2020高考数学刷题首秧第二章函数导数及其应用考点测试7函数的奇偶性与周期性文含解析

合集下载

函数的奇偶性与周期性高频考点+重点题型

函数的奇偶性与周期性高频考点+重点题型

专题07函数的奇偶性和周期性--2022年(新高考)数学高频考点+重点题型一、关键能力在学习函数基本性质的过程中,学生能理解数学知识之间的联系,建构知识框架,形成有论据、有条理、合乎逻辑的思维品质,增强数学交流能力。

能够进一步提高数学运算能力,能有效借助运算方法解决实际问题,能够通过运算促进数学思维发展,养成程序化思考问题的习惯,形成一丝不苟、严谨求实的科学精神,在此过程中提高逻辑推理和数学运算能力。

二、教学建议教学中,要结合231,,,y x y x y x yx====等函数,了解函数奇偶性的概念、图象和性质,并能判断一些简单函数的奇偶性(对一般函数的奇偶性,不要做深入讨论)。

函数各种性质的综合常常是命制高考数学试题的重要出发点和落脚点,在复习函数性质时应注意到数形结合思想、分类讨论、由特殊到一般(由一般到特殊)等数学思想方法的灵活运用。

三、自主梳理1.函数的奇偶性2.函数的周期性(1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期.(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.3.奇偶性常见结论(1)如果一个奇函数f(x)在原点处有定义,即f(0)有意义,那么一定有f(0)=0.(2)如果函数f(x)是偶函数,那么f(x)=f(|x|).(3)奇函数在两个对称的区间上具有相同的单调性;偶函数在两个对称的区间上具有相反的单调性.4.函数周期性常用结论对f(x)定义域内任一自变量的值x:(1)若f(x+a)=-f(x),则T=2a(a>0).(2)若f (x +a )=1f (x ),则T =2a (a >0). (3)若f (x +a )=-1f (x ),则T =2a (a >0).5.对称性的三个常用结论(1)若函数y =f (x +a )是偶函数,则函数y =f (x )的图象关于直线x =a 对称.(2)若对于R 上的任意x 都有f (2a -x )=f (x )或f (-x )=f (2a +x ),则y =f (x )的图象关于直线x =a 对称.(3)若函数y =f (x +b )是奇函数,则函数y =f (x )关于点(b ,0)中心对称. 四、真题感悟1.(2021新高考1卷) 已知函数()()322x xx a f x -=⋅-是偶函数,则a =______.2.(2021全国乙卷理)设函数1()1xf x x-=+,则下列函数中为奇函数的是( ) A. ()11f x -- B. ()11f x -+ C. ()11f x +- D. ()11f x ++ 3.(2021全国甲卷理) 设函数()f x 的定义域为R ,()1f x +为奇函数,()2f x +为偶函数,当[]1,2x ∈时,2()f x ax b =+.若()()036f f +=,则92f ⎛⎫= ⎪⎝⎭( ) A. 94-B. 32-C.74 D.524(2021浙江卷). 已知函数21(),()sin 4f x xg x x =+=,则图象为如图的函数可能是( )A. 1()()4y f x g x =+- B. 1()()4y f x g x =-- C. ()()y f x g x =D. ()()g x y f x =5.(2020山东8)若定义在R 上的奇函数()f x 在(,0)-∞单调递减,且(2)0f =,则满足(1)0xf x -≥的x 的取值范围是 ( )A .[][)1,13,-+∞B .[][]3,10,1--C .[][)1,01,-+∞D .[][]1,01,3-6.(2018全国卷Ⅱ)已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)-=+f x f x . 若(1)2=f ,则(1)(2)(3)(50)++++=…f f f fA .50-B .0C .2D .50五、高频考点+重点题型 考点一、奇偶性的判定例1.下列四个函数中既是奇函数,又是增函数的是( ) A .()ln xf x x=B .32()f x x x =+C .()||f x x x =-D .)()lgf x x =-对点训练1.(2021·四川成都市·石室中学高二期中(理))已知函数()2xxf x e ex -=--,若不等式()()2120f ax f ax +-≥对x R ∀∈恒成立,则实数a 的取值范围是( )A .(]0,eB .[]0,eC .(]0,1D .[]0,1对点训练2.【2020年高考浙江】函数y =x cos x +sin x 在区间[–π,π]上的图象可能是对点训练3.(2021·湖北省丹江口市一中模拟)设f (x )=e x +e -x ,g (x )=e x -e -x ,f (x ),g (x )的定义域均为R ,下列结论错误的是( )A .|g (x )|是偶函数B .f (x )g (x )是奇函数C .f (x )|g (x )|是偶函数D .f (x )+g (x )是奇函数4.【2020·全国Ⅱ卷】设函数()ln |21|ln |21|f x x x =+--,则f (x ) A .是偶函数,且在1(,)2+∞单调递增B .是奇函数,且在11(,)22-单调递减 C .是偶函数,且在1(,)2-∞-单调递增 D .是奇函数,且在1(,)2-∞-单调递减考点二、利用奇偶性求解析式例2.(1)(2019·全国卷Ⅱ)设f (x )为奇函数,且当x ≥0时,f (x )=e x -1,则当x <0时,f (x )=( )A .e -x -1 B .e -x +1 C .-e -x -1 D .-e -x +1(2)(2019·北京高考真题(理))设函数f (x )=e x +a e −x (a 为常数).若f (x )为奇函数,则f (x )=________对点训练1.设()f x 为定义在R 上的奇函数,当0x ≥时,22()log (1)1f x x ax a =++-+(a 为常数),则不等式(35)2f x +>-的解集为( ) A .(),1-∞-B .()1,+-∞C .(),2-∞-D .()2,+-∞对点训练2.设奇函数()f x 在(0,)+∞上为增函数,且f (1)0=,则不等式()()f x f x x--<的解集为( )A .(1-,0)(1⋃,)+∞B .(-∞,1)(0-⋃,1)C .(-∞,1)(1-⋃,)+∞D .(1-,0)(0⋃,1)考点三、利用奇偶性画函数图像例3. 已知函数f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )=x 2-5x ,则不等式f (x -1)>f (x )的解集为________.对点训练1.(2019·全国高考真题(理))函数3222x xx y -=+在[]6,6-的图像大致为 A . B .C .D .对点训练2.(2021·安徽池州市·池州一中高三其他模拟(理))若定义在R 上的奇函数()f x 在()0,∞+上单调递增,且()20f =,则不等式()10xf x -≤的解集为( )A .(][),13,-∞-+∞B .(][],11,3-∞-C .[][]1,01,3-D .[][)1,03,-+∞考点四、周期性判定与作用 例4.(1)已知定义在R 上的奇函数f (x )满足f (x +4)=f (x ),且当x ∈(2,4)时,f (x )=x 3-3x ,则f (2 021)等于( )A. 2B. -18C. 18D. -2(2)设f (x )是定义在R 上以2为周期的偶函数,当x ∈[0,1]时,f (x )=log 2(x +1),则当x ∈[1,2]时,f (x )=________. 对点训练1.已知函数()f x 是定义在R 上的偶函数,满足()()2f x f x +=,当[]0,1x ∈时,()πcos2f x x =,则函数()y f x x =-的零点个数是( ) A .2B .3C .4D .5对点训练2.已知定义域为R 的函数()f x 满足:①图象关于原点对称;②3()2f x f x ⎛⎫=-⎪⎝⎭;③当30,4x ⎛⎫∈ ⎪⎝⎭时,2()log (1)f x x m =++.若2(2020)log 3f =,则m =( ) A .1-B .1C .2-D .2对点训练3.(2021·江苏南通市·高三一模)已知()f x 是定义在R 上的函数,()22f =,且对任意的x ∈R ,都有()()33f x f x +≥+,()()11f x f x +≤+,若()()1g x f x x =+-,则()2020g =( )A .2020B .3C .2D .1考点五、函数的奇偶性、周期性、单调性综合应用例5(1)定义在R 上的函数f (x )满足f (x )=f (-x ),且f (x )=f (x +6),当x ∈[0,3]时,f (x )单调递增,则f (x )在下列哪个区间上单调递减( )A .[3,7]B .[4,5]C .[5,8]D .[6,10] (2)已知函数f (x )=e x -1-e -x +1,则下列说法正确的是( )A .函数f (x )的最小正周期是1B .函数f (x )是单调递减函数C .函数f (x )的图象关于直线x =1轴对称D .函数f (x )的图象关于(1,0)中心对称 对点训练1.(多选题)(2020·全国高考真题(理))关于函数f (x )=1sin sin x x+有如下四个命题:A 、f (x )的图象关于y 轴对称.B 、f (x )的图象关于原点对称.C 、f (x )的图象关于直线x =2π对称. D 、f (x )的最小值为2. 其中所有真命题的是( ).对点训练2.函数()2cos x x xf x -=的部分图象大致为( )A .B .C .D .对点训练3.(2021·河北模拟)定义在R 上的偶函数f (x )满足f (x +2)=f (x ),且在[-1,0]上单调递减.设a =f (-2.8),b =f (-1.6),c =f (0.5),则a ,b ,c 的大小关系是( )A .a >b >cB .c >a >bC .b >c >aD .a >c >b 巩固训练一、单项选择题1.下列函数中,既不是奇函数,也不是偶函数的是( )A .y =1+x 2B .y =x +1xC .y =2x +12x D .y =x +e x .2.若f (x )是R 上周期为5的奇函数,且满足f (1)=1,f (2)=2,则f (3)-f (4) 的值是( ) A. 1- B. 0 C. 1 D. 3.3.已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是( ) A. 1- B.13C. 0D. 3. 4.已知f (x )是奇函数,g (x )是偶函数,且f (-1)+g (1)=2,f (1)+g (-1)=4,则g (1)等于________. 5.已知函数f (x )=x |x |-2x ,则下列结论正确的是( )A .f (x )是偶函数,递增区间是(0,+∞)B .f (x )是偶函数,递减区间是(-∞,1)C .f (x )是奇函数,递减区间是(-1,1)D .f (x )是奇函数,递增区间是(-∞,0) 6.