ELEC5508_Wireless Engineering_2013 Semester 2_Hybrid ARQ

合集下载

2021年全国大学生电子竞赛仪器和元器件清单

2021年全国大学生电子竞赛仪器和元器件清单

2021年全国大学生电子竞赛仪器和元器件清单2021年全国竞赛仪器和主要元器件清单文章日期:2021-08-0516:45:22文章点击率:462021年全国大学生电子设计竞赛仪器和主要元器件目录【本科组】1.仪器清单60mhz双通道数字示波器100mhz双通道数字示波器500mhz双通道数字示波器低频信号发生器(1hz~1mhz)高频信号发生器(1mhz~120mhz)300mhz信号源双通道函数信号发生器(100mhz,dds)函数发生器(10mhz,dds)低频毫伏表中高频毫伏表中150mhz频率计数字风速仪电子称(最小称量5kg)五位半数字万用表秒表量角器单片机开发系统pld研发系统2.主要元器件目录rl78/g13mcu板(芯片型号r5f100lea),已下发到赛区组委会带防撞圈的多旋翼飞行器,外形尺寸:长度≤50cm,宽度≤50cm;续航时间大于10分钟拎保护板的18650型、容量2000~3000mah的锂离子电池滑线变阻器(10ω/3a)光电传感器100mhz晶体振荡器无线收发模块具备av端子输入的彩色摄像头(彩色制式不减半)大功率电阻(30ω/50w,5ω/25w)大功率控制器管、大功率二极管小型轴流风机(直径5~10cm,5~12vdc)万向节(连接杆直径10mm以下)三维角度传感器或电子陀螺仪变容二极管(2~20pf)【高职高专组】1.仪器清单60mhz双通道数字示波器低频信号发生器函数发生器(10mhz,dds)低频毫伏表三位半数字万用表秒表量角器单片机开发系统pld开发系统2.主要元器件清单单片机最小系统板小型继电器光电传感器角度传感器大功率开关管、大功率二极管电动机(20w以内,STM电机或拎减速器直流电机)小型直流风机。

WiMAX射频一致性自动测试系统设计及实现的开题报告

WiMAX射频一致性自动测试系统设计及实现的开题报告

WiMAX射频一致性自动测试系统设计及实现的开题报告一、研究背景WiMAX,即全球互操作性无线通信,是IEEE 802.16标准的一种无线宽带接入技术。

WiMAX技术具有高速率、大容量、远程传输等优点,已经广泛应用于无线通信领域。

在WiMAX网络的建设中,射频一致性自动测试是非常重要的一环。

在WiMAX网络中,各个节点之间的射频信号的一致性非常重要。

如果各个节点之间的射频信号不一致,就会导致网络中断、数据丢失等问题,从而影响网络的正常运行。

因此,为了确保WiMAX网络的正常运行,需要对各个节点的射频信号进行一致性测试。

目前,射频一致性测试一般是由技术人员通过手动测试实现的,测试过程繁琐、效率低下。

因此,本研究将设计一种WiMAX射频一致性自动测试系统,旨在提高测试效率,提升测试精度。

二、研究内容本研究将设计一种WiMAX射频一致性自动测试系统,主要包括以下内容:1.硬件设计:设计WiMAX射频一致性测试仪器,包括发射信号源、接收信号源等组成的测试系统,以及测试仪器的控制电路等。

2.软件设计:设计测试仪器的控制软件,实现测试仪器对WiMAX节点之间的射频信号进行一致性自动测试功能。

三、研究意义WiMAX技术的广泛应用,使得WiMAX网络射频一致性测试成为一个非常重要的问题。

本研究将设计一种WiMAX射频一致性自动测试系统,可以有效地提高测试效率,提升测试精度,有利于WiMAX网络的正常运行。

四、研究方法本研究将采用软硬件相结合的方法,设计WiMAX射频一致性自动测试系统。

具体方法包括:1.硬件设计:设计WiMAX射频一致性测试仪器,包括发射信号源、接收信号源等组成的测试系统,以及测试仪器的控制电路等。

2.软件设计:设计测试仪器的控制软件,实现测试仪器对WiMAX节点之间的射频信号进行一致性自动测试功能。

五、预期结果本研究的预期结果包括:1.设计出一种能够对WiMAX节点之间的射频信号进行一致性自动测试的测试系统,并实现射频信号的自动测试功能。

无线通用串行总线的信道状态信息提取和处理

无线通用串行总线的信道状态信息提取和处理

无线通用串行总线的信道状态信息提取和处理杨润丰;李铭钊;张智聪【摘要】Wireless universal serial bus(W-USB) system application is based on ultra wideband(UWB) radio platform exploiting multiband orthogonal frequency division multiplexing (MB-OFDM) technology. When baseband singal is processed in receiver, least squares estimation method is used to efficiently obtained channel state information(CSI) from channel estimation sequence. The CSI is applied to scale the dual carrier modulation demapper output to obtain more reliable soft bit value. Experimental results show that using CSI aided decoding techniques can improve decoding error correction for the receiver and achieve better system performance.%无线通用串行总线( W-USB )是基于超宽带( UWB )无线电平台的多频带正交频分复用( MB-OFDM )技术的系统应用。

