等于零的充要条件是它的模等于零C .两个复数的模相等是这两个复数相等的必要条件D .复数z 1>z 2的充要条件是|z 1|>|z 2|解析:A 中,任何复数z =a +b i(a ,b ∈R )的模|z |=a 2+b 2≥0总成立,所以A 正确;B 中,由复数为零的条件z =0⇔⎩⎪⎨⎪⎧a =0,b =0⇔|z |=0,故B 正确;C 中,若z 1=a 1+b 1i ,z 2=a 2+b 2i(a 1,b 1,a 2,b 2∈R ),且z 1=z 2,则有a 1=a 2,b 1=b 2,所以|z 1|=|z 2|;反之,由|z 1|=|z 2|,推不出z 1=z 2,如z 1=1+3i ,z 2=1-3i 时,|z 1|=|z 2|,故C 正确;D 中,若z 1=a 1+b 1i ,z 2=a 2+b 2i ,z 1>z 2,则a 1>a 2,b 1=b 2=0,此时|z 1|>|z 2|;若|z 1|>|z 2|,z 1与z 2不一定能比较大小,所以D 错误.2.随机调查某校50个学生在学校的午餐费,结果如表:餐费/元 6 7 8 人数102020这50A .7.2,0.56 B .7.2,0.56 C .7,0.6 D .7,0.6解析:根据题意,计算这50个学生午餐费的平均值是x =150×(6×10+7×20+8×20)=7.2,方差是s 2=150[10×(6-7.2)2+20×(7-7.2)2+20×(8-7.2)2]=150(14.4+0.8+12.8)=0.56.3.设α,β为两个平面,则α∥β的充要条件是( B ) A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线 D .α,β垂直于同一平面解析:当α内有无数条直线与β平行,也可能两平面相交,故A 错.同样当α,β平行于同一条直线或α,β垂直于同一平面时,两平面也可能相交,故C ,D 错.由面面平行的判定定理可得B 正确.4.如图,在三棱柱ABC A 1B 1C 1中,侧棱垂直于底面,底面是边长为2的正三角形,侧棱长为3,则CC 1与平面AB 1C 1所成的角为( A )A.π6B.π4 C.π3D.π2解析:如图,取B 1C 1中点为D ,连接AD ,A 1D ,因为侧棱垂直于底面,底边是边长为2的正三角形,所以三棱柱ABC A 1B 1C 1是正三棱柱,所以CC 1∥AA 1,所以AA 1与平面AB 1C 1所成的角即是CC 1与平面AB 1C 1所成的角,因为B 1C 1⊥A 1D ,B 1C 1⊥AA 1,所以B 1C 1⊥平面AA 1D ,所以平面AA 1D ⊥平面AB 1C 1,所以AA 1与平面AB 1C 1所成角为∠A 1AD ,因为AA 1=3,A 1D =3,所以tan ∠A 1AD =A 1D AA 1=33,所以∠A 1AD =π6,所以CC 1与平面AB 1C 1所成角为π6.5.正方形ABCD 的边长为2,点E 为BC 边的中点,F 为CD 边上一点,若AF →·AE →=|AE →|2,则|AF →|=( D )A .3B .5 C.32D.52解析:以A 为坐标原点,AB 所在直线为x 轴,AD 所在直线为y 轴建立坐标系,如图所示,因为E 为BC 边的中点,所以E (2,1),因为F 为CD 边上一点,所以可设F (t,2)(0≤t ≤2),所以AF →=(t,2),AE →=(2,1),由AF →·AE →=|AE →|2可得:2t +2=22+1=5,所以t =32,所以AF →=⎝ ⎛⎭⎪⎫32,2, 所以|AF →|=322+22=52.6.已知点O 是△ABC 内部一点,并且满足OA →+2OB →+3OC →=0,△BOC 的面积为S 1,△ABC 的面积为S 2,则S 1S 2=( A )A.16B.13C.23D.34 解析:因为OA →+2OB →+3OC →=0,所以OA →+OC →=-2(OB →+OC →),如图,分别取AC ,BC 的中点D ,E ,则 OA →+OC →=2OD →,OB →+OC →=2OE →, 所以OD →=-2OE →,即O ,D ,E 三点共线且|OD →|=2|OE →|, 则S △OBC =13S △DBC ,由于D 为AC 中点,所以S △DBC =12S △ABC ,所以S △OBC =16S △ABC ,即S 1S 2=16.7.为向国际化大都市目标迈进,某市今年新建三大类重点工程,它们分别是30项基础设施类工程,20项民生类工程和10项产业建设类工程.现有3名民工相互独立地从这60个项目中任选一个项目参与建设,则这3名民工选择的项目所属类别互异的概率是( D )A.12B.13C.14D.16解析:记第i 名民工选择的项目属于基础设施类、民生类、产业建设类分别为事件A i ,B i ,C i ,i =1,2,3.由题意,事件A i ,B i ,C i (i =1,2,3)相互独立,则P (A i )=3060=12,P (B i )=2060=13,P (C i )=1060=16,i =1,2,3,故这3名民工选择的项目所属类别互异的概率是P =6P (A i B i C i )=6×12×13×16=16.8.如图,△ABC 是边长为23的正三角形,P 是以C 为圆心,半径为1的圆上任意一点,则AP →·BP →的取值X 围是( A )A .[1,13]B .(1,13)C .(4,10)D .[4,10]解析:取AB 的中点D ,连接CD ,CP ,则CA →+CB →=2CD →,所以AP →·BP →=(CP →-CA →)·(CP →-CB →)=CA →·CB →-2CD →·CP →+1=(23)2cos π3-2×3×1×cos〈CD →,CP →〉+1=7-6cos 〈CD →,CP →〉,所以当cos 〈CD →,CP →〉=1时,AB →·BP →取得最小值为1;当cos 〈CD →,CP →〉=-1时,AP →·BP→取得最大值为13,因此AP →·BP →的取值X 围是[1,13].二、多项选择题每小题5分,共20分9.为了反映各行业对仓储物流业务需求变化的情况,以及重要商品库存变化的动向,中国物流与采购联合会和中储发展股份某某通过联合调查,制定了中国仓储指数.由2017年1月至2018年7月的调查数据得出的中国仓储指数,绘制出如下的折线图.根据该折线图,下列结论错误的是( ABC ) A .2017年各月的仓储指数最大值是在3月份 B .2018年1月至7月的仓储指数的中位数约为55 C .2018年1月与4月的仓储指数的平均数约为52D .2017年1月至4月的仓储指数相对于2018年1月至4月,波动性更大解析:2017年各月的仓储指数最大值是在11月份,所以A 错误;由题图知,2018年1月至7月的仓储指数的中位数约为52,所以B 错误;2018年1月与4月的仓储指数的平均数约为51+552=53,所以C 错误;由题图可知,2017年1月至4月的仓储指数比2018年1月至4月的仓储指数波动更大.所以D 正确.10.已知数据x 1,x 2,x 3,…,x n 是A 市n (n ≥3,n ∈N *)个普通职工的年收入,设这n 个数据的中位数为x ,平均数为y ,方差为z ,如果再加上世界首富的年收入x n +1,对于这(n +1)个数据,下列说法错误的是( ACD )A .年收入平均数可能不变,中位数可能不变,方差可能不变B .年收入平均数大大增大,中位数可能不变,方差变大C .年收入平均数大大增大,中位数可能不变,方差也不变D .