设定义在R 上的函数f (x )满足f (x )·f (x +2)=13,若f (1)=2,则f (99)=________. A. 1 B. 2 C. 0 D. 132. 二、多项选择题7.已知定义在R 上的函数y =f (x )满足条件f ⎝⎛⎭⎫x +32=-f (x ),且函数y =f ⎝⎛⎭⎫x -34为奇函数,则以下结论正确的是( )A .函数f (x )是周期函数;B .函数f (x )的图象关于点⎝⎛⎭⎫-34,0对称; C .函数f (x )为R 上的偶函数; D .函数f (x )为R 上的单调函数.8.已知f (x )是定义域为R 的奇函数,且函数f (x +2)为偶函数,则下列结论正确的是( ) A .函数y =f (x )的图象关于直线x =1对称 B .f (4)=0C .f (x +8)=f (x )D .若f (-5)=-1,则f (2019)=-1 三、填空题9.设奇函数f (x )的定义域为R ,最小正周期T =3,若f (1)≥1,f (2)=2a -3a +1,则a 的取值范围是________.10.设f (x )是定义在R 上且周期为2的函数,在区间[-1,1]上,f (x )=⎩⎪⎨⎪⎧ax +1,-1≤x <0,bx +2x +1,0≤x ≤1,其中a ,b ∈R .若f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫32,则a +3b 的值为________. 四、解答题11.设f (x )=e x +a e -x (a ∈R ,x ∈R ). (1)讨论函数g (x )=xf (x )的奇偶性;(2)若g (x )是偶函数,解不等式f (x 2-2)≤f (x ).12.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函数.(1)求实数m 的值;(2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围.专题07函数的奇偶性和周期性--2022年(新高考)数学高频考点+重点题型解析 四、真题感悟1.(2021新高考1卷) 已知函数()()322x xx a f x -=⋅-是偶函数,则a =______.【答案】1 【解析】【分析】利用偶函数的定义可求参数a 的值.【详解】因为()()322x x x a f x -=⋅-,故()()322x x f x x a --=-⋅-,因为()f x 为偶函数,故()()f x f x -=, 时()()332222xx x x xa x a --⋅-=-⋅-,整理得到()()12+2=0x x a --,故1a =, 故答案为:12.(2021全国乙卷理)设函数1()1xf x x-=+,则下列函数中为奇函数的是( ) A. ()11f x -- B. ()11f x -+ C. ()11f x +- D. ()11f x ++ 【答案】B【解析】由题意可得12()111x f x x x-==-+++, 对于A ,()2112f x x--=-不是奇函数; 对于B ,()211f x x-=+是奇函数; 对于C ,()21122f x x +-=-+,定义域不关于原点对称,不是奇函数;对于D ,()2112f x x ++=+,定义域不关于原点对称,不是奇函数. 故选:B3.(2021全国甲卷理) 设函数()f x 的定义域为R ,()1f x +为奇函数,()2f x +为偶函数,当[]1,2x ∈时,2()f x ax b =+.若()()036f f +=,则92f ⎛⎫= ⎪⎝⎭( ) A. 94-B. 32-C.74 D.52【答案】D 【解析】通过()1f x +是奇函数和()2f x +是偶函数条件,可以确定出函数解析式()222f x x =-+,进而利用定义或周期性结论,即可得到答案.【详解】因为()1f x +是奇函数,所以()()11f x f x -+=-+Ⅱ;因为()2f x +是偶函数,所以()()22f x f x +=-+Ⅱ.令1x =,由Ⅱ得:()()()024f f a b =-=-+,由Ⅱ得:()()31f f a b ==+, 因为()()036f f +=,所以()462a b a b a -+++=⇒=-,令0x =,由Ⅱ得:()()()11102f f f b =-⇒=⇒=,所以()222f x x =-+.思路一:从定义入手.9551222222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=+=-+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 1335112222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫-=-+=-+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 511322=2222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫-=-+=--+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭所以935222f f ⎛⎫⎛⎫=-=⎪ ⎪⎝⎭⎝⎭. 思路二:从周期性入手由两个对称性可知,函数()f x 的周期4T=.所以91352222f f f ⎛⎫⎛⎫⎛⎫==-=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选:D .4(2021浙江卷). 已知函数21(),()sin 4f x xg x x =+=,则图象为如图的函数可能是( )A. 1()()4y f x g x =+- B. 1()()4y f x g x =-- C. ()()y f x g x = D. ()()g x y f x =【答案】D 【解析】【分析】由函数的奇偶性可排除A 、B ,结合导数判断函数的单调性可判断C ,即可得解. 【详解】对于A ,()()21sin 4y f x g x x x =+-=+,该函数为非奇非偶函数,与函数图象不符,排除A ;对于B ,()()21sin 4y f x g x x x =--=-,该函数为非奇非偶函数,与函数图象不符,排除B ;对于C ,()()21sin 4y f x g x x x ⎛⎫==+⎪⎝⎭,则212sin cos 4y x x x x ⎛⎫'=++ ⎪⎝⎭,当4x π=时,2102164y ππ⎛⎫'=++> ⎪⎝⎭,与图象不符,排除C. 故选:D.5.(2020山东8)若定义在R 上的奇函数()f x 在(,0)-∞单调递减,且(2)0f =,则满足(1)0xf x -≥的x 的取值范围是( )A .[][)1,13,-+∞B .[][]3,10,1--C .[][)1,01,-+∞D .[][]1,01,3-【答案】D【解析】因为定义在R 上的奇函数()f x 在(,0)-∞上单调递减,且(2)0f =, 所以()f x 在(0,)+∞上也是单调递减,且(2)0f -=,(0)0f =, 所以当(,2)(0,2)x ∈-∞-⋃时,()0f x >,当(2,0)(2,)x ∈-+∞时,()0f x <,所以由(10)xf x -≥可得:021012x x x <⎧⎨-≤-≤-≥⎩或或001212x x x >⎧⎨≤-≤-≤-⎩或或0x =解得10x -≤≤或13x ≤≤,所以满足(10)xf x -≥的x 的取值范围是[][]1,01,3-,故选D .6.(2018全国卷Ⅱ)已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)-=+f x f x . 若(1)2=f ,则(1)(2)(3)(50)++++=…f f f fA .50-B .0C .2D .50【答案】C【解析】∵()f x 是定义域为(,)-∞+∞的奇函数,()()-=-f x f x .且(0)0=f .∵(1)(1)-=+f x f x ,∴()(2)=-f x f x ,()(2)-=+f x f x ,∴(2)()+=-f x f x ,∴(4)(2)()+=-+=f x f x f x ,∴()f x 是周期函数,且一个周期为4,∴(4)(0)0==f f ,(2)(11)(11)(0)0=+=-==f f f f ,(3)(12)f f =+ =(12)(1)2f f -=-=-,∴(1)(2)(3)(50)120(49)(50)(1)(2)2+++⋅⋅⋅+=⨯++=+=f f f f f f f f ,故选C .五、高频考点+重点题型 考点一、奇偶性的判定例1.下列四个函数中既是奇函数,又是增函数的是( ) A .()ln xf x x=B .32()f x x x =+C .()||f x x x =-D .)()lgf x x =-【答案】D 【详解】对于A ,定义域为()0,∞+,不关于原点对称,所以不具奇偶性,故A 错误; 对于B ,因为()12f =,()10f -=,所以()f x 为非奇非偶函数,故B 错误; 对于C ,因为()11f =-,()11f -=,所以()f x 不是增函数,故C 错误;对于D ,定义域为R , 因为()))()lglg lg f x x x f x ⎛⎫-===--=,所以()f x 是奇函数,))()lglgf x x x =-=,令x μ=为增函数,lg y μ=也是增函数,所以)()lg f x x =-是增函数.故D 正确. 故选:D.对点训练1.(2021·四川成都市·石室中学高二期中(理))已知函数()2xxf x e ex -=--,若不等式()()2120f ax f ax +-≥对x R ∀∈恒成立,则实数a 的取值范围是( )A .(]0,eB .[]0,eC .(]0,1D .[]0,1答案:D 解:()2x x f x e e x -=--的定义域为R 关于原点对称,且()()2xx f x e e x f x --=-+=-,()f x ∴为R 上的奇函数,又()12x xf x e e '=+-,而12x x e e +≥, 当且仅当1xx e e =,即0x =时等号成立, 故()120xx f x e e'=+-≥恒成立,故()f x 为R 上的增函数,不等式()()2120f ax f ax +-≥对x R ∀∈恒成立,即()()212f ax f ax ≥--对x R ∀∈恒成立, 即()()221f ax f ax ≥-对x R ∀∈恒成立,即221ax ax ≥-对x R ∀∈恒成立, 即2210ax ax -+≥对x R ∀∈恒成立, 当0a =时,不等式恒成立,当0a ≠时,则()20240a a a >⎧⎪⎨∆=--≤⎪⎩ , 解得:01a <≤, 综上所述:[]0,1a ∈. 故选:D.对点训练2.【2020年高考浙江】函数y =x cos x +sin x 在区间[–π,π]上的图象可能是【答案】A【解析】因为()cos sin f x x x x =+,则()()cos sin f x x x x f x -=--=-, 即题中所给的函数为奇函数,函数图象关于坐标原点对称, 据此可知选项CD 错误;且x π=时,cos sin 0y ππππ=+=-<,据此可知选项B 错误,故选A 。

