人教版数学八年级下册变量与函数

合集下载

人教版八年级下册数学 变量与函数练习题

人教版八年级下册数学 变量与函数练习题

变量和函数练习题1.某种树木的分枝生长规律如图所示,则其变量是()A年份 B分枝数 C生长规律 D年份和分枝数2.自由下落物体下落的高度h与下落的时间t之间的关系为A. h, tB. h, gC. t, gD. t3.某品牌豆浆机成本为70元,销售商对其销量定价的关系进行了调查,变量是():A销量 B定价 C成本价 D销量和定价4.某款贴图的成本价为1.5元,销售商对其销量与定价的关系进行了调查,结果如下:你认为其自变量为( )A成本价B定价 C销量 D以上说法都不正确5.如果用总长为120m的篱笆围成一个长方形场地,设长方形的面积为S(m2),周长为C(m),一边边长为a(m),那么S,C,a中是自变量的是( )A. SB. aC. C和aD.C6.小树的高度h(cm)和树龄x(年)之间的关系是h=20x+40,当树龄为5年时,小树的高度h为______cm.7.某公司的年生产值=2013年的生产值+增长的部分,已知2013年的生产值为15万元,公司计划从2014年开始,每年增加2万元,则年产值(从2013年开始)y (万元)与年数x (年),那么到2019年公司生产值是______万元.8.已知某一银行本息和=本金+利息,现存款100元,存款月利率为0.225%,利息=月利率×期数×本金,则本息和y(元)与存期x(月),当存款10个月,本息和为______元。

9.如果三角形的底边长为x,底边上的高为12,那么三角形的面积y可以表示为( )A.y=3xB.y=6xC.y=9xD.y=12x10.如图,△ABC的边BC长是8,BC边上的高AD′是4,点D在BC运动,设BD长为x,请写出△ACD的面积y与x之间的函数关系式y=______.11.如图,一块长为200m,宽为150m的长方形花园,中间白色部分是硬化的地面,四周是草坪,草坪是由四个完全相同的正方形和两个一样的半圆组成,当半圆的半径r(m)变化时,花园中间硬化的地面的面积S(m2)也随着发生变化.则S(m2)与r(m)的表达式为S=______.(按r的降幂排列)12.将长为40cm,宽为15cm的长方形白纸,按图所示的方法粘合起来,粘合部分宽为5cm.设x张白纸粘合后的总长度为ycm,则y与x之间的关系式是y= ______13.公路上依次有A,B,C三个汽车站,上午8:00时,小明骑自行车从A,B两站之间距离A站8km处出发,向C站匀速前进,他骑车的速度是16.5km/h,若A,B两站间的路程是26km,B,C两站的路程是15km.小明在上午9:00是否已经经过了B站?答:_____(填入“是”或“否”)14.为了了解某种车的耗油量,我们对这种车在高速公路上做了耗油试验,并把试验的数据记录下来,制成下表(1)如果汽车油箱中剩余油量为46L,则汽车行驶了______h;(2)如果该种汽车油箱只装了36L汽油,汽车以100km/h的速度在一条全长700公里的高速公路上匀速行驶,能不能中途不加油的情况下能从高速公路起点开到高速公路终点,答:______(填入“能”或“不能”)15. 某学校团委“五四青年节”组织全校1640名师生为山区学校捐赠图书,全校共30个班,每班学生人数不少于48人且不超过52人,经宣传动员,其中教师平均每人捐赠图书2本,学生平均每人捐赠图书1本,平均每本图书价值25元.设该学校有x名教师,捐赠图书总价值为y元。

人教版八年级下册数学课时练《19.1.1 变量与函数》(含答案)

人教版八年级下册数学课时练《19.1.1 变量与函数》(含答案)