年收入平均数大大增大,中位数一定变大,方差可能不变解析:∵数据x 1,x 2,x 3,…,x n 是A 市n (n ≥3,n ∈N *)个普通职工的年收入,而x n +1为世界首富的年收入,则x n +1会远大于x 1,x 2,x 3,…,x n ,∴对于这(n +1)个数据,年收入平均数大大增大,但中位数可能不变,也可能稍微变大,但由于数据的集中程度受到x n +1比较大的影响,数据更加离散,则方差变大.故A 、C 、D 说法错误,符合题意.11.已知向量a ,e 满足a ≠e ,|e |=1,且对任意t ∈R ,恒有|a -t e |≥|a -e |成立,则( BC )A .a ⊥eB .a·e =1C .e ⊥(a -e )D .(a +e )⊥(a -e )解析:由条件可知|a -t e |2≥|a -e |2对t ∈R 恒成立,又∵|e |=1,∴t 2-2t a ·e +2a ·e -1≥0对t ∈R 恒成立,即Δ=(-2a ·e )2-8a ·e +4≤0恒成立,∴(a ·e -1)2≤0恒成立,而(a ·e -1)2≥0,∴a ·e -1=0,即a ·e =1=e 2,∴e ·(a -e )=0,即e ⊥(a -e ).12.如图,在矩形ABCD 中,AB =2AD =2,E 为AB 的中点,将△ADE 沿DE 翻折到△A 1DE 的位置,A 1∉平面ABCD ,M 为A 1C 的中点,则在翻折过程中,下列结论正确的是( ABC )A .恒有BM ∥平面A 1DEB .B 与M 两点间距离恒为定值C .三棱锥A 1DEM 的体积的最大值为212D .存在某个位置,使得平面A 1DE ⊥平面A 1CD解析:如图,取A 1D 的中点N ,连接MN ,EN ,可得四边形BMNE 是平行四边形,所以BM ∥EN ,所以BM ∥平面A 1DE ,故A 正确;(也可以延长DE ,CB 交于H ,可证明MB ∥A 1H ,从而证 BM ∥平面A 1DE ) 因为DN =12,DE =2,∠A 1DE =∠ADE =45°,根据余弦定理得EN 2=14+2-2×2×12×22,得EN =52, 因为EN =BM ,故BM =52,故B 正确; 因为M 为A 1C 的中点,所以三棱锥C A 1DE 的体积是三棱锥M A 1DE 的体积的两倍,故三棱锥C A 1DE 的体积VC A 1DE =VA 1DEC =13S △CDE ·h ,其中h 表示A 1到底面ABCD 的距离,当平面A 1DE ⊥平面ABCD 时,h 达到最大值,此时VA 1DEC 取到最大值26,所以三棱锥M A 1DE 体积的最大值为212,即三棱锥A 1DEM 体积的最大值为212,故C 正确; 考察D 选项,假设平面A 1DE ⊥平面A 1CD ,因为平面A 1DE ∩平面A 1CD =A 1D ,A 1E ⊥A 1D , 故A 1E ⊥平面A 1CD ,所以A 1E ⊥A 1C , 则在△A 1CE 中,∠EA 1C =90°,A 1E =1,EC =2,所以A 1C =1,又因为A 1D =1,CD =2,所以A 1D +A 1C =CD , 故A 1,C ,D 三点共线.所以A 1∈CD ,得A 1∈平面ABCD ,与题干条件A 1∉平面ABCD 矛盾,故D 不正确.故选ABC.第Ⅱ卷(非选择题,共90分)三、填空题每小题5分,共20分13.随着社会的发展,食品安全问题渐渐成为社会关注的热点,为了提高学生的食品安全意识,某学校组织全校学生参加食品安全知识竞赛,成绩的频率分布直方图如图所示,数据的分组依次为[20,40),[40,60),[60,80),[80,100],若该校的学生总人数为 3 000,则成绩不超过60分的学生人数大约为900.解析:由题图知,成绩不超过60分的学生的频率为(0.005+0.01)×20=0.3,所以成绩不超过60分的学生人数大约为0.3×3 000=900.14.从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是710. 解析:从3名男同学和2名女同学中任选2名同学参加志愿者服务,共有10种情况.若选出的2名学生恰有1名女生,有6种情况,若选出的2名学生都是女生,有1种情况,所以所求的概率为6+110=710.15.已知复数z 1=2+3i ,z 2=a +b i ,z 3=1-4i ,它们在复平面上所对应的点分别为A ,B ,C ,若OC →=2OA →+OB →,则a =-3,b =-10. 解析:因为OC →=2OA →+OB →, 所以1-4i =2(2+3i)+(a +b i)即⎩⎪⎨⎪⎧1=4+a ,-4=6+b ,所以⎩⎪⎨⎪⎧a =-3,b =-10.16.已知正方体ABCD A 1B 1C 1D 1的棱长为2,除平面ABCD 外,该正方体其余各面的中心分别为点E ,F ,G ,H ,M ,则四棱锥M EFGH 的体积为23.解析:因为底面EFGH 的对角线EG 与FH 互相垂直, 所以S EFGH =12×EG ×FH =12×2×2=2,又M 到底面EFGH 的距离等于棱长的一半, 即h =12×2=1,所以四棱锥M EFGH 的体积:V M EFGH =13×S EFGH ×h =13×2×1=23.四、解答题写出必要的计算步骤,只写最后结果不得分,共70分17.(10分)某市举办法律知识问答活动,随机从该市18~68岁的人群中抽取了一个容量为n 的样本,并将样本数据分成五组:[18,28),[28,38),[38,48),[48,58),[58,68],并绘制如图所示的频率分布直方图,再将其分别编号为第1组,第2组,…,第5组.该部门对回答问题的情况进行统计后,绘制了下表.组号 分组 回答正确的人数回答正确的人数占本组的比例第1组 [18,28) 5 0.5第2组 [28,38) 18 a第3组 [38,48) 270.9 第4组 [48,58) x0.36 第5组[58,68]30.2(1)分别求出a,x的值;(2)从第2,3,4组回答正确的人中用分层随机抽样的方法抽取6人,则第2,3,4组每组各应抽取多少人?(3)在(2)的前提下,在所抽取的6人中随机抽取2人颁发幸运奖,求第2组至少有1人获得幸运奖的概率.解:(1)第1组的人数为5÷0.5=10,第1组的频率为0.010×10=0.1,所以n=10÷0.1=100.第2组的频率为0.020×10=0.2,人数为100×0.2=20,所以a=18÷20=0.9.第4组的频率为0.025×10=0.25,人数为100×0.25=25,所以x=25×0.36=9.(2)第2,3,4组回答正确的人数的比为18279=231,所以第2,3,4组每组各应抽取2人、3人、1人.(3)记“第2组至少有1人获得幸运奖”为事件A,设抽取的6人中,第2组的2人为a1,a2,第3组的3人为b1,b2,b3,第4组的1人为c,则从6人中任意抽取2人所有可能的结果为(a1,a2),(a1,b1),(a1,b2),(a1,b3),(a1,c),(a2,b1),(a2,b2),(a2,b3),(a2,c),(b1,b2),(b1,b3),(b1,c),(b2,b3),(b2,c),(b3,c),共15种.其中第2组至少有1人获得幸运奖的结果为(a1,a2),(a1,b1),(a1,b2),(a1,b3),(a1,c),(a2,b1),(a2,b2),(a2,b3),(a2,c),共9种.故P(A)=915=35.所以抽取的6人中第2组至少有1人获得幸运奖的概率为35.18.(12分)某中学组织了一次数学学业水平模拟测试,学校从测试合格的男、女生中各随机抽取100人的成绩进行统计分析,分别制成了如图所示的男生和女生数学成绩的频率分布直方图.