在接收机进行基带信号处理过程中,利用最小二乘估计均衡方法从系统的信道估计序列中快速地提取有效的信道状态信息,并把提取的信道状态信息按比例调节双载波解调器输出的软比特值。

基于NS2的高密度WLAN同频干扰

基于NS2的高密度WLAN同频干扰

基于NS2的高密度WLAN同频干扰陈桂慧;郑华;刘华锐【摘要】首先简单介绍了无线局域网同频干扰产生的原因,然后在 NS2仿真平台上搭建高密度无线局域网环境。

通过仿真,测量系统中总的数据吞吐量、端到端传输时延和平均吞吐量来探究高密度 WLAN 下同频干扰强弱程度随AP数增加的变化趋势。

仿真结果表明,高密度WLAN下同频干扰强弱程度随AP数的增加遵循一定的变化规律,这为实际规划接入节点时同频干扰强弱的控制提供了依据,也为仿真研究高密度无线局域网提供了参考。

%In this paper, we first introduce the reasons of co-channel interference in WLAN, and then build a dense WLAN environment in NS2. We explore the strength of the co-channel interference, as the number of APs increase in a dense WLAN environment, by measuring its total throughput, end to end delay and the average throughput. The simulation results indicate that the strength of co-channel interference follow certain rules. It provides a basis for controlling the strength of co-channel interference when we plan the WLAN network. It also provides references for the simulation study of the dense WLAN.【期刊名称】《计算机系统应用》【年(卷),期】2015(000)002【总页数】5页(P206-210)【关键词】NS2;高密度WLAN;多AP;同频干扰【作者】陈桂慧;郑华;刘华锐【作者单位】福建师范大学光电与信息工程学院,福州 350007;福建师范大学光电与信息工程学院,福州 350007; 福建师范大学医学光电科学与技术教育部重点实验室,福州 350007; 福建师范大学福建省光子技术重点实验室,福州 350007; 福建师范大学智能光电系统工程研究中心,福州 350007;福建师范大学光电与信息工程学院,福州 350007【正文语种】中文目前, 随着人们对无线应用的需求日益增长, 无线局域网技术快速发展, 取得了很大的成果. 然而, 现有的无线局域网, 还是存在一些不足之处. 例如: 在科技展会中, 由于无线设备(包括用户端的移动站点(STA)和服务器端的接入点(AP)具有数量多、分布不规则、无法通过中心集中控制器集中控制等特点, 用户的无线体验急剧下降. 像科技展会这种高密度无线局域网环境, 当环境中的移动站点和接入点数量增加到一定数量时, 整个无线通信系统就会出现接入时延变长、网络吞吐量下降、丢包严重等现象, 从而严重影响了无线设备的使用.之所以会产生这样的现象, 很大一部分原因是高密度无线局域网环境中存在严重的同频干扰[1,2]. 因此研究同频干扰对解决高密度无线局域网下通信性能差问题有着重大的意义.目前, WLAN同频干扰问题的解决方法主要有两种: 功率控制法和无线信道动态分配法[3-8]. 功率控制法, 主要通过调整AP的功率来控制AP的信号覆盖范围, 使相邻AP信号覆盖范围的重叠部分变小甚至消失, 从而减小AP间的同频干扰, 提高系统的通信性能, 但在高密度WLAN下, 由于有限范围内AP和STA数较多, 通过AP 的功率控制很难将相邻AP信号覆盖范围的重叠部分完全隔离, 因此在高密度WLAN下这种方法不大适用. 无线信道动态分配法, 主要通过动态分配信道资源, 使AP工作在最合适的信道上, 减小AP间的同频干扰, 提升系统的通信性能. 这种方法的关键在于如何根据同频干扰的强弱程度确定AP的最适信道. 因此, 研究高密度WLAN下同频干扰强弱的变化规律, 可为规划接入节点时, 最适信道的选择和信道的分配提供参考.根据IEEE标准的相关规定, WLAN工作在2.4GHz和5GHz这两个频段, 本文以2.4GHz为例进行研究. 工作频段在2.4GHz(2.4GHz-2.4835GHz)的802.11b和802.11g, 其可用带宽为83.5MHz, 在中国我们同欧洲一样将这段频段资源划分为13份, 每一份称为一个子信道, 每个子信道的频带宽度为22MHz. 这13个子信道相邻多个之间存在频率重叠(如信道1与信道2、3、4、5有频率重叠), 整个频段内只有3个信道是相互不重叠的, 一般取信道1、信道6、信道11作为3个互不重叠的信道[9]. 具体的信道划分如图1所示.