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!人教版八年级数学下册第十九章一次函数《19.1.1变量与函数》课时练一、选择题(共30分)1.(本题3分)下列关系式中,y 不是x 的函数的是()A .1y x =+B .22y x =C .y x =D .22y x =-2.(本题3分)设min (x ,y )表示x ,y 二个数中的最小值.例如min {0,2}=0,min {12,8}=8,则关于x 的函数y =min {3x ,-x +4}可以表示为()A .y =()3(1)41x x x x <ìí-+³îB .y =()4(1)31x x x x -+<ìí³îC .y =3xD .y =-x +43.(本题3分)如果一盒圆珠笔有12支,售价18元,用y (元)表示圆珠笔的售价,x 表示圆珠笔的支数,那么y 与x 之间的解析式为().A .32y x =B .23y x =C .12y x=D .18=y x 4.(本题3分)从边长为4cm 的正方形中挖去一个半径是x cm 的圆面,剩下的面积是2y cm ,则y 与x 的函数关系是()A .216y x p =-B .()22y x p =-C .()24y x p =+D .216y x p =-+5.(本题3分)在函数y =12x x --中,自变量x 的取值范围是()A .x ≥1B .x ≠2C .x ≥2D .x ≥1且x ≠26.(本题3分)在函数1y x =-中,自变量x 的取值范围是()A .1³xB .1x ¹C .1x >D .1x ³-7.(本题3分)当实数x 的取值使得2x -有意义时,函数y =4x +1中y 的取值范围是()A .y ≥-7B .y ≥9C .y >9D .y ≤98.(本题3分)弹簧挂上物体后会伸长,测得一弹簧的长度y (cm )与所挂的物体的重量x (kg )间有下面的关系:x (kg )012345y (cm )1010.51111.51212.5下列说法不正确的是()A .x 与y 都是变量,且x 是自变量,y 是因变量B .物体质量每增加1kg ,弹簧长度y 增加0.5cmC .所挂物体质量为7kg 时,弹簧长度为13.5cmD .y 与x 的关系表达式是0.5y x=9.(本题3分)从空中落下一个物体,它降落的速度随时间的变化而变化,即落地前的速度随时间的增加而逐渐增大,这个问题中自变量是()A .物体B .速度C .时间D .空气10.(本题3分)根据如图所示的程序计算函数y 的值,若输入x 的值是8,则输出y 的值是﹣3,若输入x 的值是﹣8,则输出y 的值是()A .10B .14C .18D .22二、填空题(共15分)11.(本题3分)下列各项:①2y x =;②21y x =-;③22(0)y x x =³;④3(0)y xx =¹;具有函数关系(自变量为x )的是_____________.(填序号)12.(本题3分)周长为10cm 的等腰三角形,腰长y (cm )与底边长x (cm )之间的函数关系式是_____.13.(本题3分)在函数5x y x-=中,自变量x 的取值范围是______.14.(本题3分)若对于所有的实数x ,都有()()222x x f xf x -+=,则()2f =______.15.(本题3分)一个弹簧,不挂物体时长为10厘米,挂上物体后弹簧会变长,每挂上1千克物体,弹簧就会伸长1.5cm .如果挂上的物体的总质量为x 千克时,弹簧的长度为为ycm ,那么y 与x 的关系可表示为y =______.三、解答题(共75分)16.(本题7分)小明在劳动技术课中要制作一个周长为80cm 的等腰三角形.请你写出底边长y (cm )与腰长x (cm )的函数关系式,并求自变量x 的取值范围.17.(本题8分)为了增强居民的节水意识,某城区水价执行“阶梯式”计费,每月应缴水费y(元)与用水量x(t)之间的函数关系如图所示.若某用户去年5月缴水费18.05元,求该用户当月用水量.18.(本题8分)在等腰△ABC 中,底角为x (单位:度),顶角y (单位:度).(1)写出y 与x 的函数解析式;(2)求自变量x 的取值范围.19.(本题9分)如图,长方形ABCD 中,AB=4,BC=8.点P 在AB 上运动,设PB=x ,图中阴影部分的面积为y.(1)写出阴影部分的面积y 与x 之间的函数解析式和自变量x 的取值范围;(2)点P 在什么位置时,阴影部分的面积等于20?20.(本题10分)为了净化空气,美化校园环境,某学校计划在A ,B 两种树木中选择一种进行种植,已知A 种树木的单价是80元/棵,B 种树木的单价是72元/棵,且购买A 种树木有优惠,优惠方案是:购买超过20棵时,超出部分可以享受八折优惠.设学校准备购买树木x 棵(20x >),购买A 种树木和B 种树木花费的总金额分别为A y (元)和B y (元).(1)分别求出A y 、B y 与x 之间的函数关系式;(2)请你帮助该学校判断选择购买哪种树木更省钱.21.(本题10分)“五一”期间,小明和父母一起开车到距家200km 的景点旅游,出发前,汽车油箱内储油45L ,当行驶150km 时,发现油箱余油量为30L (假设行驶过程中汽车的耗油量是均匀的).(1)这个变化过程中哪个是自变量?哪个是因变量?(2)求该车平均每千米的耗油量,并写出行驶路程()x km 与剩余油量()Q L 的关系式;(3)当280x km =时,求剩余油量Q 的值.22.(本题11分)小亮想了解一根弹簧的长度是如何随所挂物体质量的变化而变化的,他把这根弹簧的上端固定,在其下端悬挂物体,下面是小亮测得的弹簧的长度y 与所挂物体质量x 的几组对应值.所挂物体质量/kg x 012345y303234363840弹簧长度/cm(1)上表所反映的变化过程中的两个变量,___________是自变量,___________是因变量;(请用文字语言描述)(2)请直接写出y与x的关系式;(3)当弹簧长度为100cm(在弹簧承受范围内)时,求所挂重物的质量.23.(本题12分)在一定弹性限度内,弹簧挂上物体后会伸长.现测得一弹簧长度y(cm)与所挂物体质量x(kg)有如下关系:(已知在弹性限度内该弹簧悬挂物体后的最大长度为21cm.)所挂物体质0123456量x/kg弹簧长度1212.51313.51414.515 y/cm(1)有下列说法:①x与y都是变量,且x是自变量,y是x的函数;②所挂物体质量为6kg时,弹簧伸长了3cm;③弹簧不挂重物时的长度为6cm;④物体质量每增加1kg,弹簧长度y增加0.5cm.上述说法中错误的是(填序号)(2)请写出弹簧长度y(cm)与所挂物体质量x(kg)之间的关系式及自变量的取值范围.(3)预测当所挂物体质量为10kg时,弹簧长度是多少?(4)当弹簧长度为20cm时,求所挂物体的质量.参考答案1.B 2.A 3.A 4.D 5.D 6.A 7.B 8.D 9.C 10.C11.①②④12.y=-()15052x x +<<13.0x ¹14.015.10+1.5x16.802,2040y x x =-<<17.9吨18.(1)y=180-2x ;(2)由三角形内角和得0°<x <90°.19.(1)阴影部分的面积为:y=32-4x (0<x≤4);(2)PB=320.(1)()=6432020A y x x +>,()7220B y x x =>;(2)当2040x <<时,学校选择购买B 种树木更省钱;当40x =时,学校选择购买两种树木的花费一样;当40x >时,学校选择购买A 种树木更省钱.21.(1)(1)行驶路程x ,剩余油量Q ;(2)450.1Q x =-;(3)当280x =(千米)时,剩余油量Q 的值为17L22.(1)所挂物体质量,弹簧长度;(2)y =2x +30;(3)35kg 23.(1)③④;(2)y =0.5x +12(0≤x ≤18);(3)弹簧长度是17cm ;(4)所挂物体的质量为16kg .。

