车载充电器Boost PFC AC-DC变换器设计
交错式3.6KW BOOST PFC毕业设计

第一章绪论1.1 选题背景和意义随着全球工业化进程的加剧,以石油为主的能源短缺问题开始逐渐凸现,当前,能源短缺和排放法规越来越严格是汽车工业发展的两大挑战,也是汽车技术不断发展的重要推动力。
电动车以其节能、环保的特点,受到广泛关注。
全球各个国家都把电动车的发展放到重要的战略地位,各国都在致力于清洁,环保的电动车的研制开发。
为了推动电动车的产业化进程,电动车相关技术也得到国内外的广泛重视。
对于电动车来说,车载电源是其不可或缺的重要装置,而车载电源已被列入“十五”、“863”电动车重大专项中。
车载电源是以现代开关电源技术为基础的,广义地从电网给电源供电的角度看,大部分开关电源可以认为是市电带的非线性负载,会在电网中产生大量的电流谐波。
这个谐波属于无功功率,会在电网中往复流动却不做功,消耗着大量的功率从而严重影响电网效率和运行安全,造成巨大能源浪费和经济损失。
解决这个问题的最根本办法就是将所有的用电设备设置为电阻性负载,使得无功输入功率尽可能的减小。
随着电动车的不断推广,充电电源越来越得到大规模的使用。
因此,大量电动车用充电电源工作时对电网的污染将不容忽视。
针对高次谐波问题,从上世纪九十年代初,各国开始以立法形式来限制电网高次谐波,传统的开关电源都在限制之列。
抑制和消除谐波,提高功率因数已成为当今国内外电源界的重要课题。
事实上,开关电源的有源功率因数校正技术(Power Factor Correction technique, PFC技术)引起了国内外许多学者的重视,功率因数校正技术可以调节电网的输入特性,使得输入功率有功最大化,令开关电源成为电网的纯阻性负载,可以使电网效率最大化,提高运行安全,保护敏感设备。
近几年来,国内外科研人员在PFC的原理、方法、电路拓扑、控制技术等方面也取得了许多成果。
因此PFC技术作为一种绿色能源技术被广泛推广。
随着PFC技术的推广,许多工业开关电源与家电的前端都采用了功率因数校正PFC预调节器。
PFC电路与BOOST电路设计实例解析

f (mmin )
sin 2 t dt
0
1
1
sint
mm in
13
基于Boost电路的PFC变换器及其控制方法——DCM
要保证电感电流断续,必须满足d1+d2<1 随着mmin=Vo/Vin的增加,d1+d2先减小后增大 因此在输入电压较小与较大时均会使电感电流趋
于连续
通常在断续模式下的电感量设计中按最低输入电 压时确参数。
(4)单周控制:能优化系统响应、减小畸变和抑制电源干扰,有反应 快、开关频率恒定、鲁棒性强、易于实现、抗电源干扰、控制电路简 单等优点。
36
上节内容回顾
谐波污染的治理主要途径: 无源电力滤波器(PPF)
BOOST电路
功率因素校正(PFC) 基于Boost电路的PFC变换器及其控制方法 PFC典型芯片UC3854介绍 基于Boost电路的PFC变换器设计实例
1
功率因素校正-谐波的危害
Ii
a
直
Vi
流 变 换
负 载
器
b
2
功率因素校正-谐波的危害
传统的AC-DC变换器和开关电源,其输入 电路普遍采用了全桥二极管整流,输出端 直接接到大电容滤波器。
DCM
输入电流自动跟踪输入电压,控制简单,仅需一个电压环, 成本低,电感量小,主管ZCS,续流管无反向恢复问题 ,定频工 作,适合小功率用电设备 。
BCM
输入电流自动跟踪输入电压,电感量小,一般采用变频控制, 在固定功率开关管开启时间的条件下,调整开关管的关断时间, 使电感始终处于临界导电模式,可获得单位功率因数,但是滤 波器设计困难,适用于中小功率场合。
ui
其中,di ima,x 因此 dt Ton
Boost变换器工作原理与设计