高考数学考点练习第二章函数导数及其应用7函数的奇偶性与周期性试题理

高考数学考点练习第二章函数导数及其应用7函数的奇偶性与周期性试题理

考点测试7 函数的奇偶性与周期性一、基础小题1.函数f (x )=1x-x 的图象关于( )A .y 轴对称B .直线y =-x 对称C .坐标原点对称D .直线y =x 对称答案 C解析 f (x )=1x-x 是奇函数,所以图象关于原点对称.2.下列函数中,在其定义域内是偶函数又在(-∞,0)上单调递增的是( ) A .f (x )=x 2B .f (x )=2|x |C .f (x )=log 21|x |D .f (x )=sin x答案 C解析 f (x )=x 2和f (x )=2|x |是偶函数,但在(-∞,0)上单调递减,f (x )=sin x 为奇函数,f (x )=log 21|x |是偶函数,且在(-∞,0)上单调递增,故选C. 3.已知函数f (x )为奇函数,当x >0时,f (x )=x 2-x ,则当x <0时,函数f (x )的最大值为( )A .-14B .14C .12D .-12答案 B解析 解法一:设x <0,则-x >0,所以f (-x )=x 2+x ,又函数f (x )为奇函数,所以f (x )=-f (-x )=-x 2-x =-⎝ ⎛⎭⎪⎫x +122+14,所以当x <0时,函数f (x )的最大值为14.故选B.解法二:当x >0时,f (x )=x 2-x =⎝ ⎛⎭⎪⎫x -122-14,最小值为-14,因为函数f (x )为奇函数,所以当x <0时,函数f (x )的最大值为14.故选B.4.已知函数f (x )是定义域为R 的偶函数,且f (x +1)=1f x,若f (x )在[-1,0]上是减函数,那么f (x )在[2,3]上是( )A .增函数B .减函数C .先增后减的函数D .先减后增的函数答案 A解析 由题意知f (x +2)=1fx +1=f (x ),所以f (x )的周期为2,又函数f (x )是定义域为R 的偶函数,且f (x )在[-1,0]上是减函数,则f (x )在[0,1]上是增函数,所以f (x )在[2,3]上是增函数,故选A.5.已知函数f (x )=-x +log 21-x 1+x +1,则f ⎝ ⎛⎭⎪⎫12+f ⎝ ⎛⎭⎪⎫-12 的值为( ) A .2 B .-2 C .0 D .2log 213答案 A解析 由题意知,f (x )-1=-x +log 21-x 1+x ,f (-x )-1=x +log 21+x 1-x =x -log 21-x1+x=-(f (x )-1),所以f (x )-1为奇函数,则f ⎝ ⎛⎭⎪⎫12-1+f ⎝ ⎛⎭⎪⎫-12-1=0,所以f ⎝ ⎛⎭⎪⎫12+f ⎝ ⎛⎭⎪⎫-12=2. 6.已知f (x )=lg ⎝ ⎛⎭⎪⎫21-x +a 是奇函数,则使f (x )<0的x 的取值范围是( )A .(-1,0)B .(0,1)C .(-∞,0)D .(-∞,0)∪(1,+∞)答案 A解析 ∵f (x )=lg ⎝⎛⎭⎪⎫21-x +a 是奇函数,∴f (-x )+f (x )=lg ⎝ ⎛⎭⎪⎫21+x +a +lg⎝ ⎛⎭⎪⎫21-x +a =0,解得a =-1,即f (x )=lg 1+x 1-x ,由f (x )=lg 1+x 1-x <0,得0<1+x 1-x <1,解得-1<x <0,故选A.7.已知偶函数f (x )在区间[0,+∞)上单调递增,则满足f (2x -1)<f ⎝ ⎛⎭⎪⎫13的x 的取值范围是( )A .⎝ ⎛⎭⎪⎫13,23B .⎣⎢⎡⎭⎪⎫13,23C .⎝ ⎛⎭⎪⎫12,23 D .⎣⎢⎡⎭⎪⎫12,23 答案 A解析 由于函数f (x )在区间[0,+∞)上单调递增,且f (x )为偶函数,则由f (2x -1)<f ⎝ ⎛⎭⎪⎫13,得-13<2x -1<13,解得13<x <23.故x 的取值范围是⎝ ⎛⎭⎪⎫13,23. 8.已知函数f (x )满足f (x +y )+f (x -y )=2f (x )f (y ),且f (0)≠0,则f (x )( ) A .为奇函数 B .为偶函数 C .为非奇非偶函数 D .奇偶性不能确定答案 B解析 令x =y =0,则2f (0)=2f 2(0),又f (0)≠0,所以f (0)=1.令x =0,则f (y )+f (-y )=2f (0)f (y ),即f (-y )=f (y ),所以函数f (x )是偶函数.9.函数f (x )=π2-sin x3+|x |的最大值是M ,最小值是m ,则f (M +m )的值等于( )A .0B .2πC .πD .π2答案 D解析 设h (x )=sin x3+|x |,则h (-x )=-h (x ),所以h (x )是一个奇函数,所以函数h (x )的最大值和最小值的和是0,所以M +m =π,所以f (M +m )=π2.10.已知f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≥0,x 2+ax ,x <0为偶函数,则y =log a (x 2-4x -5)的单调递增区间为( )A .(-∞,-1)B .(-∞,2)C .(2,+∞)D .(5,+∞)答案 D解析 因为f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≥0,x 2+ax ,x <0为偶函数,所以f (-1)=f (1),即1-a =1-2,所以a =2,则y =log 2(x 2-4x -5),令t =x 2-4x -5,其对称轴为x =2,由x 2-4x -5>0,得x <-1或x >5.由复合函数的单调性知,y =log a (x 2-4x -5)的单调递增区间为(5,+∞).11.已知定义在R 上的函数f (x )是奇函数,且f (x )在(-∞,0)上是减函数,f (2)=0,g (x )=f (x +2),则不等式xg (x )≤0的解集是( )A .(-∞,-2]∪[2,+∞)B .[-4,-2]∪[0,+∞)C .(-∞,-4]∪[-2,+∞)D .(-∞,-4]∪[0,+∞) 答案 C解析 依题意,如图所示,实线部分为g (x )的草图,则xg (x )≤0⇔⎩⎪⎨⎪⎧x ≥0,gx ≤0或⎩⎪⎨⎪⎧x ≤0,g x ≥0,由图可得xg (x )≤0的解集为(-∞,-4]∪[-2,+∞).12.已知a 为常数,函数f (x )=x 2-4x +3.若函数f (x +a )为偶函数,则a =________,f (f (a ))=________.答案 2 8解析 由函数f (x +a )为偶函数,得f (x +a )=f (-x +a ),解得a =2,所以f (f (a ))=f (f (2))=f (-1)=8.二、高考小题13.[2015·广东高考]下列函数中,既不是奇函数,也不是偶函数的是( )A .y =1+x 2B .y =x +1xC .y =2x+12xD .y =x +e x答案 D解析 选项A 中的函数是偶函数;选项B 中的函数是奇函数;选项C 中的函数是偶函数;只有选项D 中的函数既不是奇函数也不是偶函数.14.[2014·全国卷Ⅰ]设函数f (x ),g (x )的定义域都为R ,且f (x )是奇函数,g (x )是偶函数,则下列结论中正确的是( )A .f (x )g (x )是偶函数B .|f (x )|g (x )是奇函数C .f (x )|g (x )|是奇函数D .|f (x )g (x )|是奇函数答案 C解析 由题意可知f (-x )=-f (x ),g (-x )=g (x ),对于选项A ,f (-x )·g (-x )=-f (x )·g (x ),所以f (x )·g (x )是奇函数,故A 项错误;对于选项B ,|f (-x )|·g (-x )=|-f (x )|g (x )=|f (x )|g (x ),所以|f (x )|·g (x )是偶函数,故B 项错误;对于选项C ,f (-x )|g (-x )|=-f (x )|g (x )|,所以f (x )|g (x )|是奇函数,故C 项正确;对于选项D ,|f (-x )g (-x )|=|-f (x )g (x )|=|f (x )g (x )|,所以|f (x )g (x )|是偶函数,故D 项错误,选C.15.[2016·山东高考]已知函数f (x )的定义域为R .当x <0时,f (x )=x 3-1;当-1≤x ≤1时,f (-x )=-f (x );当x >12时,f ⎝ ⎛⎭⎪⎫x +12=f ⎝ ⎛⎭⎪⎫x -12.则f (6)=( )A .-2B .-1C .0D .2答案 D解析 当x >12时,由f ⎝ ⎛⎭⎪⎫x +12=f ⎝ ⎛⎭⎪⎫x -12,可得f (x )=f (x +1),所以f (6)=f (1),而f (1)=-f (-1),f (-1)=(-1)3-1=-2,所以f (6)=f (1)=2,故选D.16.[2015·全国卷Ⅰ]若函数f (x )=x ln (x +a +x 2)为偶函数,则a =________. 答案 1解析 由已知得f (-x )=f (x ),即-x ln (a +x 2-x )=x ln (x +a +x 2),则ln (x +a +x 2)+ln (a +x 2-x )=0,∴ln [(a +x 2)2-x 2]=0,得ln a =0, ∴a =1.17.[2016·四川高考]已知函数f (x )是定义在R 上的周期为2的奇函数,当0<x <1时,f (x )=4x ,则f ⎝ ⎛⎭⎪⎫-52+f (1)=________. 答案 -2解析 ∵f (x )是定义在R 上的奇函数, ∴f (x )=-f (-x ).又∵f (x )的周期为2,∴f (x +2)=f (x ), ∴f (x +2)=-f (-x ),即f (x +2)+f (-x )=0,令x =-1, 得f (1)+f (1)=0,∴f (1)=0.又∵f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫-12=-f ⎝ ⎛⎭⎪⎫12=-412=-2, ∴f ⎝ ⎛⎭⎪⎫-52+f (1)=-2. 18.[2016·江苏高考]设f (x )是定义在R 上且周期为2的函数,在区间[-1,1)上,f (x )=⎩⎪⎨⎪⎧x +a ,-1≤x <0,⎪⎪⎪⎪⎪⎪25-x ,0≤x <1,其中a ∈R .若f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫92,则f (5a )的值是____________. 答案 -25解析 ∵f (x )是周期为2的函数, ∴f ⎝ ⎛⎭⎪⎫-52=f ⎝⎛⎭⎪⎫-2-12=f ⎝ ⎛⎭⎪⎫-12, f ⎝ ⎛⎭⎪⎫92=f ⎝⎛⎭⎪⎫4+12=f ⎝ ⎛⎭⎪⎫12.又∵f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫92, 所以f ⎝ ⎛⎭⎪⎫-12=f ⎝ ⎛⎭⎪⎫12, 即-12+a =110,解得a =35,则f (5a )=f (3)=f (4-1)=f (-1)=-1+35=-25.三、模拟小题19.[2017·大连测试]下列函数中,与函数y =-3|x |的奇偶性相同,且在(-∞,0)上单调性也相同的是( )A .y =-1xB .y =log 2|x |C .y =1-x 2D .y =x 3-1答案 C解析 函数y =-3|x |为偶函数,在(-∞,0)上为增函数,选项B 的函数是偶函数,但其单调性不符合,只有选项C 符合要求.20.[2016·陕西一检]若f (x )是定义在R 上的函数,则“f (0)=0”是“函数f (x )为奇函数”的( )A .必要不充分条件B .充要条件C .充分不必要条件D .既不充分也不必要条件答案 A解析 f (x )在R 上为奇函数⇒f (0)=0;f (0)=0⇒/f (x )在R 上为奇函数,如f (x )=x 2,故选A.21.[2017·山东青岛模拟]奇函数f (x )的定义域为R ,若f (x +1)为偶函数,且f (1)=2,则f (4)+f (5)的值为( )A .2B .1C .-1D .-2 答案 A解析 ∵f (x +1)为偶函数,f (x )是奇函数,∴f (-x +1)=f (x +1),f (x )=-f (-x ),f (0)=0, ∴f (x +1)=f (-x +1)=-f (x -1),∴f (x +2)=-f (x ),f (x +4)=f (x +2+2)=-f (x +2)=f (x ),则f (4)=f (0)=0,f (5)=f (1)=2,∴f (4)+f (5)=0+2=2,故选A.22.[2017·江西三校联考]定义在R 上的偶函数f (x )满足:对任意的x 1,x 2∈(-∞,0)(x 1≠x 2),都有f x 1-f x 2x 1-x 2<0.则下列结论正确的是( )A .f (0.32)<f (20.3)<f (log 25) B .f (log 25)<f (20.3)<f (0.32) C .f (log 25)<f (0.32)<f (20.3) D .f (0.32)<f (log 25)<f (20.3) 答案 A解析 ∵对任意x 1,x 2∈(-∞,0),且x 1≠x 2,都有f x 1-f x 2x 1-x 2<0,∴f (x )在(-∞,0)上是减函数.又∵f (x )是R 上的偶函数,∴f (x )在(0,+∞)上是增函数.∵0<0.32<20.3<log 25,∴f (0.32)<f (20.3)<f (log 25).故选A.23.[2017·贵州适应考试]已知f (x )是奇函数,g (x )=2+f xf x,若g (2)=3,则g (-2)=________.答案 -1解析 ∵g (2)=2+f 2f 2=3,∴f (2)=1.又f (-x )=-f (x ),∴f (-2)=-1,∴g (-2)=2+f -2f -2=2-1-1=-1.24.[2017·湖北名校联考]已知定义在R 上的函数f (x ),对任意实数x 有f (x +4)=-f (x )+22,若函数f (x -1)的图象关于直线x =1对称,f (-1)=2,则f (2017)=________.答案 2解析 由函数y =f (x -1)的图象关于直线x =1对称可知,函数f (x )的图象关于y 轴对称,故f (x )为偶函数.由f (x +4)=-f (x )+22,得f (x +4+4)=-f (x +4)+22=f (x ),∴f (x )是周期T =8的偶函数,∴f (2017)=f (1+252×8)=f (1)=f (-1)=2.一、高考大题本考点在近三年高考中未涉及此题型. 二、模拟大题1.[2017·河南联考]设f (x )是(-∞,+∞)上的奇函数,f (x +2)=-f (x ),当0≤x ≤1时,f (x )=x .(1)求f (π)的值;(2)当-4≤x ≤4时,求f (x )的图象与x 轴所围成图形的面积. 解 (1)由f (x +2)=-f (x ),得f (x +4)=f [(x +2)+2]=-f (x +2)=f (x ), ∴f (x )是以4为周期的周期函数. ∴f (π)=f (-1×4+π)=f (π-4) =-f (4-π)=-(4-π)=π-4. (2)由f (x )是奇函数与f (x +2)=-f (x ), 得f [(x -1)+2]=-f (x -1)=f [-(x -1)], 即f (1+x )=f (1-x ).从而可知函数y =f (x )的图象关于直线x =1对称.又当0≤x ≤1时,f (x )=x ,且f (x )的图象关于原点成中心对称,则f (x )的图象如图所示.设当-4≤x ≤4时,f (x )的图象与x 轴围成的图形面积为S ,则S =4S △OAB =4×⎝ ⎛⎭⎪⎫12×2×1=4.2.[2017·安徽合肥质检]已知函数f (x ) =⎩⎪⎨⎪⎧-x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函数.(1)求实数m 的值;(2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围. 解 (1)设x <0,则-x >0,所以f (-x )=-(-x )2+2(-x )=-x 2-2x . 又f (x )为奇函数,所以f (-x )=-f (x ),于是x <0时,f (x )=x 2+2x =x 2+mx ,所以m =2.(2)要使f (x )在[-1,a -2]上单调递增,结合f (x )的图象(如图所示)知⎩⎪⎨⎪⎧a -2>-1,a -2≤1,所以1<a ≤3,故实数a 的取值范围是(1,3].3.[2016·福州一中月考]已知函数f (x )是定义在R 上的奇函数,且它的图象关于直线x =1对称.(1)求证:f (x )是周期为4的周期函数;(2)若f (x )=x (0<x ≤1),求x ∈[-5,-4]时,函数f (x )的解析式.解 (1)证明:由函数f (x )的图象关于直线x =1对称,有f (x +1)=f (1-x ),即有f (-x )=f (x +2).又函数f (x )是定义在R 上的奇函数, 故有f (-x )=-f (x ),故f (x +2)=-f (x ). 从而f (x +4)=-f (x +2)=f (x ), 即f (x )是周期为4的周期函数.(2)由函数f (x )是定义在R 上的奇函数,有f (0)=0.x ∈[-1,0)时,-x ∈(0,1], f (x )=-f (-x )=--x ,故x ∈[-1,0]时,f (x )=--x .x ∈[-5,-4]时,x +4∈[-1,0], f (x )=f (x +4)=--x -4.从而,x ∈[-5,-4]时,f (x )=--x -4.4.[2017·湖南师大附中月考]已知函数f (x )的定义域是满足x ≠0的一切实数,对定义域内的任意x 1,x 2都有f (x 1·x 2)=f (x 1)+f (x 2),且当x >1时,f (x )>0.求证:(1)f (x )是偶函数;(2)f (x )在(0,+∞)上是增函数.证明 (1)令x 1=x 2=1,得f (1)=2f (1),∴f (1)=0. 令x 1=x 2=-1,得f (1)=2f (-1),∴f (-1)=0, 令x 1=-1,x 2=x ,得f (-x )=f (-1·x )=f (-1)+f (x )=f (x ),∴f (x )是偶函数.(2)设x 2>x 1>0,则f (x 2)-f (x 1)=f ⎝⎛⎭⎪⎫x 1·x 2x 1-f (x 1)=f (x 1)+f ⎝ ⎛⎭⎪⎫x 2x 1-f (x 1)=f ⎝ ⎛⎭⎪⎫x 2x1.∵x 2>x 1>0,∴x 2x 1>1,∴f ⎝ ⎛⎭⎪⎫x 2x 1>0,即f (x 2)-f (x 1)>0,∴f (x 2)>f (x 1),∴f (x )在(0,+∞)上是增函数.。

