(辽宁卷)普通高等学校招生全国统一考试(文科数学)(word版,有答案)
2013年高考真题——文科数学(辽宁卷)+Word版含答案

绝密★启用前2013年普通高等学校招生全国统一考试(辽宁卷)数 学(供文科考生使用)第I 卷一、选择题:本大题共12小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合{}{}1,2,3,4,|2,A B x x AB ==<=则(A ){}0 (B ){}0,1 (C ){}0,2 (D ){}0,1,2 (2)复数的11Z i =-模为(A )12(B (C (D )2(3)已知点()()1,3,4,1,A B AB -则与向量同方向的单位向量为(A )3455⎛⎫ ⎪⎝⎭,-(B )4355⎛⎫ ⎪⎝⎭,- (C )3455⎛⎫- ⎪⎝⎭, (D )4355⎛⎫- ⎪⎝⎭, (4)下面是关于公差0d >的等差数列()n a 的四个命题:{}1:n p a 数列是递增数列; {}2:n p na 数列是递增数列;3:n a p n ⎧⎫⎨⎬⎩⎭数列是递增数列;{}4:3n p a nd +数列是递增数列; 其中的真命题为(A )12,p p (B )34,p p (C )23,p p (D )14,p p(5)某学校组织学生参加英语测试,成绩的频率分布直方图如图, 数据的分组一次为[)[)[)[)20,40,40,60,60,80,820,100.若低于60分的人数是15人,则该班的学生人数是(A )45 (B )50 (C )55 (D )60(6)在ABC ∆,内角,,A B C 所对的边长分别为,,.a b c 1sin cos sin cos ,2a B C c B Ab +=,a b B >∠=且则 A .6πB .3πC .23π D .56π(7)已知函数())()1ln31,.lg 2lg 2f x x f f ⎛⎫=-++= ⎪⎝⎭则A .1-B .0C .1D .2(8)执行如图所示的程序框图,若输入8,n S ==则输出的A .49 B .67 C .89 D .1011(9)已知点()()()30,0,0,,,.ABC ,O A b B a a ∆若为直角三角形则必有A .3b a =B .31b a a=+C .()3310b a b a a ⎛⎫---= ⎪⎝⎭ D .3310b a b a a -+--=(10)已知三棱柱1116.34ABC A B C O AB AC -==的个顶点都在球的球面上若,,,AB AC ⊥112AA O =,则球的半径为A .B .C .132D . (11)已知椭圆2222:1(0)x y C a b a b+=>>的左焦点为F ,F C 与过原点的直线相交于,A B 两点,4,.10,8,cos ABF ,5AF BF AB B F C ==∠=连接若则的离心率为(A )35 (B )57 (C )45 (D )67(12)已知函数()()()()222222,228.f x x a x a g x x a x a =-++=-+--+设()()(){}()()(){}{}()12max ,,min ,,max ,H x f x g x H x f x g x p q ==表示,p q 中的较大值,{}min ,p q 表示,p q 中的较小值,记()1H x 得最小值为,A ()2H x 得最小值为B ,则A B -=(A )2216a a -- (B )2216a a +- (C )16- (D )16第II 卷本卷包括必考题和选考题两部分。
(2024年高考真题)2024年普通高等学校招生全国统一考试数学(文) 试卷 全国甲卷(含部分解析)

2024年普通高等学校招生全国统一考试 全国甲卷数学(文) 试卷养成良好的答题习惯,是决定成败的决定性因素之一。
做题前,要认真阅读题目要求、题干和选项,并对答案内容作出合理预测;答题时,切忌跟着感觉走,最好按照题目序号来做,不会的或存在疑问的,要做好标记,要善于发现,找到题目的题眼所在,规范答题,书写工整;答题完毕时,要认真检查,查漏补缺,纠正错误。
1.集合{1,2,3,4,5,9}A =,{1}B x x A =+∈∣,则A B =( ) A.{1,2,3,4}B.{1,2,3,4}C.{1,2,3,4}D.{1,2,3,4}2.设z =,则z z ⋅=( ) A.2B.2C.2D.23.若实数x ,y 满足约束条件(略),则5z x y =-的最小值为( ) A.5B.12C.2-D.72-4.等差数列{}n a 的前n 项和为n S ,若91S =,37a a +=( ) A.2-B.73C.1D.295.甲、乙、丙、丁四人排成一列,丙不在排头,且甲或乙在排尾的概率是( ) A.14 B.13 C.12D.236.已知双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点分别为12(0,4)(0,4)F F -、,且经过点(6,4)P -,则双曲线C 的离心率是( )A.135B.137C.2D.37.曲线6()3f x x x =+在 (0,1)-处的切线与坐标轴围成的面积为( )A.16B.2 C.12D.28.函数()2()e e sin x x f x x x -=-+-的大致图像为( ) 9.已知cos cos sin ααα=-an 4πt α⎛⎫+= ⎪⎝⎭( )A.3B.1-C.3-D.1310.直线过圆心,直径11.已知m n 、是两条不同的直线,αβ、是两个不同的平面:①若m α⊥,n α⊥,则//m n ;②若m αβ=,//m n ,则//n β;③若//m α,//n α,m 与n 可能异面,也可能相交,也可能平行;④若m αβ=,n 与α和β所成的角相等,则m n ⊥,以上命题是真命题的是( )A.①③B.②③C.①②③D.①③④12.在ABC △中,内角A ,B ,C 所对边分别为a ,b ,c ,若π3B =,294b ac =,则sin sin A C +=( )A.13B.13C.2D.1313.略14.函数()sin f x x x =,在[0,π]上的最大值是_______. 15.已知1a >,8115log log 42a a -=-,则a =_______. 16.曲线33y x x =-与2(1)y x a =--+在(0,)+∞上有两个不同的交点,则a 的取值范围为_______.17.已知等比数列{}n a 的前n 项和为n S ,且1233n n S a +=-.(1)求{}n a 的通项公式; (2)求数列{} n S 的通项公式. 18.题干略.19.如图,己知//AB CD ,//CD EF ,2AB DE EF CF ====,4CD =,10AD BC ==,23AE =,M 为CD 的中点.(1)证明://EM 平面BCF ; (2)求点M 到AD E 的距离. 20.已知函数()(1)ln 1f x a x x =--+. (1)求()f x 的单调区间;(2)若2a ≤时,证明:当1x >时,1()e x f x -<恒成立.21.