选择磁芯材料
根据工作频率和电感值, 选择合适的磁芯材料,以 确保电感的性能和效率。
确定线圈匝数
根据电感值、线圈直径和 磁芯材料,计算线圈匝数, 以获得所需的电感性能。
二极管选择
1 2
选择合适的二极管类型
根据工作电压、电流和开关频率,选择合适的二 极管类型。
确定额定电流和电压
根据最大输出电流和电压,选择二极管的额定电 流和电压。
重要性
Boost变换器在许多应用中都非 常重要,如分布式电源系统、电 动汽车和可再生能源系统等。
Boost变换器的历史与发展
历史
Boost变换器最初在20世纪80年代 被提出,随着电力电子技术和控制理 论的不断发展,其性能和效率得到了 不断提高。
发展
目前,Boost变换器已经广泛应用于 各种领域,并且随着新能源和电动汽 车的快速发展,其需求和应用前景仍 然非常广阔。
当开关管关断时,电感释放所 储存的能量,通过二极管和输 出电容向负载提供电流,同时 输出电压逐渐升高。
通过控制开关管的通断时间, 可以调节输出电压的大小。
电感的作用
电感在开关管导通时 储存能量,在开关管 关断时释放能量。
电感的值决定了输出 电压的大小和开关频 率。
电感的作用是调节电 流和维持输出电压的 稳定。
小型化
随着电子设备的小型化和集成化,减小Boost变换器的体积成为 未来的重要发展方向。
智能化
随着人工智能和物联网技术的发展,实现Boost变换器的智能化 控制和远程监控成为未来的重要发展方向。
THANKS
感谢观看
02
Boost变换器的工作原理
工作原理概述
Boost变换器是一种DC-DC转换 器,用于提高直流电压。
一种基于新型无桥BoostPFC的通信电源AC_DC变换器设计_陈勇

0 引言
通信电源作为各种通信系统中必不可少的重 要组成部分,其任务是安全、可靠、高效、稳定、 不间断地向系统提供能源。 由于大部分通信设备中, 工作电源直接来自交流电网,但几乎所有电子线路 又必须采用直流供电,因此 AC/DC 变换器成为电 子产品中必不可少的部分。通信开关电源采用二极 管整流、 电容滤波的整流环节使输入电流严重畸变, 不仅给交流电网产生严重的谐波污染并造成输入功 率因数低下,只有 0.5~0.7 左右,而且产生严重的 电磁干扰,使通信质量下降,无法满足复杂的通信
图 5 新型无桥 Boost PFC 实际结构 Fig. 5 Practical structure of the novel bridgeless Boost PFC
图 2 传统 Boost PFC 变换器 Fig. 2 Conventional Boost PFC converter
图 3 双升压无桥 PFC 变换器 Fig. 3 Dual Boost bridgeless PFC converter
为了减小 AC/DC 变换器输入端谐波电流造成 的噪声和对电网产生的谐波 “污染” , 以保证电网供 电质量, 提高电网的可靠性, 同时也为了提高输入端 功率因数和效率,以达到节能的效果。文献[5-10]提 出了一些无需输入整流桥的无桥 PFC 变换器。在这 些变换器中,双升压无桥 Boost PFC(DBPFC)结构如 图 3 所示,由于其结构简单、驱动方便、共模干扰 低,效率高而备受关注,但其存在功率开关和电感 利用率低等缺陷。 本文设计了一种通信电源 AC/DC 变换的新型无桥 Boost PFC 变换器,结合其工作原 理,建立平均电流算法的仿真模型和实验系统,进 行仿真和实验研究。
图 7 负半周期的两种工作模态 Fig. 7 Two operating modes in negative half cycle
Boost变换器的PFC控制电路设计

电力电子领域有待解 决的问题。加强这方面 的研究 , 并结 合 高频开关电源 的基本 理论 和实际应 用 的持续发 展具有 显著 意义。本文在控制 电路小信 号模 型 的基础 上 , 分析 电流 、 电
压控制环 的主要作用 , 选择合适的适应度 函数 , 利用改进的遗 传算法对控制参数进行优化, 并对 优化结果进行 了仿真分析 。
本设计 中 :
R s =( 0 . 0 5 / 3 ) n, V o= 4 0 0 V, L=0 . 5 mH, A V=5 . 2 V, ∞s = 1 8 ×1 0 r a d / s , Q s : 一2 / I r 。
作 者 简介 : 王 志娟 ( 1 9 7 6 一) , 女, 副教授 , 硕士 , 研 究方向 : 电 力 电子 技 术 。
准 电流 。 电压 环 通 过 控 制 电 流 基 准 、 改变 电感 电流 , 来 调 节 输 出 电压的稳定 。P WM调 制器 的误 差放大器 的输 出电流直 接控 制 电感 电流 的 占空 比, 控制 改变 平均电感 电流 。
幽 2 电 流 环 反 馈 补 偿 网 络
则 电流 环 的 开 环传 递 函 数 为 … :
= = 。
=
,
为切换频 率 =
选择设计 变量 为 =[ l ' 2 , 3 , 4 ]=[ R , c c P , , c 凹] , 则可求 出电流 环 的开环 传递 函数 与设 计 变量 之 间的
关系式 :
V o T i ( 5 )= R s
r i ( s = R 面 S V o o t i × × ( 妄 + + t )
式中: R 为 电流 采 样 电阻, V o为输 出 电压, o t =
6.6kW单级三相PFC DC-DC车载充电机设计研究