2020高考数学一轮复习第二章函数、导数及其应用第4讲函数的奇偶性与周期性ppt课件

2020高考数学一轮复习第二章函数、导数及其应用第4讲函数的奇偶性与周期性ppt课件

〔变式训练 1〕
已知f(x)是定义在R上的函数,且f(x+2)=-f(x).若当2≤x≤3时,f(x)=x,则 f(2019) = ____3_ ; 当 0≤x≤1 时 , f(x) = ____-__(_x_+__2_)_ ; 当 - 2≤x≤ - 1 时 , f(x) = ____x_+__4_.
B.[13,23)
C.(12,23)
D.[12,23)
[解析] (1)因为 f(x)是奇函数,所以当 x<0 时,f(x)=-x2+2x. 作出函数 f(x)的大致图象如图中实线所示,
结合图象可知 f(x)是 R 上的增函数,由 f(2-a2)>f(a),得 2-a2>a,解得-2<a<1. 故选 C.
判断函数的奇偶性的方法 (1)定义法:若函数的定义域不是关于原点对称的区间,则立即可判断该函 数既不是奇函数也不是偶函数;若函数的定义域是关于原点对称的区间,再判 断f(-x)是否等于f(x)或-f(x),据此得出结论. (2)图象法:奇(偶)函数的充要条件是它的图象关于原点(或y轴)对称. (3)性质法:偶函数的和、差、积、商(分母不为零)仍为偶函数;奇函数的 和、差仍为奇函数;奇(偶)数个奇函数的积、商(分母不为零)为奇(偶)函数;一 个奇函数与一个偶函数的积为奇函数.(注:利用上述结论时要注意各函数的定 义域)
(2)由 y=f(x)图象知,x 离 y 轴越近,函数值越小,因此,|2x-1|<13,解得13<x<23, 故选 A.
角度2 函数奇偶性与周期性结合
例 4 (2018·课标全国Ⅱ,12)已知f(x)是定义域为(-∞,+∞)的奇函
数,满足f(1-x)=f(1+x).若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)= ( C )

2020高考数学(理)刷题1+1:第二章 函数、

2020高考数学(理)刷题1+1:第二章  函数、

专题三 函数与基本初等函数本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分100分,考试时间60分钟.第Ⅰ卷 (选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2019·佳木斯调研)已知幂函数y =f (x )的图象过点⎝ ⎛⎭⎪⎫-12,-18,则log 2f (4)的值为( )A .3B .4C .6D .-6 答案 C解析 设幂函数为f (x )=x n.由幂函数y =f (x )的图象过点⎝ ⎛⎭⎪⎫-12,-18,得⎝ ⎛⎭⎪⎫-12n=-18=⎝ ⎛⎭⎪⎫-123⇒n =3,则f (x )=x 3,f (4)=64,则log 2f (4)=log 264=6,故选C.2.(2019·全国卷Ⅱ)若a >b ,则( ) A .ln (a -b )>0 B .3a <3b C .a 3-b 3>0 D .|a |>|b | 答案 C解析 解法一:不妨设a =-1,b =-2,则a >b ,可验证A ,B ,D 错误,只有C 正确.解法二:由a >b ,得a -b >0.但a -b >1不一定成立,则ln (a -b )>0 不一定成立,故A 不一定成立.因为y =3x 在R 上是增函数,当a >b 时,3a >3b ,故B 不成立.因为y =x 3在R 上是增函数,当a >b 时,a 3>b 3,即a 3-b 3>0,故C 成立.因为当a =3,b =-6时,a >b ,但|a |<|b |,所以D 不一定成立.故选C.3.(2019·抚顺二模)已知f (x )=x 2+2x +1+a ,∀x ∈R ,f [f (x )]≥0恒成立,则实数a 的取值范围为( )A.⎣⎢⎡⎭⎪⎫5-12,+∞B.⎣⎢⎡⎭⎪⎫5-32,+∞C .[-1,+∞)D .[0,+∞)答案 B解析 设t =f (x )=(x +1)2+a ≥a , ∴f (t )≥0对任意t ≥a 恒成立,即(t +1)2+a ≥0对任意t ∈[a ,+∞)都成立, 当a ≤-1时,f (t )min =f (-1)=a , 则a ≥0,与a ≤-1矛盾,当a >-1时,f (t )min =f (a )=a 2+3a +1, 则a 2+3a +1≥0,解得a ≥5-32,故选B.4.(2019·江西名校联考)函数f (x )=x 2+ln (e -x )·ln (e +x )的大致图象为( )答案 A解析 ∵函数f (x )的定义域为(-e ,e),且f (-x )=x 2+ln (e +x )·ln (e -x )=f (x ),∴函数f (x )为偶函数,排除C ;∵x →e 时,f (x )→-∞,∴排除B ,D.故选A.5.(2019·银川六校联考)已知函数f (x )是定义在R 上的偶函数,且f (x +4)=f (x -2),若当x ∈[-3,0]时,f (x )=6-x ,则f (2018)=( )A .36 B.136 C .6 D.16 答案 A解析 ∵f (x +4)=f (x -2),∴f (x +6)=f (x ).∴函数f (x )的周期为6.又f (x )是偶函数,且当x ∈[-3,0]时,f (x )=6-x ,∴f (2018)=f (2+336×6)=f (2)=f (-2)=62=36.故选A.6.(2019·安庆二模)若函数f (x )=log a x (a >0且a ≠1)的定义域与值域都是[m ,n ](m <n ),则a 的取值范围是( )A .(1,+∞)B .(e ,+∞)C .(1,e) D. (1,e1e )答案 D解析 函数f (x )=log a x 的定义域与值域相同等价于方程log a x =x 有两个不同的实数解.因为log a x =x ⇔ln x ln a =x ⇔ln a =ln xx ,所以问题等价于直线y =ln a 与函数y =ln x x 的图象有两个交点.作函数y =ln xx 的图象,如图所示.根据图象可知,当0<ln a <1e 时,即1<a <e1e 时,直线y =ln a 与函数y =ln xx 的图象有两个交点.故选D.7.(2019·沧州模拟)已知函数f (x )=e x -1-e -x +1,则下列说法正确的是( ) A .函数f (x )的最小正周期是1 B .函数f (x )是单调递减函数C .函数f (x )的图象关于直线x =1轴对称D .函数f (x )的图象关于(1,0)中心对称 答案 D解析 函数f (x )=e x -1-e -x +1,即f (x )=e x -1-1ex -1,可令t =e x -1,即有y =t-1t ,由y =t -1t 在t >0单调递增,t =e x -1在R 上单调递增,可得函数f (x )在R 上为增函数,则A ,B 均错误;由f (2-x )=e 1-x -e x -1,可得f (x )+f (2-x )=0,即有f (x )的图象关于点(1,0)对称,则C 错误,D 正确.故选D.8.(2019·东北师大附中摸底)已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则( )A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)答案 D解析因为奇函数f(x)在区间[0,2]上是增函数,所以f(x)在区间[-2,0]上是增函数.又因为函数f(x)满足f(x-4)=-f(x),所以f(x-8)=-f(x-4)=f(x),所以函数f(x)为周期函数,且周期为8,因此f(-25)=f(-1)<f(0)=f(80)<f(11)=f(3)=-f(-1)=f(1).故选D.9.(2019·广州市高三年级调研)已知实数a=2ln 2,b=2+2ln 2,c=(ln 2)2,则a,b,c的大小关系是()A.c<b<a B.c<a<b C.b<a<c D.a<c<b答案 B解析因为ln 2=log e2,所以0<ln 2<1,所以c=(ln 2)2<1,而20<2ln 2<21,即1<a<2,b=2+2ln 2>2,所以c<a<b.故选B.10.(2019·大庆铁人中学高三一模)已知实数a,b满足2a=3,3b=2,则函数f(x)=a x+x-b的零点所在的区间是()A.(-2,-1) B.(-1,0)C.(0,1) D.(1,2)答案 B解析∵实数a,b满足2a=3,3b=2,∴a=log23>1,0<b=log32<1,∵函数f(x)=a x+x-b,∴f(x)=(log23)x+x-log32单调递增,∵f(0)=1-log32>0,f(-1)=log32-1-log32=-1<0,∴根据函数的零点判定定理得出函数f(x)=a x+x-b的零点所在的区间为(-1,0).故选B.11.(2019·浙江高考)在同一直角坐标系中,函数y=1a x,y=log a⎝⎛⎭⎪⎫x+12(a>0,且a≠1)的图象可能是()答案 D解析 当0<a <1时,函数y =a x 的图象过定点(0,1),在R 上单调递减,于是函数y =1a x 的图象过定点(0,1),在R 上单调递增,函数y =log a ⎝ ⎛⎭⎪⎫x +12的图象过定点⎝ ⎛⎭⎪⎫12,0,在⎝ ⎛⎭⎪⎫-12,+∞上单调递减.因此,选项D 中的两个图象符合.当a >1时,函数y =a x 的图象过定点(0,1),在R 上单调递增,于是函数y =1a x 的图象过定点(0,1),在R 上单调递减,函数y =log a ⎝ ⎛⎭⎪⎫x +12的图象过定点⎝ ⎛⎭⎪⎫12,0,在⎝ ⎛⎭⎪⎫-12,+∞上单调递增.显然A ,B ,C ,D 四个选项都不符合.故选D. 12.(2019·衡阳市高三第一次联考)若函数f (x )的图象上存在两个不同点A ,B 关于原点对称,则称A ,B 两点为一对“优美点”,记作(A ,B ),规定(A ,B )和(B ,A )是同一对“优美点”.已知f (x )=⎩⎨⎧|cos x |,x ≥0,-lg (-x ),x <0,则函数f (x )的图象上共存在“优美点”( )A .14对B .3对C .5对D .7对 答案 D解析 与y =-lg (-x )的图象关于原点对称的函数是y =lg x ,函数f (x )的图象上的优美点的对数,即方程|cos x |=lg x (x >0)的解的个数,也是函数y =|cos x |与y =lg x 的图象的交点个数,如图,作函数y =|cos x |与y =lg x 的图象,由图可知,共有7个交点,函数f (x )的图象上存在“优美点”共有7对.故选D.第Ⅱ卷 (非选择题,共40分)二、填空题(本大题共4小题,每小题5分,共20分)13.(2019·漳州质量监测)已知函数y =f (x +1)-2是奇函数,g (x )=2x -1x -1,且f (x )与g (x )的图象的交点为(x 1,y 1),(x 2,y 2),…,(x n ,y n ),则x 1+x 2+…+x 6+y 1+y 2+…+y 6=________.答案 18解析 因为函数y =f (x +1)-2为奇函数,所以函数f (x )的图象关于点(1,2)对称,g (x )=2x -1x -1=1x -1+2关于点(1,2)对称,所以两个函数图象的交点也关于点(1,2)对称,则(x 1+x 2+…+x 6)+(y 1+y 2+…+y 6)=2×3+4×3=18. 14.(2019·四川省一诊)已知函数f (x )=⎩⎨⎧x ,x >1,x 2+1,x ≤1,则f (2)-f (1)=________. 答案 0解析 ∵函数f (x )=⎩⎨⎧x ,x >1,x 2+1,x ≤1,∴f (2)=2,f (1)=1+1=2,∴f (2)-f (1)=2-2=0.15.(2019·江苏省镇江市期末)已知函数f (x )=12x -2x ,则满足f (x 2-5x )+f (6)>0的实数x 的取值范围是________.答案 (2,3)解析 根据题意,函数f (x )=12x -2x,f (-x )=12-x -2-x =-⎝ ⎛⎭⎪⎫12x -2x =-f (x ),即函数f (x )为奇函数,又由y =12x 在R 上为减函数,y =-2x 在R 上为减函数,则函数f (x )在R 上为减函数,则f (x 2-5x )+f (6)>0⇒f (x 2-5x )>-f (6)⇒ f (x 2-5x )>f (-6)⇒x 2-5x <-6, 解得2<x <3,即x 的取值范围为(2,3).16.(2019·山东省烟台市高三(上)期末)已知函数f (x )=⎩⎨⎧|log 2x -1|,0<x ≤4,3-x ,x >4,设a ,b ,c 是三个不相等的实数,且满足f (a )=f (b )=f (c ),则abc 的取值范围为________.答案 (16,36)解析 作出f (x )的图象如图,当x >4时,由f (x )=3-x =0,得x =3,得x =9, 若a ,b ,c 互不相等,不妨设a <b <c , 因为f (a )=f (b )=f (c ),所以由图象可知0<a <2<b <4<c <9, 由f (a )=f (b ),得1-log 2a =log 2b -1,即log 2a +log 2b =2, 即log 2(ab )=2,则ab =4, 所以abc =4c ,因为4<c <9, 所以16<4c <36,即16<abc <36, 所以abc 的取值范围是(16,36).三、解答题(本大题共2小题,共20分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)(2019·宁夏育才中学月考)已知函数f (x )=x 2-4x +a +3,a ∈R .(1)若函数f (x )在(-∞,+∞)上至少有一个零点,求实数a 的取值范围; (2)若函数f (x )在[a ,a +1]上的最大值为3,求a 的值. 解 (1)由Δ=16-4(a +3)≥0,得a ≤1. 故实数a 的取值范围是(-∞,1]. (2)f (x )=(x -2)2+a -1.当a +1<2,即a <1时,f (x )max =f (a )=a 2-3a +3=3,解得a =0,a =3(舍去); 当1≤a ≤32时,f (x )max =f (a )=3,解得a =0或a =3(均舍去); 当32<a ≤2时,f (x )max =f (a +1)=a 2-a =3,解得a =1±132(均舍去). 当a >2时,f (x )max =f (a +1)=a 2-a =3,解得a =1+132,a =1-132(舍去).综上,a =0或a =1+132.18.(本小题满分10分)(2019·潍坊月考)中国“一带一路”战略构思提出后,某科技企业为抓住“一带一路”带来的机遇,决定开发生产一款大型电子设备.生产这种设备的年固定成本为500万元,每生产x 台,需另投入成本c (x )(万元),当年产量不足80台时,c (x )=12x 2+40x (万元);当年产量不小于80台时,c (x )=101x +8100x -2180(万元).若每台设备售价为100万元,通过市场分析,该企业生产的电子设备能全部售完.(1)求年利润y (万元)关于年产量x (台)的函数关系式;(2)年产量为多少台时,该企业在这一电子设备的生产中所获利润最大? 解 (1)当0<x <80时,y =100x -⎝ ⎛⎭⎪⎫12x 2+40x -500=-12x 2+60x -500;当x ≥80时,y =100x -⎝ ⎛⎭⎪⎫101x +8100x -2180-500=1680-⎝ ⎛⎭⎪⎫x +8100x .∴y =⎩⎪⎨⎪⎧-12x 2+60x -500,0<x <80,x ∈N *,1680-⎝ ⎛⎭⎪⎫x +8100x ,x ≥80,x ∈N *.(2)当0<x <80时,y =-12(x -60)2+1300,∴当x =60时,y 取得最大值,最大值为1300万元; 当x ≥80时,y =1680-⎝ ⎛⎭⎪⎫x +8100x ≤1680-2x ·8100x =1500,当且仅当x=8100x,即x =90时,y 取得最大值,最大值为1500万元.综上,当年产量为90台时,该企业在这一电子设备的生产中所获利润最大,最大利润为1500万元.。

