(整理)变压器详细计算开关电源3
开关电源高频变压器AP法计算方法

开关电源高频变压器AP法计算方法开关电源的高频变压器在设计和计算时,常采用AP法(Amplitude and Phase Method),即幅相法。
该方法可以使计算过程更简洁,且准确度较高。
以下是使用AP法计算开关电源高频变压器的方法及步骤。
1.确定设计要求:- 输入电压:Vin- 输出电压:Vout- 输出功率:Pout- 输入频率:Fin- 输出频率:Fout-漏感相对占空比:D-反馈变压器线匝比:Np/Ns2.计算输出电流:输出电流Iout = Pout / Vout3.计算输入电流:输入电流Iin = Pout / Vin4.计算变压器线圈匝数:输入线圈匝数Np = Ns * Vin / Vout5.设计漏感:选择适当的漏感系数k,一般为0.3到1之间。
漏感Lp = k * (Np)^2 / Fin6.计算变压器参考电流:变压器参考电流Ir = Iout * Vin / Vout7.计算变压器参考电压:变压器参考电压Ur = Vout * (1 - D) * (Ns / Np)8.计算变压器的磁链:变压器的磁链Br = Ur / (Fout * A)其中,A为变压器的有效截面积,可根据铁心截面积和线圈层数来计算。
9.根据设计选取合适的磁芯材料:根据计算得到的磁链值Br,选择合适的磁芯材料,常见的磁芯材料有硅钢片、氧化锌和磁性体等。
10.计算变压器的磁芯截面积:由所选磁芯材料的B-H曲线,可以得到磁芯的饱和磁感应强度Bs,通过Ur和Fout的大小关系判断是否选择合适的磁芯尺寸。
11.计算变压器的线圈电流密度:线圈电流密度Jc=Ir/Ap其中,Ap为变压器的有效截面积。
12.计算变压器的线圈匝数:输出线圈匝数Ns = Ap * Jc / (2 * Iout)13.计算输入电压的有效值:输入电压的有效值Vin_rms = Vin / sqrt(2)14.计算输入电流的有效值:输入电流的有效值Iin_rms = Iin / sqrt(2)15.计算变压器的有效值电流密度:有效值电流密度J_rms = Iin_rms / Ap16.计算输入线圈匝数:输入线圈匝数Np = Ap * J_rms / (2 * Iin_rms)17.验证设计结果:使用计算得到的变压器参数进行实际设计和模拟验证,根据设计要求进行调整。
开关电源的设计及计算

开关电源的设计及计算1.先计算BUCK 电容的损耗(电容的内阻为R buck 假设为350m Ω,输入范围为85VAC~264VAC,频率为50Hz ,P OUT =60W,V OUT =60W ):电容的损耗:P buck =R buck *I buck,rms 2I buck,rms =I in,min1**32−cline t F t c :二极管连续导通的时间t c =linelineF VpeakV e F **2)min(arcsin *41π−=3ms其中:V min =linein ch in in in F C D P V V *)1(***2min ,min ,−−V peak =2*V in,min其图中的T1就是下面公式中t c或:V min =η*)*21(**2**2min ,min ,in c line o in in C t F P V V −−所以(假设最低输入电压时,输入电流=0.7A):I buck,rms =I in,min1**32−cline t F =0.7*13*50*32−=1.3A P buck =350m*1.32=0.95W第一步计算电容损耗是为了使用其中的t c 值,电容的容量一般通用范围选2~3μ/W ,固定电压为1μ/W2.输入交流整流桥的计算(假设V TO =0.7V,R d =70m Ω)在同一个时间内有两个二极管同时导通,半个周期内两个二极管连续导通I d,rms =c line in t F I **3min ,=m3*50*37.0=1.04AP diodes =2*(V TO *2min ,in I +R d *I d,rms 2)=2*(0.7*27.0+70m*1.042)=640mW 一个周期内桥堆损耗为:P BR=2*P diodes =2*640m=1.28W桥堆功耗超过1.5W 时,我个人认为应加散热器(特别是电源的使用环境温度较高时)变压器和初级开关MOS :反激式开关电源有两种模式CCM 和DCM ,各有优缺点。
开关电源计算参考

根据技术指标的要求,输入功率约为62.5W,则原边峰值电流为:Ipk=2Po/(Vin(max)Dmax)=0.69A (1)式中:Po为输出功率,50W;Vin(max)为交流电压的最大值(取240V)经过整流后得到的直流电压的数值,取288V;Dmax为最大占空比,取0.5。
变压器的初级电感量为:Lp=Vin(max)×Dmax/(Ipk×f)=4.02 mH (2)式中:Vin(max)为交流电压的最小值(取185V)经过整流后得到的直流电压的数值,取222V;Dmax为最大占空比,取0.5;f为工作频率,40 kHz。