人教版八年级数学下册19.1.1变量与函数(1) 课件

人教版八年级数学下册19.1.1变量与函数(1) 课件
2.某柴油机每时耗油 6千克,该车在行驶 t 小时内耗去了Q千克油, 则 其中常量是— ————6—,变量是————t,Q。
1.已知每支钢笔 5 元, 要买 x 枝钢笔的总 价为y 元,其中常量是———5 ———,变量是—
x,y
———。
2.一个梯形的上底为 a,下底 b 为,高是5 , 梯形的面积S,其中常量是———5———,变 量是—a—,b—,S —。
第四组
⒈某水果店橘子的单价为2.5元/千克, 买K千克橘子的总价为S元,其中常量是— ————2—.5 ,变量是—————K,—S 。
⒉圆周长C与圆的半径r之间的关系式是C
=2πr,其中常量是———2π ———,变量是——
C,r
————

1.某地温度T (。C)与海拔高度h(m)之间的 关系式是T=10- h/20 ,其中常量是———
t/h 1
2
3
4
5
s/km
60
120
180
240
300
(2) 电影票的售价为10元/张,第一场售出150多张,第二场售出205张票,第三 场售出310张票,三场电影的票房收入各是多少元?设第一场电影售出x张票,票房 收入为y元,y的值随x的值的变化而变化吗?
x/张 y/元
150 1500
205 2050
310 3100
(3)你见过水中的涟漪吗?圆形水波慢慢地扩大。在这一过程中,当园的半径r 为别为10cm、20cm、30cm时,园的面积S为别为多少?S的值随r的值的变化而变 化吗?
r/cm S/cm2
10 100π
20 400π
30 900π
(4)用10m长的绳子围一个矩形。当矩形的一边长x分别为3m、3.5m、4m、 4.5m时,他的邻边y分别为多少?y的值随x的值的变化而变化吗?

19-1-1第二课时变量与函数-八年级数学下册同步精品课件(人教版)

19-1-1第二课时变量与函数-八年级数学下册同步精品课件(人教版)

y,并且对于x的每一个确定的值,y都有唯一确定的
值与之对应.我们就说x是自变量, y是x的函数.如
果当x=a时y=b,那么b叫做当自变量为a时的函
数值.
课堂总结
判断函数
x 取一个确定的值, y 有唯一确定的值和
它对应.
课堂总结
解析式
像y=50-0.1x这样,用关于自变量的数
学式子表示函数与自变量之间的关系,
的变化而变化.
自变量 x,y是 x 的函数,y=0.1x
课堂练习
6.下列问题中哪些量是自变量,哪些量是自变量的函数?试写出函数的解析
式.
(3)秀水村的耕地面积是106 m3,这个村人均占有耕地面积y(单位:m2)随这个
村人数n的变化而变化.
自变量 n,y 是 n
106
的函数,y=

(4)水池中有水10L,此后每小时漏水0.05L,水池中的水量V(单位:L)随时
−1
x 为任意实数
x≠-1
x≥-3
x≥-4且x≠1
课堂练习
1.一个正方形的边长为5cm,它的各边边长减少xcm后,得到
的新正方形的周长为ycm,y与x的函数关系式为( A
A.Y=20-4x
B.Y=4x-20
C.Y=20-x D.以上都不对
2.在圆周长计算公式C=2πr中,对半径不同的圆,变量(
A.C,r
当x=200时,y=50-0.1×200=30
归纳小结
像y=50-0.1x这样,用关于自变量的数
学式子表示函数与自变量之间的关系,
是描述函数的常用方法.这种式子叫做函
数的解析式.
巩固练习
1.某中学的校办工厂现在年产值是15万元,计划今后每年增加

人教版八年级下册数学第十九章《 19.1变量与函数》优课件(共28张PPT)

人教版八年级下册数学第十九章《 19.1变量与函数》优课件(共28张PPT)

在问题三中,是否各有两个变量?同一 个问题中的变量之 间有什么联系?
问题三
在一根弹簧的下端挂重物,改变并记录重物的质量, 观察并记录弹簧长度的变化,探索它们的变化规律。如 果弹簧长原长为10cm,每1千克重物使弹簧伸长0.5cm,
怎样用含重物质量x(单位:kg)的式子表示受力后的
弹簧长度 L(单位:cm)?
八年级 数学
第十九章 一次函数
19.1.1变量与函数
解:∵花盆图案形如三角形,每边花有n个,总共有3n个, 其中重复了算3个。
∴ s 与 n 的函数关系式为: s = 3n-3
八年级 数学
第十九章 一次函数
19.1.1变量与函数 课堂练习(备用)
4、节约资源是当前最热门的话题,我市居民每月用电 不超过100度时,按0.57元/度计算;超过100度电时,其中不 超过100度部分按0.57元/度计算,超过部分按0.8元/度计算.
常量:在一个变化过程中,数值始终不变的量为常量。
请指出上面各个变化过程中的常量、变量。
八年级 数学
第十九章 一次函数
19.1 .1 变量与函数
探究:指出下列关系式中的变量与常量:
(1) y = 5x -6
6
(2) y= x
(3) y= 4x2+5x-7 (4) S = Лr2
巩固练习
• 填空:
• 1、计划购买50元的乒乓球,所能购买的总数
2.圆的周长公式C2r,这里的变量是 r和C ,常量
是 2 。
3.下列表格是王辉从4岁到10岁的体重情况
年龄(岁) 4 5 6 7 8 9
10 …
体重(千克)15.4 16.7 18.0 19.6 21.5 23.2 25.2 …