已知椭圆2222:1(0)x y C a b a b +=>>的右焦点为F ,点3(1,)2M 在椭圆C 上,且MF x ⊥轴.(1)求椭圆C 的方程;(2)(4,0)P ,过P 的直线与椭圆C 交于A ,B 两点,N 为FP 的中点,直线NB 与MF 交于Q ,证明:AQ y ⊥轴.22.[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为cos 1ρρθ=+. (1)写出C 的直角坐标方程;(2)直线x ty t a =⎧⎨=+⎩(t 为参数)与曲线C 交于A 、B 两点,若||2AB =,求a 的值.23.[选修4-5:不等式选讲] 实数a ,b 满足3a b +≥. (1)证明:2222a b a b +>+; (2)证明:22226a b b a -+-≥.2024年普通高等学校招生全国统一考试 全国甲卷数学(文)答案1.答案:A解析:因为{}1,2,3,4,5,9A =,{1}{0,1,2,3,4,8}B x x A =+∈=∣,所以{1,2,}3,4A B =,故选A. 2.答案:D解析:因为z =,所以2z z ⋅=,故选D. 3.答案:D解析:将约束条件两两联立可得3个交点:(0,1)-、3,12⎛⎫ ⎪⎝⎭和1 3,2⎛⎫⎪⎝⎭,经检验都符合约束条件.代入目标函数可得:min 72z =-,故选D.4.答案:D解析:令0d =,则9371291,,99n n S a a a a ===+=,故选D.5.答案:B解析:甲、乙、丙、丁四人排成一列共有24种可能.丙不在排头,且甲或乙在排尾的共有8种可能,81243P ==,故选B. 6.答案:C解析:12212F F ce a PF PF ===-,故选C.7. 答案:A解析:因为563y x '=+,所以3k =,31y x =-,1111236S =⨯⨯=,故选A.8.答案:B解析:选B.9. 答案:B解析:因为cos cos sin ααα=-tan 1α=,tan 1tan 141tan πααα+⎛⎫+== ⎪-⎝⎭,故选B.10.答案:直径解析:直线过圆心,直径. 11. 答案:A解析:选A. 12.答案:C 解析:因为π3B =,294b ac =,所以241sin sin sin 93A C B ==.由余弦定理可得:22294b ac ac ac =+-=,即:22134a c ac +=,221313sin sin sin sin 412A C A C +==,所以2227(sin sin )sin sin 2sin sin 4A C A C A C +=++=,sin sin 2A C +=,故选C.13. 答案:略解析: 14.答案:2解析:π()sin 2sin 23f x x x x ⎛⎫==-≤ ⎪⎝⎭,当且仅当5π6x =时取等号.15. 答案:64解析:因为28211315log log log 4log 22a a a a -=-=-,所以()()22log 1log 60a a +-=,而1a >,故2log 6a =,64a =.16. 答案:(2,1)-解析:令323(1)x x x a -=--+,则323(1)a x x x =-+-,设32()3(1)x x x x ϕ=-+-,()(35)(1)x x x ϕ+'=-,()x ϕ在(1,)+∞上递增,在(0,1)上递减.因为曲线33y x x =-与2(1)y x a =--+在(0,)+∞上有两个不同的交点,(0)1ϕ=,(1)2ϕ=-,所以a 的取值范围为(2,1)-. 17.答案:见解析解析:(1)因为1233n n S a +=-,所以12233n n S a ++=-,两式相减可得:121233n n n a a a +++=-,即:2135n n a a ++=,所以等比数列{}n a 的公比53q =,又因为12123353S a a =-=-,所以11a =,153n n a -⎛⎫= ⎪⎝⎭.(2)因为1233n n S a +=-,所以()133511223nn n S a +⎡⎤⎛⎫=-=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.18.答案:见解析解析:(1)22150(70242630) 6.635965450100χ⨯-⨯=<⨯⨯⨯,没有99%的把握;(2)p p >+. 19.答案:见解析解析:(1)由题意://EF CM ,EF CM =,而CF 平面ADO ,EM 平面ADO ,所以//EM 平面BCF ;(2)取DM 的中点O ,连结OA ,OE ,则OA DM ⊥,OE DM ⊥,3OA =,OE =而AE =,故OA OE ⊥,AOE S =△因为2DE =,AD =AD DE ⊥,AOE S △DM 设点M 到平面ADE 的距离为h ,所以1133M ADE ADE AOE V S h S DM -=⋅=⋅△△,h ==,故点M到ADE 的距离为5. 20.答案:见解析解析:(1)()(1)ln 1f x a x x =--+,1()ax f x x-=,0x >. 若0a ≤,()0f x <,()f x 的减区间为(0,)+∞,无增区间; 若0a >时,当10x a <<时,()0f x '<,当1x >时,()0f x '>,所以()f x 的减区间为10,a ⎛⎫ ⎪⎝⎭,增区间为1,a ⎛⎫+∞ ⎪⎝⎭;(2)因为2a ≤,所以当1x >时,111e ()e (1)ln 1e 2ln 1x x x f x a x x x x ----=--+-≥-++.令1()e 2ln 1x g x x x -=-++,则11()e 2x g x x -'=-+.令()()h x g x '=.则121()e x h x x-'=-在(1,)+∞上递增,()(1)0h x h ''>=,所以()()h x g x '=在(1,)+∞上递增,()(1)0g x g ''>=,故()g x 在(1,)+∞上递增,()(1)0g x g >=,即:当1x >时,1()e x f x -<恒成立.21.答案:见解析解析:(1)设椭圆C 的左焦点为1F ,则12F F =,3||2MF =.因为MF x ⊥轴,所以152MF =,12||4a MF MF =+=,解得:24a =,2213b a =-=,故椭圆C 的方程为:22143x y +=; (2)解法1:设()11,A x y ,()22,B x y ,AP PB λ=,则12124101x x y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩,即212144x x y y λλλ=+-⎧⎨=-⎩.又由()()22112222234123412x y x y λλλ⎧+=⎪⎨+=⎪⎩可得:1212121234121111x x x x y y y y λλλλλλλλ+-+-⋅⋅+⋅=+-+-,结合上式可得:25230x λλ-+=.(4,0)P ,(1,0)F ,5,02N ⎛⎫⎪⎝⎭,则222122335252Q y y y y y x x λλλλ===-=--,故AQ y ⊥轴.