2020版高考数学一轮复习第2章函数、导数及其应用2.3函数的奇偶性与周期性课后作业文

2020版高考数学一轮复习第2章函数、导数及其应用2.3函数的奇偶性与周期性课后作业文

2.3 函数的奇偶性与周期性[基础送分 提速狂刷练]一、选择题1.(2017·重庆测试)下列函数为奇函数的是( ) A .y =x 3+3x 2B .y =e x +e -x2C .y =x sin xD .y =log 23-x3+x答案 D解析 函数y =x 3+3x 2既不是奇函数,也不是偶函数,排除A ;函数y =e x+e-x2是偶函数,排除B ;函数y =x sin x 是偶函数,排除C ;函数y =log 23-x3+x 的定义域是(-3,3),且f (-x )=log 23+x 3-x=-f (x ),是奇函数,D 正确.故选D.2.下列函数中,既是定义域内的偶函数又在(-∞,0)上单调递增的函数是( ) A .f (x )=x 2B .f (x )=2|x |C .f (x )=log 21|x |D .f (x )=sin x答案 C解析 函数f (x )=x 2在(-∞,0)上单调递减,排除A ;当x ∈(-∞,0)时,函数f (x )=2|x |=⎝ ⎛⎭⎪⎫12x 在(-∞,0)上单调递减,排除B ;当x ∈(-∞,0)时,函数f (x )=log 21|x |=-log 2(-x )在(-∞,0)上单调递增,且函数f (x )在其定义域内是偶函数,C 正确;函数f (x )=sin x 是奇函数,排除D.故选C.3.(2017·唐山统考)f (x )是R 上的奇函数,当x ≥0时,f (x )=x 3+ln (1+x ).则当x <0时,f (x )=( )A .-x 3-ln (1-x ) B .x 3+ln (1-x ) C .x 3-ln (1-x ) D .-x 3+ln (1-x )答案 C解析 当x <0时,-x >0,f (-x )=(-x )3+ln (1-x ),∵f (x )是R 上的奇函数,∴当x <0时,f (x )=-f (-x )=-[(-x )3+ln (1-x )],∴f (x )=x 3-ln (1-x ).故选C.4.已知f (x )是定义在R 上的偶函数,并且f (x +2)=-1f x,当2≤x ≤3时,f (x )=x ,则f (105.5)=( )A .-0.5B .0.5C .-2.5D .2.5答案 D解析∵f(x+2)=-1f x,∴f(x+4)=f[(x+2)+2]=-1f x+2=-1-1f x=f(x).∴函数f(x)的周期为4.∴f(105.5)=f(4×27-2.5)=f(-2.5)=f(2.5).∵2≤2.5≤3,∴f(2.5)=2.5.∴f(105.5)=2.5.故选D.5.(2017·金版创新)已知函数f(x)在∀x∈R都有f(x-2)=-f(x),且当x∈[-1,0]时,f(x)=2x,则f(2017)等于( )A.12B.-12C.1 D.-1答案 B解析由f(x-2)=-f(x),得f(x-4)=-f(x-2)=f(x),所以函数f(x)的周期为4.所以f(2017)=f(4×504+1)=f(1)=-f(-1)=-12.故选B.6.(2018·青岛模拟)奇函数f(x)的定义域为R,若f(x+1)为偶函数,且f(1)=2,则f(4)+f(5)的值为( )A.2 B.1C.-1 D.-2答案 A解析∵f(x+1)为偶函数,f(x)是R上的奇函数,∴f(-x+1)=f(x+1),f(x)=-f(-x),f(0)=0,∴f(x+1)=f(-x+1)=-f(x-1),∴f(x+2)=-f(x),f(x+4)=f(x+2+2)=-f(x+2)=f(x),故4为函数f(x)的周期,则f(4)=f(0)=0,f(5)=f(1)=2,∴f(4)+f(5)=0+2=2.故选A.7.(2018·襄阳四校联考)已知函数f(x)的定义域为R.当x<0时,f(x)=x5-1;当-1≤x≤1时,f(-x)=-f(x);当x>0时,f(x+1)=f(x),则f(2018)=( ) A.-2 B.-1C.0 D.2答案 D解析因为当x>0时,f(x+1)=f(x),所以当x>0时,函数f(x)是周期为1的周期函数,所以f(2018)=f(1),又因为当-1≤x≤1时,f(-x)=-f(x),所以f(1)=-f(-1)=-[(-1)5-1]=2.故选D.8.已知函数f(x)是R上的偶函数,g(x)是R上的奇函数,且g(x)=f(x-1),若f(2)=2,则f(2018)的值为( )A .2B .0C .-2D .±2答案 A解析 ∵f (x )是R 上的偶函数,g (x )是R 上的奇函数,且g (x )=f (x -1), ∴g (-x )=f (-x -1)=f (x +1)=-g (x )=-f (x -1). 即f (x +1)=-f (x -1). ∴f (x +2)=-f (x ).∴f (x +4)=f [(x +2)+2]=-f (x +2)=f (x ). ∴函数f (x )是周期函数,且周期为4. ∴f (2018)=f (2)=2.故选A.9.(2017·石家庄模拟)已知f (x )是定义在R 上的以3为周期的偶函数,若f (1)<1,f (5)=2a -3a +1,则实数a 的取值范围为( ) A .(-1,4) B .(-2,0) C .(-1,0) D .(-1,2)答案 A解析 ∵f (x )是定义在R 上的周期为3的偶函数, ∴f (5)=f (5-6)=f (-1)=f (1),∵f (1)<1,f (5)=2a -3a +1,∴2a -3a +1<1,即a -4a +1<0,解得-1<a <4.故选A.10.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-3x ,则函数g (x )=f (x )-x +3的零点所构成的集合为( )A .{1,3}B .{-3,-1,1,3}C .{2-7,1,3}D .{-2-7,1,3}答案 D解析 当x <0时,f (x )=-f (-x )=-[(-x )2+3x ]=-x 2-3x ,易求得g (x )=⎩⎪⎨⎪⎧x 2-4x +3,x ≥0,-x 2-4x +3,x <0,当x 2-4x +3=0时,可求得x 1=1,x 2=3;当-x 2-4x +3=0时,可求得x 3=-2-7,x 4=-2+7(舍去). 故g (x )的零点为1,3,-2-7.故选D. 二、填空题11.(2018·武昌联考)若函数f (x )=k -2x1+k ·2x 在定义域上为奇函数,则实数k =________.答案 ±1解析 ∵f (-x )=k -2-x 1+k ·2-x =k ·2x -12x+k, ∴f (-x )+f (x )=k -2x2x +k +k ·2x-1·1+k ·2x1+k ·2x 2x+k=k 2-122x+11+k ·2x2x+k. 由f (-x )+f (x )=0,可得k 2=1,∴k =±1.12.设f (x )是定义在R 上且周期为2的函数,在区间[-1,1)上,f (x )=⎩⎪⎨⎪⎧x +a ,-1≤x <0,⎪⎪⎪⎪⎪⎪25-x ,0≤x <1,其中a ∈R .若f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫92,则f (5a )的值是________. 答案 -25解析 ∵f (x )是周期为2的函数, ∴f ⎝ ⎛⎭⎪⎫-52=f ⎝⎛⎭⎪⎫-2-12=f ⎝ ⎛⎭⎪⎫-12, f ⎝ ⎛⎭⎪⎫92=f ⎝⎛⎭⎪⎫4+12=f ⎝ ⎛⎭⎪⎫12,又∵f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫92,∴f ⎝ ⎛⎭⎪⎫-12=f ⎝ ⎛⎭⎪⎫12, 即-12+a =110,解得a =35,则f (5a )=f (3)=f (4-1)=f (-1)=-1+35=-25.13.(2017·郑州联考)对于函数f (x ),若存在常数a ≠0,使得取定义域内的每一个x 值,都有f (x )=-f (2a -x ),则称f (x )为准奇函数.给出下列函数:①f (x )=(x -1)2,②f (x )=1x +1,③f (x )=x 3,④f (x )=cos x ,其中所有准奇函数的序号是________.答案 ②④解析 对于函数f (x ),若存在常数a ≠0,使得取定义域内的每一个x 值,都有f (x )=-f (2a -x ),则函数f (x )的图象关于(a,0)对称.对于①,f (x )=(x -1)2,函数图象无对称中心;对于②,f (x )=1x +1,函数f (x )的图象关于(-1,0)对称;对于③,f (x )=x 3,函数f (x )的图象关于(0,0)对称;对于④,f (x )=cos x ,函数f (x )的图象关于⎝⎛⎭⎪⎫k π+π2,0(k ∈Z )对称.所以所有准奇函数的序号是②④.14.(2018·太原模拟)已知定义在R 上的奇函数f (x )满足f ⎝ ⎛⎭⎪⎫32-x =f (x ),f (-2)=-3,数列{a n }的前n 项和为S n ,且a 1=-1,S n =2a n +n (n ∈N *),则f (a 5)+f (a 6)=________.答案 3解析 ∵奇函数f (x )满足f ⎝ ⎛⎭⎪⎫32-x =f (x ),∴f ⎝ ⎛⎭⎪⎫32-x =-f (-x ),∴f (x )=-f ⎝ ⎛⎭⎪⎫x +32=f (x +3),∴f (x )是以3为周期的周期函数,∵S n =2a n +n ①,∴S n +1=2a n +1+n +1②,②-①可得a n +1=2a n -1,结合a 1=-1,可得a 5=-31,a 6=-63,∴f (a 5)=f (-31)=f (2)=-f (-2)=3,f (a 6)=f (-63)=f (0)=0,∴f (a 5)+f (a 6)=3.三、解答题15.设函数f (x )在(-∞,+∞)上满足f (2-x )=f (2+x ),f (7-x )=f (7+x ),且在闭区间[0,7]上,只有f (1)=f (3)=0.(1)证明:函数f (x )为周期函数;(2)试求方程f (x )=0在闭区间[-2018,2018]上的根的个数,并证明你的结论. 解 (1)证明:由⎩⎪⎨⎪⎧f 2-x =f 2+x ,f7-x =f 7+x⇒⎩⎪⎨⎪⎧f x =f 4-x ,fx =f 14-x⇒f (4-x )=f (14-x )⇒f (x )=f (x +10).∴f (x )为周期函数,T =10.(2)∵f (3)=f (1)=0,f (11)=f (13)=f (-7)=f (-9)=0,故f (x )在[0,10]和[-10,0]上均有两个解.从而可知函数y =f (x )在[0,2018]上有404个解, 在[-2018,0]上有403个解,所以函数y =f (x )在[-2018,2018]上有807个解.16.定义在R 上的函数f (x )对任意a ,b ∈R 都有f (a +b )=f (a )+f (b )+k (k 为常数). (1)判断k 为何值时,f (x )为奇函数,并证明;(2)设k =-1,f (x )是R 上的增函数,且f (4)=5,若不等式f (mx 2-2mx +3)>3对任意x ∈R 恒成立,求实数m 的取值范围.解 (1)若f (x )在R 上为奇函数,则f (0)=0, 令a =b =0,则f (0+0)=f (0)+f (0)+k ,所以k =0. 证明:由f (a +b )=f (a )+f (b ),令a =x ,b =-x , 则f (x -x )=f (x )+f (-x ),又f (0)=0,则有0=f (x )+f (-x ),即f (-x )=-f (x )对任意x ∈R 成立,所以f (x )是奇函数.(2)因为f (4)=f (2)+f (2)-1=5,所以f (2)=3. 所以f (mx 2-2mx +3)>3=f (2)对任意x ∈R 恒成立.又f (x )是R 上的增函数,所以mx 2-2mx +3>2对任意x ∈R 恒成立,即mx 2-2mx +1>0对任意x ∈R 恒成立,当m =0时,显然成立;当m ≠0时,由⎩⎪⎨⎪⎧m >0,Δ=4m 2-4m <0,得0<m <1.所以实数m 的取值范围是[0,1).。