人教版数学八年级下册19.1.1《变量与函数》说课稿

人教版数学八年级下册19.1.1《变量与函数》说课稿

人教版数学八年级下册19.1.1《变量与函数》说课稿一. 教材分析《变量与函数》是人教版数学八年级下册第19.1.1节的内容,属于初中数学的函数单元。

本节内容主要介绍了变量的概念,函数的定义及其表示方法,旨在让学生理解变量之间的关系,掌握函数的基本概念和表示方法。

二. 学情分析学生在学习本节内容前,已经学习了代数基础知识,对代数表达式有一定的理解,但对于变量的概念和函数的定义可能还比较陌生。

因此,在教学过程中需要引导学生理解变量之间的关系,逐步引入函数的概念,并通过实例让学生掌握函数的表示方法。

三. 说教学目标1.知识与技能目标:让学生理解变量之间的关系,掌握函数的定义及其表示方法,能够识别和表示简单的函数关系。

2.过程与方法目标:通过观察、分析实例,培养学生的抽象思维能力,提高学生分析问题和解决问题的能力。

3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的探究精神和合作意识。

四. 说教学重难点1.教学重点:函数的定义及其表示方法。

2.教学难点:理解变量之间的关系,掌握函数的表示方法。

五. 说教学方法与手段1.教学方法:采用问题驱动法、案例分析法、小组合作学习法等,引导学生主动探究,积极参与课堂活动。

2.教学手段:利用多媒体课件、教学卡片、黑板等辅助教学,提高教学效果。

六. 说教学过程1.导入新课:通过展示实际生活中的实例,引导学生观察和分析变量之间的关系,引出函数的概念。

2.探究新知:让学生通过小组合作,探讨函数的定义及其表示方法,教师进行引导和讲解。

3.巩固新知:通过练习题让学生巩固函数的概念和表示方法,教师进行点评和指导。

4.应用拓展:让学生运用函数的知识解决实际问题,提高学生解决问题的能力。

5.课堂小结:对本节课的内容进行总结,强调函数的概念和表示方法。

七. 说板书设计板书设计要清晰、简洁,能够突出函数的概念和表示方法。

主要包括以下几个部分:1.变量与函数的定义2.函数的表示方法3.函数的性质八. 说教学评价教学评价主要包括学生的学习效果评价和教师的教学评价两个方面。

人教版八年级数学下册 变量与函数同步练习卷(含解析)

人教版八年级数学下册 变量与函数同步练习卷(含解析)