解法2:设()11,A x y ,()22,B x y ,则121244y y x x =--,即:()1221214x y x y y y -=-,所以()()()2222222211*********21213444433y x y x y x y x y x y x y y y ⎛⎫-+=-=+-+ ⎪⎝⎭()()()()212121122144y y y y y y x y x y =-+=-+,即:122121x y x y y y +=+,2112253x y y y =-.(4,0)P ,(1,0)F ,5,02N ⎛⎫⎪⎝⎭,则21212112335252Q y y y y y x y y x ===--,故AQ y ⊥轴.22.答案:(1)221y x =+ (2)34解析:(1)因为cos 1ρρθ=+,所以22(cos 1)ρρθ=+,故C 的直角坐标方程为:222(1)x y x +=+,即221y x =+;(2)将x ty t a =⎧⎨=+⎩代入221y x =+可得:222(1)10t a t a +-+-=,12||2AB t =-==,解得:34a =. 23.答案:见解析解析:(1)因为3a b +≥,所以22222()a b a b a b +≥+>+. (3)222222222222()a b b a a b b a a b a b -+-≥-+-=+-+=22222()()()()(1)6a b a b a b a b a b a b +-+≥+-+=++-≥.高考质量提升是一项系统工程,涉及到多个方面、各个维度,关键是要抓住重点、以点带面、全面突破,收到事半功倍的效果。
招生国统一考试数学文试题辽宁卷,扫描,解析试题

2021年高考真题——文科数学〔卷〕解析版含答案创作人:历恰面日期:2020年1月1日2021高考数学卷解析红旗高级中学 王金泽一.选择题 1.【答案】B【解析】 由{|22}B x x =-<<,所以{0,1}A B ⋂=,选B 。
2. 【答案】B【解析】由111,(1)(1)22i Z i i i -+==-----+所以||2Z =3【答案】A【解析】(3,4)AB =-,所以||5AB =,这样同方向的单位向量是134(,)555AB =- 4【答案】D【解析】设1(1)n a a n d dn m =+-=+,所以1P 正确;假如312n a n =-那么满足,但2312n na n n =-并非递增所以2P 错;假如假设1n a n =+,那么满足,但11n a n n=+,是递减数列,所以3P 错;34n a nd dn m +=+,所以是递增数列,4P 正确 5【答案】B【解析】第一、第二小组的频率分别是0.1、0.2,所以低于60分的频率是0.3,设班级人数为m ,那么150.3m=,50m =。
6【答案】A【解析】边换角后约去sin B ,得1sin()2A C +=,所以1sin 2B =,但B 非最大角,所以6B π=。
7【答案】D【解析】2()ln(193)1f x x x -=+++所以()()2f x f x +-=,因为lg 2,1lg 2为相反数,所以所求值为2. 8【答案】A【解析】211s s i =+-的意义在于是对211i -求和。
因为21111()2111i i i =--+-,同时注意2i i =+,所以所求和为1111111[()()()]2133579-+-++-=49【易错点拨】i 的值容易错想成i=2,3,4,5,6,7,8。
9【答案】C【命题意图】此题考察斜率的定义、两条直线互相垂直的条件的利用,意在考察考生恰当利用分类讨论思想的解题才能。
普通高等学校招生全国统一考试数学文试题(辽宁卷,解析版)

普通高等学校招生全国统一考试数学文试题(辽宁卷,解析版)第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中.只有一项是符合题目要求的.(1)已知集合A={x 1x >},B={x 2x 1-<<}},则A B=( )(A ) {x 2x 1-<<}} (B ){x 1-x >} (C ){x 1x 1-<<}} (D ){x 2x 1<<} 答案: D解析:利用数轴可以得到A B={x 1x 2<<}。
(2)i 为虚数单位,3571111i i i i+++=( ) (A )0 (B )2i (C )-2i (D )4i(5)若等比数列{a n }满足a n a n+1=16n,则公比为( )(A )2 (B )4 (C )8 (D )16 答案: B解析:设公比是q ,根据题意a 1a 2=16 ①,a 2a 3=162 ②,②÷①,得q 2=16 .因为a 12q=16>0, a 12>0,则q>0,q=4.(6)若函数f (x )=))((a -x 1x 2x+为奇函数,则a =( )(A )21 (B )32 (C )43(D )1解析:设正三棱柱的侧棱长和底面边长为a ,则由23234a a ⋅=,解得a=2,正三棱柱的左视图与底面一边垂直的截面大小相同,故该矩形的面积是322232⋅⋅=。
(9)执行下面的程序框图,如果输入的n 是4,则输出的P 是( ) (A) 8 (B) 5 (C) 3 (D) 2答案:C解析:第一次执行结果:p=1,s=1,t=1,k=2;第二次执行结果:p=2,s=1,t=2,k=3;第三次执行结果:p=3,s=2,t=3,k=4;结束循环,输出p的值4.SDACB∈,f’(x)>2,则f(x)>2x+4(11)函数f(x)的定义域为R,f(-1)=2,对任意x R的解集为()(A)(-1,1) (B)(-1,+∞) (C)(-∞,-1) (D)(-∞,+∞)解析:函数f(x)的周期是32882πππ⎛⎫-= ⎪⎝⎭,故22πωπ==,由tan 1,3tan 20,8A A ϕπϕ=⎧⎪⎨⎛⎫⋅+= ⎪⎪⎝⎭⎩得,14A πϕ==.所以()tan 24f x x π⎛⎫=+ ⎪⎝⎭,故tan 2324244f πππ⎛⎫⎛⎫=⋅+= ⎪ ⎪⎝⎭⎝⎭。
普通高等学校招生全国统一考试数学文试题(辽宁卷,解析

2012年普通高等学校招生全国统一考试数学文试题(辽宁卷)详细解析注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题:本大题共12小题,每题5分,在每小题给出的四个选项中,只有一个是符合题目要求的。
(1)已知向量a = (1,—1),b = (2,x).若a ·b = 1,则x =(A) —1 (B) —12 (C) 12 (D)1【答案】D【解析】21,1a b x x ⋅=-=∴=Q ,故选D【点评】本题主要考查向量的数量积,属于容易题。
(2)已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},则(A){5,8} (B){7,9} (C){0,1,3} (D){2,4,6} 【答案】B【解析一】因为全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},所以{}{}9,7,3,1,0,9,7,6,4,2==B C A C U U ,所以)()(B C A C U U I {7,9}。