利用AP法选择最小尺寸的磁芯Ae×Ac=Lp×Lpk×106/(j×Ke×Kc×△Bmax ) = 15.7×103mm4 (3)式中:Lp为前面计算的变压器初级电感量;Ipk为原边峰值电流;j为电流密度(A/mm2 ),这里取为3;Ke为铁芯截面有效系数,选用铁氧体铁芯,Ke=0.98;Kc为铁芯窗口的有效利用系数,取0.3;△Bmax为磁通密度的最大变化量,取0.2据此可选EI33型磁芯,其Ae=9.7×12.7=123.19mm2,Ac=7.3×19.2=140.16mm2(其Ae×Ac=17.3×103mm4)导线截面积为Sx=Iin(max)/j=0.28/3=0.09 mm2 (4)可选择直径为0.41 mm的漆包线。
初级匝数为:Np= Vs×ton/(△Bac×Ae)=123 (5)式中:Vs为原边所加的直流电压的平均值,取264V;ton为最大占空比下的开通时间,为1.2×12.5×10-6s。
次级匝数为Ns=Np×U2/U1=24.6,取25。
式中:U2/U1为变压器原副边的电压比,根据经验数值以及所选开关管的耐压值(500 V),设定原副边的电压比为5:1)。
几种开关电源变压器设计计算方法

RCC方式电源变压器设计计算方法在RCC設計中,一般先設定工作頻率,如為50K,然後設定工作DUTY在90V入力,最大輸出時為0.5假設設計一功率為12V/1A1. 最大輸出電流為定格電流的1.2~1.4倍,取1.3倍.2. 出力電力Pout = V out × Iout = 12V×1.3A = 15.6W3. 入力電力Pin = Pout/∩=22.3W(RCC效率∩一般設在65%~75% , 取70%)4. 入力平均電流Iin=Pin/Vdc(INmin)=22.3/85*1.2=0.22( Vin(DCmin) = Vac(Inmin)×1.2)5. T=1/swF=1/50K=20uS Ton=Toff=10uS6. Ipk=Iin入力平均電流*2/DUTY=0.22*2/0.5=0.887. 一次側電感量Lp=Vin(DCmin)*Ton/Ipk=102*10/0.88=1159uH取1160uH8. 選擇磁芯,根据磁芯規格,選擇EI28. Ae=0.85CM^2 動作磁通=2000~2800取2000(當然,這是很保守的作法)9. Np=Ipk*Lp*K/Ae*▲Bm=(0.88*1160*100)/(0.85*2000)=60Ts10. Ns=(Vout+Vf)*Np/Vin(DCmin)=7.6 取8Ts11. 輔助電壓取5V(電晶體) 如功率管使用MOSFET則應設為11V12. Vin(DCmin)/Np=Vb/Nb----Nb=2.94 取3Ts故變壓器的構造如下:Lp=1160uHNp=60TsNs=7TsNb=3Ts以上采用三明治繞法:三明治繞法詳解:所謂三明治就是夾層繞法,因結構如同三明治一樣,所以叫三明治繞法.通常會有兩種繞法:1. 一次側平均法,就是a.最底層繞上一半的圈數,b.然後再繞二次側,c.再繞一次側的另一半.d.再繞Vcc. 最常用的做法還會在二次側上下兩層各加一銅箔或繞線屏蔽.在小功率上會起到Y電容的效果,所以說在小功率上有些人說可以不用Y電容,其實在整體成本上沒有太大的差別.2. 屏蔽繞法, 就是a.最底層繞上與二次相同的圈數,b.然後再繞二次側,c.再繞一次側的其它圈數.d.再繞Vcc. 這種方式很少加屏蔽.當然還有很多種不同的配對方式.但基本原理是一樣的.三明治的真正用意就是減小漏感,人為的在一次與二次之間加上一個寄生電容.用三明治繞法不可以短路为什么?(短路指输出短路保护) 设计参数选取有问题。
开关变压器第三讲 变压器线圈电感量计算

开关变压器第三讲变压器线圈电感量计算..在开关电源电路设计或电路试验过程中,经常要对线圈或导线的电感以及线圈的匝数进行计算,以便对电路参数进行调整和改进。
下面仅列出多种线圈电感量的计算方法以供参考在进行电路计算的时候,一般都采用SI国际单位制,即导磁率采用相对导磁率与真空导磁率的乘积,即:,其中相对导磁率是一个没有单位的系数,真空导磁率的单位为H/m。
1、圆截面直导线的电感圆截面直导线如图2-32所示,其电感为:2、同轴电缆线的电感同轴电缆线如图2-33所示,其电感为:3、双线制传输线的电感双线制传输线如图2-34所示,其电感为:4、两平行直导线之间的互感两平行直导线如图2-34所示,其互感为:5、圆环的电感5、矩型线圈的电感矩形线圈如图2-36所示,其电感为:6、螺旋线圈的电感螺旋线圈如图2-37所示,其电感为:7、多层绕组线圈的电感多层绕组线圈如图2-38所示,其电感为:【说明】上式是用来计算多层线圈绕组、截面为圆形的空心线圈的电感计算公式。
长冈系数k可查阅表2-1,系数c可查阅表2-2。
当线圈内部有磁芯时,有磁芯线圈的电感是空心线圈电感的倍,是磁芯的相对导磁率。
相对导磁率的测试方法很简单,只需把有磁芯的线圈和空心线圈分别进行测试,通过对比即可求出相对导磁率的大小。
8、变压器线圈的电感变压器线圈如图2-39所示,其电感为:【说明】上式是用来计算变压器线圈电感的计算公式。
由于变压器铁芯的磁回路基本是封闭的,变压器铁芯的平均导磁率相对来说比较大。
铁芯的导磁率一般在产品技术手册中都会给出,但由于大多数开关电源变压器的铁芯都留有气隙,留有气隙的磁回路会出现磁场强度以及磁感应强度分布不均匀,因此,(2-108)式中的导磁率只能使用平均导磁率,技术手册中的数据不能直接使用。