无线局域网系统采用的是CSMA/CA(载波监听多路访问/冲突避免)机制, 这种机制在系统发送数据前, 会先检测信道的状态, 若信道处于繁忙状态, 则系统继续监听信道, 直到信道空闲; 若信道处于空闲状态, 则系统先等待DIFS(分布式协调帧间隔)时间, 然后经过一段随机的退避时间之后开始发送数据[10]. 这种机制保证了某一时刻, 某一个子信道上只有一个站点(STA)或者一个接入点(AP)发送数据.由于WLAN采用这样的信道划分方法和MAC层CSMA/CA机制, 所以当相邻的AP采用相同的子信道时, 系统由于AP之间的相互干扰, 通信质量会明显下降, 这种干扰即为同频干扰[11,12]. 在高密度无线局域网环境下, 同频干扰是导致系统通信性能差的重要原因.2.1 仿真实验设计为了解决高密度WLAN下通信质量差的问题, 研究仿真环境下同频干扰强弱的变化规律有着重要的意义.在网络仿真软件的选择上, 本文对主流仿真软件OPNET和NS2(Network Simulator version 2)进行了对比, 比较结果如表1所示.从表1中可以看出NS2具有执行效率高、扩展性能好、开源免费且适合仿真网络协议等特点, 所以本文选用NS2来对高密度WLAN下的同频干扰进行仿真[13,14]. 通过对高密度WLAN环境的调查和研究, 我们发现这种环境中, 单个AP连接的STA数并不多, 通信质量差的主要原因并不在于单个AP上连接的STA数量, 而在于环境中的AP数量, 大量的AP产生了强大的同频干扰, 所以本文建立了一个由单个AP与单个STA组成的通信系统, 定义为AP-STA对, 通过建立多个AP-STA对来近似模拟高密度WLAN环境. 实验中, 我们将所有的AP设置为同信道(即令AP同频), 然后在NS2中逐渐增加AP-STA对数直至50对. 理论上, 实验的AP-STA对数最大值应该越大越好. 但是, 一方面, 从多次实验结果中我们发现当AP-STA对数达到50对左右之后, 系统总的吞吐量、端到端时延和每个AP-STA对的平均吞吐量变化趋于平缓, 此时若继续增大AP-STA对数的最大值需要巨大的工作量, 而且所获得的系统性能数据变化比较小. 另一方面, AP和STA的载波监听范围有一定的限制, 若继续增大AP-STA对数的最大值就无法保证这么多AP和STA的监听范围相互重叠, 也就无法保证这些AP-STA对相互之间存在同频干扰. 综合这两方面因素, 我们取AP-STA对数的最大值为50. 实验中, 测量相应的系统总吞吐量、端到端时延和平均吞吐量来探究同频干扰强弱的变化规律.仿真中, 本文将AP和STA节点的载波监听范围和通信范围分别设为550m和250m, 也即默认值, 将相邻AP-STA对之间的距离设为4m, 将每对AP-STA对中的AP与STA之间的距离设为5m, 以保证AP与AP之间, AP与STA之间, STA与STA之间皆相互“可见”. 仿真中AP-STA对的布局如图2所示.另外, 本文在节点的应用层采用FTP业务流, 传输层采用TCP传输协议来模拟实际的业务环境. 部分仿真参数设置如表2所示, 其它参数采用系统默认值.由于NS2无内建数据绘图工具, 所以需要借助其他工具将仿真结果转换成图表形式. 本文通过gawk文本处理工具对仿真结果的trace(跟踪文件)进行网络性能分析[15], 再通过Gnuplot工具绘制系统总的吞吐量、端到端时延和平均吞吐量变化图. gawk的几个网络性能分析程序流程大体一致, 以端到端时延的分析为例, 程序流程如图3所示.2.2 实验结果分析通过测量系统的总的吞吐量, 我们可以得到系统总的吞吐量变化如图4所示.从吞吐量变化图中, 我们可以看出随着AP-STA对数的增加, 系统总的吞吐量的变化趋势为: 先增大然后逐渐地减小, 整体上看系统总的吞吐量变化不是很大. AP-STA对数由1变为2时, 系统总的吞吐量增加的原因是: 只有一个AP-STA对时, 受AP、STA通信能力的限制, 系统的通信资源没有被完全占用, 当AP-STA对数增加到2时, 系统的通信资源被更多的占用, 而且此时同频干扰比较弱, 所以系统总的吞吐量增大了.AP-STA对数达到2之后, 系统总的吞吐量逐渐减小的原因是: 随着AP-STA对数的逐渐增加, 系统的通信资源虽然被更多地利用了, 但此时增加的资源利用量对系统总的吞吐量的影响与同频干扰对系统总的吞吐量的影响相比较小, 所以系统总的吞吐量逐渐减小.由系统总的吞吐量, 我们可以算出每个AP-STA对的平均吞吐量, 记系统总的吞吐量为Throughput, AP-STA对数为N, 每个AP-STA对的平均吞吐量为Avg_throughput, 则平均吞吐量的计算公式为:通过计算, 我们可以得到每个AP-STA对的平均吞吐量变化如图5所示.从图5我们可以看出, 每个AP-STA对的平均吞吐量随着AP-STA对数的增加, 逐渐减小, 而且随着AP-STA对数的增加, 平均吞吐量的减小的速度越来越慢. 当AP-STA对数达到10时, 每个AP-STA对的平均吞吐量(0.5829Mbps)将远小于只有一个AP-STA对时的值(5.9203Mbps). 随AP-STA对数的继续增加, 平均吞吐量最终趋近于0(此时同频干扰强度相当大, 系统的通信质量相当低).通过测量系统端到端的时延, 我们可以得到系统端到端的时延变化如图6所示.