故选B【解析二】 集合)()(B C A C U U I 即为在全集U 中去掉集合A 和集合B 中的元素,所剩的元素形成的集合,由此可快速得到答案,选B【点评】本题主要考查集合的交集、补集运算,属于容易题。
采用解析二能够更快地得到答案。
(3)复数11i =+(A) 1122i - (B)1122i+ (C) 1i - (D) 1i +【答案】A【解析】11111(1)(1)222i i i i i i --===-++-,故选A 【点评】本题主要考查复数代数形式的运算,属于容易题。
高考辽宁文科科数学试题及答案word解析版

2014年普通高等学校招生全国统一考试(辽宁)数学(文科)第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)【2014年辽宁,文1,5分】已知全集,{|0},{|1}U R A x x B x x ==≤=≥,则集合U ()A B =( )(A ){|0}x x ≥ (B ){|1}x x ≤ (C){|01}x x ≤≤ (D){|01}x x << 【答案】D【解析】{}10A B x x x =≥≤或,∴{}U ()01A B x x =<<,故选D .【点评】本题考查了集合的并集、补集运算,利用数轴进行数集的交、并、补运算是常用方法. (2)【2014年辽宁,文2,5分】设复数z 满足(2i)(2i)5z --=,则z =( )(A )23i + (B )23i - (C )32i + (D)32i - 【答案】A【解析】由(2i)(2i)5z --=,得:()()()52i 52i 2i 2i 2i 2i z +-===+--+,∴23i z =+,故选A . 【点评】本题考查了复数代数形式的除法运算,是基础的计算题.(3)【2014年辽宁,文3,5分】已知132a -=,21log 3b =,121log 3c =,则( )(A )a b c >> (B)a c b >> (C)c b a >> (D)c a b >>【答案】D【解析】∵1030221a -<=<=,221log log 103b =<=,12221log log 3log 213c ==>=,∴c a b >>,故选D .【点评】本题考查指数的运算性质和对数的运算性质,在涉及比较两个数的大小关系时,有时借助于0、1这样的特殊值能起到事半功倍的效果,是基础题.(4)【2014年辽宁,文4,5分】已知,m n 表示两条不同直线,α表示平面,下列说法正确的是( )ﻩ(A )若//m α,//n α,则//m n (B )若m α⊥,n α⊂,则m n ⊥ (C)若m α⊥,m n ⊥,则//n α (D)若//m α,m n ⊥,则n α⊥ 【答案】B【解析】A:若//m α,//n α,则m ,n 相交或平行或异面,故A错;B.若m α⊥,n α⊂,则m n ⊥,故B 正确;C.若m α⊥,m n ⊥,则//n α或n α⊂,故C错;D.若//m α,m n ⊥,则//n α或n α⊂或n α⊥,故D错,故选B .【点评】本题考查空间直线与平面的位置关系,考查直线与平面的平行、垂直的判断与性质,记熟这些定理是迅速解题的关键,注意观察空间的直线与平面的模型.(5)【2014年辽宁,文5,5分】设,,a b c 是非零向量,已知命题p :若0=a b ,0=b c ,则0=a c ;命题q :若a b ,b c ,则a c ,则下列命题中真命题是( )(A)p q ∨ (B)p q ∧ (C)()()p q ⌝∧⌝ (D)()p q ∨⌝ 【答案】A 【解析】若0=a b ,0=b c ,则a b =b c ,即()0-=a c b ,则0a c =不一定成立,故命题p 为假命题,若a b ,b c ,则a c ,故命题q为真命题,则p q ∨,为真命题,p q ∧,()()p q ⌝∧⌝,()p q ∨⌝都为假命题,故选A . 【点评】本题主要考查复合命题之间的判断,利用向量的有关概念和性质分别判断p ,q 的真假是解决本题的关键. (6)【2014年辽宁,文6,5分】若将一个质点随机投入如图所示的长方形ABCD 中,其中2AB =,1BC =,则质点落在以AB 为直径的半圆内的概率是( )(A)2π (B)4π (C )6π (D)8π【答案】BA【解析】2112()124P A ππ⋅==⨯,故选B. 【点评】本题主要考查几何槪型的概率的计算,求出对应的图形的面积是解决本题的关键,比较基础. (7)【2014年辽宁,文7,5分】某几何体三视图如图所示,则该几何体的体积为( )(A)84π-(B)82π-(C)8π- (D)82π-【答案】C【解析】由三视图知:几何体是正方体切去两个14圆柱,正方体的棱长为2,切去的圆柱的底面半径为1,高为2,∴几何体的体积321221284V ππ=-⨯⨯⨯⨯=-,故选C.【点评】本题考查了由三视图求几何体的体积,根据三视图判断几何体的形状及数据所对应的几何量是解题的关键.(8)【2014年辽宁,文8,5分】已知点(2,3)A -在抛物线C :22y px =的准线上,记C 的焦点为F ,则直线AF的斜率为( )(A)43- (B)1- (C)34- (D)12-【答案】C【解析】∵点(2,3)A -在抛物线C :22y px =的准线上,∴22p =,∴()2,0F ,∴直线AF 的斜率为33224=---,故选C.【点评】本题考查抛物线的性质,考查直线斜率的计算,考查学生的计算能力,属于基础题.(9)【2014年辽宁,文9,5分】设等差数列{}n a 的公差为d ,若数列{}12n a a 为递减数列,则( )(A )0d > (B )0d < (C)10a d > (D)10a d < 【答案】D【解析】∵等差数列{}n a 的公差为d ,∴1n n a a d +-=,又数列{}12na a 为递减数列,∴11112212n n a a a d a a +=<,∴10a d <,故选D .【点评】本题考查了等差数列的通项公式、数列的单调性、指数函数的运算法则等基础知识与基本技能方法,属于中档题.(10)【2014年辽宁,文10,5分】已知()f x 为偶函数,当0x ≥时,1cos ,[0,]2()121,(,)2x x f x x x π⎧∈⎪⎪=⎨⎪-∈+∞⎪⎩,则不等式1(1)2f x -≤的解集为( )(A)1247[,][,]4334 (B)3112[,][,]4343-- (C)1347[,][,]3434 (D)3113[,][,]4334--【答案】A【解析】当10,2x ⎡⎤∈⎢⎥⎣⎦,由()12f x =,即1cos 2x π=,则3x ππ=,即13x =,当12x >时,由()12f x =,得1212x -=,解得34x =,则当0x ≥时,不等式()12f x ≤的解为1334x ≤≤,(如图)则由()f x 为偶函数,∴当0x <时,不等式()12f x ≤的解为3143x -≤≤-,即不等式()12f x ≤的解为1334x ≤≤或3143x -≤≤-,则由31143x -≤-≤-或13134x ≤-≤,解得1243x ≤≤或4734x ≤≤,即不等式1(1)2f x -≤的解集为1243x ≤≤或4734x ≤≤,故选A.