2009年中考厦门市数学数学
福建2009年中考数学压轴题精选精析

2012数学中考模拟试卷(三)(满分:150分;考试时间:120分钟)班级 姓名 号数 成绩一、选择题(每小题3分,共21分) 1. 3-的倒数是( )A .31B.31- C. -3 D. 3 2. 要使分式11x +有意义,则x 应满足的条件是( ).A .1x >B .1x ≠C .1x ≠-D .0x ≠3.如图是由4个大小相同的正方体搭成的几何体,其俯视图是( ).4. 已知两圆的半径分别为2和3,圆心距为5,则这两圆的位置关系是( ).A. 外切B. 外离C. 内切D.相交 5. 下列多边形中,能够铺满地面的是( )A .正八边形B .正七边形C .正五边形D .正四边形 6. 已知三角形的三边长分别为5,6,x ,则x 不可能是( ). A .5 B. 7 C. 9 D.117. 若b a ,是正数,6,5==+ab b a ,则b a -=( ). A .1 B.-1 C.±1 D.0 二、填空题(每小题4分,共40分).8. 计算:2= ________9.地球平均每年发生雷电次数约为16 000 000次,用科学记数法表示:________次. 10. 计算:mnm n m mn +⋅+ =___________. 11. 因式分解:=-42a12. 在综合实践课上,五名同学做的作品的数量(单位:件)分别是:5,7,1,5,4.则这组数据的中位数是 件.第16题图13. 六边形的内角和等于________________度,外角和为_____________度。
14. 若反比例函数 的图象上有两点),1(1y A 和),2(2y B ,则1y ______2y (填“<”“=”“>”).15. 已知菱形的两对角线长分别为6㎝和8㎝,则菱形的面积为 ㎝2. 16. 如图,⊙O 的直径CD 过弦EF 的中点G ,∠EOG=60°,则∠DCF 的度数为17.在平面直角坐标系中,已知点O (0,0)、A (1,n )、B (2,0), 其中n >0,△OAB 是等边三角形.点P 是线段OB 的中点,将 △OAB 绕点O 逆时针旋转30º,记点P 的对应点为点Q .则: (1)n = ;(2)点Q 的坐标是 . 三、解答题(共89分)18.(9分)计算:101()(2012)33824π---+-÷19.(9分)先化简下面代数式,再求值:aa a a ---211, 其中2-=a20. (9分)已知,如图,点A ,D ,B ,E 在同一条直线上,且AD =BE ,∠A =∠FDE , 在①AC=DF ,②∠CBA=∠E ,③∠C=∠F 中,请选择其中一个条件,证明△ABC ≌ △DEF .(1)你选择的条件是: ;(2)证明:xy 6=FEABCD(第20题)21.(9分)有一个不透明口袋,装有分别标有数字1,2,3,4的4个小球(小球除数字不同外,其余都相同),另有3张背面完全一样、正面分别写有数字1,2,3的卡片.小敏从口袋中任意摸出一个小球,小颖从这3张背面朝上的卡片中任意摸出一张.(1) 分别用a、b表示小敏、小颖袋子中抽出的卡片上标有的数字,请用树状图法或列表法写出(a,b) 的所有取值;(2)求点(a,b)在落在反比例函数y=6x的图象的概率.22.(9分)2012年泉州市中考体育测试,除长跑项目必考外,每个女生还必须从掷实心球、立定跳远、跳绳和仰卧起坐四个项目中选报两项..,某校对女生报名情况进行了统计,绘制了如下两种统计图,请你根据图中信息解答下列问题:(1)该校共有名女生选报立定跳远项目;(2)求该校报名参加测试的女生总人数;(3)请补全条形统计图和扇形统计图.23.(9分)某工厂计划新招聘A 、B 两个工种的工人共120人,A 、B 两个工种的工人月工资分别为800元和1000元.设招聘A 工种的工人x 人:(1)若工厂每月支付给新招聘的A 、B 两个工种的工人工资总和为ll000O 元,那么A 、B 两个工种的工人各招聘多少人? 根据题设完成下列表格,并列方程求解.(2)若要求新招聘B 工种的人数不少于A 工种人数的2倍,那么招聘A 工种的工人多少人时,可使工厂每月支付的工人工资总和最少? 最少是多少?24.(9分)如图,⊙O 为△ABC 的外接圆,BC 为⊙O 的直径,AD 与⊙O 相切于点A ,AD⊥BE,垂足为D .(1)求证:∠ABD =∠ABC ; (2)若⊙O 的半径为5,tan∠ABD=34,求AC .25.(13分)如图,在平面直角坐标系中,已知点A坐标为(2,4),直线x=2与x轴相交于点B,连结OA,抛物线y=x2从点O沿OA方向平移,与直线x=2交于点P,顶点M到A点时停止移动.(1)求线段OA所在直线的函数解析式;①用m的代数式表示点P的坐标;②当m为何值时,线段PB最短;(3)当线段PB最短时,相应的抛物线上是否存在点Q,使△QMA的面积与△PMA的面积相等,若存在,请求出点Q的坐标;若不存在,请说明理由.26.(13分)在直角坐标系xoy中,已知点P是反比例函数(x>0)图象上一个动点,以P为圆心的圆始终与y轴相切,设切点为A.(1)如图1,⊙P运动到与x轴相切,设切点为K,试判断四边形OKPA的形状,并说明理由.(2)如图2,⊙P运动到与x轴相交,设交点为B,C.当四边形ABCP是菱形时:①求出点A,B,C的坐标.②在过A,B,C三点的抛物线上是否存在点M,使△MBP的面积是菱形ABCP面积的.若存在,试求出所有满足条件的M点的坐标,若不存在,试说明理由.。