在这种情况下,最好的方法是先制作一个简单样品,例如,在某个选好的变压器铁芯的骨架上绕一个简单线圈(比如匝数为10),然后对线圈的电感量进行测试,或者找一个已知线圈匝数与电感量的样品作为参考。
【很完整】牛人教你开关电源各功能部分原理分析、计算与选型

【很完整】⽜⼈教你开关电源各功能部分原理分析、计算与选型1 开关电源介绍此⽂档是作为张占松⾼级开关电源设计之后的强化培训,基于计划安排,由申⼯讲解了变压器设计之后,在此⽂章中简单带过变压器设计原理,重点讲解电路⼯作原理和设计过程中关键器件计算与选型。
开关电源的⼯作过程相当容易理解,其拥有三个明显特征:开关:电⼒电⼦器件⼯作在开关状态⽽不是线性状态⾼频:电⼒电⼦器件⼯作在⾼频⽽不是接近⼯频的低频直流:开关电源输出的是直流⽽不是交流也可以输出⾼频交流如电⼦变压器1.1 开关电源基本组成部分1.2 开关电源分类:开关电源按照拓扑分很多类型:buck boost 正激反激半桥全桥 LLC 等等,但是从本质上区分,开关电源只有两种⼯作⽅式:正激:是开关管开通时传输能量,反激:开关管关断时传输能量。
下⾯将以反激电源为例进⾏讲解。
1.3 反激开关电源简介反激⼜被称为隔离buck-boost 电路。
基本⼯作原理:开关管打开时变压器存储能量,开关管关断时释放存储的能量反激开关电源根据开关管数⽬可分为双端和单端反激。
根据反激变压器⼯作模式可分为CCM 和DCM 模式反激电源。
根据控制⽅式可分为PFM 和PWM 型反激电源。
根据驱动占空⽐的产⽣⽅式可分为电压型和电流型反激开关电源。
我们所要讲的反激电源精确定义为:电流型PWM 单端反激电源。
1.4 电流型PWM 单端反激电源此类反激电源优点:结构简单价格便宜,适⽤⼩功率电源。
此类反激电源缺点:功率较⼩,⼀般在150w 以下,纹波较⼤,电压负载调整率低,⼀般⼤于5%。
此类反激电源设计难点主要是变压器的设计,特别是宽输⼊电压,多路输出的变压器。
2 举例讲解设计过程为了更清楚了解设计中详细计算过程,我们将以220VAC-380VAC 输⼊,+5V±3%(5A),±15±5%(0.5A)三路共地输出反激电源为例讲解设计过程。
提出上⾯要求,选择思路如下:提出上⾯要求,选择思路如下:电源总输出功率P=5*5W+15*0.5*2=40W 功率较⼩,可以选择反激开关电源。
(整理)正激式开关电源高频变压器

待求参数项详细公式1副边电压VsVs = Vp*Ns/Np2最大占空比θonmaxθonmax = Vo/(Vs-0.5)1、θonmax的概念是指:根据磁通复位原则,其在闭环控制下所能达到的最大占空比。
2、0.5是考虑输出整流二极管压降的调整值,以下同。
3临界输出电感LsoLso = (Vs-0.5)*(Vs-0.5-Vo)*θonmax2/(2*f*Po)1、由能量守恒:(1/T)*∫0ton{Vs*[(Vs-Vo)*t/Lso]}dt = Po2、Ton=θon/f4实际工作占空比θon如果输出电感Ls≥Lso:θon=θonmax否则:θon=√{2*f*Ls*Po /[(Vs-0.5)*(Vs-0.5-Vo)]}1、由能量守恒:(1/T)*∫0ton{Vs*[(Vs-Vo)*t/Ls]}dt = Po2、Ton=θon/f5导通时间TonTon =θon /f6最小副边电流IsminIsmin = [Po-(Vs-0.5)*(Vs-0.5-Vo)*θon2/(2*f*Ls)]/[(Vs-0.5)*θon]1、由能量守恒:(1/T)*∫0ton{Vs*[(Vs-Vo)*t/Ls+Ismin]}dt = Po2、Ton=θon/f7副边电流增量ΔIsΔIs = (Vs-0.5-Vo)* Ton/ Ls8副边电流峰值IsmaxIsmax = Ismin+ΔIs9副边有效电流IsIs = √[(Ismin2+ Ismin*ΔIs+ΔIs2/3)*θon]1、Is=√[(1/T)*∫0ton(Ismin+ΔIs*t/Ton)2dt]2、θon= Ton/T10副边电流直流分量IsdcIsdc = (Ismin+ΔIs/2) *θon11副边电流交流分量IsacIsac = √(Is2- Isdc2)12副边绕组需用线径DsDs = 0.5*√Is电流密度取5A/mm213原边励磁电流IcIc = Vp*Ton / Lp14最小原边电流IpminIpmin = Ismin*Ns/Np15原边电流增量ΔIpΔIp = (ΔIs* Ns/Np+Ic)/η16原边电流峰值IpmaxIpmax = Ipmin+ΔIp17原边有效电流IpIp = √[(Ipmin2+ Ipmin*ΔIp+ΔIp2/3)*θon]1、Ip=√[(1/T)*∫0ton(Ipmin+ΔIp*t/Ton)2dt]2、θon= Ton/T18原边电流直流分量IpdcIpdc = (Ipmin+ΔIp/2) *θon19原边电流交流分量IpacIpac = √(Ip2- Ipdc2)20原边绕组需用线径DpDp = 0.55*√Ip电流密度取4.2A/mm221最大励磁释放圈数Np′Np′=η*Np*(1-θon) /θon22磁感应强度增量ΔBΔB = Vp*θon / (Np*f*Sc)23剩磁BrBr = 0.1T24最大磁感应强度BmBm = ΔB+Br25标称磁芯材质损耗PFe (100KHz 100℃ KW/m3)磁芯材质PC30:PFe = 600磁芯材质PC40:PFe = 45026选用磁芯的损耗系数ωω= 1.08* PFe / (0.22.4*1001.2)1.08为调节系数27磁芯损耗PcPc = ω*Vc*(ΔB/2)2.4*f1.228气隙导磁截面积Sg方形中心柱:Sg= [(a+δ′/2)*( b+δ′/2)/(a*b)]*Sc圆形中心柱:Sg= {π*(d/2+δ′/2)2/[π*(d/2)2]} *Sc29有效磁芯气隙δ′δ′=μo*(Np2*Sc/Lp-Sc/AL)1、根据磁路欧姆定律:H*l = I*Np 有空气隙时:Hc*lc + Ho*lo = Ip*Np又有:H = B/μ Ip = Vp*Ton/Lp 代入上式得:ΔB*lc/μc +ΔB*δ/μo = Vp*Ton*Np /Lp式中:lc为磁路长度,δ为空气隙长度,Np为初级圈数,Lp为初级电感量,ΔB为工作磁感应强度增量;μo为空气中的磁导率,其值为4π×10-7H/m;2、ΔB=Vp*Ton/Np*Sc3、μc为磁芯的磁导率,μc=μe*μo4、μe为闭合磁路(无气隙)的有效磁导率,μe的推导过程如下:由:Hc*lc=Ip*Np Hc=Bc/μc=Bc/μe*μo Ip=Vp*Ton/Lpo 得到:Bc*lc/(μe*μo)=Np*Vp*Ton/Lpo又根据:Bc=Vp*Ton/Np*Sc 代入上式化简得:μe = Lpo*lc/μo*Np2*Sc5、Lpo为对应Np下闭合磁芯的电感量,其值为:Lpo = AL*Np26、将式步骤5代入4,4代入3,3、2 代入1得:Lp =Np2*Sc/(Sc/AL +δ/μo)30实际磁芯气隙δ如果δ′/lc≤0.005:δ=δ′如果δ′/lc>0.03:δ=μo*Np2*Sc/Lp否则δ=δ′*Sg/Sc31穿透直径ΔDΔD = 132.2/√f32开关管反压UceoUceo = √2 *Vinmax+√2 *Vinmax*Np/ Np′33输出整流管反压UdUd = Vo+√2 *Vinmax*Ns/Np′34副边续流二极管反压Ud′Ud′=√2 *Vinmax*Ns/Np二、双端开关电源高频变压器:No待求参数项详细公式1副边电压Vs如果为半桥:Vs = Vp*Ns/(2*Np)否则: Vs = Vp*Ns/Np2最大占空比θonmaxθonmax = Vo/(Vs-0.5)1、θonmax的概念是指:根据磁通复位原则,其在闭环控制下所能达到的最大占空比。
开关电源变压器设计(精编文档).doc

【最新整理,下载后即可编辑】开关电源变压器设计1.前言2.变压器设计原则3.系统输入规格4.变压器设计步骤4.1选择开关管和输出整流二极管4.2计算变压器匝比4.3确定最低输入电压和最大占空比4.4反激变换器的工作过程分析4.5计算初级临界电流均值和峰值4.6计算变压器初级电感量4.7选择变压器磁芯4.8计算变压器初级匝数、次级匝数和气隙长度4.9满载时峰值电流4.10 最大工作磁芯密度Bmax4.11 计算变压器初级电流、副边电流的有效值4.12 计算原边绕组、副边绕组的线径,估算窗口占有率4.13 计算绕组的铜损4.14变压器绕线结构及工艺5.实例设计—12W Flyback变压器设计1. 前言◆反激变换器优点:电路结构简单成本低廉容易得到多路输出应用广泛,比较适合100W以下的小功率电源◆设计难点变压器的工作模式随着输入电压及负载的变化而变化低输入电压,满载条件下变压器工作在连续电流模式( CCM )高输入电压,轻载条件下变压器工作在非连续电流模式( DCM )2. 变压器设计原则◆温升安规对变压器温升有严格的规定。
Class A的绝对温度不超过90°C;Class B不能超过110°C。
因此,温升在规定范围内,是我们设计变压器必须遵循的准则。
◆成本开关电源设计中,成本是主要的考虑因素,而变压器又是电源系统的重要组成部分,因此如何将变压器的价格,体积和品质最优化,是开关电源设计者努力的方向。
3. 系统输入规格输入电压:Vacmin~ Vacmax输入频率:fL输出电压:Vo输出电流:Io工作频率:fS输出功率:Po预估效率:η最大温升:40℃4.0变压器设计步骤4.1选择开关管和输出整流二极管开关管MOSFET:耐压值为Vmos输出二极管:肖特基二极管最大反向电压VD正向导通压降为VF4.2计算变压器匝比考虑开关器件电压应力的余量(Typ.=20%) 开关ON : 0.8·V D > V in max / N + V o开关 OFF : 0.8·V MOS > N ·( V o + V F ) + V in max 匝比 : N min < N < N max4.3 确定最低输入电压和最大占空比输入滤波电容:2µF~3µF/W 最低输入电压 ( 假设tc=3ms )V in min =√(√2V VV VVV )2−2 × V VV ( V2 − V V )V VV最低输入电压,最大功率时,占空比最大D maxD max = V ∙ ( V V + V V )V ∙ ( VV + V V ) + V VV VVV4.4 反激变换器的工作过程分析低输入电压时,负载从轻载到重载,变压器经历从DCM →BCM →CCM 