【点评】本题主要考查不等式的解法,利用分段函数的不等式求出0x ≥时,不等式()12f x ≤的解是解决本题的关键.(11)【2014年辽宁,文11,5分】将函数3sin 23y x π⎛⎫=+ ⎪⎝⎭的图象向右平移2π个单位长度,所得图象对应的函数( )(A)在区间7,1212ππ⎡⎤⎢⎥⎣⎦上单调递减 (B )在区间7,1212ππ⎡⎤⎢⎥⎣⎦上单调递增(C )在区间,63ππ⎡⎤-⎢⎥⎣⎦上单调递减 (D)在区间,63ππ⎡⎤-⎢⎥⎣⎦上单调递增【答案】B【解析】把函数3sin 23y x π⎛⎫=+ ⎪⎝⎭的图象向右平移2π个单位长度,得到的图象所对应的函数解析式为:3sin 223y x ππ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦.即23sin 23y x π⎛⎫=- ⎪⎝⎭.由2222232k x k πππππ-+≤-≤+, 得71212k x k ππππ+≤≤+,k ∈Z .取0k =,得71212x ππ≤≤. ∴所得图象对应的函数在区间7,1212ππ⎡⎤⎢⎥⎣⎦上单调递增,故选B .【点评】本题考查了函数图象的平移,考查了复合函数单调性的求法,复合函数的单调性满足“同增异减”原则,是中档题.(12)【2014年辽宁,文12,5分】当[2,1]x ∈-时,不等式32430ax x x -++≥恒成立,则实数a 的取值范围是( )(A)[5,3]-- (B)9[6,]8-- (C )[6,2]-- (D)[4,3]--【答案】C【解析】当0x =时,不等式32430ax x x -++≥对任意a ∈R 恒成立;当01x <≤时,32430ax x x -++≥可化为23143a x x x ≥--,令()23143f x x x x=--,则()()()234491189x x f x x x x x -+'=-++=-(*),当01x <≤时,()0f x '>,()f x 在(]0,1上单调递增,()()max 16f x f ==-∴6a ≥-;当20x -≤<时,32430ax x x -++≥可化为23143a x x x≤--,由(*)式可知,当21x -≤≤-时,()0f x '<,()f x 单调递减,当10x -<<时,()0f x '>,()f x 单调递增,()()min 12f x f =-=-,∴2a ≤-;综上所述,实数a 的取值范围是62a -≤≤-,即实数a 的取值范围是[6,2]--,故选C .【点评】本题考查利用导数研究函数的最值,考查转化思想、分类与整合思想,按照自变量讨论,最后要对参数范围取交集;若按照参数讨论则取并集.第II 卷(共90分)二、填空题:本大题共4小题,每小题5分 (13)【2014年辽宁,文13,5分】执行右侧的程序框图,若输入3n =,则输出T = . 【答案】20【解析】由程序框图知:算法的功能是求()()()112123123T i =+++++++++++的值,当输入3n =时,跳出循环的i 值为4,∴输出1361020T =+++=.【点评】本题考查了当型循环结构的程序框图,根据框图的流程判断算法的功能是解题的关键.(14)【2014年辽宁,文14,5分】.已知x ,y 满足条件220240330x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则目标函数34z x y =+的最大值为 .【答案】18【解析】由约束条件220240330x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩作出可行域如图,联立240330x y x y -+=⎧⎨--=⎩,解得23x y =⎧⎨=⎩,∴()2,3C .化目标函数34z x y =+为直线方程的斜截式,得:344zy x =-+.由图可知,当直线344zy x =-+过点C 时,直线在y 轴上的截距最大,即z 最大.∴max 324318z =⨯+⨯=.【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.(15)【2014年辽宁,文15,5分】已知椭圆C :22194x y +=,点M 与C 的焦点不重合,若M关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则||||AN BN += .【答案】12【解析】如图:MN 的中点为Q ,易得212QF NB =,112QF AN =,∵Q 在椭圆C 上,∴1226QF QF a +==,∴||||12AN BN +=.【点评】本题考查椭圆的定义,椭圆的基本性质的应用,基本知识的考查. (16)【2014年辽宁,文16,5分】对于0c >,当非零实数,a b 满足22420a ab b c -+-=,且使|2|a b +最大时,124a b c++的最小值为 . 【答案】1-【解析】∵22420a ab b c -+-=,∴22221342416c b a ab b a b ⎛⎫=-+=-+ ⎪⎝⎭,由柯西不等式得,()22222233223223242b b a b a b a b ⎡⎤⎛⎫⎡⎤⎛⎫⎛⎫⎡⎤⎢⎥-++≥-+⋅=+ ⎪⎢⎥ ⎪ ⎪ ⎪⎢⎥⎣⎦⎢⎥⎝⎭⎝⎭⎝⎭⎣⎣⎦,故当2a b +最大时, 有344223b a b -=,∴12a b =,2c b =,∴22124224111142a b c b b b b ⎛⎫++=++=+- ⎪⎝⎭, 当2b =-时,取得最小值为1-.【点评】本题考查了柯西不等式,以及二次函数的最值问题,属于难题.三、解答题:解答应写出文字说明,证明过程或演算步骤.(17)【2014年辽宁,文17,12分】在ABC ∆中,内角A ,B ,C 的对边,,a b c ,且a c >,已知2BA BC ⋅=,1cos 3B =,3b =,求:(1)a 和c 的值;(2)cos()B C -的值.解:(1)由2BA BC =得cos 2ac B ⋅=.又1cos 3B =,所以6ac =.由余弦定理得22a c +=22cos b ac B +⋅. 又因为3b =,所以22a c +=21326133+⨯⨯=.解22613ac a c =⎧⎨+=⎩得23a c =⎧⎨=⎩或32a c =⎧⎨=⎩.因为a c >,32a c =⎧∴⎨=⎩. (2)在ABC ∆中,2sin 1cos B B =-21221()3=-=.由正弦定理得sin sin b cB C=, 所以222sin 3sin 3c B C b⨯==42=.因为a c >,所以角C 为锐角.2cos 1sin C C =-24271()99=-=.cos()B C -cos cos sin sin B C B C =+17224239=⨯+⨯2327=. 【点评】此题考查了正弦、余弦定理,平面向量的数量积运算,以及同角三角函数间的基本关系,熟练掌握定理是解本题的关键.