2009年中考数学试题分类汇编之27 猜想、探索规律型

2009年中考试题专题之27--------猜想、探索规律型一、选择题---1.(2009年四川省内江市)如图,小陈从O 点出发,前进5米后向右转20O , 再前进5米后又向右转20O ,……,这样一直走下去, 他第一次回到出发点O 时一共走了( ) A .60米 B .100米 C .90米 D .120米 【答案】C.2.(2009年贵州黔东南州)某校生物教师李老师在生物实验室做试验时,将水稻种子分组进行发芽试验;第1组取3粒,第2组取5粒,第3组取7粒……即每组所取种子数目比该组前一组增加2粒,按此规律,那么请你推测第n 组应该有种子数( )粒。
A 、12+nB 、12-nC 、n 2D 、2+n【关键词】探索规律型【答案】A3.(2009年江苏省)下面是按一定规律排列的一列数: 第1个数:11122-⎛⎫-+ ⎪⎝⎭; 第2个数:2311(1)(1)1113234⎛⎫⎛⎫---⎛⎫-+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; 第3个数:234511(1)(1)(1)(1)11111423456⎛⎫⎛⎫⎛⎫⎛⎫-----⎛⎫-+++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭; ……第n 个数:232111(1)(1)(1)111112342n n n -⎛⎫⎛⎫⎛⎫----⎛⎫-++++⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭. 那么,在第10个数、第11个数、第12个数、第13个数中,最大的数是( ) A .第10个数 B .第11个数 C .第12个数 D .第13个数【答案】A4.(2009年孝感)对于每个非零自然数n ,抛物线2211(1)(1)n n n n n y x x +++=-+与x 轴交于A n 、B n 两点,以n n A B 表示这两点间的距离,则112220092009A B A B A B +++ 的值是 A .20092008B .20082009C .20102009D .20092010【答案】DO20o20o5.(2009年重庆)观察下列图形,则第n 个图形中三角形的个数是( )A .22n +B .44n +C .44n -D .4n【答案】D .6.(2009年河北)古希腊著名的毕达哥拉斯学派把1、3、6、10 … 这样的数称为“三角形数”,而把1、4、9、16 … 这样的数称为“正方形数”. 从图7中可以发现,任何一个大于1 的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是( )A .13 = 3+10B .25 = 9+16C .36 = 15+21D .49 = 18+31【答案】C二、填空题1.(2009年四川省内江市)把一张纸片剪成4块,再从所得的纸片中任取若干块,每块又剪成4块,像这样依次地进行下去,到剪完某一次为止。
2009年福建省泉州市中考数学试题及答案

2009年福建省泉州市初中毕业、升学考试数 学 试 题(满分:150分;考试时间:120分钟)毕业学校 姓名 考生号一、选择题(每小题4分,共24分) 每小题有四个答案,其中有且只有一个答案是正确的.请在答题卡上相应题目的答题区域内作答,答对的得4分,答错、不答或答案超过一个的一律得0分.1.计算:=-0)5(( ).A .1B .0C .-1D .-5 2.一组数据2, 6, 2, 8, 4, 2的众数是( ).A .8B .6C .4D .2 3. 右边物体的俯.视图..是( ).4.方程组⎩⎨⎧=-=+24y x y x 的解是( ).A .⎩⎨⎧==3,1y x B .⎩⎨⎧==1,3y x C .⎩⎨⎧==2,2y x D .⎩⎨⎧==0,2y x5.已知两圆的半径分别为2和3,圆心距为5,则这两圆的位置关系是( ).A.外离B.外切C.相交D.内切6.点A 1、 A 2、 A 3、 …、 A n (n 为正整数)都在数轴上.点A 1在原点O 的左边,且A 1O=1;点A 2在点A 1的右边,且A 2A 1=2;点A 3在点A 2的左边,且A 3A 2=3;点A 4在点A 3的右边,且A 4A 3=4;……,依照上述规律,点A 2008 、 A 2009所表示的数分别为( ). A.2008、-2009 B.-2008、 2009 C.1004、-1005 D.1004、 -1004 二、填空题(每小题3分,共36分)在答题卡上相应题目的答题区域内作答.7.