从时延变化图中, 我们可以看出, 随着AP-STA对数的增加, 系统端到端的时延总体呈增大的趋势, 这是由于同频干扰的强度在逐渐增大. 当AP-STA对数达到14时, 系统端到端时延(0.1865s)将远大于只有一个AP-STA对时的值(0.0149s), 而且AP-STA对数在0至14之间时, 系统端到端的时延几乎呈线性增大, 说明此段时间内, 同频干扰对时延的影响也呈线性增大. 当AP-STA对数达到14之后, 系统端到端的时延增大速度逐渐变慢, 说明此段时间内, 同频干扰对时延的影响程度也逐渐变小.2.3 实际AP规划建议在一般的AP规划中, 为获取较高的通信性能, 应对AP进行合理的空间布局, 并充分利用墙体等天然隔断尽量避免或者减小AP间的同频干扰, 这些规划策略在文献[16]、[17]中已有详细的说明, 本文就不再赘述.而在科技展会这类高密度WLAN下规划AP, 由于AP和STA数较多, 通过一般的规划, AP间仍存在较大的同频干扰. 为进一步减小同频干扰, 根据前面AP-STA对仿真, 分析得出的结论(AP-STA对数达到10左右, 每个AP-STA对的平均吞吐量严重减小, 端到端时延严重增大等), 应进行合理的信道分配, 使相邻并使用同一信道的AP数尽可能的少, 避免超过10个, 否则严重的同频干扰将使这一区域的网络质量变得十分恶劣.3 结论本文在介绍了同频干扰产生原因的基础上, 利用网络仿真工具NS2构建简单的高密度WLAN仿真模型. 在模型中, 对系统总的吞吐量、端到端时延和平均吞吐量进行测量和计算. 仿真实验结果表明, 同频干扰对系统吞吐量、端到端时延等的影响程度随AP-STA对数的增加遵循一定的变化规律. 这为实际规划接入节点时同频干扰强弱的控制提供了依据, 也为仿真研究高密度无线局域网提供了参考.1 徐雅静,闫晓东,徐惠民.高密度WLAN环境下动态频率选择算法的研究.电子科技大学学报,2007,36(5):892–895.2 徐雅静,闫晓东,徐惠民.高密度WLAN环境下传输功率控制算法的研究.微电子学与计算机,2007,24(5):19–21,25.3 夏茂素,罗克露,闫丽明,等.WLAN分布式同频干扰避免新方法.通信技术,2009(7):42–44.4 刘达.WLAN信道规划与控制技术研究与实现.国防科学技术大学,2011.5 贾军.鉴于WLAN的无线网络设计与分析.中国科技博览,2012,(23):555–556.6 徐涛.WLAN网络优化分析系统的研究与实现.北京交通大学,2014.7 Yao T, Guo X, Qiu Y, et al. An integral optimization framework for WLAN design. 2013 15th IEEE International Conference on Communication Technology (ICCT). IEEE. 2013. 360–365.8 Bae SJ, Choi BG, Chae HS, et al. Self-configuration scheme to alleviate interference among APs in IEEE 802.11 WLAN. 2012 IEEE 23rd International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC). IEEE. 2012. 1025–1030.9 张国栋,李寿鹏.WLAN网络中同频AP互相干扰的研究.电信工程技术与标准化,2011,24(1):20–24.10 税国军,沈树群.基于NS.2的802.11DCF协议仿真模型研究.系统仿真学报,2009,(7):1829–1833.11 马向辰,薛强.WLAN系统干扰分析与规避措施研究.互联网天地,2013,(9):41–46.12 赖晓斌,林善亮.WLAN网络建设干扰因素分析初探.电子世界,2013,(10):156–156.13 王永胜,吴德伟,刘勇.基于NS2无线通信网络仿真研究.计算机系统应用,2004,13(6):25–27.14 王波,周志伟.网络模拟软件NS2与OPNET的剖析比较.计算机系统应用,2010,19(6):90–95.15 方路平,刘世华,陈盼,等.NS-2网络模拟基础与应用.国防工业出版社,2008.16 段琼,王奕婷.WLAN优化研究.电信工程技术与标准化,2011,24(4):31–35.17 李增雷.无线网络技术在校园网中的应用.信息与电脑(理论版),2012,5:44.Co-Channel Interference in a Dense WLAN Environment Based on NS2 CHEN Gui-Hui1, ZHENG Hua1,2,3,4, LIU Hua-Rui11(School of Electronic College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou 350007, China)2(Key Laboratory of Optoelectronic Science and Technology for Medicine Ministry of Education, Fujian Normal University, Fuzhou 