高中 函数的奇偶性与周期性知识点+例题+练习 含答案

高中 函数的奇偶性与周期性知识点+例题+练习 含答案

正数,那么这个最小正数就叫做f(x)的最小正周期.辨析感悟1.对奇偶函数的认识及应用(1)函数y=x2,x∈(0,+∞)是偶函数.( )(2)偶函数图象不一定过原点,奇函数的图象一定过原点.( )(3)(教材习题改编)如果函数f(x),g(x)为定义域相同的偶函数,则F(x)=f(x)+g(x)是偶函数.( )(4)若函数y=f(x+a)是偶函数,则函数y=f(x)关于直线x=a对称.( )(5)(2013·山东卷改编)已知函数f(x)为奇函数,且当x>0时,f(x)=x2+1x,则f(-1)=-2.( )(6)(2014·菏泽模拟)已知函数y=f(x)是定义在R上的偶函数,且在(-∞,0)上是减函数,若f(a)≥f(2),则实数a的取值范围是[-2,2].( )2.对函数周期性的理解(7)函数f(x)在定义域上满足f(x+a)=-f(x),则f(x)是周期为2a(a >0)的周期函数.( )(8)(2013·湖北卷改编)x为实数,[x]表示不超过x的最大整数,则函数f(x)=x-[x]在R上是周期函数.( )[感悟·提升]1.两个防范一是判断函数的奇偶性之前务必先考查函数的定义域是否关于原点对称,若不对称,则该函数一定是非奇非偶函数,如(1);二是若函数f(x)是奇函数,则f(0)不一定存在;若函数f(x)的定义域包含0,则必有f(0)=0,如(2).2.两个结论一是若函数y=f(x+a)是偶函数,则函数y=f(x)关于直线x=a对称;若函数y=f(x+b)是奇函数,则函数y=f(x)关于点(b,0)中心对称,如(4).二是若对任意x∈D都有f(x+a)=-f(x),则f(x)是以2a为周期的函数;若对任意x∈D都有f(x+a)=±1f x(f(x)≠0),则f(x)也是以2a为周期的函数,如(7)(8).教学过程【例3】(经典题)已知定义在R上的奇函数f(x)满足f(x-4)=-f(x),且在区间[0,2]上是增函数,则f(-25),f(11),f(80)的大小顺序为________.规律方法关于奇偶性、单调性、周期性的综合性问题,关键是利用奇偶性和周期性将未知区间上的问题转化为已知区间上的问题.【训练3】设f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=-f(x),当x∈[0,2]时,f(x)=2x-x2.(1)求证:f(x)是周期函数;(2)当x∈[2,4]时,求f(x)的解析式;(3)计算f(0)+f(1)+f(2)+…+f(2 014).教学效果分析。

2020版高考数学总复习第二篇函数导数及其应用第3节函数的奇偶性与周期性应用能力提升理含解析

2020版高考数学总复习第二篇函数导数及其应用第3节函数的奇偶性与周期性应用能力提升理含解析

第3节函数的奇偶性与周期性【选题明细表】知识点、方法题号函数奇偶性的判定1,2函数周期性的应用6,8,9函数的奇偶性的应用3,5,7,10,12,13函数基本性质的综合应用4,11,14,15,16基础巩固(建议用时:25分钟)1.(2018·辽宁省大连本溪联考)函数y=x2lg 的图象( B )(A)关于x轴对称 (B)关于原点对称(C)关于直线y=x对称 (D)关于y轴对称解析:记f(x)=x2lg ,定义域为(-∞,-2)∪(2,+∞),f(-x)=(-x)2lg =x2lg=-x2lg =-f(x),所以f(x)为奇函数,即函数y=x2lg 的图象关于原点对称.故选B.2.设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是( C )(A)f(x)g(x)是偶函数 (B)|f(x)|g(x)是奇函数(C)f(x)|g(x)|是奇函数(D)|f(x)g(x)|是奇函数解析:f(x)是奇函数,则f(-x)=-f(x),g(x)是偶函数,则g(-x)=g(x),则f(-x)g(-x)=-f(x)g(x),选项A错;|f(-x)|g(-x)=|f(x)|g(x),选项B错;f(-x)|g(-x)|=-f(x)|g(x)|,选项C正确;|f(-x)·g(-x)|=|f(x)g(x)|,选项D错.3.(2018·浙江省宁波市高三模拟)若函数f(x)=ax2+(2a2-a-1)x+1为偶函数,则实数a的值为( C )(A)1 (B)-(C)1或-(D)0解析:a=0时,f(x)=-x+1不是偶函数,a≠0时,二次函数f(x)=ax2+(2a2-a-1)x+1的对称轴为x=-,若f(x)为偶函数,则-=0,得a=1或a=-,故选C.4.(2018·河南中原名校高考一模)已知函数y=f(x),满足y=f(-x)和y=f(x+2)是偶函数,且f(1)=,设F(x)=f(x)+f(-x),则F(3)等于( B )(A)(B)(C)π(D)解析:由题意得f(-x)=f(x),f(x+2)=f(-x+2)=f(x-2),故f(x)=f(x+4).则F(3)=f(3)+f(-3)=2f(3)=2f(-1)=2f(1)=,故选B.5.(2018·山西省六校第四次联考)设f(x)为定义在R上的奇函数,当x≥0时,f(x)=3x-7x+2b(b 为常数),则f(-2)等于( A )(A)6 (B)-6 (C)4 (D)-4解析:因为f(x)为奇函数,所以f(-2)=-f(2)=-(32-7×2+2b)=5-2b,又奇函数f(x)在x=0处有意义,所以f(0)=30-7×0+2b=0,所以2b=-1,所以f(-2)=6.故选A.6.(2018·湖南九月调研)定义在R上的函数f(x),满足f(x+5)=f(x),当x∈(-3,0]时,f(x)=-x-1,当x∈(0,2]时,f(x)=log2x,则f(1)+f(2)+f(3)+…+f(2 018) 的值等于( B )(A)403 (B)405 (C)806 (D)809解析:定义在R上的函数f(x),满足f(x+5)=f(x),即函数的周期为5.当x∈(0,2]时,f(x)=log2x,所以f(1)=log21=0,f(2)=log22=1.当x∈(-3,0]时,f(x)=-x-1,所以f(3)=f(-2)=1,f(4)=f(-1)=0,f(5)=f(0)=-1.f(1)+f(2)+f(3)+…+f(2 018)=403×(f(1)+f(2)+f(3)+f(4)+f(5))+f(2 016)+f(2 017)+f(2 018)=403×1+f(1)+f(2)+f(3)=403+0+1+1=405.故选B.7.(2018·江西省六校联考)设函数f(x)是定义在R上的奇函数,且f(x)=则g[f(-8)] 等于( A )(A)-1 (B)-2 (C)1 (D)2解析:因为f(x)是奇函数,所以f(-8)=-f(8)=-log39=-2,所以g[f(-8)]=g(-2)=f(-2)=-f(2)=-log33=-1.故选A.8.(2018·云南玉溪市高考模拟)设奇函数f(x)的定义域为R,且f(x+4)=f(x),当x∈(4,6]时f(x)=2x+1,则f(x)在区间[-2,0)上的表达式为( B )(A)f(x)=2x+1 (B)f(x)=-2-x+4-1(C)f(x)=2-x+4+1 (D)f(x)=2-x+1解析:当x∈[-2,0)时,-x∈(0,2],所以-x+4∈(4,6].又因为当x∈(4,6]时,f(x)=2x+1,所以f(-x+4)=2-x+4+1.又因为f(x+4)=f(x),所以函数f(x)的周期为T=4.所以f(-x+4)=f(-x).又因为函数f(x)是R上的奇函数,所以f(-x)=-f(x).所以-f(x)=2-x+4+1,所以当x∈[-2,0)时,f(x)=-2-x+4-1.故选B.9.(2018·山东省菏泽市高三上学期期中)已知函数f(x)是定义在R上的周期为2的奇函数,当0<x<1时,f(x)=9x,则f(-)+f(2)= .解析:因为函数f(x)是定义在R上的周期为2的奇函数,所以f(-)=f(--2)=f(-)=-f(),又当0<x<1时,f(x)=9x,所以f(-)=-=-3,又f(2)=f(0)=0,所以f(-)+f(2)=-3.答案:-310.(2018·河南省中原名校质检)已知函数f(x)=asin x++c,x∈[-5π,0)∪(0,5π],若f(1)+f(-1)=4 034,则c= .解析:令g(x)=f(x)-c=asin x+,易知g(x)是奇函数,则g(1)+g(-1)=0,即f(1)-c+f(-1)-c=0,所以c==2 017.答案:2 017能力提升(建议用时:25分钟)11.(2018·陕西省西工大模拟)已知函数f(x)=2sin x-3x,若对任意m∈[-2,2],f(ma-3)+f(a2)>0恒成立,则a的取值范围是( A )(A)(-1,1)(B)(-∞,-1)∪(3,+∞)(C)(-3,3)(D)(-∞,-3)∪(1,+∞)解析:因为f(x)=2sin x-3x,所以f′(x)=2cos x-3<0,则f(x)是一个单调递减函数,而f(-x)=2sin(-x)+3x=-f(x),所以f(x)是一个奇函数,因为f(ma-3)+f(a2)>0,所以f(ma-3)>-f(a2)=f(-a2),所以ma-3<-a2,因为m∈[-2,2],所以所以所以-1<a<1.故选A.12.(2018·安徽省亳州市高三质量检测)已知f(x)是定义在R上的奇函数,g(x)是定义在R上的偶函数,若F(x)=f(x)·[g(x)-1],则F(-2)+F(2)等于( A ) (A)0 (B)2 (C)-2 (D)4解析:F(-x)=f(-x)[g(-x)-1]=-f(x)[g(x)-1]=-F(x),所以F(x)是奇函数,所以F(-2)+F(2)=0,故选A.13.已知定义在R上的奇函数f(x)和偶函数g(x)满足f(x)+g(x)=a x-a-x+2(a>0,且a≠1).若g(2)=a,则f(2)等于( B )(A)2 (B)(C)(D)a2解析:因为f(x)为奇函数,g(x)为偶函数,所以f(-2)=-f(2),g(-2)=g(2)=a,因为f(2)+g(2)=a2-a-2+2,①所以f(-2)+g(-2)=g(2)-f(2)=a-2-a2+2,②由①、②联立得g(2)=a=2,f(2)=a2-a-2=.14.(2018·山东济宁一模)已知函数f(x)是(-∞,+∞)上的奇函数,且f(x)的图象关于x=1对称,当x∈[0,1]时,f(x)=2x-1.则f(2 017)+f(2 018)的值为( D )(A)-2 (B)-1 (C)0 (D)1解析:因为函数f(x)是(-∞,+∞)上的奇函数,且f(x)的图象关于x=1对称,所以f(-x)=-f(x),由图象关于x=1对称,得f(1+x)=f(1-x),即f(x)=f(2-x)=-f(-x).所以f(4-x)=-f(2-x)=f(-x),所以周期是T=4.因为当x∈[0,1]时,f(x)=2x-1.所以f(2 017)+f(2 018)=f(1)+f(2)=f(1)-f(0)=2-1-1+1=1.故选D.15.已知f(x)是周期为2的奇函数,当0<x<1时,f(x)=lg x,设a=f(),b=f(),c=f(),则( A )(A)c<a<b (B)a<b<c(C)b<a<c (D)c<b<a解析:a=f()=f(-)=-f()=-lg =lg ,b=f()=f(-)=-f()=-lg=lg 2,c=f()=f()=lg ,因为2>>,所以lg 2>lg>lg,所以b>a>c.16.(2018·河北石家庄二中八月模拟)已知函数f(x)满足对任意实数m,n,都有f(m+n)=f(m)+f(n)-1,设g(x)=f(x)+(a>0,a≠1),若g(ln 2 017)=2 018,则g(ln)等于( D )(A)2 017 (B)2 018 (C)-2 016 (D)-2 015解析:因为f(m+n)=f(m)+f(n)-1,令m=n=0,得f(0)=1,再令m=x,n=-x,得f(x)+f(-x)=2,设h(x)=,则h(-x)=,得h(x)+h(-x)=1,所以g(x)+g(-x)=f(x)+h(x)+f(-x)+h(-x)=3,所以g(ln)=g(-ln 2 017)=3-g(ln 2 017)=3-2 018=-2 015.故选D.。