计算:(-4)÷2= . 8.计算: a 3·a 4= . 9.宝岛台湾的面积约为36 000平方公里,用科学记数法表示约为 平方公里.10.计算: acb a ∙ = .11.分解因式: =++962x x .12.八边形的内角和等于 度.13.在分别写有数字1、 2、 3、 4、 5的5张小卡片中,随机地抽出1张卡片,则抽出卡片上的数字是1的概率为 .14.如图,方格纸中每个最小正方形的边长为1,则两平行直线AB 、CD 之间的距离是 .15.如图,△ABC 的中位线DE 长为10,则BC= .16.已知反比例函数y=kx(k 是常数,k ≠0)的图象在第一、三象限,请写出符合上述条件的k 的一个值: .17.已知圆锥的底面半径长为5,侧面展开后所得的扇形的圆心角为120°,则该圆锥的母线长等于 .18.如图,在△ABC 中,BC 边上的垂直平分线DE 交边BC 于点D ,交边AB 于点E.若△EDC 的周长为24,△ABC 与四边形AEDC 的周长 之差为12,则线段DE 的长为 .三、解答题(共90分)在答题卡上相应题目的答题区域内作答. 19.(8分)计算:212221-+--. 20.(8分)先化简下面的代数式,再求值:)3)(3()3(-++-x x x x ,其中.32+=x21.(8分)如图,已知∠1=∠2,AO=BO.求证:AC=BC.22. 右图为我国2004—2008年税收收入及其增长速度的不完整统计图.请你根据图中已有信息,解答下列问题:(1)这5年中,哪一年至哪一年的年税收收入增长率持续上升?(2)求出2008年我国的年税收收入.(精确到1亿元)23. (8分)如图所示,一棵大树在一次强烈的地震中于C处折断倒下,树顶落在地面B处,测得B处与树的底端A相距25米,∠ABC=24°.(1)求大树折断倒下部分BC的长度;(精确到1米)(2)问大树在折断之前高多少米?(精确到1米)24.(8分)将形状和大小都一样的红、白两种颜色的小球分装在甲、乙两个口袋中,甲袋装有1个红球和1个白球,乙袋装有2个红球和1个白球,现从每个口袋中各随机摸出1个小球.(1) 请你用画树状图或列表的方法表示所有等可能的结果;(2)有人说:“摸出‘两红’和摸出‘一红一白’这两个事件发生的概率相等.”你同意这种说法吗?为什么?25.(8分)如图,△ABC与△ADE都是等腰直角三角形,∠ACB和∠E都是直角,点C在AD上,把△ABC绕点A按顺时针方向旋转n度后恰好与△ADE重合.(1)请直接写出n的值;(2)若BC=2,试求线段BC在上述旋转过程中所扫过部分的面积.26.(8分)已知:直线y=kx(k≠0)经过点(3,-4).(1)求k的值;(2)将该直线向上平移m(m>0)个单位,若平移后得到的直线与半径为6的⊙O相离(点O为坐标原点),试求m的取值范围.27.(13分)如图,等腰梯形花圃ABCD的底边AD靠墙,另三边用长为40米的铁栏杆围成,设该花圃的腰AB的长为x米.(1)请求出底边BC的长(用含x的代数式表示);(2)若∠BAD=60°, 该花圃的面积为S米2.①求S与x之间的函数关系式(要指出自变量x的取值范围),并求当S=393时x的值;②如果墙长为24米,试问S有最大值还是最小值?这个值是多少?28.(13分)在直角坐标系中,点A(5,0)关于原点O的对称点为点C.(1)请直接写出点C的坐标;(2)若点B在第一象限内,∠OAB=∠OBA,并且点B关于原点O的对称点为点D.①试判断四边形ABCD的形状,并说明理由;②现有一动点P从B点出发,沿路线BA—AD以每秒1个单位长的速度向终点D运动,另一动点Q从A点同时出发,沿AC方向以每秒0.4个单位长的速度向终点C运动,当其中一个动点到达终点时,另一个动点也随之停止运动.已知AB=6,设点P、Q的运动时间为t秒,在运动过程中,当动点Q在以PA为直径的圆上时,试求t的值.四、附加题(共10分)在答题卡上相应题目的答题区域内作答.友情提示:请同学们做完上面考题后,再认真检查一遍,估计一下你的得分情况.如果你全卷得分低于90分(及格线),则本题的得分将计入全卷总分,但计入后全卷总分最多不超过90分;如果你全卷总分已经达到或超过90分,则本题的得分不计入全卷总分.填空:1.(5分)写出一个比0小的实数:.2.(5分)如右图,直线AB 、CD 相交于点O ,∠1=50°,则∠2= 度.2009年福建省泉州市初中毕业、升学考试数学试题参考答案及评分标准说明:(一)考生的正确解法与“参考答案”不同时,可参照“参考答案及评分标准”的精神进行评分.(二)如解答的某一步出现错误,这一错误没有改变后续部分的考查目的,可酌情给分,但原则上不超过后面应得的分数的二分之一;如属严重的概念性错误,就不给分.(三)以下解答各行右端所注分数表示正确做完该步应得的累计分数.一、选择题(每小题4分,共24分)1.A ; 2.D ; 3.D ; 4.B ; 5.B ; 6.C . 二、填空题(每小题3分,共36分)7.-2; 8.7a ; 9.4106.3⨯; 10.bc; 11.2)3(+x ; 12.1080;13.51; 14.3; 15.20; 16.