350007, China)3(Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350007, China)4(Intelligent Optoelectronic Systems Research Centre, Fujian Normal University, Fuzhou 350007, China)Abstract:In this paper, we first introduce the reasons of co-channel interference in WLAN, and then build a dense WLAN environment in NS2. We explore the strength of the co-channel interference, as the number of APs increase in a dense WLAN environment, by measuring its total throughput, end to end delay and the average throughput. The simulation results indicate that the strength of co-channel interference follow certain rules. It provides a basis for controlling the strength of co-channel interference when we plan the WLAN network. It also providesreferences:for the simulation study of the dense WLAN.Key words: NS2; a dense WLAN; Multi-AP; co-channel interference①收稿时间:2014-06-06;收到修改稿时间:2014-07-07本文在介绍了同频干扰产生原因的基础上, 利用网络仿真工具NS2构建简单的高密度WLAN仿真模型. 在模型中, 对系统总的吞吐量、端到端时延和平均吞吐量进行测量和计算. 仿真实验结果表明, 同频干扰对系统吞吐量、端到端时延等的影响程度随AP-STA对数的增加遵循一定的变化规律. 这为实际规划接入节点时同频干扰强弱的控制提供了依据, 也为仿真研究高密度无线局域网提供了参考.1 徐雅静,闫晓东,徐惠民.高密度WLAN环境下动态频率选择算法的研究.电子科技大学学报,2007,36(5):892–895.2 徐雅静,闫晓东,徐惠民.高密度WLAN环境下传输功率控制算法的研究.微电子学与计算机,2007,24(5):19–21,25.3 夏茂素,罗克露,闫丽明,等.WLAN分布式同频干扰避免新方法.通信技术,2009(7):42–44.4 刘达.WLAN信道规划与控制技术研究与实现.国防科学技术大学,2011.5 贾军.鉴于WLAN的无线网络设计与分析.中国科技博览,2012,(23):555–556.6 徐涛.WLAN网络优化分析系统的研究与实现.北京交通大学,2014.7 Yao T, Guo X, Qiu Y, et al. An integral optimization framework for WLAN design. 2013 15th IEEE International Conference on Communication Technology (ICCT). IEEE. 2013. 360–365.8 Bae SJ, Choi BG, Chae HS, et al. Self-configuration scheme to alleviate interference among APs in IEEE 802.11 WLAN. 2012 IEEE 23rd International Symposium on Personal Indoor and Mobile Radio Communications(PIMRC). IEEE. 2012. 1025–1030.9 张国栋,李寿鹏.WLAN网络中同频AP互相干扰的研究.电信工程技术与标准化,2011,24(1):20–24.10 税国军,沈树群.基于NS.2的802.11DCF协议仿真模型研究.系统仿真学报,2009,(7):1829–1833.11 马向辰,薛强.WLAN系统干扰分析与规避措施研究.互联网天地,2013,(9):41–46.12 赖晓斌,林善亮.WLAN网络建设干扰因素分析初探.电子世界,2013,(10):156–156.13 王永胜,吴德伟,刘勇.基于NS2无线通信网络仿真研究.计算机系统应用,2004,13(6):25–27.14 王波,周志伟.网络模拟软件NS2与OPNET的剖析比较.计算机系统应用,2010,19(6):90–95.15 方路平,刘世华,陈盼,等.NS-2网络模拟基础与应用.国防工业出版社,2008.16 段琼,王奕婷.WLAN优化研究.电信工程技术与标准化,2011,24(4):31–35.17 李增雷.无线网络技术在校园网中的应用.信息与电脑(理论版),2012,5:44.。