(注:分组区间为[60,70),[70,80),[80,90),[90,100])(1)若得分大于或等于80认定为优秀,则男、女生的优秀人数各为多少?(2)在(1)中所述的优秀学生中用分层随机抽样的方法抽取5人,从这5人中任意选取2人,求至少有一名男生的概率.解:(1)由题可得,男生优秀人数为100×(0.01+0.02)×10=30,女生优秀人数为100×(0.015+0.03)×10=45.(2)因为样本量与总体中的个体数的比是530+45=115,所以样本中包含的男生人数为30×115=2,女生人数为45×115=3.设抽取的5人分别为A ,B, C, D ,E ,其中A ,B 为男生,C, D ,E 为女生,从5人中任意选取2人,试验的样本空间Ω={(A ,B ),(A ,C ),(A ,D ),(A ,E ),(B ,C ),(B ,D ),(B ,E ),(C ,D ),(C ,E ),(D ,E ) },共10个样本点.事件“至少有一名男生”包含的样本点有:(A ,B ),(A ,C ),(A ,D ),(A ,E ),(B ,C ),(B ,D ),(B ,E ),共7个样本点,故至少有一名男生的概率为P =710,即选取的2人中至少有一名男生的概率为710.19.(12分)已知在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,满足sin 2A +sin 2B -sin 2C =-3sin A sin B .(1)求角C 大小;(2)若c =2,求3a +b 的取值X 围.解:(1)因为sin 2A +sin 2B -sin 2C =-3sin A sin B , 所以由正弦定理得a 2+b 2-c 2=-3ab ,所以cos C =a 2+b 2-c 22ab =-3ab 2ab =-32,因为C ∈(0,π),所以C =5π6. (2)由正弦定理得2R =csin C =4,所以3a +b =2R (3sin A +sin B ) =4[3sin A +sin(π6-A )]=4(3sin A +12cos A -32sin A )=4sin(A +π6),因为A ∈(0,π6),所以A +π6∈(π6,π3),所以sin(A +π6)∈(12,32),所以3a +b 的取值X 围是(2,23).20.(12分)如图,A ,C 两岛之间有一片暗礁,一艘小船于某日上午8时从A 岛出发,以10海里/小时的速度,沿北偏东75°方向直线航行,下午1时到达B 处.然后以同样的速度,沿北偏东15°方向直线航行,下午4时到达C 岛.(1)求A ,C 两岛之间的直线距离; (2)求∠BAC 的正弦值.解:(1)在△ABC 中,由已知,AB =10×5=50,BC =10×3=30,∠ABC =180°-75°+15°=120°.根据余弦定理,得AC 2=502+302-2×50×30cos120°=4 900,所以AC =70. 故A ,C 两岛之间的直线距离是70海里. (2)在△ABC 中,据正弦定理,得BC sin ∠BAC =ACsin ∠ABC,所以sin ∠BAC =BC sin ∠ABC AC =30sin120°70=3314, 故∠BAC 的正弦值是3314.21.(12分)如图,在四棱锥P ABCD 中,底面ABCD 为平行四边形,△PCD 为等边三角形,平面PAC ⊥平面PCD ,PA ⊥CD ,CD =2,AD =3.(1)设G ,H 分别为PB ,AC 的中点,求证:GH ∥平面PAD ; (2)求证:PA ⊥平面PCD ;(3)求直线AD 与平面PAC 所成角的正弦值. 解:(1)证明:连接BD,如图,易知AC∩BD=H,BH=DH,又BG=PG,故GH∥PD,又因为GH⊄平面PAD,PD⊂平面PAD,所以GH∥平面PAD.(2)证明:取棱PC的中点N,连接DN,如图,依题意,得DN⊥PC,又因为平面PAC⊥平面PCD,平面PAC∩平面PCD=PC,所以DN⊥平面PAC,又PA⊂平面PAC,故DN⊥PA,又因为PA⊥CD,CD∩DN=D,所以PA⊥平面PCD.(3)连接AN,如图,由(2)中DN⊥平面PAC,可知∠DAN为直线AD与平面PAC所成的角.因为△PCD为等边三角形,CD=2且N为PC的中点,所以DN=3,又DN⊥AN,在Rt△AND中,sin∠DAN=DNAD =33,所以直线AD与平面PAC所成角的正弦值为33.22.(12分)如图,在四棱锥PABCD中,△PAD为正三角形,平面PAD⊥平面ABCD,AB ∥CD,AB⊥AD,CD=2AB=2AD=4.(1)求证:平面PCD⊥平面PAD;(2)求三棱锥PABC的体积;(3)在棱PC上是否存在点E,使得BE∥平面PAD?若存在,请确定点E的位置,并证明;若不存在,请说明理由.解:(1)证明:因为AB∥CD,AB⊥AD,所以CD⊥AD.因为平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,所以CD⊥平面PAD.因为CD⊂平面PCD,所以平面PCD⊥平面PAD.(2)取AD的中点O,连接PO,如图.因为△PAD为正三角形,所以PO⊥AD.因为平面PAD ⊥平面ABCD,平面PAD∩平面ABCD=AD,PO⊂平面PAD,所以PO⊥平面ABCD,所以PO为三棱锥PABC的高.因为△PAD为正三角形,CD=2AB=2AD=4,所以PO=3,所以V三棱锥PABC=S△ABC·PO=13×12×2×2×3=233.(3)在棱PC上存在点E,当E为PC的中点时,BE∥平面PAD.证明:如图,分别取CP,CD的中点E,F,连接BE,BF,EF,所以EF∥PD.因为AB∥CD,CD=2AB,所以AB∥FD,AB=FD,所以四边形ABFD为平行四边形,所以BF∥AD. 因为BF∩EF=F,AD∩PD=D,所以平面BEF∥平面PAD.因为BE⊂平面BEF,所以BE∥平面PAD.。
2021学年高中数学第二章数列2.3.2等差数列前n项和的性质课时作业含解析新人教A版必修5

课时作业12 等差数列前n 项和的性质时间:45分钟——基础巩固类——一、选择题1.已知等差数列{a n }的前n 项和为S n ,且S 2=4,S 4=16,则a 5+a 6=( C ) A .11 B .16 C .20D .28解析:由等差数列的性质知S 2,S 4-S 2,S 6-S 4成等差数列,即4,12,a 5+a 6成等差数列,易知其公差为8,故a 5+a 6=20.2.已知等差数列{a n }中,d =2,S 3=-24,则其前n 项和S n 取最小值时n 的值为( D ) A .5 B .6 C .7D .5或6解析:由d =2,S 3=3a 1+3d =-24,得a 1=-10,令a n =-10+(n -1)×2=0,得n =6,所以a 6=0,S 5=S 6均为最小值.3.设数列{a n }是公差为-2的等差数列,如果a 1+a 4+…+a 97=50,那么a 3+a 6+a 9+…+a 99等于( D )A .-182B .-78C .-148D .-82解析:由a 1+a 4+a 7+…+a 97=50,① 令a 3+a 6+a 9+…+a 99=x ,②②-①,得2d ×33=x -50,∵d =-2, ∴x =-132+50=-82.故选D.4.在等差数列{a n }中,S n 为前n 项和,若S m =20,S 3m =210,则S 2m =( C ) A .115 B .100 C .90D .70 解析:因为{a n }为等差数列,所以S m ,S 2m -S m ,S 3m -S 2m 成等差数列,则有2(S 2m -S m )=S m +S 3m -S 2m ,即3S 2m =S 3m +3S m =210+60=270.