2020年高考数学(人教版)总复习-函数的基本性质--函数的奇偶性与周期性、单调性(含解析)

2020年高考数学(人教版)总复习-函数的基本性质--函数的奇偶性与周期性、单调性(含解析)

1 x2 x 1
( 1 x2 1)2 x2
(D)a2-2M
13.偶函数 y=f(x)在 x∈〔0,+ ∞)时,f(x)=x-1,则 f (x-1)<0 的解集是( )
(A){x|-1<x<0}
(B){x|x<o 或 1<x<2}
(C){x|0<x<2}
(D){x|1<x<2}
14.若函数 f(x)=(x+a)3,对任意 t∈R,总有 f(1+t)=-f(1-t),则 f(2)+f(-2)的值是( )
(A)9
(B)-7
(C)-5
(D)-11
4.已知函数 y=f(x)是偶函数,又 y=f(x-2)在[0,2]上是单调减函数,则( )
(A)f(0)<f(-1)<f(2)
(B)f(-1)<f(0)<f(2)
(C)f(-1)<f(2)<f(0)
(D)f(2)<f(-1)<f(0)
5.已知 y=f(x)是定义在 R 上的奇函数,当 x≥0 时,f(x)=x2-2x,则在 R 上 f(x)的表达式
.
x
7、设
f
(x)

lg(1
2
x

a)
是奇函数,则使
f
(x)