人教版八年级下册:19.1 函数 同步练习卷一、选择题1.小李驾车以70km/h 的速度行驶时,他所走的路程()km s 与时间()h t 之间可用公式70s t =来表示,则下列说法正确的是( ) A .数70和s ,t 都是变量 B .s 是常量,数70和t 是变量 C .数70是常量,s 和t 是变量D .t 是常量,数70和s 是变量2.函数2y x =-的自变量x 的取值范围是( ) A .2x ≠B .2x <C .2x >D .2x ≥3.下列关系式中y 不是x 的函数是( ) A .()0y x x =±> B .()20y x x =-> C .2yxD .()()20y x x =>4.当2x =时,函数的21y x =-+值是( ) A .2B .2-C .12D .12-5.刘老师每天从家去学校上班行走的路程为1200米,某天他从家去学校上班时以每分钟40米的速度行走了前半程,为了不迟到他加快了速度,以每分钟50米的速度行走完了剩下的路程,那么刘老师距离学校的路程y (米)与他行走的时间t (分)(15t >)之间的函数关系为( ) A .501350y t =-+ B .50150y t =- C .401350y t =-+D .101350y t =-+6.如图所示能表示y 是x 的函数是( )A .B .C .D .7.下列关系不是函数关系的是 ( ) A .长方形的宽一定时,它的长与面积. B .正方形的周长与面积.D.等腰三角形顶角的度数与底角的度数.8.点燃的蜡烛每分钟燃烧的长度一定,长22cm的蜡烛,点燃10分钟,变短了4cm,设点燃x分钟后,还剩y cm,下列说法正确的有()A.蜡烛每分钟燃烧0.6cmB.y与x的关系式为y=22﹣4xC.第23分钟时,蜡烛还剩12.8cmD.第51分钟时,蜡烛燃尽9.小明的父亲饭后出去散步,从家中走20min到一个离家900m的报亭看10min报纸后.用15min返回家里,图中表示小明父亲离家的时间与距离之间的关系是()A.B.C.D.10.甲、乙两地之间是一条直路,在全民健身活动中,王强跑步从甲地往乙地,李刚骑自行车从乙地往甲地,两人同时出发,李刚先到达目的地,两人之间的距离s(km)与运动时间t(h)的函数关系大致如图所示,下列说法中错误的是()A.两人出发0.5小时后相遇B.李刚到达目的地时两人相距8kmC.甲乙两地相距12kmD.王强比李刚晚0.75h到达目的地11.对于圆的周长公式c=2πr,其中自变量是______,因变量是______.12.在男子1000米的长跑中,运动员的平均速度v=1000,则这个关系式中自变量是___.t13.等边三角形的边长为x,此三角形的面积S表示成x的函数为______.14.校园里栽下一棵小树高1.8m,以后每年长0.4m,则n年后的树高L与年数n之间的关系式为______.15.已知A,B两地相距80km,甲、乙两人沿同一条公路从A地出发到B地,乙骑自行车,甲骑摩托车.图中DE,OC分别表示甲、乙离开A地的路程s(km)与时间(h)的函数关系的图象,则甲与乙的速度之差为______,甲出发后经过______小时追上乙.16.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间,设他从山脚出发后所用时间为t(分钟),所走的路程为s(米),s与t之间的函数关系如图所示,则下列说法中正确的序号为______.①小明中途休息用了20分钟;②小明休息前爬山的平均速度为每分钟70米/分钟;③小明在上述过程中所走的路程为6600米;④小明休息前爬山的平均速度大于休息后爬山的平均速度三、解答题17.科学家认为二氧化碳2CO的释放量越来越多是全球变暖的原因之一.下表1950~1990年全世界所()释放的二氧化碳量:年份1950 1960 1970 1980 1990CO释放量/百万吨6002 9475 14989 19287 22588 2(2)说一说这两个变量之间的关系.18.如图所示,一个四棱柱的底面是一个边长为10cm 的正方形,它的高变化时,棱柱的体积也随着变化. ①在这个变化中,自变量、因变量分别是______、______;②如果高为()cm h 时,体积为()3cm V ,则V 与h 的关系为______;③当高为5cm 时,棱柱的体积是______;④棱柱的高由1cm 变化到10cm 时,它的体积由______变化到______.19.周末,小明坐公交车到滨海公园游玩,他从家出发0.8小时候达到中心书城,逗留一段时间后继续坐公交车到滨海公园,小明离家一段时间后,爸爸驾车沿相同的路线前往海滨公园,如图是他们离家路程()km s 与小明离家时间()h t 的关系图,请根据图回答下列问题:(1)图中自变量是____________,因变量是____________; (2)小明家到滨海公园的路程为______________km ;(3)小明从家出发____________小时后爸爸驾车出发,爸爸驾车经过_____________小时追上小明.20.心理学家发现,学生对概念的接受能力y 与提出概念所用的时间x (单位:分)之间有如下关系:提出概念所用时间257101213141720()x对概念的接受能力47.853.556.359.059.859.959.858.355.0()y(1)上表中反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当提出概念所用时间是7分钟时,学生的接受能力是多少?(3)根据表格中的数据,你认为提出概念所用时间为几分钟时,学生的接受能力最强?(4)从表中可知,当时间x在什么范围内,学生的接受能力逐步增强?当时间x在什么范围内,学生的接受能力逐步降低?21.小华骑自行车上学,当他骑了一段路时,想起要买本书,于是又这回到刚经过的某书店,买到书后继续去学校,以下是他本次上学所用的时间与离家距离的关系示意图,根据图中提供的信息回答下列问题:(1)小华家到学校的路程是______m,小华在书店停留了_____min.(2)在整个上学的途中哪个时间段小华的骑车速度最快?最快的速度是多少?(3)本次上学途中,小华一共骑行了多少米?(4)如果小华到校后立刻以300m/min的速度回家,请在原图上画出小华回家所用时间与离家距离的关系图象.22.甲、乙两车分别从B,A两地同时出发,甲车匀速前往A地;乙车匀速前往B地,到达B地立即以另一速度按原路匀速返回到A地;设甲、乙两车距A地的路程为y(千米),乙车行驶的时间为x(时),y(1)求乙车从B地到达A地的速度;(2)求乙车到达B地时甲车距A地的路程;(3)求乙车返回前甲、乙两车相距40千米时,乙车行驶的时间.参考答案1.C根据常量和变量的定义(在某一变化过程中,数值发生变化的量称为变量,数值始终不变的量称为常量)即可得. 【详解】解:在70s t =中,数70是常量,s 和t 是变量, 故选:C . 【点睛】本题考查了常量和变量,熟记定义是解题关键. 2.D 【解析】 【分析】根据二次根式有意义的条件求解即可. 