(18)【2014年辽宁,文18,12分】某大学餐饮中心为了了解新生的饮食习惯,在全校一年级学生中进行了抽样调查, 喜欢甜品 不喜欢甜品 合计南方学生 60 20 80 北方学生 10 10 20合计 70 30 100(1”;(2)已知在被调查的北方学生中有5名数学系的学生,其中2名喜欢甜品,现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率.附:21212211222112)(++++-=n n n n n n n n n χ,解:(1)由题意,()2210060102010 4.762 3.84170308020X ⨯⨯-⨯=≈>⨯⨯⨯,∴有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”.(2)从这5名学生中随机抽取3人,共有3510C =种情况,有2名喜欢甜品,有133C =种情况, ∴至多有1人喜欢甜品的概率710.【点评】本题考查独立性检验的应用,考查古典概型及其概率计算公式,考查学生的计算能力,属于中档题. (19)【2014年辽宁,文19,12分】如图,ABC ∆和BCD ∆所在平面互相垂直,且AB BC =2BD ==,o 120ABC DBC ∠=∠=,E 、F 、G 分别为AC 、DC 、AD 的中点. (1)求证:EF ⊥平面BC G; (2)求三棱锥D ﹣BCG 的体积.附:椎体的体积公式13V Sh =,其中S 为底面面积,h 为高.解:(1)∵2AB BC BD ===.120ABC DBC ∠=∠=︒,∴ABC DBC ∆∆≌,∴AC DC =,∵G 为AD 的中点,∴CG AD ⊥.同理BG AD ⊥,∵CG BG G =,∴AD ⊥平面BGC , ∵//EF AD ,∴EF ⊥平面BCG .(2)在平面ABC 内,作AO CB ⊥,交CB 的延长线于O ,∵ABC ∆和BCD ∆所在平面互相垂直,∴AO ⊥平面BCD ,∵G 为AD 的中点∴G 到平面BCD 的距离h 是AO 长度的一半.在AOB ∆中,sin 603AO AB =︒=,1111sin1203322D BCG D BCD DCB V V S h BD BC --∆===⋅⋅⋅⋅︒=.【点评】本题考查线面垂直,考查三棱锥体积的计算,正确转换底面是关键.(20)【2014年辽宁,文20,12分】圆224x y +=的切线与x 轴正半轴,y 轴正半轴围成一个三角形,当该三角形面积最小时,切点为P (如图). (1)求点P 的坐标;(2)焦点在x 轴上的椭圆C 过点P ,且与直线l :3y x =+交于A 、B 两点,若PAB ∆ 的面积为2,求C 的标准方程.解:(1)解法一:设圆半径r ,P 点上下两段线段长分别为2,,4m n r =,由射影定理得:2r mn =,三角形面积22422422421111444()168168162222s m n r m n r m n r r =++=+++≥++=++,仅当2m n ==时,s 取最大值,这时(2,2)P .解法二:2()P k χ≥0.100 0.050 0.010 k2.7063.8416.635yxPO设切点P 的坐标为()00,x y ,且00x >,00y >.则切线的斜率为00x y -,故切线方程为()0000xy y x x y -=--, 即001x x y y +=.此时,切线与x 轴正半轴,y 轴正半轴围成的三角形的面积000014482S x y x y =⋅⋅=⋅.再根据22004x y +=≥00x y ==故点P的坐标为.(2)设椭圆方程22221x y a b +=,11(,)A x y ,22(,)B x y .椭圆过点P 得:22221a b+=,则P到直线y x =+的距离d =.由题得:Δ122ABP S d AB =⋅⋅=,解得AB =.由弦长公式得()()()2222121212123214243AB k x x x x x x x x ⎡⎤⎡⎤=++-=+-=⎣⎦⎣⎦,即2121216()-43x x x x +=.把点P 代入方程得:22221a b +=,由22221y x x y a b ⎧=⎪⎨+=⎪⎩得2210x a +-=,整理得2102x -=,12x x ∴+=,212232b x x b-=⋅,代入上式得2424831683b b b --⋅=,即4263103b b -+=,解得23b =,26a =,或26b =,23a =(舍),所以椭圆方程为:22163x y +=.【点评】本题主要考查直线和圆相切的性质,直线和圆锥曲线的位置关系,点到直线的距离公式、弦长公式的应用,属于难题.(21)【2014年辽宁,文21,12分】已知函数()(cos )2sin 2f x x x x π=---,2()(1xg x x ππ=--.证 明:(1)存在唯一0(0,)2x π∈,使0()0f x =;(2)存在唯一1(,)2x ππ∈,使1()0g x =,且对(1)中的01x x π+<.解:(1)2ππ()π(cos )2sin 2(0)π20,()4022f x x x x f f =---∴=--<=->,()f x 在π(0)2,上有零点,()π(1sin )2osx πsin (π2osx)0f x x c x c '=+-=+->,()f x ∴在π(0)2,上单调递增.(2)()(21x g x x ππ=--,,2x ππ⎛⎫∈ ⎪⎝⎭,()()cos 211sin x x g x x x ππ-∴=-⋅+-+cos π2π(π),(0,)1sin π2x x g x x x x -∴-=-+∈+,设cos π2()1sin πx x h x x x --=++,π(0,)2x ∈,则()g x 与()h x 的零点同.22cos sin (1sin )cos 2cos 2π(-cos )2(1sin )()1sin (1sin )π1sin 1sin ππ(1sin )x x x x x x x x x h x x x x x x x -++--+'=+-=+-=+++++()π(1sin )f x x =+,π(0,)2x ∈.由(1)知,()f x 在π(0,)2上只有一个零点0x ,且在点0x 左负右正. ()h x ∴在0x 点左侧递减,在0x 点右侧递增,且(0)10h =>,π()02h =,故0()0h x <,存在唯一20(0,)x x ∈,使得()20h x =,即2(π)0g x -=,12πx x ∴=-,即1210πx x x x +=<+,01πx x ∴+>,所以()g x 在,2ππ⎛⎫⎪⎝⎭上存在唯一零点1x ,且01πx x +>.【点评】本题考查零点的判定定理,涉及导数法证明函数的单调性,属中档题. 请考生在(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做第一个题目计分,做答时,请用2B铅笔在答题卡上将所选题号后的方框涂黑.