0的
x
值的取值范围是
A.(-1,0)
B.(0,1)
()
C.(-∞,0)
D.(-∞,0)∪(1,+∞)
5/9
8、 f (x), g(x) 是定义在 R 上的函数, h(x) f (x) g(x), 则“ f (x), g(x) 均为偶函数” 是“ h(x) 为偶函数”的
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考点测试7 函数的奇偶性与周期性高考概览本考点是高考的必考知识点,常考题型为选择题、填空题,分值5分,中等难度 考纲研读1.结合具体函数,了解函数奇偶性的含义 2.会运用函数图象理解和研究函数的奇偶性3.了解函数周期性、最小正周期的含义,会判断、应用简单函数的周期性一、基础小题1.若函数f (x )=x(2x +1)(x -a )为奇函数,则实数a =( )A .12B .23C .34 D .1 答案 A解析 函数f (x )的定义域为xx ≠-12且x ≠a .∵奇函数定义域关于原点对称.∴a =12.故选A .2.已知定义在R 上的函数f (x )是奇函数,且是以2为周期的周期函数,则f (1)+f (4)+f (7)=( )A .-1B .0C .1D .4 答案 B解析 由题意知f (-x )=-f (x )且f (x +2)=f (x ),所以f (1)+f (4)+f (7)=f (1)+f (0)+f (-1)=0.故选B .3.已知f (x )为奇函数,在[3,6]上是增函数,且在[3,6]上的最大值为8,最小值为-1,则2f (-6)+f (-3)=( )A .-15B .-13C .-5D .5 答案 A解析 因为函数在[3,6]上是增函数,所以f (6)=8,f (3)=-1.又因为函数为奇函数,所以2f (-6)+f (-3)=-2f (6)-f (3)=-2×8+1=-15.故选A .4.已知函数f (x )为奇函数,当x >0时,f (x )=x 2-x ,则当x <0时,函数f (x )的最大值为( )A .-14B .14C .12D .-12答案 B解析 解法一:设x <0,则-x >0,所以f (-x )=x 2+x ,又函数f (x )为奇函数,所以f (x )=-f (-x )=-x 2-x =-⎝⎛⎭⎪⎫x +122+14,所以当x <0时,函数f (x )的最大值为14.故选B .解法二:当x >0时,f (x )=x 2-x =⎝ ⎛⎭⎪⎫x -122-14,最小值为-14,因为函数f (x )为奇函数,所以当x <0时,函数f (x )的最大值为14.故选B .5.已知f (x )是定义在R 上的函数,且f (x +2)=-f (x ).当x ∈(0,2)时,f (x )=2x 2,则f (7)=( )A .-2B .2C .-98D .98 答案 A解析 由f (x +2)=-f (x ),得f (7)=-f (5)=f (3)=-f (1)=-2.故选A . 6.若定义在R 上的偶函数f (x )和奇函数g (x )满足f (x )+g (x )=e x,则g (x )=( ) A .e x -e -xB .12(e x +e -x )C .e x +e -xD .12(e x -e -x )答案 D解析 因为f (x )+g (x )=e x ,所以f (-x )+g (-x )=f (x )-g (x )=e -x,所以g (x )=12(ex -e -x).故选D .7.已知函数f (x )=g (x )+x 2,对于任意x ∈R 总有f (-x )+f (x )=0,且g (-1)=1,则g (1)=( )A .-1B .1C .3D .-3 答案 D解析 因为任意x ∈R 总有f (-x )+f (x )=0,所以f (x )为奇函数,f (-1)=g (-1)+1=-g (1)-1=-f (1),所以g (1)=-3,故选D .8.若定义域为R 的函数f (x )在(4,+∞)上为减函数,且函数y =f (x +4)为偶函数,则( )A .f (2)>f (3)B .f (2)>f (5)C .f (3)>f (5)D .f (3)>f (6) 答案 D解析 由y =f (x +4)为偶函数,得f (-x +4)=f (x +4),则f (2)=f (6),f (3)=f (5),C 错误;又f (x )在(4,+∞)上为减函数,则f (5)>f (6),即f (3)>f (2),A 错误;f (5)>f (2),B 错误;f (3)>f (6),D 正确.故选D .9.已知函数y=f(x)是定义在R上的偶函数,且在(-∞,0]上是增函数,若不等式f(a)≥f(x)对任意x∈[1,2]恒成立,则实数a的取值范围是( )A.(-∞,1] B.[-1,1]C.(-∞,2] D.[-2,2]答案 B解析因为函数f(x)为偶函数,且在(-∞,0]上是增函数,所以函数f(x)在[0,+∞)上是减函数,则不等式f(a)≥f(x)对任意x∈[1,2]恒成立等价于f(a)≥f(x)max=f(1),所以|a|≤1,解得-1≤a≤1,即实数a的取值范围为[-1,1],故选B.10.已知函数f(x)满足f(x+y)+f(x-y)=2f(x)f(y),且f(0)≠0,则f(x)( ) A.为奇函数 B.为偶函数C.为非奇非偶函数 D.奇偶性不能确定答案 B解析令x=y=0,则2f(0)=2f2(0),又f(0)≠0,所以f(0)=1.令x=0,则f(y)+f(-y)=2f(0)f(y),即f(-y)=f(y),所以函数f(x)是偶函数.故选B.11.若f(x)=(x+a)(x-4)为偶函数,则实数a=________.答案 4解析因为f(x)=(x+a)(x-4)为偶函数,所以f(x)=f(-x)对于任意的x都成立,即(x+a)(x-4)=(-x+a)(-x-4),所以x2+(a-4)x-4a=x2+(4-a)x-4a,所以a-4=4-a,即a=4.12.设函数f(x)=x3cos x+1.若f(a)=11,则f(-a)=________.答案-9解析记g(x)=x3cos x,则g(x)为奇函数,故g(-a)=-g(a)=-[f(a)-1]=-10,故f(-a)=g(-a)+1=-9.二、高考小题13.(2018·全国卷Ⅱ)已知f(x)是定义域为(-∞,+∞)的奇函数,满足f(1-x)=f(1+x).若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)=( )A.-50 B.0 C.2 D.50答案 C解析因为f(x)是定义域为(-∞,+∞)的奇函数,且f(1-x)=f(1+x),所以f(1+x)=-f(x-1),所以f(3+x)=-f(x+1)=f(x-1),所以T=4,因此f(1)+f(2)+f(3)+…+f(50)=12[f(1)+f(2)+f(3)+f(4)]+f(1)+f(2),因为f(3)=-f(1),f(4)=-f(2),所以f(1)+f(2)+f(3)+f(4)=0,因为f(2)=f(-2)=-f(2),所以f(2)=0,从而f(1)+f(2)+f(3)+…+f(50)=f(1)=2,故选C.14.(2017·全国卷Ⅰ)函数f(x)在(-∞,+∞)单调递减,且为奇函数.若f(1)=-1,则满足-1≤f (x -2)≤1的x 的取值范围是( )A .[-2,2]B .[-1,1]C .[0,4]D .[1,3] 答案 D解析 ∵f (x )为奇函数,∴f (-x )=-f (x ).∵f (1)=-1,∴f (-1)=-f (1)=1.故由-1≤f (x -2)≤1,得f (1)≤f (x -2)≤f (-1).又f (x )在(-∞,+∞)单调递减,∴-1≤x -2≤1,∴1≤x ≤3.故选D .15.(2017·天津高考)已知奇函数f (x )在R 上是增函数,g (x )=xf (x ).若a =g (-log 25.1),b =g (20.8),c =g (3),则a ,b ,c 的大小关系为( )A .a <b <cB .c <b <aC .b <a <cD .b <c <a 答案 C解析 依题意a =g (-log 25.1)=(-log 25.1)·f (-log 25.1)=log 25.1·f (log 25.1)=g (log 25.1).因为奇函数f (x )在R 上是增函数,可设0<x 1<x 2,则0=f (0)<f (x 1)<f (x 2).从而x 1f (x 1)<x 2f (x 2),即g (x 1)<g (x 2).所以g (x )在(0,+∞)上亦为增函数.又log 25.1>0,20.8>0,3>0,且log 25.1<log 28=3,20.8<21<3,而20.8<21=log 24<log 25.1,所以3>log 25.1>20.8>0,所以c >a >b .故选C .16.(2016·山东高考)已知函数f (x )的定义域为R .当x <0时,f (x )=x 3-1;当-1≤x ≤1时,f (-x )=-f (x );当x >12时,f ⎝ ⎛⎭⎪⎫x +12=f ⎝ ⎛⎭⎪⎫x -12.则f (6)=( )A .-2B .-1C .0D .2 答案 D解析 当x >12时,由f ⎝ ⎛⎭⎪⎫x +12=f ⎝ ⎛⎭⎪⎫x -12,可得当x >0时,f (x )=f (x +1),所以f (6)=f (1),而f (1)=-f (-1),f (-1)=(-1)3-1=-2,所以f (6)=f (1)=2,故选D .17.(2018·全国卷Ⅲ)已知函数f (x )=ln (1+x 2-x )+1,f (a )=4,则f (-a )=________.答案 -2解析 ∵f (x )+f (-x )=ln (1+x 2-x )+1+ln (1+x 2+x )+1=ln (1+x 2-x 2)+2=2,∴f (a )+f (-a )=2,∵f (a )=4,∴f (-a )=-2.18.(2016·江苏高考)设f (x )是定义在R 上且周期为2的函数,在区间[-1,1)上,f (x )=⎩⎪⎨⎪⎧x +a ,-1≤x <0,⎪⎪⎪⎪⎪⎪25-x ,0≤x <1,其中a ∈R .若f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫92,则f (5a )的值是________.答案 -25解析 ∵f (x )是周期为2的函数,∴f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫-2-12=f ⎝ ⎛⎭⎪⎫-12,f ⎝ ⎛⎭⎪⎫92=f ⎝ ⎛⎭⎪⎫4+12=f ⎝ ⎛⎭⎪⎫12.又∵f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫92,所以f ⎝ ⎛⎭⎪⎫-12=f ⎝ ⎛⎭⎪⎫12,即-12+a =110,解得a =35,则f (5a )=f (3)=f (4-1)=f (-1)=-1+35=-25.三、模拟小题19.(2018·河南洛阳一模)已知函数y =f (x )满足y =f (-x )和y =f (x +2)是偶函数,且f (1)=π3,设F (x )=f (x )+f (-x ),则F (3)=( )A .π3B .2π3C .πD .4π3答案 B解析 由y =f (-x )和y =f (x +2)是偶函数知f (-x )=f (x ),且f (x +2)=f (-x +2),则f (x +2)=f (x -2),则f (x )=f (x +4).所以F (3)=f (3)+f (-3)=2f (3)=2f (-1)=2f (1)=2π3.故选B .20.(2018·河北石家庄一模)已知奇函数f (x )在x >0时单调递增,且f (1)=0,若f (x -1)>0,则x 的取值范围为( )A .{x |0<x <1或x >2}B .{x |x <0或x >2}C .{x |x <0或x >3}D .{x |x <-1或x >1} 答案 A解析 ∵奇函数f (x )在(0,+∞)上单调递增,且f (1)=0,∴函数f (x )在(-∞,0)上单调递增,且f (-1)=0,则-1<x <0或x >1时,f (x )>0;x <-1或0<x <1时,f (x )<0.∴不等式f (x -1)>0即-1<x -1<0或x -1>1,解得0<x <1或x >2,故选A .21.(2018·湖北荆州一模)下列函数是奇函数且在定义域内是增函数的是( ) A .y =e xB .y =tan xC .y =x 3-x D .y =ln 2+x 2-x答案 D解析 函数y =e x不是奇函数,不满足题意;函数y =tan x 是奇函数,但在整个定义域内不是增函数,不满足题意;函数y =x 3-x 是奇函数,当x ∈-33,33时,y ′=3x 2-1<0,为减函数,不满足题意;函数y =ln 2+x 2-x 是奇函数,在定义域(-2,2)内,函数t =2+x2-x=-1-4x -2为增函数,函数y =ln t 也为增函数,故函数y =ln 2+x 2-x在定义域内为增函数,满足题意.故选D .22.(2018·山西太原一模)已知定义在R 上的函数f (x )满足f (x )+f (-x )=4x 2+2,设g (x )=f (x )-2x 2,若g (x )的最大值和最小值分别为M 和m ,则M +m =( )A .1B .2C .3D .4 答案 B解析 由g (x )=f (x )-2x 2,得g (-x )=f (-x )-2x 2,两式相加,可得g (-x )+g (x )=2,故g (x )的图象关于(0,1)对称,其最高点、最低点也关于(0,1)对称,所以M +m =2,故选B .23.(2018·湖南祁阳二模)已知偶函数fx +π2,当x ∈-π2,π2时,f (x )=x 13+sin x ,设a =f (1),b =f (2),c =f (3),则( )A .a <b <cB .b <c <aC .c <b <aD .c <a <b 答案 D解析 ∵当x ∈-π2,π2时,y =sin x 单调递增,y =x 13也为增函数,∴函数f (x )=x 13+sin x 也为增函数.∵函数fx +π2为偶函数,∴f -x +π2=fx +π2,f (x )的图象关于x =π2对称,∴f (2)=f (π-2),f (3)=f (π-3),∵0<π-3<1<π-2<π2,∴f (π-3)<f (1)<f (π-2),即c <a <b ,故选D .24.(2018·广东佛山一模)已知f (x )=2x+a2x 为奇函数,g (x )=bx -log 2(4x+1)为偶函数,则f (ab )=( )A .174B .52C .-154D .-32答案 D解析 由f (x )=2x+a2x 为奇函数,得f (-x )+f (x )=0,即2x+a2x +2-x+a2-x =0,可得a =-1;由g (x )=bx -log 2(4x +1)为偶函数,得g (x )=g (-x ),即bx -log 2(4x +1)=b (-x )-log 2(4-x +1),可得b =1,则ab =-1,f (ab )=f (-1)=2-1-12-1=-32,故选D .一、高考大题本考点在近三年高考中未涉及此题型. 二、模拟大题1.(2018·湖北咸宁11月联考)设函数f (x )=(2k -1)a x -a -x(a >0且a ≠1)是定义域为R 的奇函数.(1)求k 的值;(2)若f (1)=-56,不等式f (3x -t )+f (-2x +1)≥0对x ∈[-1,1]恒成立,求实数t的最小值.解 (1)∵f (x )是定义在R 上的奇函数, ∴f (0)=2k -1-1=0,解得k =1.(2)由(1)知f (x )=a x -a -x,因为f (1)=-56,所以a -1a =-56,解得a =23或a =-32(舍去),故f (x )=23x -32x,则易知函数y =f (x )是R 上的减函数,∵f (3x -t )+f (-2x +1)≥0,∴f (3x -t )≥f (2x -1), ∴3x -t ≤2x -1,∴t ≥x +1,即t ≥x +1在[-1,1]上恒成立,则t ≥2,即实数t 的最小值是2. 2.(2018·安徽合肥质检)已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函数.(1)求实数m 的值;(2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围. 解 (1)设x <0,则-x >0,所以f (-x )=-(-x )2+2(-x )=-x 2-2x . 又f (x )为奇函数,所以f (-x )=-f (x ), 于是x <0时,f (x )=x 2+2x =x 2+mx ,所以m =2.(2)要使f (x )在[-1,a -2]上单调递增,结合f (x )的图象(如图所示)知⎩⎪⎨⎪⎧a -2>-1,a -2≤1,所以1<a ≤3,故实数a 的取值范围是(1,3].3.(2019·安徽肥东中学调研)已知函数f (x )=log a (x +1),g (x )=log a (1-x )(其中a >0,且a ≠1).(1)求函数f (x )+g (x )的定义域;(2)判断函数f (x )-g (x )的奇偶性,并予以证明; (3)求使f (x )+g (x )<0成立的x 的集合.解 (1)由题意得⎩⎪⎨⎪⎧x +1>0,1-x >0,∴-1<x <1,∴所求定义域为{x |-1<x <1}. (2)函数f (x )-g (x )为奇函数, 令H (x )=f (x )-g (x ),则H (x )=log a (x +1)-log a (1-x )=log a x +11-x,∵H (-x )=log a -x +11+x =-log a x +11-x =-H (x ),∴函数H (x )=f (x )-g (x )为奇函数. (3)∵f (x )+g (x )=log a (x +1)+log a (1-x ) =log a (1-x 2)<0=log a 1,∴当a >1时,0<1-x 2<1,∴0<x <1或-1<x <0. 当0<a <1时,1-x 2>1,不等式无解,综上,当a >1时,使f (x )+g (x )<0成立的x 的集合为{x |0<x <1或-1<x <0}. 4.(2018·安徽宣城三校联考)已知函数f (x )=log 121-axx -1为奇函数,a 为常数.(1)确定a 的值;(2)求证f (x )是(1,+∞)上的增函数;(3)若对于区间[3,4]上的每一个x 值,不等式f (x )>12x+m 恒成立,求实数m 的取值范围.解 (1)∵函数f (x )是奇函数,∴f (-x )=-f (x ), 即log 121+ax -x -1=-log 121-ax x -1,∴1+ax -x -1=x -11-ax ,整理得1-x 2=1-a 2x 2,∴a 2=1,解得a =±1, 当a =1时,1-ax x -1=-1,不符合题意舍去,∴a =-1.(2)证明:由(1)可得f (x )=log 121+xx -1,设x 1,x 2∈(1,+∞),且x 1<x 2,则1+x 2x 2-1-1+x 1x 1-1=(1+x 2)(x 1-1)-(1+x 1)(x 2-1)(x 2-1)(x 1-1)=2(x 1-x 2)(x 2-1)(x 1-1),∵x 2>x 1>1,∴x 1-x 2<0,(x 2-1)(x 1-1)>0, ∴2(x 1-x 2)(x 2-1)(x 1-1)<0,∴1+x 2x 2-1<1+x 1x 1-1,∴log 121+x 2x 2-1>log 121+x 1x 1-1,即f (x 2)>f (x 1).∴f (x )是(1,+∞)上的增函数.(3)依题意得m <log 121+x x -1-12x 在[3,4]上恒成立,设u (x )=log 121+x x -1-12x,x ∈[3,4],由(2)知函数u (x )=log 121+x x -1-12x在[3,4]上单调递增,∴当x =3时,u (x )有最小值,且u (x )min =u (3)=-98,所以m <-98.故实数m 的取值范围为-∞,-98.。

相关文档
最新文档