ELEC5508_Wireless Engineering_2013 Semester 2_ELEC 5508 TUTO 4

ELEC5508_Wireless Engineering_2013 Semester 2_ELEC 5508 TUTO 4

• The bit rate defines the rate at which information is passed.
• The baud (or signalling) rate defines the number of symbols per second. • A group of n bits can be subsumed into a symbol, which in turn is mapped to one out of a set of M = 2n waveforms; that is called M-ary modulation, higher order modulation, multilevel modulation, or modulation with alphabet size M.
Comparison of Modulation types
Modulation BPSK GMSK QPSK 8PSK 16QAM 32QAM 64QAM Bits per symbol 1 1 2 3 4 5 6
Modulation BPSK QPSK 16 QAM 64QAM
Error margin 1 1 / √2 √2 / 6 √2 / 14
Digital / Quantised QAM
When using QAM, the constellation points are normally arranged in a square grid with equal vertical and horizontal spacing and as a result the most common forms of QAM use a constellation with the number of points equal to a power of 2 i.e. 2, 4, 8, 16 . . . . By using higher order modulation formats, i.e. more points on the constellation, it is possible to transmit more bits per symbol. However the points are closer together and they are therefore more susceptible to noise and data errors.

C波段三截面阶梯阻抗(SIR)滤波器的设计

C波段三截面阶梯阻抗(SIR)滤波器的设计

C波段三截面阶梯阻抗(SIR)滤波器的设计王志敏;陈波;杨德强【摘要】SIR滤波器有尺寸小,成本低,易于集成和寄生通带可调节等特点,在微波电路中有着广泛的应用.文中根据项目的需求对SIR滤波器的小型化和寄生通带调节进行研究,通过HFSS仿真软件设计了一个三截面SIR滤波器,中心频率为7.0 GHz,带宽为6.5~7.5 GHz,带内插损优于1.5 dB,在4.0 GHz和9.0 GHz处抑制度大于55dB.该滤波器结构充分利用空间,比经典发夹型缩小近20%.调节寄生通带的变量增加,调节更加灵活,仿真显示在带宽的二倍谐波处抑制度优于35 dB.【期刊名称】《实验科学与技术》【年(卷),期】2011(009)002【总页数】3页(P10-12)【关键词】三截面;SIR滤波器;小型化;寄生通带【作者】王志敏;陈波;杨德强【作者单位】电子科技大学电子工程学院,成都,610054;电子科技大学电子工程学院,成都,610054;电子科技大学电子工程学院,成都,610054【正文语种】中文【中图分类】TN61在无线与射频通信系统中,微带滤波器以其成本低,易于集成的特点得到了广泛应用。

随着移动通信技术的发展,市场对于小型化和谐波抑制度尤其是二次谐波抑制度的要求越来越高。

微带阶梯阻抗滤波器具有体积小、结构简单、加工方便、成本低、易于集成化且可通过控制耦合线段和非耦合线段,有效地控制滤波器寄生通带的位置等优点,因此非常具有研究意义和市场价值。

本文首先大概介绍下 SIR带通滤波器的基础电路原理,然后根据原理使用 HFSS软件设计了一个C波段的五阶三截面 SI R带通滤波器模型并进行仿真分析,经过优化达到预定的性能指标。