--(22)【2014年辽宁,文22,10分】(选修4-1:几何证明选讲)如图,EP 交圆于E 、C 两点,PD 切圆于D ,G 为CE 上一点且PG PD =,连接DG 并延长交圆于点A ,作弦AB 垂直EP ,垂足为F . (1)求证:AB 为圆的直径; (2)若AC BD =,求证:AB ED =.解:(1)PD PG PDG PGD PD =∴∠=∠为圆的切线,PDA DBA ∴∠=∠ 又PGD EGA DBA EGA DBA BAD EGA BAD ∠=∠∴∠=∠∴∠+∠=∠+∠, 9090BDA PFA AF EP PFA BDA AB ∴∠=∠⊥∴∠=︒∴∠=︒∴为直径. (2)连接,BC DC 90AB BDA ACB ∴∠=∠=︒是直径,在Rt BDA Rt ACB ∆∆与中,,AB BA AC BD ==,Rt BDA Rt ACB ∆≅∆,DAB CBA DCB DAB ∴∠=∠∠=∠ //DAB CBA DC AB ∴∠=∠∴,90AB EP DC EP DCE ⊥∴⊥∠=︒ED ∴为直径, 由(1)AB ED =.【点评】本题考查圆的切线的性质,考查三角形全等的证明,考查直径所对的圆周角为直角,属于中档题. (23)【2014年辽宁,文23,10分】(选修4-4:坐标系与参数方程)将圆221x y +=上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C . (1)写出C 的参数方程;(2)设直线:220l x y +-=与C 的交点为12,P P ,以坐标原点为极点,x 轴正半轴为极坐标建立极坐标系,求过线段12P P 的中点且与l 垂直的直线的极坐标方程.解:(1)设11(,)x y 为圆221x y +=上任意一点,按题中要求变换后的点(,)x y .根据题意得112x x y y =⎧⎨=⎩,所以112x x y y =⎧⎪⎨=⎪⎩.由22111x y +=得2214y x +=.故C 的参数方程为cos 2sin x y θθ=⎧⎨=⎩(θ为参数). (2)由2244220x y x y ⎧+=⎨+-=⎩解得10x y =⎧⎨=⎩或02x y =⎧⎨=⎩.不妨设1(1,0)P ,2(0,2)P,则线段中点坐标1(,1)2. 所求直线的斜率为12k =,于是所求直线方程为111()22y x -=-,即2430x y -+=.化为极坐标方程为2cos 4sin 30ρθρθ-+=,即34sin 2cos ρθθ=-.ﻩ【点评】本题主要考查求点的轨迹方程的方法,极坐标和直角坐标的互化,用点斜式求直线的方程,属于中档题. (24)【2014年辽宁,文24,10分】(选修4-5:不等式选讲)设函数()2|1|1f x x x =-+-,2()1681g x x x =-+,记()1f x ≤的解集为M ,()4g x ≤的解集为N . (1)求M ;(2)当x M N ∈时,证明:221()[()]4x f x x f x +≤.解:(1)()2|1|1f x x x =-+-33,[1,)1,(,1)x x x x -∈+∞⎧=⎨-∈-∞⎩.当1x ≥时,()331f x x =-≤,解得413x ≤≤;当1x <时,()11f x x =-≤,解得01x ≤<.所以()1f x ≤的解集为4{|0}3M x x =≤≤.(2)2()16814g x x x =-+≤,解得13{|}44N x x =-≤≤.M N =3{|0}4x x ≤≤.当x M N ∈时,()1f x x =-.22()[()]x f x x f x +=22(1)(1)x x x x -+-2x x =-211()42x =--,3{|0}4x x x ∈≤≤.221()[()]4x f x x f x ∴+≤.【点评】本题主要考查绝对值不等式的解法,体现了分类讨论、等价转化的数学思想,属于中档题.。
2012年高考数学辽宁卷文科解析(完整版)

2012年普通高等学校招生全国统一考试(辽宁卷)数学( 文科 )第Ⅰ卷一、选择题:本大题共12小题,每题5分,在每小题给出的四个选项中,只有一个是符合题目要求的。
(1)已知向量a = (1,—1),b = (2,x).若a ·b = 1,则x = (A) —1 (B) —12 (C) 12(D)1 【答案】D【解析】21,1a b x x ⋅=-=∴= ,故选D【点评】本题主要考查向量的数量积,属于容易题。
(2)已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},则 =)(B C A C u u )((A){5,8} (B){7,9} (C){0,1,3} (D){2,4,6} 【答案】B【解析一】因为全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},所以{}{}9,7,3,1,0,9,7,6,4,2==B C A C U U ,所以)()(B C A C U U {7,9}。
故选B【解析二】 集合)()(B C A C U U 即为在全集U 中去掉集合A 和集合B 中的元素,所剩的元素形成的集合,由此可快速得到答案,选B【点评】本题主要考查集合的交集、补集运算,属于容易题。
采用解析二能够更快地得到答案。
(3)复数11i =+ (A) 1122i - (B)1122i + (C) 1i - (D) 1i +【答案】A 【解析】11111(1)(1)222i i ii i i --===-++-,故选A 【点评】本题主要考查复数代数形式的运算,属于容易题。
复数的运算要做到细心准确。
(4)在等差数列{a n }中,已知a 4+a 8=16,则a 2+a 10=(A) 12 (B) 16 (C) 20 (D)24 【答案】B【解析】48111(3)(7)210,a a a d a d a d +=+++=+21011121048()(9)210,16a a a d a d a d a a a a +=+++=+∴+=+=,故选B【点评】本题主要考查等差数列的通项公式、同时考查运算求解能力,属于容易题。
高考辽宁数学文科试卷含详细解答(全word版)

2008年普通高等学校招生全国统一考试湖南 曾维勇解析 第 1 页 共 11 页2008年普通高等学校招生全国统一考试(辽宁卷)数学(供文科考生使用)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至4页,考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷(选择题共60分)参考公式:如果事件A B ,互斥,那么球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率()(1)(012)k kn k n n P k C P p k n -=-=,,,,其中R 表示球的半径一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{}31M x x =-<<,{}3N x x =-≤,则M N =( D )A .∅B .{}3x x -≥C .{}1x x ≥D .{}1x x <答案:D解析:本小题主要考查集合的相关运算知识。