例如:“2”; 17.15; 18.6.三、解答题(共90分) 19.(本小题8分)解:原式=42121-+ ……………………………………………………(6分)=1-4 ………………………………………………………… (7分)=-3 ……………………………………………………………(8分)20.(本小题8分)解:原式=9322-+-x x x ………………………………………… (4分)=93-x ………………………………………………………(5分)当2=a +3时,原式=9)32(3-+ ……………………………(6分)=9923-+ ……………………………(7分) =23………………………………… (8分) 21.(本小题8分)证明:证明:在△AOC 与△BOC 中∵AO=BO,∠1=∠2,OC=OC …………………………… (3分) ∴△AOC ≌△BOC ………………………………………(6分)∴AC=BC ………………………………………… (8分)22.(本小题8分) 解:(1)这5年中,2005年至2007年的年税收收入增长率持续上升. ……………………………………………………………(4分)(2)49443×(1+17%)≈57848(亿元),即2008年我国的年税收收入约为57848亿元. …………………………………………………………………(8分)23.(本小题8分)解:如图,在Rt △ABC 中,∠CAB=90°,∠ABC=24°,AB=25米 (1)∵cos ∠ABC=BCAB ……………………………………………(2分)∴BC=ABC AB ∠cos =024cos 25≈27(米)即大树折断倒下部分BC 的长度约为27米. ……………………(4分)(2)∵tan ∠ABC=ABAC∴AC=AB ·tan ∠ABC=25·tan24°≈11.1(米)…………(7分)∴BC+AC ≈27+11.1≈38(米)即大树折断之前高约为38米. ……………………………(8分) 24.(本小题8分)解:(1)(解法一)列举所有等可能的结果,画树状图:…………………………………………(4分)(解法二)列表如下:(略) (2)不同意这种说法……………………………………………………………(5分)由(1)知,P (两红)=62=31,P (一红一白)=63=21∴P (两红)<P (一红一白) …………………………………………(8分) 25.(本小题8分)解:(1)n=45 ……………………………………………………(3分)(2)设在旋转过程中,线段BC 所扫过部分的面积(即图中阴影部分面积)为S ,则 S=S 扇形ABD -S △ABC +S △ADE -S 扇形ACE又S △ABC =S △ADE∴S=S 扇形ABD -S 扇形ACE …………………………………………………(5分)在Rt △ABC 中,BC=2,由(1)得∠BAC=45°, ∴AB=045sin BC =222=2…………………………………………………(6分)∵AC=BC=2 ∴S=4442360)2(4536024522πππππ=-=∙-∙…………………………(8分)26.(本小题8分)解:(1)依题意得:-4=3k ,∴k=34- …………………………(3分)(2)由(1)及题意知,平移后得到的直线l 所对应的函数关系式为y=34-x+m(m >0) …………………………………………(4分) 设直线l 与x 轴、y 轴分别交于点A 、B ,(如左图所示)当x=0时,y=m;当y=0时,x=43m.∴A(43m,0),B(0,m),即OA=43m ,OB=m 在Rt △OAB 中,AB=22OB OA +2=m m m 4516922=+…………(5分) 过点O 作OD ⊥AB 于D ,∵S △ABO =21OD ·AB=21OA ·OB ∴21OD ·m 45=21·43m ·m ∵m >0,解得OD=53m …………………………………………………(6分)依题意得:53m >6,解得m >10即m 的取值范围为m >10……………………………………………(8分) 27.(本小颗13分)解:(1)∵AB=CD=x 米,∴BC=40-AB-CD=(40-2x )米.……………………………………………………(3分) (2)①如图,过点B 、C 分别作BE ⊥AD 于E ,CF ⊥AD 于F ,在Rt △ABE 中,AB=x,∠BAE=60°∴AE=21x,BE=23x.同理DF=21x,CF=23x 又EF=BC=40-2x ∴AD=AE+EF+DF=21x+40-2x+21x=40-x ……………………………(4分)∴S=21 (40-2x+40-x)·23x=43x(80-3x) =3203432+-x (0<x <20)…………………………………(6分)当S=393时,3203432+-x =393 解得:x 1=6,x 2=3220(舍去).