【详解】 解:∵20x -≥ ∴2x ≥ 故选D 【点睛】本题考查了二次根式有意义的条件,函数的定义,掌握二次根式有意义的条件是解题的关键. 3.A 【解析】 【分析】根据函数的定义逐项分析即可. 【详解】在选项B,C,D 中,每给x 一个值,y 都有1个值与它对应,所以B,C,D 中y 是x 的函数, 在A 中,给x 一个正值,y 有2个值与之对应,所以y 不是x 的函数. 故选A 【点睛】本题考查了函数的定义,掌握函数的定义是解题的关键.一般的,在一个变化过程中,假设有两个变量x 、y ,如果对于任意一个x 都有唯一确定的一个y 和它对应,那么就称x 是自变量,y 是x 的函数. 4.B将2x=代入函数解析式即可求得.【详解】当2x=时,21yx=-+2221-+==-故选B【点睛】本题考查了已知自变量的值,求函数的值,正确的计算是解题的关键.5.A【解析】【分析】由题意可得前半程所需时间为15分钟,则剩下路程所需时间为(t﹣15)分,再由1200﹣y=600+50(t ﹣15),可求函数关系式.【详解】解:∵以每分钟40米的速度行走了前半程,∴以每分钟40米的速度行走了600米,∴600÷40=15(分),∴剩下路程所需时间为(t﹣15)分,∴1200﹣y=600+50(t﹣15),整理得y=﹣50t+1350,故选:A.【点睛】本题考查函数关系式,能够通过题中条件获取信息,并能将所得信息转化为数学关系式是解题的关键.6.D【解析】【分析】对于自变量的每一个确定的值,函数值有且只有一个值与之对应,根据函数的概念即可求出答案.【详解】根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,所以能表示y是x的函数是:.故选:D.【点评】本题主要考查了函数的概念.函数的意义反映在图象上简单的判断方法是:作垂直x轴的直线在左右平移的过程中与函数图象只会有一个交点.7.C【解析】【分析】根据函数的概念可直接进行排除选项.【详解】长方形的面积=长×宽,当宽一定时,它的长与面积成函数关系故A正确;正方形面积=正方形的周长的平方的十六分之一,故B正确;等腰三角形的面积=底边长×底边上的高×0.5,当底边上的高不确定时,等腰三角形的底边长与面积不成函数关系,故C不正确;等腰三角形顶角的度数是180与底角的度数2倍的差,等腰三角形顶角的度数与底角的度数成函数关系,故D正确.故选C.【点睛】本题主要考查函数的概念,熟记掌握函数的概念是解题的关键.8.C【解析】【分析】根据题意可得这根蜡烛总长度是22cm,燃烧10分钟后变短了4cm,可得每分钟燃烧410cm,据此可得各选项答案.【详解】解:A、燃烧10分钟后变短了4cm,可得每分钟燃烧4100.4cm,故不正确,不合题意;B、点燃的蜡烛每分钟燃烧的长度一定,长22cm的蜡烛,点燃10分钟,变短了4cm,设点燃x分钟后,还剩C、第23分钟时,蜡烛还剩y=22﹣0.4×23=12.8cm,故正确,符合题意;D、第51分钟时,蜡烛还剩y=22﹣0.4×51=1.6cm,故不正确,不合题意;故选:C.【点睛】本题主要考查一次函数的应用,解答本题的关键是明确题意,求出相应的函数关系式,利用函数解析式解答问题.9.D【解析】【分析】根据函数图象的横坐标,可得时间,根据函数图象的纵坐标,可得离家的距离.【详解】解:20分钟到报亭离家的距离随时间的增加而增加;看报10分钟,离家的距离不变;15分钟回家离家的距离随时间的增加而减少,故D选项符合题意.故选:D【点睛】本题考查了函数图象,根据横轴和纵轴表示的量,得出时间与离家距离的关系是解题关键.10.B【解析】【分析】根据图象可得两地之间的距离,再分别算出两人的行进速度,据此可得各项数据进而判断各选项.【详解】解:由图可知:当时间为0h时,两人相距12km,即甲乙两地相距12km,故C不符合题意.当时间为0.5h时,甲乙两人之间距离为0,即此时两人相遇,故A不符合题意;∵李刚比王强先到目的地,∴王强全程花费的时间为1.5h,∴王强的速度为12÷1.5=8km/h,∵12÷0.5=24km/h,∴李刚的速度为16km/h,∴李刚到达目的地时两人相距0.75×8=6km,王强比李刚晚0.75h到达目的地,故B选项符合题意,D选项不符合题意;故选B.【点睛】本题考查了动点问题的函数图象,解题时要充分理解题意,读懂函数图象的意义.11.r c【解析】【详解】试题解析:∵圆的周长随着圆的半径的变化而变化,∴对于圆的周长公式2πC r=,其中自变量是r,因变量是C.故答案为,.r C12.t【解析】【分析】分析:根据函数的定义:设x和y是两个变量,对于x的每一个值,y都有唯一确定的值和它对应,我们就说y是x的函数,其中x是自变量.据此解答即可.【详解】解:在男子1000米的长跑中,运动员的平均速度v=1000t,则这个关系式中自变量是t,故答案为:t.【点睛】本题考查了函数的定义,理解掌握函数的定义是解体的关键.13.2=S【解析】【分析】作出三角形的高,利用直角三角形的性质及勾股定理可求得高,那么三角形的面积=12×底×高,把相关数值代入即可求解.【详解】解:如图,ABC为等边三角形,边长为x,作AD⊥BC于点D,则∠ADB=90°,∵ABC 为等边三角形 ∴BD =CD =12BC =12x在Rt △ABD 中,∠ADB =90°,AB =x ,BD =12x ∴223AD AB BD x =- ∴2113322S BC AD x =⨯⋅⋅==,∴S 表示成x 的函数为23=S x . 故答案为:23=S x . 【点睛】本题考查三角形的面积的求法,找到等边三角形一边上的高是重点. 14.L =0.4n +1.8 【解析】 【分析】由小树每年长0.4m,则n 年长0.4n m,再由栽下时小树高1.8 m,据此求解即可. 【详解】解:∵每年长0.4m ∴n 年长0.4n m ∵栽下时小树高1.8 m∴n 年后的树高L 与年数n 之间的关系式为 L =0.4n +1.8. 故答案为: L =0.4n +1.8. 【点睛】本题主要考查了列函数关系式,正确理解题意是解题的关键 15.1003km /h 1.8 【解析】 【分析】根据题意和函数图象中的数据可以计算出甲乙的速度,从而可以解答本题.解:由题意和图象可得,乙到达B 地时甲距A 地120km , 甲的速度是:120÷(3-1)=60km /h , 乙的速度是:80÷3=803km /h , ∴甲与乙的速度之差为60-803=1003km /h , 设乙出发后被甲追上的时间为x h , ∴60(x -1)=803x ,解得x =1.8, 故答案为:1003km /h ,1.8. 【点睛】本题考查函数的图象,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答. 16.①②④ 【解析】 【分析】根据函数图象可知,小明40分钟爬山2800米,40~60分钟休息,60~100分钟爬山(3800−2800)米,爬山的总路程为3800米,根据路程、速度、时间之间的关系进行解答即可. 