的过程高输入电压时,负载从轻载到重载,变压器一直工作在DCM4.5 计算初级临界电流均值和峰值按照最小输入电压,最大输出功率(Pomax)的条件计算 P o = 1/3P o max 时,变换器工作在BCM P o < 1/3P o max 时,变换器工作在DCM P o > 1/3P o max 时,变换器工作在CCMBCM 模式下,最小输入电压时的平均输入电流I in-avg =13∙ V VV V VV VVV变压器初级临界电流峰值 ∆I p1 = I pk1 =2 × V VV −VVVV VVV4.6 计算变压器初级电感量最低输入电压,BCM 条件下,最大通时间T on max = 1V V× D max变压器初级电感量Lp = V VV VVV × V VV VVV∆V V14.7 选择变压器磁芯基于输出功率和开关频率计算面积乘积,根据面积乘积来选择磁芯AP p = V V × 1062 × V × V V × V V × V V × V V × VKo 是窗口的铜填充系数:取Ko=0.4Kc 是磁芯填充系数;对于铁氧体磁芯取Kc=1Bm是变压器工作磁通密度,取B m≤12VVVVj是电流密度,取j = 4.2A/mm2考虑绕线空间,尽量选择窗口面积大的磁芯,查表选择Aw和Ae4.8 计算变压器初级、次级匝数、辅助绕组匝数和气隙长度初级绕组的匝数N p = V in min × t on maxA e ×B m×108增加或者减小匝数只会分别引起磁芯损耗减小或增加在100kHz条件下,损耗与B2.86成正比,匝数减小5%会使磁芯损耗增加15%次级绕组匝数N s = N p / N辅助绕组匝数N cc = ( V cc + 1 ) ×N s / ( V o+ V F )气隙长度: l g = 0.4V × V V × V2V V4.9 满载时峰值电流CCM 时,T on max 固定不变输入电压不变,BCM 的T on max 等于CCM 的T on max T on max 内,电感电流线形上升增量 ∆I p1 =V VV VVV × V VV VVVV V= ∆I p2低输入电压,满载条件下 P o = 12×η× L p × (I 2pk2 – I 2pk0 ) × f s 变压器初级峰值电流 I pk2 = V V / VV VV VVV × V VVV+∆V V224.10 最大工作磁芯密度B maxB max =V V × V VV2V V × V V×108 < B sat如果B max <B sat ,则证明所选择的磁芯通过,否则应重新选择 4.11 计算变压器初级电流、副边电流的有效值梯形波电流的中值 :I a = I pk -∆V2电流直流分量 :I dc = D max × I a电流有效值 : I prms = I a √V VVV电流交流分量 :I ac =I a √V VVV (1−V VVV )4.12 计算原边绕组、副边绕组的线径,估算窗口占有率 导线的横截面积自然冷却时,一般取电流密度 j = 4A / mm 2初级绕组:Sp = Iprms( A ) / 4 ( A / mm2 )副边绕组:Ss = Isrms( A ) / 4 ( A / mm2 )线径及根数集肤深度δ= 6.61 / √V V cm导线线径不超过集肤深度的2倍,若超过集肤深度,则需多股并绕根据安规要求考虑加一定宽度的挡墙窗口占有率K0A w≥N p ×V×V V2+ N s ×V×V V2+ N cc ×V×V VV24.13计算绕组的铜损根据导线的电阻和集肤深度,确定每个绕组的铜损耗总损耗一定要小于预算损耗,温升经验公式∆T ≈800 × V VVVV34 × √V V×V V4.14变压器绕线结构及工艺骨架的选取:累计高度、宽度绕法:初级和次级交错式(三明治)绕法:漏感小5. 设计实例—12W开关电源变压器设计5.1系统输入规格输入电压:90Vac~265Vac输入频率:50Hz 输出电压:12V 输出电流:1.0A 输出功率:Po=12W 开关频率:50kHz 预估效率:0.75输入最大功率:Pin=16W 变压器最大温升:40℃5.2 开关管MOSFET 和输出整流二极管 开关管MOSFET 耐压: V mos =600V输出二极管:反向压降V D =100V ( 正向导通压降V F =0.5V )5.3计算变压器匝比0.8 ∙ V D > V in max / N + V o → 0.8 × 100 > 375 / N +120.8 ∙ V mos > N ∙ ( V o + V F ) + V in max → 0.8 × 600 > N × ( 12 + 0.5 ) +3755.5 < N < 8.4取 N = 65.4 最低输入电压和最大占空比 选择C in =22µF 最低输入电压:V in min = √(√2V VV VVV )2−2 × V VV ( V2 − V V )V VV= √1272− 2 ×16 ×7 × 10−322 × 10−6≈77V最大占空比 :Dmax = V ∙ (V V + V V )V ∙ ( VV + V V )+ V VV VVV= 6 × 12.56 ×12.5+77 = 0.495.5 计算初级临界电流均值和峰值I in-avg = 13∙ V VV VVV VVV= 163 ×77 = 0.07 A∆I p1 = I pk1 =2 × V VV −VVVV VVV=2 ×0.070.49= 0.285 A5.6最大导通时间和初级电感量 最大导通时间 : T on max =1V V× D max = 9.8 VV变压器初级电感量 : L p =V VV VVV ×V VV VVV∆V V1=77 ×9.8 × 10−60.285≈ 2.7mH5.7 变压器磁芯面积AP p =12 × 1062 ×0.75 ×0.42 × 50 × 103 ×1600 ×4= 0.066 cm 2( 铁氧体磁芯 B sat = 3900G , 取 B m = 1600G )查表EF20 A e = 0.335 cm 2,A w = 0.6048 cm 2AP = A w * A e = 0.202 cm 2 > 0.066 cm 25.8 变压器初级匝数、次级匝数、辅助绕组匝数和气隙长度N p =77 ×9.8 × 10−60.335 ×1600×108 = 140.7 取 N p = 140 TsN s = 140 / 6 = 23.3 Ts 取 N s = 23 TsN cc = 19 × 23 / 12.5 ≈ 35 Tsl g =0.4V ×33.5 × 14022.6= 0.2 mm5.9 满载时峰值电流、最大工作磁通密度I pk2 = VV / V VVV VVV ×VVVV +∆VV2= 1677 ×0.49 + 0.14 = 0.56 ABmax =VV ×VVV2VV ×VV=2.6×10−3 × 0.560.335 ×140×108 = 3100G < 3900G5.10 变压器初级电流、副边电流的有效值原边各电流:电流中值 I pa = 0.42A 电流有效值 I prms = 0.29A 电流直流值 I pdc = 0.20A 电流交流值 I pac = 0.208A副边各电流:电流直流值 I sdc = 1A 电流有效值 I srms = 1.38A 电流中值 I sa = 1.92A 电流交流值 I ac = 0.959A5.11 计算原边、副边绕组的线径,估算窗口占有率 线径及根数集肤深度 δ= 6.61 / √V V = 6.61 / √50 × 103 = 0.29 cm导线的横截面积:电流密度 j = 4.2~5A / mm 2初级绕组:S p =0.068mm 2→Φ0.25mm ×1P→R DC = 4.523mΩ/cm ( 100℃ ) 副边绕组:S s = 0.328mm 2→Φ0.40mm×2P→R DC = 0.892mΩ/cm ( 100℃ ) Vcc 绕组:S cc = 0.1/4.2 = 0.024mm 2 →Φ0.1mm×2P窗口占有率:0.4 × 60.48 ≥ 140 × π× 0.1252 + 23 × π× 0.22 + 35 ×π× 0.08224.2 ≥ 13.6 OK5.12 计算绕组的铜损 平均匝长 l av = 23.5 mm 各绕组绕线长度:原边 l Np = 140 × 23.5 = 329 cm 副边 l Ns = 23 × 23.5 = 54.0 cm各绕组直、交流电阻:原边R pdc =1.45Ω R pac =2.38Ω副边R sdc =0.024Ω R sac =0.038ΩVcc 绕组电流过小,忽略绕组损耗各绕组损耗:P u = 0.30W {V V = V VVVV 2× V VVV + V VVV 2 × V VVV =0.22V V V = V VVVV 2× V VVV + V VVV 2 × V VVV =0.08V5.13 计算绕组的铁损计算铁损:查磁芯损耗曲线,PC40在 ΔB = 0.15T 时为80mW / cm 3 铁损 P Fe = 80 × 1.5 = 0.12 W估算温升总损耗 P loss = 0.12 + 0.30 = 0.42 W经验公式 ∆T ≈ 34 × √33.5 ×60.48 = 22℃ < 40℃设计 OK5.14 变压器绕线结构及工艺绕线宽度高度累计查EF20 Bobbin 绕线宽度W=12.1mm ,高度H=2.9mm0.25mm ,最大外径0.275mm 每层35T ,W1=9.62mm0.40mm ,最大外径0.52mm 每层23T ,W2=11.9mm0.10mm ,最大外径0.13mm 每层35T ,W3=9.1mm(0.1mm×2P) 总高度 = 0.275×4 + 0.52 × 2 + 0.13 × 3 + 0.03 × 7 = 2.74 mm绕线结构次级→初级→次级。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二.反激式变换器(Flyback Converter)的工作原理1).反激式变换器的电路结构如图一.2).当开关管Q1导通时,其等效电路如图二(a)及在导通时初级电流连续时的波形,磁化曲线如图二(b).图一图二(a)当Q1存在其中.由于变压器初级与次级侧之线圈极性是相反的,因此二极管D1不会导通,输出功率则由Co来提供.此时变压器相当于一个串联电感Lp,初级线圈电流Ip可以表示为:ip(t)=ip(0)+1/Lp*∫0DT Vdc*dtVdc=Lp*dip/dt此时变压器磁芯之磁通密度会从剩磁Br增加到工作峰值Bw. 