∴x=6………………………………(8分)②由题意,得40-x ≤24,解得x ≥16,结合①得16≤x <20………………………………………………………………(9分)由①,S=3203432+-x =33400)340(3432+--x ∵a=433-<0 ∴函数图象为开口向下的抛物线的一段(附函数图象草图如左).其对称轴为x=340,∵16>340,由左图可知,当16≤x <20时,S 随x 的增大而减小……………………………(11分) ∴当x=16时,S 取得最大值,………………………………………(12分)此时S 最大值=312816320163432=⨯+⨯-.…………………(13分) 28.(本小题13分)解:(1)C (-5,0)…………………………………………(3分)(2)①四边形ABCD 为矩形,理由如下:如图,由已知可得:A 、O 、C 在同一直线上,且 OA=OC ;B 、O 、D 在同一直线上,且OB=OD ,∴四边形ABCD 是平行四边形.…………………………………………………………(5分)∵∠OAB=∠OBA ∴OA=OB,即AC=2OA=2OB=BD∴四边形ABCD 是矩形.……………………………………(7分) ②如图,由①得四边形ABCD 是矩形∴∠CBA=∠ADC=90°………………………………………(8分) 又AB=CD=6,AC=10∴由勾股定理,得BC=AD==2222610-=-AB AC =8…………………………………(9分)∵254.010=,14186=+,∴0≤t ≤14.……………………(10分)当0≤t ≤6时,P 点在AB 上,连结PQ. ∵AP 是直径,∴∠PQA=90°…………………………………(11分)又∠PAQ=∠CAB ,∴△PAQ ∽△CAB∴AB AQ CA PA =,即64.0106tt =-,解得t=3.6…………………………(12分)当6<t ≤14时,P 点在AD 上,连结PQ ,同理得∠PQA=90°,△PAQ ∽△CAD ∴AD AQ CA PA =,即84.0106tt =-t-6,解得t=12. 综上所述,当动点Q 在以PA 为直径的圆上时,t 的值为 3.6或12.……………………………………………………………(13分)四、附加题(共10分,每小题5分) 1. 如:-1(答案不唯一); 2. 50.。
厦门数学中考试题参考答案及评分标准

考生须知: 厦门市2007年初中毕业及高中阶段各类学校招生考试数学试题(试卷满分: 150 分; 考试时间:120分钟) 1. 解答的内容一律写在答题卡上, 考生不得擅自带走• 2. 作图或画辅助线要用 0.5毫米的黑色签字笔画好. 一、选择题(本大题共 7小题,每小题3分,共21分.每小题都有四个选项,其中有且只有 一个选项是正确的) 下列计算正确的是 A . — 3X 2 = — 6 B. — 1— 1 = 0 已知点 A (— 2, 3),则点A 在 A .第一象限 B .第二象限 下列语句正确的是 A.画直线AB = 10厘米 C.画射线OB = 3厘米 下列事件,是必然事件的是 A. 掷一枚均匀的普通正方体骰子,骰子停止后朝上的点数是B. 掷一枚均匀的普通正方体骰子,骰子停止后朝上的点数是偶数C. 打开电视,正在播广告 D •抛掷一枚硬币,掷得的结果不是正面就是反面 1.2. 3. 4.6. 7. 否则以0分计算.交卷时只交答题卡,本卷由考场处理, C. ( — 3)2= 6 C.第三象限D. 2 -1 = 2 D.第四象限B.画直线 D.延长线段AB 到点C,使得BC = AB I 的垂直平分线 方程组丿x + y = 5, 的解是,2x — y = 4.X= 3, x = 3, x =— 3, x =— 3, A .彳 B . C .丿D. \ly = 2. w=— 2.j= 2. 丁=— 2.5. 如果两个角是对顶角,那么这两个角相等;②如果一个等腰三角形下列两个命题:①有一个内角是60° ,那么这个等腰三角形一定是等边三角形 .则以下结论正确的是A.只有命题①正确B.只有命题②正确C.命题①、②都正确D.命题①、②都不正确小宝和爸爸、妈妈三人在操场上玩跷跷板,爸爸体重为 69千克,坐在跷跷板的一端,体重只有妈妈一半的小宝和妈妈一同坐在跷跷板的另一端,这时爸爸的一端仍然着地 .后来 小宝借来一副质量为 6千克的哑铃,加在他和妈妈坐的一端,结果爸爸被跷起离地 .小宝的体重可能是 A. 23.2 千克B. 23千克C. 21.1 千克D. 19.9 千克二、填空题(本大题共 10小题,每小题4分,共40分) 9.已知/ A = 50°,则/ A 的补角是 计算15 车序号1 2 3 4 5 6 车速(千米/时) 85 100 90 82 70 82 不等式2x — 4> 0的解集是 ________ . _______ 一名警察在高速公路上随机观察了 6辆车的车速,如下表所示: 则这6辆车车速的众数是 _______________ 千米/时. 已知图1所示的图形是由6个大小一样的正方形拼接而成的,此图形能否折成正方体 _________ (在横线上填“能”或“否”). 