所以S 2m =90.5.设S n 是等差数列{a n }的前n 项和,若a 5a 3=59,则S 9S 5=( A )A .1B .-1C .2D.12解析:S 9S 5=9(a 1+a 9)25(a 1+a 5)2=9×2a 55×2a 3=95×59=1.6.设等差数列{a n }的前n 项和为S n ,若S 12>0,S 13<0,则S n 中最大的是( C ) A .S 12 B .S 13 C .S 6D .S 7解析:∵在等差数列{a n }中, S 12=12(a 1+a 12)2=12(a 6+a 7)2>0,∴a 6+a 7>0. 又S 13=13(a 1+a 13)2=13·2a 72<0,∴a 7<0.∴a 6>0,a 7<0. ∴前6项和S 6最大. 二、填空题7.已知等差数列{a n }前9项的和等于前4项的和.若a 1=1,a k +a 4=0,则k =10. 解析:∵S 9=S 4,∴a 5+a 6+a 7+a 8+a 9=0. ∴a 7=0,从而a 4+a 10=2a 7=0.∴k =10.8.已知数列{a n }的前n 项和S n =n 2-2n ,则a 2+a 3-a 4+a 5+a 6=15.解析:易知数列{a n }为等差数列,则a 2+a 3-a 4+a 5+a 6=3a 4,由S n =n 2-2n 知a 4=S 4-S 3=42-2×4-32+2×3=5,所以a 2+a 3-a 4+a 5+a 6=15.9.已知项数为奇数的等差数列,奇数项之和为44,偶数项之和为33,则这个数列的中间项是11,项数是7.解析:设该等差数列的项数为2n +1, 由题意得⎩⎪⎨⎪⎧S 奇+S 偶=S 2n +1=77,S奇-S 偶=a n +1=11,S2n +1=(2n +1)a n +1,解得⎩⎪⎨⎪⎧a n +1=11,2n +1=7.故该数列的中间项为a n +1=a 4=11,项数为7. 三、解答题10.已知数列{a n }为等差数列,S n 为其前n 项和,若S 7=7,S 15=75,求数列{S nn }的前n 项和T n .解:设等差数列{a n }的公差为d ,则S n =na 1+12n (n -1)d .由S 7=7,S 15=75,得⎩⎪⎨⎪⎧ 7a 1+21d =7,15a 1+105d =75,即⎩⎪⎨⎪⎧a 1+3d =1,a 1+7d =5, 解得⎩⎪⎨⎪⎧a 1=-2,d =1,∴S n n =a 1+12(n -1)d =-2+12(n -1). ∵S n +1n +1-S n n=(-2+12n )-[-2+12(n -1)]=12,∴数列{S n n }是首项为-2,公差为12的等差数列.故T n =-2n +12n (n -1)×12=14n 2-94n .11.在等差数列{a n }中,已知a 1=20,前n 项和为S n ,且S 10=S 15,求当n 取何值时,S n 有最大值,并求出它的最大值.解:设等差数列{a n }的公差为d , ∵a 1=20,S 10=S 15,∴10a 1+10×92d =15a 1+15×142d .解得d =-53.(方法一)由以上得a n =20-53(n -1)=-53n +653.由a n ≥0得-53n +653≥0,∴n ≤13.∴数列{a n }的前12项或前13项的和最大,其最大值为S 12=S 13=12a 1+12×112d =130.(方法二)由以上得S n =20n +n (n -1)2×⎝⎛⎭⎫-53 =-56n 2+56n +20n =-56n 2+1256n=-56(n 2-25n )=-56⎝⎛⎭⎫n -2522+3 12524. 故当n =12或n =13时,S n 最大,最大值为S 12=S 13=130.——能力提升类——12.等差数列{a n }的公差d <0,且a 21=a 213,则数列{a n }的前n 项和S n 取最大值时的项数n 是( D )A .5B .6C .5或6D .6或7解析:因为d <0,所以数列{a n }为递减数列,又a 21=a 213,所以a 1=-a 13,且a 1>0,a 13<0,即a 1+a 13=2a 7=0,所以数列{a n }的前n 项和S n 取最大值时的项数n 是6或7.13.{a n }为等差数列,公差为d ,S n 为其前n 项和,S 6>S 7>S 5,则下列结论中不正确的是( C )A .d <0B .S 11>0C .S 12<0D .S 13<0解析:S 6>S 7>S 5,则d <0,a 6>0且a 7<0, 所以S 11=11(a 1+a 11)2=11×2a 62>0,S 13=13(a 1+a 13)2=13×2a 72<0, 而S 12=12(a 1+a 12)2=6(a 6+a 7)无法判断大于0或小于0.14.设等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若对任意自然数n 都有S n T n =2n -34n -3,则a 9b 5+b 7+a 3b 8+b 4=1941. 解析:由等差数列的性质得a 9b 5+b 7+a 3b 8+b 4=a 92b 6+a 32b 6=2a 62b 6=a 6b 6,又S 11=11a 6,T 11=11b 6,所以a 6b 6=11a 611b 6=S 11T 11=2×11-34×11-3=1941.所以a 9b 5+b 7+a 3b 8+b 4=1941.15.若数列{a n }的前n 项和为S n ,点(n ,S n )均在函数y =32x 2-12x 的图象上.(1)求数列{a n }的通项公式;(2)设b n =3a n a n +1,T n 是数列{b n }的前n 项和,求使得T n <m20对所有n ∈N *都成立的最小正整数m .解:(1)由题意知S n =32n 2-12n .当n ≥2时,a n =S n -S n -1=3n -2; 当n =1时,a 1=1,适合上式. ∴a n =3n -2.(2)由(1)得b n=3a n a n+1=3(3n-2)(3n+1)=13n-2-13n+1,∴T n=b1+b2+…+b n=1-14+14-17+…+13n-2-13n+1=1-13n+1<1,则要使T n<m20对所有n∈N*都成立,只需m20≥1,∴m≥20,∴满足条件的最小正整数m的值为20.。
2.3.2平面与平面垂直的判定(人教A版必修2第二章)2020-2021学年高二下学期数学课时作业