【详解】解:小明中途休息用了60−40=20分钟,故①正确;小明休息前爬山的速度为2800÷40=70(米/分钟),故②正确; 小明在上述过程中所走的路程为3800米,故③错误;小明休息前爬山的速度为2800÷40=70(米/分钟),小明休息后爬山的速度是(3800−2800)÷(100−60)=25(米/分钟),小明休息前爬山的平均速度大于休息后爬山的平均速度,故④正确; 故答案为:①②④. 【点睛】本题考查了函数图象,读懂函数图象,从图象中获取必要的信息是解决本题的关键. 17.(1)2CO 释放量与年份;(2)2CO 释放量的随着年份的增加而增大 【解析】 【分析】(1)分别根据变量、因变量的定义分别得出即可; (2)根据图表分析得出答案.解:(1)上标反映的是2CO 释放量与年份之间的关系; (2)2CO 释放量的随着年份的增加而增大. 【点睛】本题考查了常量与变量的定义以及利用图表得出正确方案等知识,利用图表获取正确数据是解题关键.18.①高、棱柱的体积;②100V h =;③3500cm ;④3100cm ,31000cm 【解析】 【分析】①在这个变化中,棱柱的体积随着高的变化而变化可知自变量、因变量; ②根据棱柱的体积公式:h V S =可得答案;③利用待定系数法把高为5cm 代入函数关系式即可;④利用待定系数法把高为1cm 代入函数关系式,高为10cm 代入函数关系式计算即可. 【详解】解:∵棱柱的体积=底面积×高, ∴长方体的体积随着高的变化而变化,①在这个变化中,自变量、因变量分别是高、棱柱体积, 故答案为:高、棱柱体积; ②由题意得:1010100V h h =⨯⋅=, 故答案为:100V h =; ③由②得31005=500cm V =⨯, 故答案为:3500cm ; ④∵100V h =, ∴V 随h 的增大而增大,∴当1cm h =,3100cm V =,当10cm h =,31000cm V =∴棱柱的高由1cm 变化到10cm 时,它的体积由3100cm 变化到31000cm , 故答案为:3100cm ,31000cm 【点睛】本题主要考查了因变量和自变量,求因变量,函数关系式等,熟练掌握棱柱的体积公式是解题的关键. 19.(1)时间t ; 离家路程s (2)30(3)2.5;23【解析】 【分析】(1)根据图象进行判断,即可得出自变量与因变量; (2)根据图象中数据即可得到路程;(3)根据图象直接可得到爸爸驾车出发的时间;先算出小明坐公交车到滨海公园的平均速度和爸爸驾车的平均速度,设爸爸出发后x h 追上小明,根据在x 这段时间内,爸爸通过的路程比小明乘公交车通过的路程多12km 列出方程,解方程即可. (1)由图可得,自变量是时间t ,因变量是离家路程s ; 故答案为:时间t ;离家的路程s . (2)由图可得,小明家到滨海公园的路程为30km ; 故答案为:30. (3)由图可得,小明出发2.5小时后爸爸驾车出发; 爸爸驾车的平均速度为()3030km/h 3.5 2.5=-,小明乘公交车的平均速度为:()3012=12km/h 4 2.5--, 设爸爸出发后x h 追上小明,根据题意得:301212x x -=,解得:23x =. 故答案为:2.5;23h . 【点睛】本题考查了路程时间的图象,以及行程问题的数量关系的运用,解答时理解清楚图象的意义是解答此题的关键.20.(1)提出概念所用的时间x 和对概念的接受能力y 两个变量之间的关系,提出概念所用时间x 是自变量,对概念的接受能力y 是因变量;(2)56.3;(3)提出概念所用时间为13分钟时,学生的接受能力最强;(3)当2x 13<<时,y 值逐渐增大,学生的接受能力逐步增强;当13x 20<<时,y 值逐渐减小,学生的接受能力逐步降低 【解析】 【分析】(1)根据自变量与因变量的定义即可求解;(2)根据表格中数据即可求解;(3)根据表格中13x时,y的值最大是59.9,即可求解;(4)根据表格中的数据即可求解.【详解】解:()1提出概念所用的时间x和对概念的接受能力y两个变量;提出概念所用时间x是自变量,对概念的接受能力y是因变量.()2当x7=时,y56.3=,所以当提出概念所用时间是7分钟时,学生的接受能力是56.3.()3当13x时,y的值最大是59.9,所以提出概念所用时间为13分钟时,学生的接受能力最强.()4由表中数据可知:当2x13<<时,y值逐渐增大,学生的接受能力逐步增强;当13x20<<时,y值逐渐减小,学生的接受能力逐步降低.【点睛】准确理解函数的概念:在运动变化过程中有两个变量x和y,对于x的每一个值,y都有唯一确定的值与之对应,y是x的函数,x是自变量.21.(1)1500,4;(2)从12分钟到14分钟的速度最快,速度是450m/min;(3)小华一共骑行的路程是:2700m;(4)5min,图见解析【解析】【分析】(1)根据图象可以直接求得;(2)求得各段的速度,然后进行比较即可;(3)求得各段的路程,然后求和即可;(4)求得回来时所用的时间,即可补充图象.(1)小华到学校的路程是1500m,在书店停留的时间是12﹣8=4(min).故答案是:1500,4;(2)从开始到6分钟的速度是12006=200m/min,从6分钟到8分钟的速度是:120060086-=-300m/min;从12分钟到14分钟的速度是:15006001412-=-450m/min.则从12分钟到14分钟的速度最快,速度是450m/min;(3)小华一共骑行的路程是:1200+600+(1500﹣600)=2700(m);(4)小华回家的时间是1500300=5(min)..【点睛】本题考查了函数的图象,正确根据图象理解运动过程是关键.22.(1)100千米/小时;(2)100千米;(3)1.3小时或1.7小时【解析】【分析】(1)根据题意列算式即可得到结论;(2)根据题意求出n的值以及甲车的速度为即可解答;(3)求出甲车的速度以及乙车返回前的速度,再根据题意列方程解答即可.【详解】解:(1)m=300÷(180÷1.5)=2.5,∴乙车从A地到达B地所用的时间为2.5小时,∴乙车从B地返回A地所用时间:5.5-2.5=3(小时),∴乙车从B地到达A地的速度:300÷3=100(千米/小时);(2)n=300÷[(300﹣180)÷1.5]=3.75,甲车的速度为:(300﹣180)÷1.5=80(千米/时),故乙车到达B地时甲车距A地的路程为:80×(3.75﹣2.5)=100(km);(3)甲车的速度为80千米/时,乙车返回前的速度为:180÷1.5=120(千米/时),设乙车返回前甲、乙两车相距40千米时,乙车行驶的时间为x小时,根据题意得:80x+120x=300﹣40或80x+120x=300+40,解得x=1.3或x=1.7,故乙车返回前甲、乙两车相距40千米时,甲车行驶的时间为1.3小时或1.7小时.【点睛】本题考查了函数的图象、有理数的混合运算、一元一次方程的应用,理解题意,能从图象中获取相关联信息,行程问题的数量关系的运用是解答的关键.。