已知摄氏温度(C )与华氏温度「F )之间的转换关系是: 5摄氏温度=9 % (华氏温度—32).若华氏温度是68 F, 则摄氏温度是 C . 已知在 Rt △ ABC 中,/ C = 90°,直角边 AC 是直角边 BC 的2倍,贝U sin / A 的值 是 如图2,在平行四边形 ABCD 中,AF 交DC 于E ,交BC 的延长线于F ,若/ DAE = 20° , / AED = 90°,则/ B = __________ 度;若E C = 1,AD = 4厘米,则CF = _____________ 厘米. AB 3 在平面直角坐标系中, O 是坐标原点•点P (m , n )在反 图2 、 k 厂 比例函数y = X 的图象上.若m = k , n = k — 2,则k = ____________ ;若m + n = ,2k, OP = 2, k 且此反比例函数 y = -满足:当x > 0时,y 随x 的增大而减小,则 k =—— X 解答题(本大题共 9小题,共89分) 2 “ 2 ——1 V + X (本题满分8分)计算X 一 十J 厂+ 1. x x (本题满分8分)一次抽奖活动设置了如下的翻奖牌,如果你只能有一次机会在 字中选中一个翻牌,(1)求得到一架显微镜的概率;9个数(2)请你根据题意写出一个事件,使这个事件发生的概率是2 9.10. 11. 12. 13. 14.15. 16. 17. 三、 18. 19.1 2 3 4 5 6 789翻奖牌正面一架 两张 谢谢显微镜球票 参与 一张 一副 一张 唱片 球拍 唱片 两张 一张 一副 球票唱片球拍翻奖牌反面(本题满分8分)已知:如图3, AB 是O O 的弦,点(1) 若/ OAB = 35°,求/ AOB 的度数; (2) 过点C 作CD // AB ,若CD 是O O 的切线,求证:点C 是AB 的中点.21. (本题满分9分)某种爆竹点燃后,其上升的高度h (米)和时间t (秒)符合关系式1h = v o t — 2g t 2 ( O v t W 2),其中重力加速度 g 以10米/秒2计算.这种爆竹点燃后以 V o = 20 米/秒的初速度上升, (1) 这种爆竹在地面上点燃后,经过多少时间离地15米?(2) 在爆竹点燃后的1.5秒至1.8秒这段时间内,判断爆竹是上升,或是下降,并说明 理由. 22. (本题满分10分)已知四边形ABCD ,对角线AC 、BD 交于点O.现给出四个条件:①AC 丄BD :②AC 平分对角线 BD :③ AD // BC :④ / OAD = Z ODA.请你以其中的三个 条件作为命题的题设,以“四边形 ABCD 是菱形”作为命题的结论,(1 )写出一个真命题,并证明;(2 )写出一个假命题,并举出一个反例说明.23. (本题满分10分)已知:如图4,在厶ABC 中,D 是AB 边上的一点,BD > AD ,/ A =Z ACD ,(1)若/ A =Z B = 30 °,BD =3,求 CB 的长;(2 )过D 作/ CDB 的平分线 DF 交CB 于F ,C若线段AC 沿着AB 方向平移,当点 A 移到点D 时,F判断线段AC 的中点E 能否移到线段 DF 上,并说明理由. ______________________________ADB20. 图3图424. (本题满分12分)已知抛物线的函数关系式:y= x2 3+ 2( a —1) x+ a2-2a (其中x是自变量),(1)若点P(2,3)在此抛物线上,①求a的值;②若a> 0,且一次函数y= kx+ b的图象与此抛物线没有交点,请你写出一个符合条件的一次函数关系式(只需写一个,不必写出过程) ;(2)设此抛物线与x轴交于点A (x1, 0)、B (x2, 0).若xi^^3< x2,且抛物线的顶点3在直线x= 4的右侧,求a的取值范围.25. (本题满分12分)已知:如图5, PA、PB是O O的切线,A、B是切点,连结OA、OB、OP,(1)若/ AOP = 60°,求/ OPB 的度数;A(2 )过O作OC、OD分别交AP、BP于C、D两点,判断直线CD与O O的位置关系,并说明理由①若/ COP = Z DOP,求证:AC = BD;②连结CD,设△ PCD的周长为I,若I = 2AP,图526. (本题满分12分)已知点P (m, n) ( m>0)在直线y= x+ b (0< b< 3)上,点A、B4 2 2在x轴上(点A在点B的左边),线段AB的长度为3匕,设厶FAB的面积为S,且S=?b 2+ 3b,3(1 )若b = 2,求S的值;(2 )若S= 4,求n的值;(3)若直线y= x + b ( 0< b< 3)与y轴交于点C,A PAB是等腰三角形,当CA // PB时,求b的值.厦门市2007年初中毕业及高中阶段各类学校招生考试数学参考答案及评分标准题号 1 2 3 4 5 6 7 选项A BDD AC C、选择题(本大题共 7小题,每小题3分,共21分)二、填空题(本大题共 8. 3. 9. 130 度. 10小题,每小题4分,共40 分)10.5.11. x >2.12.82千米/时.13. 