3.当Q1截止时, 其等效电路如图三(a)及在截止时次级电流波形,磁化曲线如图三(b).图三(a)当Q1截止时,变压器之安匝数(Ampere-Turns NI)不会改变,因为∆B 并没有相对的改变.当∆B 向负的方向改变时(即从Bw 降低到Br),在变压器所有线圈之电压极性将会反转,并使D1导通,也就是说储存在变压器中的能量会经D1,传递到Co 和负载上.此时次级线圈两端电压为:Vs(t)=Vo+Vf (Vf 为二极管D1的压降).次级线圈电流:is(t)=is(DT)-1/Ls*∫DT T V S (t)*dtLp=(Np/Ns)2*Ls (Ls 为次级线圈电感量)由于变压器能量没有完全转移,在下一次导通时,还有能量储存在变压器中,次级电流并没有降低到0值,因此称为连续电流模式或不完全能量传递模式(CCM).三.CCM模式下反激变压器设计的步骤1.确定电源规格.1).输入电压范围Vin=85—265Vac;2).输出电压/负载电流:Vout1=5V/10A,Vout2=12V/1A;3).变压器的效率ŋ=0.902.工作频率和最大占空比确定.取:工作频率fosc=100KHz, 最大占空比Dmax=0.45.T=1/fosc=10us.Ton(max)=0.45*10=4.5usToff=10-4.5=5.5us.3.计算变压器初与次级匝数比n(Np/Ns=n).最低输入电压Vin(min)=85*√2-20=100Vdc(取低频纹波为20V).根据伏特-秒平衡,有: Vin(min)* Dmax= (Vout+V f)*(1-Dmax)*n.n= [Vin(min)* Dmax]/ [(Vout+V f)*(1-Dmax)]n=[100*0.45]/[(5+1.0)*0.55]=13.644.变压器初级峰值电流的计算.设+5V输出电流的过流点为120%;+5v和+12v整流二极管的正向压降均为1.0V.+5V输出功率Pout1=(V01+V f)*I01*120%=6*10*1.2=72W+12V输出功率Pout2=(V02+V f)*I02=13*1=13W变压器次级输出总功率Pout=Pout1+Pout2=85W如图四, 设Ip2=k*Ip1, 取k=0.41/2*(Ip1+Ip2)*Vin(min)*Ton(max)/T= Pout/ŋ1Ip1=2*Pout/[ŋ(1+k)*Vin(min)*Dmax] Ip2=2*85/[0.90*(1+0.4)*100*0.45]=3.00AIp2=0.4*Ip1=1.20A ( 图四) 5.变压器初级电感量的计算.由式子Vdc=Lp*dip/dt,得:Lp= Vin(min)*Ton(max)/[Ip1-Ip2]=100*4.5/[3.00-1.20]=250uH6.变压器铁芯的选择.根据式子Aw*Ae=Pt*106/[2*ko*kc*fosc*Bm*j*ŋ],其中: Pt(变压器的标称输出功率)= Pout=85WKo(窗口的铜填充系数)=0.4Kc(磁芯填充系数)=1(对于铁氧体),变压器磁通密度Bm=1500 Gsj(电流密度): j=5A/mm2;Aw*Ae=85*106/[2*0.4*1*100*103*1500Gs*5*0.90] =0.157cm4考虑到绕线空间,选择窗口面积大的磁芯,查表:EER2834S铁氧体磁芯的有效截面积Ae=0.854cm2它的窗口面积Aw=148mm2=1.48cm2EER2834S的功率容量乘积为Ap =Ae*Aw=1.48*0.854=1.264cm4 >0.157cm4故选择EER2834S铁氧体磁芯.7.变压器初级匝数及气隙长度的计算.1).由Np=Lp*(Ip1-Ip2)/[Ae*Bm],得:Np=250*(3.00-1.20)/[85.4*0.15] =35.12 取Np=36由Lp=uo*ur*Np2*Ae/lg,得:气隙长度lg=uo*ur*Ae*Np2/Lp=4*3.14*10-7*1*85.4mm2*362/(250.0*10-3mH)=0.556mm 取lg=0.6mm2). 当+5V限流输出,Ip为最大时(Ip=Ip1=3.00A),检查Bmax.Bmax=Lp*Ip/[Ae*Np]=250*10-6*3.00/[85.4 mm2*36]=0.2440T=2440Gs <3000Gs因此变压器磁芯选择通过.8. 变压器次级匝数的计算.Ns1(5v)=Np/n=36/13.64=2.64 取Ns1=3Ns2(12v)=(12+1)* Ns1/(5+1)=6.50 取Ns2=7故初次级实际匝比:n=36/3=129.重新核算占空比Dmax和Dmin.1).当输入电压为最低时: Vin(min)=100Vdc.由Vin(min)* Dmax= (Vout+Vf)*(1-Dmax)*n,得:Dmax=(Vout+Vf)*n/[(Vout+Vf)*n+ Vin(min)]=6*12/[6*12+100]=0.4182).当输入电压为最高时: Vin(max)=265*1.414=374.7Vdc.Dmin=(Vout+Vf)*n/[(Vout+Vf)*n+ Vin(max)]=6*12.00/[6*12.00+374.7]=0.1610. 重新核算变压器初级电流的峰值Ip和有效值Ip(rms).1).