课时作业16 平面与平面垂直的判定1.已知a⊂α,b⊂β,c⊂β,a⊥b,a⊥c,则()A.α⊥βB.α∥βC.α与β相交D.以上都有可能2.已知二面角α-l-β的大小为60°,m,n为异面直线,且m⊥α,n⊥β,则m,n所成的角为()A.30°B.60°C.90°D.120°3.空间四边形ABCD中,若AD⊥BC,BD⊥AD,那么有()A.平面ABC⊥平面ADCB.平面ABC⊥平面ADBC.平面ABC⊥平面DBCD.平面ADC⊥平面DBC4.如图所示,在三棱锥P-ABC中,P A⊥平面ABC,∠BAC=90°,则二面角B-P A-C的大小为()A.90°B.60°C.45°D.30°5.一个二面角的两个半平面分别垂直于另一个二面角的两个半平面,则这两个二面角的关系是()A.相等B.互补C.相等或互补D.不确定6.如图所示,在三棱锥D-ABC中,若AB=CB,AD=CD,E是AC的中点,则下列结论中正确的是()A.平面ABC⊥平面ABDB.平面ABD⊥平面BDCC.平面ABC⊥平面BDE,且平面ADC⊥平面BDED.平面ABC⊥平面ADC,且平面ADC⊥平面BDE7.如图,在正四面体P-ABC(棱长均相等)中,E是BC的中点.则平面P AE与平面ABC 的位置关系是.8.如图所示,检查工件的相邻两个面是否垂直时,只要用曲尺的一边紧靠在工件的一个面上,另一边在工件的另一个面上转动,观察尺边是否和这个面密合就可以了,其原理是9.如图所示,在△ABC 中,AD ⊥BC ,△ABD 的面积是△ACD 的面积的2倍.沿AD 将△ABC 翻折,使翻折后BC ⊥平面ACD ,此时二面角B -AD -C 的大小为.10.如图,四棱锥P -ABCD 的底面是边长为a 的正方形,PB ⊥平面ABCD .(1)求证:平面P AD ⊥平面P AB ;(2)若平面PDA 与平面ABCD 成60°的二面角,求该四棱锥的体积.11.如图所示,在矩形ABCD 中,已知AB =12AD ,E 是AD 的中点,沿BE 将△ABE 折起至△A ′BE 的位置,使A ′C =A ′D ,求证:平面A ′BE ⊥平面BCDE .12.若P 是等边三角形ABC 所在平面外一点,且P A =PB =PC ,D ,E ,F 分别是AB ,BC ,CA 的中点,则下列结论中不正确的是( )A .BC ∥平面PDFB .DF ⊥平面P AEC .平面P AE ⊥平面ABCD .平面PDF ⊥平面ABC13.在二面角α-l -β中,A ∈α,AB ⊥平面β于点B ,BC ⊥平面α于点C ,若AB =6,BC=3,则二面角α-l-β的平面角的大小为()A.30°B.60°C.30°或150°D.60°或120°14.如图所示,在四棱锥P-ABCD中,P A⊥底面ABCD,且底面各边都相等,M是PC 上一动点.当点M满足)时,平面MBD⊥平面PCD.(只要填写一个你认为正确的条件即可)15.在图(1)等边三角形ABC中,AB=2,E是线段AB上的点(除点A外),过点E作EF⊥AC于点F,将△AEF沿EF折起到△PEF(点A与点P重合,如图(2)),使得∠PFC=60°.(1)求证:EF⊥PC;(2)试问,当点E在线段AB上移动时,二面角P-EB-C的大小是否为定值?若是,求出这个二面角的平面角的正切值,若不是,请说明理由.课时作业16 平面与平面垂直的判定1.已知a⊂α,b⊂β,c⊂β,a⊥b,a⊥c,则(D)A.α⊥βB.α∥βC.α与β相交D.以上都有可能解析:因为b⊂β,c⊂β,a⊥b,a⊥c,若b,c相交,则a⊥β,从而α⊥β.又α∥β或α与β相交时,可以存在a⊥b,a⊥c,所以选D.2.已知二面角α-l-β的大小为60°,m,n为异面直线,且m⊥α,n⊥β,则m,n所成的角为(B)A.30°B.60°C.90°D.120°解析:m,n所成的角等于二面角α-l-β的平面角.3.空间四边形ABCD中,若AD⊥BC,BD⊥AD,那么有(D)A .平面ABC ⊥平面ADCB .平面ABC ⊥平面ADB C .平面ABC ⊥平面DBCD .平面ADC ⊥平面DBC解析:⎭⎪⎬⎪⎫AD ⊥BCAD ⊥BD BC ∩BD =B ⇒⎭⎪⎬⎪⎫AD ⊥平面DBC AD ⊂平面ADC ⇒平面ADC ⊥平面DBC .4.如图所示,在三棱锥P -ABC 中,P A ⊥平面ABC ,∠BAC =90°,则二面角B -P A -C 的大小为( A)A .90°B .60°C .45°D .30°解析:∵P A ⊥平面ABC ,∴P A ⊥AB ,P A ⊥AC ,∴∠BAC 即为二面角B -P A -C 的平面角.又∠BAC =90°,所以二面角B -P A -C 的平面角为90°.5.一个二面角的两个半平面分别垂直于另一个二面角的两个半平面,则这两个二面角的关系是( D )A .相等B .互补C .相等或互补D .不确定解析:举例如下:开门的过程中,门所在平面及门轴所在墙面分别垂直于地面与另一墙面,但门所在平面与门轴所在墙面所成二面角的大小不定,而另一二面角却是90°,所以这两个二面角不一定相等或互补.6.如图所示,在三棱锥D -ABC 中,若AB =CB ,AD =CD ,E 是AC 的中点,则下列结论中正确的是( C)A .平面ABC ⊥平面ABDB .平面ABD ⊥平面BDCC .平面ABC ⊥平面BDE ,且平面ADC ⊥平面BDED .平面ABC ⊥平面ADC ,且平面ADC ⊥平面BDE解析:因为AB =CB ,且E 是AC 的中点,所以BE ⊥AC .同理有DE ⊥AC ,BE ∩DE =E ,所以AC ⊥平面BDE .因为AC ⊂平面ABC ,所以平面ABC ⊥平面BDE .又因为AC ⊂平面ACD ,所以平面ACD ⊥平面BDE .故选C.7.如图,在正四面体P-ABC(棱长均相等)中,E是BC的中点.则平面P AE与平面ABC 的位置关系是垂直.解析:因为PB=PC,E是BC的中点,所以PE⊥BC,同理AE⊥BC,又AE∩PE=E,所以BC⊥平面P AE.又BC⊂平面ABC,所以平面P AE⊥平面ABC.8.如图所示,检查工件的相邻两个面是否垂直时,只要用曲尺的一边紧靠在工件的一个面上,另一边在工件的另一个面上转动,观察尺边是否和这个面密合就可以了,其原理是面面垂直的判定定理.解析:如图,因为OA⊥OB,OA⊥OC,OB⊂β,OC⊂β,且OB∩OC=O,根据线面垂直的判定定理,可得OA⊥β.又OA⊂α,根据面面垂直的判定定理,可得α⊥β.9.如图所示,在△ABC中,AD⊥BC,△ABD的面积是△ACD的面积的2倍.沿AD 将△ABC翻折,使翻折后BC⊥平面ACD,此时二面角B-AD-C的大小为60°.解析:由已知得,BD=2CD.翻折后,在Rt△BCD中,∠BDC=60°,而AD⊥BD,CD ⊥AD,故∠BDC是二面角B-AD-C的平面角,其大小为60°.10.如图,四棱锥P-ABCD的底面是边长为a的正方形,PB⊥平面ABCD.(1)求证:平面P AD ⊥平面P AB ;(2)若平面PDA 与平面ABCD 成60°的二面角,求该四棱锥的体积. 解:(1)证明:∵PB ⊥平面ABCD ,AD ⊂平面ABCD ,∴PB ⊥AD . ∵AD ⊥AB ,且AB ∩PB =B ,∴AD ⊥平面P AB .又∵AD ⊂平面P AD , ∴平面P AD ⊥平面P AB .(2)由(1)的证明知,∠P AB 为平面PDA 与平面ABCD 所成的二面角的平面角,即∠P AB =60°,∴PB =3a .∴V P -ABCD =13·a 2·3a =3a 33. 11.如图所示,在矩形ABCD 中,已知AB =12AD ,E 是AD 的中点,沿BE 将△ABE 折起至△A ′BE 的位置,使A ′C =A ′D ,求证:平面A ′BE ⊥平面BCDE .证明:如图所示,取CD 的中点M ,BE 的中点N ,连接A ′M ,A ′N ,MN ,则MN ∥BC .∵AB =12AD ,E 是AD 的中点,∴AB =AE ,即A ′B =A ′E .∴A ′N ⊥BE .∵A ′C =A ′D ,∴A ′M ⊥CD . 在四边形BCDE 中,CD ⊥MN ,又MN ∩A ′M =M ,∴CD ⊥平面A ′MN .∴CD ⊥A ′N . ∵DE ∥BC 且DE =12BC ,∴BE 必与CD 相交.又A ′N ⊥BE ,A ′N ⊥CD ,∴A ′N ⊥平面BCDE . 又A ′N ⊂平面A ′BE ,∴平面A ′BE ⊥平面BCDE .12.