台匕 冃匕.14. 20 C .15.5 16. 70 度2厘米.17.3; 2.三、解答题(本大题共 (本题满分8分) 2 , 2 解:匸1X + X x 9小题,共89分) 18. 2 2x — 1 x • ~~2~7~■x x + x 19. (本题满分 (1)解:8分) ]9.20. (x — 1)( x + 1) x — 1 + 1=x.x(x + 1) + 1解:••• 0A = OB ,” 1 分 •• / OAB = Z OBA . ” 2 分 • • / OAB = 35° , ” 3 分 •• / AOB = 110°. ”4 分(2)证明:连结0C ,交AB 于E .(1) 如得到“一副球拍”或得到“两张球票”或 “一架显微镜或谢谢参与” . (2)解:得到 (本题满分8分)CD 是O 0的切线, ••• 0C 丄 CD .CD // AB , • / OEB = Z OCD . • 0E 丄AB . •/ 0A = OB ,• △ AOB 是等腰三角形,OE 是等腰三角形 AOB 顶角的平分线.•••点C 是AB 的中点.21.(本题满分9分)(1)解:由已知得,15 = 20t — |x 10X t 2,整理得,t 2 — 4t + 3= 0.解得,h= 3, t 2= 1当t =3时,不合题意,舍去• •当爆竹点燃后1秒离地15米.2(2)解:由题意得, h =- 5t + 20t.20•顶点的横坐标t =-莎)=2.2或:h =— 5( t — 2) + 20•顶点的横坐标t = 2.又••• 一 5V 0,二抛物线开口向下.•在爆竹点燃后的1.5秒至1.8秒这段时间内,爆竹在上升•22.(本题满分10 分)(1)真命题:如图,已知四边形ABCD ,对角线AC 、BD 交于点O.若平分对角线BD , AD // BC ,则四边形ABCD 是菱形.证明:•/ AD // BC ,• / CBO =Z ADO .•/ AC 垂直平分 BD , • Rt △ AOD 也 Rt △ COB . • AD = BC .•四边形ABCD 是平行四边形.(2)假命题1:已知四边形ABCD ,对角线AC 、BD 交于点O.若AC 丄BD , AC 平分对 角线BD ,/ OAD = Z ODA ,则四边形 ABCD 是菱形. 反作等腰直角三角形 ABD ,/ A = 90°,以BD 为一边,作等边三角形 BCD ,连结AC 、BD 交于点O. 贝U AC 丄BD , AC 平分对角线 BD ,/ OAD = Z ODA”9分•/ AC 丄 BD , 四边形ABCD 是菱形.AC 丄 BD , ACD3分但四边形ABCD不是菱形. ,,10分假命题2 :已知四边形ABCD,对角线AC、BD交于点O.若AC丄BD, AD // BC, / OAD = Z ODA,则四边形ABCD是菱形. ”6分反例:作等腰直角三角形AOD,/ AOD = 90° .延长DO至B, AO至C,取OB = OC (OB M OD ).连结AB、BC、CD ,贝U AC 丄BD , AD // BC,/ OAD = Z ODA. ,, 9 分则四边形ABCD是等腰梯形,不是菱形•,,10分假命题3:已知四边形ABCD,对角线AC、BD交于点O.若AC平分对角线BD , AD // BC,/ OAD = / ODA,则四边形ABCD是菱形. ”6分反例:作等腰三角形AOD ( OA = OD,/ AOD丰90°).延长DO至B,AO至C,取OB= OC= OA = OD.连结AB、BC、CD,贝U AD 丰 AB,AC 平分对角线BD,AD // BC,/ OAD = / ODA. ,,9分则四边形ABCD是矩形,不是菱形.5510分23.(本题满分10分)(1)解:•/ /A =/ ACD = 30°,CF ••• / CDB = 60° . ,, 1 分E又T/ B = 30°,A D B• / DCB = 90° . ,, 2 分亠亠BC在Rt△ BDC 中,cosB = BD,553分厂血3BC —BD •cosB — 3 •—.v2 2554分(2)解: •/ / CDB — / A +/ ACD,且DF 是/ CDB 的平分线,• 2 / FDB —2/ A,• / FDB —/ A. •AC // DF.5分方法 1 T / FDB =/ A,/ B =/ B,△ BDF s\ BAC.DF = BDAC = BA.BD > AD, DF 1> —AC 2BD、1 -- 〉_BA 2•/ E是AC的中点,•AE >1.即DF > AE.点E可以移到线段DF上.10分方法2:记点M为线段AB的中点,T BD >AD,点M在线段BD上.过M作MN // AC交BC于N./ BMN = / A,Z B =Z B,△ BMN BAC.BN = BM = 1BC = BA = 2N是BC的中点.MN // AC, AC// DF MN // DF.点N在线段BF上.点M在线段BD上,••• MN v DF.