1 SIR带通滤波器的设计原理1.1 SIR基本原理及其等效电路SI R是由两个以上具有不同特性阻抗的传输线组合,可以传输横向电磁场或准横向电磁场模式的谐振器。

本文研究的是λg型 SIR,这是由于λg/2型 SIR是由带状线结构组成,允许有更广的几何结构型式,且和有源器件有更好的兼容性[1]。

ELEC5508_Wireless Engineering_2013 Semester 2_ELEC5508-Lecture4

ELEC5508_Wireless Engineering_2013 Semester 2_ELEC5508-Lecture4

Authentication (transmission of Ki to VLR).
Generation of the cipher key Kc.
Combining payload data stream and ciphering stream
Logical Channels / Definitions
ELEC 5508 Wireless Engineering Lecture 4 GSM –Global System Mobile
LSCom Pty Ltd
GSM Frequency bands
GSM Cellular Network
• • •
• • •
Frequency reuse Different frequency in adjoining cells- channel separataion Cell sizes vary from some 100 m up to 35 km depending on user density, geography, transceiver power etc. Hexagonal shape of cells is idealized (cells overlap, shapes depend on geography) Seemless mobility, when mobile user changes cells with handover assistance in connection to the neighbor cell
AUTHENTICATION RESPONSE ALL OK - HLR UPDATE
TCH
0
1
2
24 25
SIGN.