6.6kW单级三相PFC DC-DC车载充电机设计研究在环境保护和节能减排双重旗帜的号召下,近几年电动汽车得到了迅猛发展,与其相关的产业也得到了市场和消费者的高度重视。
为了响应电动汽车长续航和快充的需求,开发一台具有低输入电流总谐波失真度、高功率因数和高效率的大功率车载充电机具有重要意义。
本文以6.6kW全数字控制车载充电机作为主要研究内容,来探讨一种新型单级三相PFC离线式DC-DC变换器拓扑在大功率应用场合的可行性。
首先,对现有的功率因数校正和隔离调压拓扑方案进行了技术调研,分析讨论了单级拓扑所具有的天然优势,并给出本文设计所采用的一种新型单级三相PFC+变压器串并联DC-DC隔离调压拓扑,并简要分析了其工作特点。
第二章在仔细分析所提单级三相拓扑结构特点的基础上,给出相应的等效工作拓扑模型,并在这基础上分析了电路各个时刻的工作原理;对主功率电路如何实现功率因数校正的机理进行了分析,探讨了输入输出电压转换系数M对系统功率因数校正的影响;分别探讨了在所提单级三相拓扑中,移相全桥部分滞后和超前臂零电压软开通的实现条件;针对所提的三变压器原边串副边经过输出整流桥和滤波电感后并联的结构,并对此结构的功率自动均衡和均流的特性进行了分析;对拓扑固有的占空比丢失问题和变压器副边电压振荡问题的机理,进行了详细地分析讨论,并设计了相应的解决方案。
根据车载充电机各项的设计指标要求,给出了主功率回路关键参数的设计方法和结果,并基于PSIM搭建了相应的开环仿真平台,以验证了设计参数的有效性;详细阐述了PFC电感和变压器的设计要点,并给出了一般性的设计步骤;针对所提拓扑母线电压和输出电压双环控制高耦合、动态差和难闭环的问题,提出了一种新型有效的频率脉宽调控输出电压+移相滞环调控母线电压的控制策略,并给出了相应的数字实现流程;最后,完成了实验样机的制作和相应的数据波形测试,并针对测试的结果和电路的典型波形,进行了详细地分析;最后,在额定工频输入线电压(380Vac@50Hz),额定输出电压工况下,实验样机的最高效率可达96%,满载效率高于93%;在全负载工作条件下,样机的功率因数均大于0.98,THD均小于3.5%;实验测试所得结果,验证了本文设计参数的有效性,同时也充分展示了所提单级三相拓扑优异的电气性能。
基于PFC的单相AC-DC变换电路设计

基于PFC的单相AC-DC变换电路设计李菲菲;张小强;路震【摘要】This system in order to Boost the booster and PFC circuit as the core, with dedicated chip UCC28019 produces PWM signals to control the Boost PFC circuit of MOSFET to achieve the booster and power factor correction, according to the output feedback and D/A feed-back automatically to realize the double closed-loop control, so as to realize the automatic correction of stable output voltage and power factor. The system output steady dc voltage is 36 v, the input waveform distortion is small, and it can be set via the keyboard power factor and auto-matically adjust, maximum output current of 2.5 A and when the current exceeds 2.5 A automatic relay protection, give priority to with FPGA controller, monitoring of the whole system, which can realize the output voltage, output current and power factor measurement function.%本系统以Boost升压电路加PFC为核心, 以专用PFC芯片UCC28019产生PWM信号去控制Boost 电路中的MOSFET达到升压和功率因数的校正, 根据输出端的自动反馈和D/A的反馈来实现双闭环的控制,从而实现电压的稳定输出和功率因数的自动校正. 系统输出稳定直流电压36V,输入波形失真度小,并可通过键盘设定功率因数并自动调整,最大输出电流达到2.5A并且在电流超出2.5A时自动继电保护,以FPGA为主控制器,对整个系统进行监测,可实现输出电压、输出电流、功率因数的测量等的功能.【期刊名称】《煤矿现代化》【年(卷),期】2015(000)005【总页数】3页(P89-91)【关键词】Boost;UCC28019;PFC;继电保护【作者】李菲菲;张小强;路震【作者单位】山东兖矿国际焦化有限公司,山东兖州 272100;山东兖矿国际焦化有限公司,山东兖州 272100;山东兖矿国际焦化有限公司,山东兖州 272100【正文语种】中文【中图分类】TM761基于PFC的单相AC-DC变换电路设计李菲菲1,张小强2,路震3(山东兖矿国际焦化有限公司,山东兖州272100)摘要本系统以Boost升压电路加PFC为核心,以专用PFC芯片UCC28019产生PWM信号去控制Boost电路中的MOSFET达到升压和功率因数的校正,根据输出端的自动反馈和D/A的反馈来实现双闭环的控制,从而实现电压的稳定输出和功率因数的自动校正。
一种高性能BOOST型DC-DC转换器设计的开题报告