在输入电压为最低Vin(min)和占空比为Dmax条件下,计算Ip值和K值.(如图五)设Ip2=k*Ip1.实际输出功率Pout'=6*10+13*1=73W1/2*(Ip1+Ip2)*Vin(min)*Ton(max)/T= Pout'/ŋ(1)K=1-[Vin(min)* Ton(max)]/(Ip1*Lp) (2)由(1)(2)得:Ip1=1/2*{2*Pout'*T/[ŋ* Vin(min)*Ton(max)]+Vin(min)* Ton(max)/Lp}=0.5*{2*73*10/[0.90*100*4.18]+100*4.18/250.0}=2.78AK=1-100*4.18/[2.78*250]=0.40Ip2=k*Ip1=2.78*0.40=1.11A2).初级电流有效值Ip(rms)=[Ton/(3T)*(Ip12+Ip22+Ip1*Ip2)]1/2=[0.418/3*(2.782+1.112+2.78*1.11)] 1/2=1.30AIp2(1.11A)t11. 次级线圈的峰值电流和有效值电流计算:当开关管截止时, 变压器之安匝数(Ampere-Turns NI)不会改变,因为∆B并没有相对的改变.因此开关管截止时,初级峰值电流与匝数的乘积等于次级各绕组匝数与峰值电流乘积之和(Np*Ip=Ns1*Is1p+Ns2*Is2p).由于多路输出的次级电流波形是随各组负载电流的不同而不同, 因而次级电流的有效值也不同.然而次级负载电流小的回路电流波形,在连续时接近梯形波,在不连续时接近三角波,因此为了计算方便,可以先计算负载电流小的回路电流有效值. 1).首先假设+12V输出回路次级线圈的电流波形为连续,电流波形如下(图一):Is2(+12v)2(+12v)t(图六) (图七)1/2*[Is2p+Is2b]*toff/T=I02(3)Ls1*[Is2p–Is2b]/toff=V02+Vf (4)Ls2/Lp=(Ns2/Np)2(5)由(3)(4)(5)式得:Is2p=1/2*{2*I02/[1-D]+[V02+Vf]*[1-D]*T*Np2/[Ns22*Lp]}=0.5*{2*1/[1-0.418]+[12+1]*[1-0.418]*10*362/[72*250]}=5.72AIs2b =I01/[1-D]-1/2*[V01+Vf]*[1-D]*Np2/[Ns22*Lp]=1/0.582-0.5*13*0.582*10*362/[72*250]=-2.28A <0因此假设不成立.则+12V输出回路次级线圈的电流波形为不连续, 电流波形如上(图七).令+12V整流管导通时间为t’.将Is2b=0代入(3)(4)(5)式得:1/2*Is2p*t’/T=I02(6)Ls1*Is2p/t’=V02+Vf (7)Ls2/Lp=(Ns2/Np)2(8)由(6)(7)(8)式得:Is2p={(V02+Vf)*2*I02*T*Np2/[Lp*Ns22]}1/2={2*1*[12+1]*10*362/[72*250]} 1/2=5.24At’=2*I02*T/ Is2p=2*1*10/5.24=3.817us2).+12V输出回路次级线圈的有效值电流:Is2(rms)= [t’/(3T)]1/2*Is2p=[3.817/3*10] 1/2*5.24=1.87A3).+5v输出回路次级线圈的有效值电流计算:Is1rms= Is2(rms)*I01/I02=1.87*10/1=18.7A12.变压器初级线圈和次级线圈的线径计算.1).导线横截面积:前面已提到,取电流密度j=5A/mm2变压器初级线圈:导线截面积= Ip(rms)/j=1.3A/5A/mm2=0.26mm2变压器次级线圈:(+5V)导线截面积= Is1(rms)/j=18.7A/5A/mm2=3.74 mm2(+12V)导线截面积= Is2(rms)/j=1.87A/5A/mm2=0.374mm22).线径及根数的选取.考虑导线的趋肤效应,因此导线的线径建议不超过穿透厚度的2倍. 穿透厚度=66.1*k/(f)1/2k为材质常数,Cu在20℃时k=1.=66.1/(100*103)1/2=0.20因此导线的线径不要超过0.40mm.由于EER2834S骨架宽度为22mm,除去6.0mm的挡墙宽度,仅剩下16.0mm的线包宽度.因此所选线径必须满足每层线圈刚好绕满. 3).变压器初级线圈线径:线圈根数=0.26*4/[0.4*0.4*3.14]=0.26/0.1256=2取Φ0.40*2根并绕18圈,分两层串联绕线.4).变压器次级线圈线径:+5V: 线圈根数=3.74/0.1256=30取Φ0.40*10根并绕3圈, 分三层并联绕线.+12V: 线圈根数=0.374/0.1256=3取Φ0.40*1根并绕7圈, 分三层并联绕线.5).变压器绕线结构及工艺.为了减小变压器的漏感,建议采取三文治绕法,而且采取该绕法的电源EMI四.结论.由于连续模式下电流峰值比不连续模式下小,开关管的开关损耗较小,因此在功率稍大的反激变换器中均采用连续模式,且电源的效率比较高.由于反激式变压器的设计是反激变换器的设计重点,也是设计难点,如果参数不合理,则会直接影响到整个变换器的性能,严重者会造成磁芯饱和而损害开关管,因此在设计反激变压器时应小心谨慎,而且变压器的参数需要经过反复试验才能达到最佳.。