人教版八年级数学下册19章19.1.1变量与函数(教案)

人教版八年级数学下册19章19.1.1变量与函数(教案)
同学们,今天我们将要学习的是《变量与函数》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过两个量相互依赖的情况?”比如,自行车的速度和行驶时间的关系。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索变量与函数的奥秘。
(二)新课讲授(用时10分钟)
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与函数相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示函数的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“函数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
3.在小组讨论中,要注意问题的设置,引导学生正确地思考和解决问题。
4.课后要加强作业和练习的布置,帮助学生巩固所学知识。
在今后的教学中,我会根据这节课的反思,不断调整和优化教学方法,以提高学生的学习效果。
在总结回顾环节,我强调了对函数概念和三要素的掌握,希望学生们能够在日常生活中运用所学知识。然而,我也意识到,仅仅依靠课堂上的讲解和练习是远远不够的,还需要在课后布置一些相关的作业和练习,以巩固所学知识。
1.在理论讲解时,要尽量用简单明了的语言,结合实际案例,让学生更好地理解抽象的概念。
2.在实践活动前,要进行充分的讲解和演示,确保学生能够顺利地进行实验操作。
-举例:在函数y = 2x + 3中,2和3是常量,x和y是变量。
2.教学难点
-函数关系式的建立:学生需要学会从实际问题中பைடு நூலகம்象出函数关系,并用数学符号进行表达。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数值y = 1__3_._7_1_亿__ .
中国人口数统计表
年份 1984 1989 1994 1999 2010
人口数/亿 10.34 11.06 11.76 12.52 13.71
3.判断下面各图中的y是不是x的函数,并说明理由:
X
y
X
y
y X
1 -111111111
1
1
2
1121111111
(2)试用含x的式子表示
y.___y_=_5_-_x_______
A
这个问题反映了邻边长____y_____
随 ___x____的变化过程.
C y
x
B
4.圆形水波慢慢地扩大,在这一过
程中,当圆的半径r 分别为10 cm,20 cm,30 cm 时,圆的面积S 分别为多少?在这个过程中,
哪些量是变化的?
(2)试用含t的式子s.____S___=__6_0_t________
这个问题反映了匀速行驶的汽车所行驶的路程__S__随行驶时间
_t__的变化过程.
2.电影票的售价为10元/张,第一场售出150张票,第二场售出 205张票,第三场售出310张票,三场电影的票房收入各多少元?
X
150
205
ห้องสมุดไป่ตู้
310 ……
y
1500
2050
3100
……
(1)在以上这个过程中,变化的量是_售__票__张_数x、票__房_收__入__y_.
不(2变)试化用的含量x是的_式__子_售_表价_示_1_0_y元_._______y__=____1__0__x_____________.
这个问题反映了票房收入____y_____随售票张数____x_____的变
化过程.
3.用10 m长的绳子围一个矩形,当矩形的一边长x 分别为3 m,3.5 m,4 m,4.5 m 时,它的邻边长y分别
为多少?在矩形改变形状的变化过程中,哪些量是变化 的?哪些量是固定不变?
(1)在以上这个过程中,变化的量 D
是__一__边__长_x_,_邻__边__长_y___.
不变化的量是_1_0_m_长__的__绳_子_.
3.看完课本后试着梳理学案基础自清部 分.
1.汽车以60km/h的速度匀速行驶,行驶路程为skm,行驶时间为th. 填写下表:
T(h) 1
2
3
……
S(km) 60
120
…… 180
(1)在以上这个过程中,变化的量是时__间__t_、_路__程__s_.不变化的量
是_速度60_千__米_/_时__.
A.π、R是变量,2是常量
B.只有R是变量,2、π是常量
C.C是变量,π、R是常量
D.C、R是变量,2、π是常量
2.下列关系中,y不是x的函数的是( B )
A. y=|x|
B. | y|=2x
C. y=3x-5
D.y=
3.下列各曲线中那些表示y是x的函数:
y
y
O
x
A (是)
y
O
x
B (否)
y
O
x
(是)
章 哲学上有句话叫 “万物 节 引皆变”,意思是世界上的所 语有物体都是在变化的,我们 生活在一个时刻变化的世界 里。
树高随树龄而变化 气温随海拔而变化
章 我们怎样才能更多的去认识 节这个千变万化的世界呢?
引 人们经过归纳总结得出了一 语个重要的数学工具——函数,帮
我们揭开这神秘世界的一角。
第十九章 一次函数
19.1 函数
19.1.1 变量与函数
学习目标
1.通过简单的实例,了解常量与变量的意义. 2.结合具体实例了解函数的概念. 3.在函数概念的形成过程中体会运动变化与 对应的思想.
学法指导
1.结合学习目标请同学们认真研读课 本71-73页内容.
2.在自学过程中可对重要的知识点进 行圈点勾画,对疑难点进行标注。
函数具备条件:(1)存在一个变化过程;
(2)两个变量;
(3)一种对应关系.(其中自变量每取一个
值,另一个变量有且有唯一值与它对应)
1.如图是体检时的心电图,其中图上的横坐标x表示时间,纵坐标y表示心 脏部位的生物电流,这个问题的变量是_x__和y_,__y___是 x 的函数。
2.人口数统计表中,年份与人口 数可以分别记作两个变量x和 y._x___ 是自变量,人口数 _y___ 是 X 函数,当x=1999 时,函 数值 y= _1_2_._5_2__亿___, 当 x =2010时,
C
O
x
(是)
D
我的收获
1.常量和变量 2.函数的概念
具备三个条件: (1)一个变化的过程;(2)有两个变量; (3)一种对应关系. 3.函数的三种表达法.(解析式法,图 象法,列表法)
r
10
20
30
s
100π
400 π
900 π
(1)在以上这个过程中,变化的量是_半__径__r_,_圆__的__面_积__S.
不变化的量是____π______.
(2)试用含r的式子表示s._____S__=__π_r_2___
这个问题反映了圆的面积____S_____随半径 ___r____的
变化过程.
变量:在一个变化过程中,数值发生变化的量为变量。
S = 60 t
y=5—x
常量:在一个变化过程中,数值始终不变的量为常量。
请指出上面余下各个变化过程中的常量、变量。
并说明这4个关系式中变量的个数?
y = 10x
S = πr2
一般地,在一个变化过程中,如果有两个变量x与y,并且 对于x的每一个确定的值,y都有 唯一确定 的值与其对 应,那么就说x是 自变量 ,y是x的 函数 .当x=a时, y=b,那么b叫做当自变量的值为a时的 函数值 .
3
211111
4
31111
4
-2 …

4

5

4
4
-4
11111111
x
11111
5
5
-5…


归纳:对于x的每一个确定的值,y都有唯一确定的值与其 对应,指明了变量x 与y 的对应关系可以是:“一对一”
“二对一” 或 “多对一” ,如果是 “一对多”的情况
就不是函数了.
1.对于圆的周长公式C=2πR,下列说法正确的是( D )
相关文档
最新文档