若P是等边三角形ABC所在平面外一点,且P A=PB=PC,D,E,F分别是AB,BC,CA的中点,则下列结论中不正确的是(D)A.BC∥平面PDF B.DF⊥平面P AEC.平面P AE⊥平面ABC D.平面PDF⊥平面ABC解析:∵P是等边三角形ABC所在平面外一点,且P A=PB=PC,D,E,F分别是AB,BC,CA的中点,∴DF∥BC,又∵DF⊂平面PDF,BC⊄平面PDF,∴BC∥平面PDF,故A正确.∵P A=PB=PC,△ABC为等边三角形,E是BC中点,∴PE⊥BC,AE⊥BC.∵PE∩AE =E,∴BC⊥平面P AE.∵DF∥BC,∴DF⊥平面P AE,故B正确.∵BC⊥平面P AE,BC⊂平面ABC,∴平面P AE⊥平面ABC,故C正确.设AE∩DF=O,连接PO.∵O不是等边三角形ABC的重心,∴PO与平面ABC不垂直,∴平面PDF与平面ABC不垂直,故D错误.13.在二面角α-l-β中,A∈α,AB⊥平面β于点B,BC⊥平面α于点C,若AB=6,BC =3,则二面角α-l-β的平面角的大小为(D)A.30°B.60°C.30°或150°D.60°或120°解析:∵AB⊥β,∴AB⊥l.∵BC⊥α,∴BC⊥l,∴l⊥平面ABC,设平面ABC∩l=D,则∠ADB即为二面角α-l-β的平面角或其补角.∵AB=6,BC=3,∴∠BAC=30°,∴∠ADB =60°,∴二面角大小为60°或120°.14.如图所示,在四棱锥P-ABCD中,P A⊥底面ABCD,且底面各边都相等,M是PC 上一动点.当点M满足DM⊥PC(或BM⊥PC等)时,平面MBD⊥平面PCD.(只要填写一个你认为正确的条件即可)解析:连接AC,则BD⊥AC.由P A⊥底面ABCD,可知BD⊥P A,所以BD⊥平面P AC,所以BD⊥PC,所以当DM⊥PC(或BM⊥PC)时,即有PC⊥平面MBD.而PC⊂平面PCD,所以平面MBD⊥平面PCD.15.在图(1)等边三角形ABC中,AB=2,E是线段AB上的点(除点A外),过点E作EF⊥AC于点F,将△AEF沿EF折起到△PEF(点A与点P重合,如图(2)),使得∠PFC=60°.(1)求证:EF ⊥PC ;(2)试问,当点E 在线段AB 上移动时,二面角P -EB -C 的大小是否为定值?若是,求出这个二面角的平面角的正切值,若不是,请说明理由.解:(1)证明:因为EF ⊥PF ,EF ⊥FC ,又由PF ∩FC =F ,所以EF ⊥平面PFC . 又因为PC ⊂平面PFC ,所以EF ⊥PC .(2)是定值.由(1)知,EF ⊥平面PFC ,所以平面BCFE ⊥平面PFC ,如图,作PH ⊥FC ,则PH ⊥平面BCFE ,作HG ⊥BE ,连接PG ,则BE ⊥PG ,所以∠PGH 是这个二面角的平面角,设AF =x ,则0<x ≤1,因为∠PFC =60°,所以FH =x 2,PH =32x ,易求GH =334x ,所以tan ∠PGH =PH GH =23,所以二面角P -EB -C 的大小是定值.。
高中数学3.2直线的方程3.2.2直线的两点式方程课时作业新人教A版必修2

第三章 3.2 3.2.2直线的两点式方程一、选择题1.直线x 2-y5=1在x 轴、y 轴上的截距分别为( B )A .2,5B .2,-5C .-2,-5D .-2,5[解析] 将x 2-y 5=1化成直线截距式的标准形式为x 2+y -5=1,故直线x 2-y5=1在x 轴、y 轴上的截距分别为2、-5.2.已知点M (1,-2)、N (m,2),若线段MN 的垂直平分线的方程是x2+y =1,则实数m的值是( C )A .-2B .-7C .3D .1[解析] 由中点坐标公式,得线段MN 的中点是(1+m 2,0).又点(1+m2,0)在线段MN的垂直平分线上,所以1+m4+0=1,所以m =3,选C .3.如右图所示,直线l 的截距式方程是x a +yb=1,则有( B )A .a >0,b >0B .a >0,b <0C .a <0,b >0D .a <0,b <0[解析] 很明显M (a,0)、N (0,b ),由图知M 在x 轴正半轴上,N 在y 轴负半轴上,则a >0,b <0.4.已知△ABC 三顶点A (1,2)、B (3,6)、C (5,2),M 为AB 中点,N 为AC 中点,则中位线MN 所在直线方程为( A )A .2x +y -8=0B .2x -y +8=0C .2x +y -12=0D .2x -y -12=0[解析] 点M 的坐标为(2,4),点N 的坐标为(3,2),由两点式方程得y -24-2=x -32-3,即2x+y -8=0.5.如果直线l 过(-1,-1)、(2,5)两点,点(1 008,b )在直线l 上,那么b 的值为( D ) A .2 014B .2 015C .2 016D .2 017[解析] 根据三点共线,得5--2--=b -51 008-2,得b =2 017. 6.两直线x m -y n =1与x n -ym=1的图象可能是图中的哪一个( B )[解析] 直线x m -yn=1化为y =n m x -n ,直线x n -y m=1化为y =mnx -m ,故两直线的斜率同号,故选B .7.已知A 、B 两点分别在两条互相垂直的直线y =2x 和x +ay =0上,且线段AB 的中点为P (0,10a ),则直线AB 的方程为( C )A .y =-34x +5B .y =34x -5C .y =34x +5D .y =-34x -5[解析] 依题意,a =2,P (0,5).设A (x 0,2x 0)、B (-2y 0,y 0),则由中点坐标公式,得⎩⎪⎨⎪⎧x0-2y0=02x0+y0=10,解得⎩⎪⎨⎪⎧x0=4y0=2,所以A (4,8)、B (-4,2).由直线的两点式方程,得直线AB 的方程是y -82-8=x -4-4-4,即y =34x +5,选C .8.过P (4,-3)且在坐标轴上截距相等的直线有( B )A .1条B .2条C .3条D .4条[解析] 解法一:设直线方程为y +3=k (x -4)(k ≠0).令y =0得x =3+4kk,令x =0得y =-4k -3.由题意,3+4k k =-4k -3,解得k =-34或k =-1.因而所求直线有两条,∴应选B .解法二:当直线过原点时显然符合条件,当直线不过原点时,设直线在坐标轴上截距为(a,0),(0,a ),a ≠0,则直线方程为x a +ya=1,把点P (4,-3)的坐标代入方程得a =1.∴所求直线有两条,∴应选B .。
高中数学(人教版A版必修二)配套课时作业第2章2.3.2