依题意{}31,M x x =-<<{}3N x x =-…,∴{|1}M N x x ⋃=<.2.若函数(1)()y x x a =+-为偶函数,则a =( C ) A .2- B .1-C .1D .2答案:C解析:本小题主要考查函数的奇偶性。
(1)2(1),f a =-(1)0(1),f f -== 1.a ∴= 3.圆221x y +=与直线2y kx =+没有..公共点的充要条件是( B ) A.(k ∈B .(k ∈。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010年普通高等学校招生全国统一考试(辽宁卷)
数学(文科)
第Ⅰ卷
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合
{}
1,3,5,7,9U =,
{}
1,5,7A =,则U C A =
(A )
{}1,3
(B )
{}3,7,9 (C )
{}3,5,9
(D )
{}3,9
(2)设,a b 为实数,若复数
121i
i a bi
+=++,则 (A )31,22
a b =
= (B )3,1a b ==
(C )13
,22
a b =
= (D )1,3a b == (3)设n S 为等比数列{}n a 的前n 项和,已知3432s a =-,2332S a =-,则公比q =
(A )3
(B )4
(C )5
(D )6
(4)已知0a >,函数2
()f x ax bx c =++,若0x 满足关于x 的方程20ax b +=,则下列选项的命题中
为假命题的是
(A )0,()()x R f x f x ∃∈≤ (B )0,()()x R f x f x ∃∈≥ (C ) 0,()()x R f x f x ∀∈≤ (D )0,()()x R f x f x ∀∈≥ (5)如果执行右图的程序框图,输入6,4n m ==,那么输出的p 等于
(A )720 (B ) 360 (C ) 240 (D ) 120
(6)设0w >,函数sin()23
y wx π
=+
+的图像向右平移
43
π
个单位后与原图像重合,则w 的最小值是 (A )
23 (B ) 43 (C ) 3
2
(D ) 3 (7)设抛物线2
8y x =的焦点为F ,准线为l ,p 为抛物线上一点,
PA l ⊥,A 为垂足,如果直线AF 斜率为PF =
(A )(B ) 8 (C ) (D ) 16
(8)平面上,,O A B 三点不共线,设,OA a OB b ==,则OAB 的面积等于
(A (B
(C (D
(9)设双曲的一个焦点为F ,虚轴的一个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么此
双曲线的离心率为
(A (B (C (D (10)设5
25b
m ==,且
11
2a b
+=,则m =
(A (B )10 (C )20 (D )100
(11)已知,,,S A B C 是球O 表面上的点,SA ABC ⊥平面,AB BC ⊥,1SA AB ==,BC =,则
球O 表面积等于
(A )4π (B )3π (C )2π (D )π (12)已知点p 在曲线4
1
x
y e =
+上,α为曲线在点p 处的切线的倾斜角,则α的取值范围是 (A)[0,4
π) (B)[,)42ππ 3(,]24ππ (D) 3[
,)4π
π
第Ⅱ卷
本试卷包括必考题和选考题两部分。
第(13)题~第(21)题为必考题,每个试题考生都必须作答。
第(22)题~第(24)题为选考题,考生根据要求作答。
二、填空题:本大题共4小题,每小题5分。
(13)三张卡片上分别写上字母E 、E 、B ,将三张卡片随机地排成一行,恰好排成英文单词BEE 的概率
为 。
(14)设n S 为等差数列{}n a 的前n 项和,若36324S S ==,,则9a = 。
(15)已知14x y -<+<且23x y <-<,则23z x y =-的取值范
围是 。
(答案用区间表示)
(16)如图,网格纸的小正方形的边长是1,在其上用粗线画
出了某多面体的三视图,则这个多面体最长的一条棱的
长为 。
三、解答题:解答应写出文字说明、证明过程或演算步骤。
(17)(本小题满分12分)
在ABC 中,a b c 、、分别为内角A B C 、、的对边,且
2sin (2)sin (2)sin a A b c B c b C =+++
(Ⅰ)求A 的大小;
(Ⅱ)若sin sin 1B C +=,是判断ABC 的形状。
(18)(本小题满分12分)
为了比较注射A,B 两种药物后产生的皮肤疱疹的面积,选200只家兔做实验,将这200只家兔随即地分成两组。
每组100只,其中一组注射药物A ,另一组注射药物B 。
下表1和表2分别是注射药物A 和药物B 后的实验结果。
(疱疹面积单位:2
mm )
(Ⅰ)完成下面频率分布直方图,并比较注射两种药物后疱疹面积的中位数大小;
(Ⅱ)完成下面22⨯列联表,并回答能否有99.9%的把握认为“注射药物A 后的疱疹面积与注射药物B 后的疱疹面积有差异”。
附:2
2
()()()()
n ad bc k a b c d b c -=+++
(19)(本小题满分12分) 如图,棱柱
121212|()()|4||,(0,)
f x f x x x x x -≥-∈+∞111ABC A B C -的侧面11BCC B 是菱形,11B C A B ⊥
(Ⅰ)证明:平面11A B C
⊥平面11A BC ; (Ⅱ)设D 是11AC 上的点,且1//AB 平面1B CD ,求11:A D DC 的值。
(20)(本小题满分12分)
设1F ,2F 分别为椭圆22
22:1x y C a b
+=(0)a b >>的左右焦点,
过2F 的直线l 与椭圆C 相交于A ,B 两点,直线l 的倾斜角为60,1F 到直线l
的距离为
(Ⅰ)求椭圆C 的焦距;
(Ⅱ)如果222AF F B =,求椭圆C 的方程。
(21)(本小题满分12分)
已知函数2
()(1)ln 1f x a x ax =+++. (Ⅰ)讨论函数()f x 的单调性;
(Ⅱ)设2a ≤-,证明:对任意12,(0,)x x ∈+∞,1212|()()|4||f x f x x x -≥-。
(23)(本小题满分10分)选修4—4:坐标系与参数方程
已知P 为半圆cos :sin x C y θ
θ=⎧⎨
=⎩
(θ为参数,0θπ≤≤)上的点,点A 的坐标为(10),,O 为坐标原点,
点M 在射线OP 上,线段OM 与C 的弧
的长度均为
3
π。
(Ⅰ)以O 为极点,x 轴的正半轴为极轴建立极坐标系,求点M 的坐标; (Ⅱ)求直线AM 的参数方程
(24)(本小题满分10分)选修4—5:不等式选讲
已知a b c 、、均为正数,证明:2
2
2
2
1
11()a b c a b c
++++
+≥,并确定a b c 、、为何值时,等号成立。
参考解答
一、选择题
(1)—(6)DABCBC (7)—(12)BCDAAD 二、填空题
(13)
13
(14)15
(15)(38), (16)。