抗强光干扰的高精度红外触摸屏设计与实现

抗强光干扰的高精度红外触摸屏设计与实现
分类号
密级
UDC
学位论文
抗强光干扰的高精度红外触摸屏设计与实现
张明
(作者姓名)
指导教师姓名 黄 子 强
教授
电子科技大学 成 都
(职务、职称、学位、单位名称及地址)
申请学位级别 硕 士
专业名称 光学工程
论文提交日期 2008.5.22
论文答辩日期
学位授予单位和日期
电子科技大学
2008.5.26
答辩委员会主席 评阅人
签名:
日期: 年 月 日
关于论文使用授权的说明
本学位论文作者完全了解电子科技大学有关保留、使用学位论文 的规定,有权保留并向国家有关部门或机构送交论文的复印件和磁盘, 允许论文被查阅和借阅。本人授权电子科技大学可以将学位论文的全 部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描 等复制手段保存、汇编学位论文。
As one of the fashionable touch-screen technologies, Infrared touch-screen has become the subject of concern because of its high transmission rate and accurate positioning without drift.But traditional touch-screen resolution of a few dozen has been unable to meet application needs along with the continuous development of display technology and popularity of large-screen display.In addition,infrared touch-screen used infrared receiver tube as sensors,and when the environment sunlight intensity is high,the normal work of the infrared receiver will been intervened.These deficiencies cause great impact on the application of infrared touch-screen.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Automatic Repeat reQuest(ARQ), also known as Automatic Repeat Query, is an error-control method for data transmission that uses acknowledgements (messages sent by the receiver indicating that it has correctly received a data frame or packet) and timeouts (specified periods of time allowed to elapse before an acknowledgment is to be received) to achieve reliable data transmission over an unreliable service. If the sender does not receive an acknowledgment before the timeout, it usually retransmits the frame/packet until the sender receives an acknowledgment or exceeds a predefined number of re-transmissions.Hybrid automatic repeat request (hybrid ARQ or HARQ) is a combination of high-rate forward error-correcting coding and ARQ error-control. In standard ARQ, redundant bits are added to data to be transmitted using an error-detecting (ED) code such as a cyclic redundancy check (CRC). Receivers detecting a corrupted message will request a new message from the sender. In Hybrid ARQ, the original data is encoded with a forward error correction (FEC) code, and the parity bits are either immediately sent along with the message or only transmitted upon request when a receiver detects an erroneous message. The ED code may be omitted when a code is used that can perform both forward error correction (FEC) in addition to error detection, such as a Reed-Solomon code. The FEC code is chosen to correct an expected subset of all errors that may occur, while the ARQ method is used as a fall-back to correct errors that are uncorrectable using only the redundancy sent in the initial transmission. As a result, hybrid ARQ performs better than ordinary ARQ in poor signal conditions, but in its simplest form this comes at the expense of significantly lower throughput in good signal conditions. There is typically a signal quality cross-over point below which simple hybrid ARQ is better, and above which basic ARQ is better.Simple Hybrid ARQThe simplest version of HARQ, Type I HARQ, adds both ED and FEC information to each message prior to transmission. When the coded data block is received, the receiver first decodes the error-correction code. If the channel quality is good enough, all transmission errors should be correctable, and the receiver can obtain the correct data block. If the channel quality is bad, and not all transmission errors can be corrected, the receiver will detect this situation using the error-detection code, then the received coded data block is rejected and a retransmission is requested by the receiver, similar to ARQIn a more sophisticated form, Type II HARQ, the message originator alternates between message bits along with error detecting parity bits and only FEC parity bits. When the first transmission is received error free, the FEC parity bits are never sent. Also, two consecutive transmissions can be combined for error correction if neither is error free.To understand the difference between Type I and Type II Hybrid ARQ, consider the size of ED and FEC added information: error detection typically only adds a couple of bytes to a message, which is only an incremental increase in length. FEC, on the other hand, can often double or triple the message length with error correction parities. In terms of throughput, standard ARQ typically expends a few percent of channel capacity for reliable protection against error, while FEC ordinarily expends half or more of all channel capacity for channel improvement.In standard ARQ a transmission must be received error free on any given transmission for the error detection to pass. In Type II Hybrid ARQ, the first transmission contains only data and error detection (no different than standard ARQ). If received error free, it's done. If data is received in error, the second transmission will contain FEC parities and error detection. If received error free, it's done. Ifreceived in error, error correction can be attempted by combining the information received from both transmissions.Only Type I Hybrid ARQ suffers capacity loss in strong signal conditions. Type II Hybrid ARQ does not, because FEC bits are only transmitted on subsequent retransmissions as needed. In strong signal conditions, Type II Hybrid ARQ performs with as good capacity as standard ARQ. In poor signal conditions, Type II Hybrid ARQ performs with as good sensitivity as standard FEC.Hybrid ARQ with soft combiningThe hybrid ARQ operation described above discards erroneously received packets and requests retransmission. However, despite that the packet was not possible to decode, the received signal still contains information, which is lost by discarding erroneously received packets. This shortcoming is addressed by hybrid ARQ with soft combining. In hybrid ARQ with soft combining, the erroneously received packet is stored in a buffer memory and later combined with the retransmission to obtain a single, combined packet which is more reliable than its constituents.Decoding of the error-correcting code operates on the combined signal. If the decoding fails (typically a CRC code is used to detect this event), a retransmission is requested.Retransmission in any hybrid ARQ scheme must, by definition, represent the same set of information bits as the original transmission. However, the set of coded bits transmitted in each retransmission may be selected differently as long as they represent the same set of information bits. Hybrid ARQ with soft combining is therefore usually categorized into Chase combining and Incremental Redundancy, depending on whether the retransmitted bits are required to be identical to theoriginal transmission or not.With Chase combining retransmissions consists of the same set of coded bits as the original transmission. After each retransmission, the receiver uses maximum-ratio combining to combine each received channel bit with any previous transmissions of the same bit and the combined signal is fed to the decoder. As each retransmission is an identical copy of the original transmission, retransmissions with Chase combining can be seen as additional repetition coding.Therefore, as no new redundancy is transmitted, Chase combining does not give any additional coding gain but only increases the accumulated received Eb/N0 for each retransmission (Figure 1).Figure 1 Chase combiningSeveral variants of Chase combining exist. For example, only a subset of the bits transmitted in the original transmission might be retransmitted, so-called partial Chase combining. Furthermore, although combining is often done after demodulation but before channel decoding, combining can also be done at the modulation symbol level before demodulation, as long as the modulation scheme is unchanged between transmission and retransmission.Figure 2 Incremental RedundancyWith Incremental Redundancy (IR), each retransmission does not have to be identical to the original transmission. Instead, multiple sets of coded bits are generated, each of them representing the same set of information bits. Whenever a retransmission is required, the retransmission typically uses a different set of coded bits than the previous transmission. The receiver combines the retransmission with previous transmission attempts of the same packet. As the retransmission may contain additional parity bits, not included in the previous transmission attempts, the resulting code rate is generally lowered by a retransmission. Furthermore, each retransmission does not necessarily have to consist of the same number of coded bits as the original and, in general, also the modulation scheme can be different for different retransmissions. Hence, incremental redundancy can be seen as a generalization of Chase combining or, stated differently, Chase combining is a special case of incremental redundancy.Typically, incremental redundancy is based on a low-rate code and the different redundancy versions are generated by puncturing the output of the encoder. In the first transmission only a limited number of the coded bits are transmitted, effectively leading to a high-rate code. In the retransmissions, additional coded bits are transmitted. As an example, assume a basic rate-1/4 code. In the first transmission, only every third coded bit is transmitted, effectively giving a rate-3/4 code as illustrated in Figure 2. In case of a decoding error and a subsequent request for a retransmission, additional bits are transmitted, effectively leading to a rate-3/8 code. After a second retransmission the code rate is1/4. In case of more than two retransmissions, already transmitted coded bits would be repeated.In addition to a gain in accumulated received Eb/N0, incremental redundancy also results in a coding gain for each retransmission. The gain with IR compared to Chase is larger for high initial code rates while at lower initial coding rates, Chase combining is almost as good as IR.。

相关文档
最新文档