2.3.2平面与平面垂直的判定一、基础过关1.过两点与一个已知平面垂直的平面() A.有且只有一个B.有无数个C.一个或无数个D.可能不存在2.不能肯定两个平面一定垂直的情况是() A.两个平面相交,所成二面角是直二面角B.一个平面经过另一个平面的一条垂线C.一个平面垂直于另一个平面内的一条直线D.平面α内的直线a与平面β内的直线b是垂直的3.设有直线m、n和平面α、β,则下列结论中正确的是()①若m∥n,n⊥β,m⊂α,则α⊥β;②若m⊥n,α∩β=m,n⊂α,则α⊥β;③若m⊥α,n⊥β,m⊥n,则α⊥β.A.①②B.①③C.②③D.①②③4.设l是直线,α,β是两个不同的平面,下列结论中正确的是() A.若l∥α,l∥β,则α∥βB.若l∥α,l⊥β,则α⊥βC.若α⊥β,l⊥α,则l⊥βD.若α⊥β,l∥α,则l⊥β5.过正方形ABCD的顶点A作线段AP⊥平面ABCD,且AP=AB,则平面ABP与平面CDP 所成的二面角的度数是________.6.如图所示,已知P A⊥矩形ABCD所在的平面,图中互相垂直的平面有________对.7.在如图所示的几何体中,四边形ABCD是正方形,MA⊥平面ABCD,PD∥MA,E、G、F分别为MB、PB、PC的中点,且AD=PD=2MA.求证:平面EFG⊥平面PDC.8. 如图所示,四棱锥P—ABCD的底面ABCD是边长为1的菱形,∠BCD=60°,E是CD的中点,P A⊥底面ABCD,P A= 3.(1)证明:平面PBE⊥平面P AB;(2)求二面角A —BE —P 的大小. 二、能力提升9.在边长为1的菱形ABCD 中,∠ABC =60°,把菱形沿对角线AC 折起,使折起后BD =32,则二面角B -AC -D 的余弦值为( )A.13B.12C.223D.32 10.在正四面体P -ABC 中,D 、E 、F 分别是AB 、BC 、CA 的中点,下面四个结论中不成立的是( )A .BC ∥面PDFB .DF ⊥面P AEC .面PDF ⊥面ABCD .面P AE ⊥面ABC11.如图,在直三棱柱ABC —A 1B 1C 1中,E 、F 分别是A 1B 、A 1C 的中点,点D 在B 1C 1上,A 1D ⊥B 1C . 求证:(1)EF ∥平面ABC ; (2)平面A 1FD ⊥平面BB 1C 1C .12.如图,在三棱锥P —ABC 中,P A ⊥底面ABC ,P A =AB ,∠ABC =60°,∠BCA =90°,点D 、E 分别在棱PB 、PC 上,且DE ∥BC .(1)求证:BC ⊥平面P AC .(2)是否存在点E 使得二面角A —DE —P 为直二面角?并说明理由. 三、探究与拓展13.如图所示,三棱锥P —ABC 中,D 是AC 的中点,P A =PB =PC =5,AC =22,AB =2,BC = 6.(1)求证:PD ⊥平面ABC ; (2)求二面角P —AB —C 的正切值.答案1.C 2.D 3.B 4.B 5.45° 6.57.证明 因为MA ⊥平面ABCD ,PD ∥MA ,所以PD ⊥平面ABCD . 又BC ⊂平面ABCD ,所以PD ⊥BC . 因为四边形ABCD 为正方形, 所以BC ⊥DC .又PD ∩DC =D ,所以BC ⊥平面PDC .在△PBC 中,因为G 、F 分别为PB 、PC 的中点, 所以GF ∥BC ,所以GF ⊥平面PDC . 又GF ⊂平面EFG , 所以平面EFG ⊥平面PDC .8.(1)证明 如图所示,连接BD ,由ABCD 是菱形且∠BCD =60°知, △BCD 是等边三角形.因为E 是CD 的中点,所以BE ⊥CD . 又AB ∥CD ,所以BE ⊥AB . 又因为P A ⊥平面ABCD , BE ⊂平面ABCD ,所以P A ⊥BE .而P A ∩AB =A , 因此BE ⊥平面P AB . 又BE ⊂平面PBE , 所以平面PBE ⊥平面P AB .(2)解 由(1)知,BE ⊥平面P AB ,PB ⊂平面P AB ,所以PB ⊥BE .又AB ⊥BE ,所以∠PBA 是二面角A —BE —P 的平面角.在Rt △P AB 中,tan ∠PBA =P AAB =3,则∠PBA =60°.故二面角A —BE —P 的大小是60°. 9.B 10.C11.证明 (1)由E 、F 分别是A 1B 、A 1C 的中点知EF ∥BC .因为EF ⊄平面ABC ,BC ⊂平面ABC . 所以EF ∥平面ABC .(2)由三棱柱ABC —A 1B 1C 1为直三棱柱知CC 1⊥平面A 1B 1C 1.又A 1D ⊂平面A 1B 1C 1,故CC 1⊥A 1D .又因为A 1D ⊥B 1C ,CC 1∩B 1C =C ,故A 1D ⊥平面BB 1C 1C ,又A 1D ⊂平面A 1FD ,所以平面A 1FD ⊥平面BB 1C 1C .12.(1)证明 ∵P A ⊥底面ABC ,∴P A ⊥BC .又∠BCA =90°,∴AC ⊥BC .又∵AC ∩P A =A ,∴BC ⊥平面P AC .(2)解 ∵DE ∥BC ,又由(1)知,BC ⊥平面P AC ,∴DE ⊥平面P AC . 又∵AE ⊂平面P AC ,PE ⊂平面P AC ,∴DE ⊥AE ,DE ⊥PE .∴∠AEP 为二面角A —DE —P 的平面角. ∵P A ⊥底面ABC ,∴P A ⊥AC , ∴∠P AC =90°.∴在棱PC 上存在一点E , 使得AE ⊥PC .这时∠AEP =90°,故存在点E ,使得二面角A —DE —P 为直二面角. 13.(1)证明 连接BD ,∵D 是AC 的中点,P A =PC =5, ∴PD ⊥AC .∵AC =22,AB =2,BC =6, ∴AB 2+BC 2=AC 2.∴∠ABC =90°,即AB ⊥BC .∴BD =12AC =2=AD .∵PD 2=P A 2-AD 2=3,PB =5, ∴PD 2+BD 2=PB 2.∴PD ⊥BD . ∵AC ∩BD =D ,∴PD ⊥平面ABC .(2)解 取AB 的中点E ,连接DE 、PE ,由E 为AB 的中点知DE ∥BC , ∵AB ⊥BC ,∴AB ⊥DE . ∵PD ⊥平面ABC ,∴PD ⊥AB .又AB ⊥DE ,DE ∩PD =D ,∴AB ⊥平面PDE ,∴PE ⊥AB . ∴∠PED 是二面角P —AB —C 的平面角.在△PED 中,DE =12BC =62,PD =3,∠PDE =90°,∴tan ∠PED =PDDE = 2.∴二面角P —AB —C 的正切值为 2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新人教版数学精品教学资料
2.3.2 平面与平面垂直的判定
【课时目标】 1.掌握二面角的概念,二面角的平面角的概念,会求简单的二面角的大小.2.掌握两个平面互相垂直的概念,并能利用判定定理判定两个平面垂直.
1.二面角:从一条直线出发的________________所组成的图形叫做二面
角.________________叫做二面角的棱.________________________叫做二面角的面.
2.二面角的平面角
如图:在二面角α-l -β的棱l 上任取一点O ,以点O 为________,在半平面α和β内分
别作垂直于棱l 的射线OA 和OB ,则射线OA 和OB 构成的________叫做二面角的平面角.
3.平面与平面的垂直
(1)定义:如果两个平面相交,且它们所成的二面角是________________,就说这两个平面互相垂直.
(2)面面垂直的判定定理
文字语言:一个平面过另一个平面的________,则这两个平面垂直.符号表示:
⎭
⎪⎬⎪⎫a ⊥β ⇒α⊥β.
一、选择题
1.下列命题:
①两个相交平面组成的图形叫做二面角;
②异面直线a 、b 分别和一个二面角的两个面垂直,则a 、b 组成的角与这个二面角的平面角相等或互补;
③二面角的平面角是从棱上一点出发,分别在两个面内作射线所成角的最小角; ④二面角的大小与其平面角的顶点在棱上的位置没有关系.
其中正确的是( )
A .①③
B .②④
C .③④
D .①②
2.下列命题中正确的是( )
A .平面α和β分别过两条互相垂直的直线,则α⊥β
B .若平面α内的一条直线垂直于平面β内两条平行线,则α⊥β
C .若平面α内的一条直线垂直于平面β内两条相交直线,则α⊥β
D .若平面α内的一条直线垂直于平面β内无数条直线,则α⊥β
3.设有直线M 、n 和平面α、β,则下列结论中正确的是( )
①若M ∥n ,n ⊥β,M ⊂α,则α⊥β;
②若M ⊥n ,α∩β=M ,n ⊂α,则α⊥β;
③若M ⊥α,n ⊥β,M ⊥n ,则α⊥β.