一种高性能BOOST型DC-DC转换器设计的开题报告1. 研究背景在现代电子设备中,DC-DC转换器是一种经常使用的电子电路,其作用是将直流电压进行转换。
BOOST型DC-DC转换器是一种升压型转换器,能够将低电压转换为高电压,因此在电子设备中应用广泛。
传统的BOOST型DC-DC转换器通常使用PWM调制方式进行控制,但是由于其开关频率较低,其转换效率不高,而且由于器件的损耗,还导致了温度升高和噪音增加等不良影响。
因此,如何提高BOOST型DC-DC转换器的转换效率和性能,一直是电路设计研究的重点。
2. 研究目的本文旨在研究一种高性能BOOST型DC-DC转换器的设计,通过提高开关频率、优化器件结构等方式,提高其转换效率和性能,同时探究如何降低温度和噪音等不良影响。
3. 研究方法本研究将采取以下方法:(1)建立BOOST型DC-DC转换器系统模型,并进行性能仿真分析,探究影响转换效率和性能的关键因素;(2)探究一些常用的DC-DC转换器拓扑结构,比较其优劣,并选择一种适合的结构;(3)设计一种新的控制策略,提高BOOST型DC-DC转换器的转换效率和性能;(4)优化器件的结构,降低温度和噪音等不良影响。
4. 研究意义本研究的意义在于:(1)提高BOOST型DC-DC转换器的转换效率和性能,减少功耗;(2)降低温度和噪音等不良影响,提高工作稳定性;(3)推广新的控制策略和优化器件结构设计方法,为BOOST型DC-DC转换器的应用和发展提供技术支持。
5. 研究计划本研究将分为以下几个阶段:(1)文献综述阶段:对BOOST型DC-DC转换器的发展历程、现状和存在的问题进行梳理和分析,并对DC-DC转换器拓扑结构、控制策略和器件结构的优缺点进行比较。
(2)建模与仿真阶段:建立BOOST型DC-DC转换器的系统模型,并通过仿真软件进行性能分析,找出影响其效率和性能的关键因素。
(3)拓扑结构选择阶段:选择一种适合的DC-DC转换器拓扑结构,并进行仿真分析,确定其优化方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
车载充电器Boost PFC AC/DC变换器设计
随着能源危机、资源枯竭以及大气污染等危害的加剧,我国已将新能源汽车确立为战略性新兴产业,车载充电器作为电动汽车的重要组成部分,其研究兼具理论研究价值和重要的工程应用价值。
采用前级AC/DC 和后级DC/DC 相结合的车载充电器结构框图如图1 所示。
当车载充电器接入电网时,会产生一定的谐波,污染电网,同时影响用电设备的工作稳定性。
为了限制谐波量,国际电工委员会制定了用电设备谐波限制标准IEC61000-3-2,我国也发布了国标GB/T17625。
为了符合上述标准,车载充电器必须进行功率因数校正(PFC)。
PFC AC/DC 变换器一方面为后级DC/DC 系统供电,另一方面为辅助电源供电,其设计的好坏直接影响车载充电器性能。
图1 电动汽车车载充电器结构框图
鉴于纯电动汽车车载充电器对体积、谐波有着苛刻的要求,本设计采用有源功率因数校正(APFC)技术。
APFC 有多种拓扑结构,由于升压式拓扑具有驱动电路简单、PF 值高和具有专门控制芯片的优点,选取Boost拓扑结构的主电路。
考虑各种基本控制方式,选取了具有谐波失真小、对噪声不敏感和开关频率固定技术优势的平均电流控制方式。
本文针对功率为2 kW 的纯电动汽车车载充电器,考虑谐波含量、体积及抗干扰性能等方面的设计需求,重点研究PFC AC/DC 变换器,包含系统主电路和控制电路设计,并在上述研究的基础上,开展系统仿真和实验测试验证研究,电路图见图2。
图2 Boost PFC AC/DC 变换器电路原理图
1 Boost PFC AC/DC 变换器
本文针对功率为2 kW 的车载充电器PFC AC/DC 变换器,采用基于Boost拓扑的主电路结构,以及连续模式下的平均电流控制控制策略。
主电路由整流电路和Boost升压电路构成;控制电路采用电流内环、电压外环的双闭环控制方式,原理框图见图3 。