A .①②
B .①③
C .②③
D .①②③
4.过两点与一个已知平面垂直的平面( )
A .有且只有一个
B .有无数个
C .有且只有一个或无数个
D .可能不存在
5.在边长为1的菱形ABCD中,∠ABC=60°,把菱形沿对角线AC折起,使折起后BD
=
3
2,则二面角B-AC-D的余弦值为()
A.
1
3B.
1
2C.
22
3D.
3
2
6.在正四面体P-ABC中,D、E、F分别是AB、BC、CA的中点,下面四个结论中不成
立的是()
A.BC∥面PDF B.DF⊥面P AE
C.面PDF⊥面ABC D.面P AE⊥面ABC
二、填空题
7.过正方形ABCD的顶点A作线段AP⊥平面ABCD,且AP=AB,则平面ABP与平面CDP所成的二面角的度数是________.
8.如图所示,已知P A⊥矩形ABCD所在的平面,图中互相垂直的平面有________对.
9.已知α、β是两个不同的平面,M、n是平面α及β之外的两条不同直线,给出四个论断:
①M⊥n;②α⊥β;③n⊥β;④M⊥α.
以其中三个论断作为条件,余下一个论断作为结论,写出你认为正确的一个命题:________________.
三、解答题
10.如图所示,在空间四边形ABCD中,AB=BC,CD=DA,E、F、G分别为CD、DA 和对角线AC的中点.
求证:平面BEF⊥平面BGD.
11.如图所示,四棱锥P—ABCD的底面ABCD是边长为1的菱形,∠BCD=60°,E是CD的中点,P A⊥底面ABCD,P A=3.
(1)证明:平面PBE⊥平面P AB;
(2)求二面角A—BE—P的大小.
能力提升
12.如图,在直三棱柱ABC—A1B1C1中,E、F分别是A1B、A1C的中点,点D在B1C1上,A1D⊥B1C.
求证:(1)EF∥平面ABC;
(2)平面A1FD⊥平面BB1C1C.
13.如图,在三棱锥P—ABC中,P A⊥底面ABC,P A=AB,∠ABC=60°,∠BCA=90°,点D、E分别在棱PB、PC上,且DE∥BC.
(1)求证:BC⊥平面P AC.
(2)是否存在点E使得二面角A—DE—P为直二面角?并说明理由.
1.证明两个平面垂直的主要途径
(1)利用面面垂直的定义,即如果两个相交平面的交线与第三个平面垂直,又这两个平面与第三个平面相交所得的两条交线互相垂直,就称这两个平面互相垂直.
(2)面面垂直的判定定理,即如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.
2.利用面面垂直的判定定理证明面面垂直时的一般方法:先从现有的直线中寻找平面的垂线,若图中存在这样的直线,则可通过线面垂直来证明面面垂直;若图中不存在这样的直线,则可通过作辅助线来解决,而作辅助线则应有理论依据并有利于证明,不能随意添加.3.证明两个平面垂直,通常是通过证明线线垂直→线面垂直→面面垂直来实现的,因此,在关于垂直问题的论证中要注意线线垂直、线面垂直、面面垂直的相互转化.每一垂直的判
定都是从某一垂直开始转向另一垂直,最终达到目的的.
2.3.2 平面与平面垂直的判定 答案
知识梳理
1.两个半平面 这条直线 这两个半平面
2.垂足 ∠AOB
3.(1)直二面角 (2)垂线 a ⊂α
作业设计
1.B [①不符合二面角定义,③从运动的角度演示可知,二面角的平面角不是最小角.故选B .]
2.C
3.B [②错,当两平面不垂直时,在一个平面内可以找到无数条直线与两个平面的交线垂直.]
4.C [当两点连线与平面垂直时,有无数个平面与已知平面垂直,当两点连线与平面不垂直时,有且只有一个平面与已知平面垂直.]
5.B [
如图所示,由二面角的定义知∠BOD 即为二面角的平面角.
∵DO =OB =BD =32
, ∴∠BOD =60°.]
6.C [
如图所示,∵BC ∥DF ,
∴BC ∥平面PDF .
∴A 正确.
由BC ⊥PE ,BC ⊥AE ,
∴BC ⊥平面PAE .
∴DF ⊥平面PAE .
∴B 正确.
∴平面ABC ⊥平面PAE(BC ⊥平面PAE).
∴D 正确.]
7.45°
解析 可将图形补成以AB 、AP 为棱的正方体,不难求出二面角的大小为45°.
8.5
解析 由PA ⊥面ABCD 知面PAD ⊥面ABCD ,面PAB ⊥面ABCD ,
又PA ⊥AD ,PA ⊥AB 且AD ⊥AB ,
∴∠DAB 为二面角D —PA —B 的平面角,
∴面DPA ⊥面PAB .又BC ⊥面PAB ,
∴面PBC ⊥面PAB ,同理DC ⊥面PDA ,
∴面PDC ⊥面PDA .
9.①③④⇒②(或②③④⇒①)
10.证明 ∵AB =BC ,CD =AD ,G 是AC 的中点,
∴BG ⊥AC ,DG ⊥AC ,
∴AC ⊥平面BGD .
又EF ∥AC ,∴EF ⊥平面BGD .
∵EF ⊂平面BEF ,∴平面BEF ⊥平面BGD .
11.(1)证明 如图所示,连接BD ,由ABCD 是菱形且∠BCD =60°知,△BCD 是等边三角形.
因为E 是CD 的中点,所以BE ⊥CD .
又AB ∥CD ,所以BE ⊥AB .
又因为PA ⊥平面ABCD ,
BE ⊂平面ABCD ,
所以PA ⊥BE .而PA ∩AB =A ,
因此BE ⊥平面PAB .
又BE ⊂平面PBE ,
所以平面PBE ⊥平面PAB .
(2)解 由(1)知,BE ⊥平面PAB ,PB ⊂平面PAB ,
所以PB ⊥BE .又AB ⊥BE ,
所以∠PBA 是二面角A —BE —P 的平面角.
在Rt △PAB 中,tan ∠PBA =PA AB =3,则∠PBA =60°. 故二面角A —BE —P 的大小是60°.
12.证明 (1)由E 、F 分别是A 1B 、A 1C 的中点知EF ∥BC .
因为EF ⊄平面ABC .
BC ⊂平面ABC .
所以EF ∥平面ABC .
(2)由三棱柱ABC —A 1B 1C 1为直三棱柱知CC 1⊥平面A 1B 1C 1.
又A 1D ⊂平面A 1B 1C 1,故CC 1⊥A 1D .
又因为A 1D ⊥B 1C ,CC 1∩B 1C =C ,故A 1D ⊥平面BB 1C 1C ,又A 1D ⊂平面A 1FD ,所以平面A 1FD ⊥平面BB 1C 1C .
13.(1)证明 ∵PA ⊥底面ABC ,
∴PA ⊥BC .
又∠BCA =90°,
∴AC ⊥BC .
又∵AC ∩PA =A ,∴BC ⊥平面PAC .
(2)解 ∵DE ∥BC ,又由(1)知,
BC ⊥平面PAC ,
∴DE ⊥平面PAC .
又∵AE ⊂平面PAC ,PE ⊂平面PAC ,
∴DE ⊥AE ,DE ⊥PE .
∴∠AEP 为二面角A —DE —P 的平面角.
∵PA ⊥底面ABC ,
∴PA ⊥AC ,∴∠PAC =90°.
∴在棱PC 上存在一点E ,
使得AE ⊥PC .
这时∠AEP=90°,
故存在点E,使得二面角A—DE—P为直二面角.。