••• M为AB的中点,N是BC的中点,AE v DF.•••点E可以移到线段DF上.方法3:记点M为线段AB的中点,T BD > AD,”8分MN = AE.”9分”10分点M在线段BD上.过M作MN // AC交BC于N. / BMN = / A,Z B =Z B,△BMN BAC.MN = BM = 1AC = BA = 2.1E 为 AC 的中点,••• MN = 2AC = AE.MN // AC , AC // DF , 点M 在线段BD 上, MN BM 彳DF BD MN v DF. AE v DF.点E 可以移到线段DF 上.方法4:如图,延长 DF 至G ,使得DG = AC.•四边形ADGC 是平行四边形. • CG // AB.•••/ CGF =Z FDB ,/ GCF = Z FBD .△ CFG BFD. GF = CG FD = DB . CG = AD , AD v DB.即 計• GF + FD v 2F D. • DG > 2.1 FD > 2AC.又••• E 是AC 的中点,24.(本题满分12分)(1 [① 解:由题意得,3=4 + 2( a — 1) X 2 + a — 2a,”1 分 整理得,a 2+ 2a — 3= 0. ”2 分 解得,a 1=— 3, a 2= 1.”4 分9 / 12MN // DF.9分 10分CG DB v 1.• FD > AE.点E 可以移到线段DF 上. 9分 10分②解:y = x — 2.、.22(2)由题意得,x + 2( a — 1) x + a — 2a = 0解得,X 1 = — a , X 2 = — a + 2.解得一-,/3 v a v 2 — /3.3 1• 3 — a >4,解得 a v 4.3 I I1 8• S^- • AB • n , • -x- • n = 4.X 1< 3 v X 2,—a v” :3 v — a + 2.可以解得顶点坐标为(1 — a , — 1).11分10分△ OCP ^A ODP.CP = DP.•/ FA 、PB 是O O 的切线, • FA = PB. .AC = BD.② 证明 1:连结 CD.•/ l = 2AP , PA = PB ,CD = AC + BD.•/ OA = OB ,且/ OAC = Z OBD = 90° .•/ OC 1 = OC , DC 1= DC , OD = OD , ••• △ OCDOCD.10 / 1225. 12分(本题满分12分)(2)① 证明:•••/ COP =Z DOP ,/ CPO = Z DPO , PO = PO ,(1).将厶OAC 绕点O 逆时针旋转,使点 A 与B 重合. 记点C 的对称点为 C 1,. AC = BC 1,OC = OC 1.vZ OAC =Z OBD = 90°,•••点 C 1在PB 的延长线上.过O 作OE 丄CD , E 是垂足.即0E 是点0到直线CD 的距离, 112 X CD® 2 X CD &0B = OE.直线CD 与O O 相切.证明 2:过 O 作 OE 丄CD.设 OE = d , CE = x, DE = y.2 A —2 , A —22_122 , . -.22d = AC + AO — x , d = BD + AO — y ,••• AC 1 4— BD 2+ y 2— x 2= 0”8 分••• ( AC + x)( AC — x) = (BD + y)( BD — y)l = 2AP , FA = PB , • x + y = AC + BD.”9 分AC — x = y — BD.• ( AC + x)( y — BD) = (BD + y)( BD — y). (y — BD) (AC + x + BD + y )= 0.• ( AC + x + BD + y )M 0, - -y — BD = 0.BD = y.• d = AO. •直线CD 与O O 相切.26.(本题满分12分)32 9 23 (1)解:• b = -,• S = x + x-23 4 3 2=5 =2.” 2 2 2 (2)解:• S = 4,• 4 = 3b + 3b.• b 2 + b — 6 = 0. 解得 b =— 3 (舍去),b = 2.• AB 的长度为3.4 1 1 ,2 3n = 3.2 2 1⑶解:• S = 3b 2 + 3b , S = 2 •丨 AB| • n ,11分 12分10分11分 12分1分2分 3分4分5分 6分31 42 2 2 2 • §b • n = 3b + 3b. ■/ b z 0,n = b + 1. /• m + b = b + 1./• m = 1.P (1, b +1)过P 作PD 垂直x 轴于点D ,则点D (1 , 0). 4 1PD — AB = b + 1 — 3b = 1 — 3b. ” 8 分 1■/ 0 v b v 3,二 1 — §b > 0.”9 分••• PD > AB. •/ PA > PD , PD >AB ,「. PA > PD > AB ,即 PA >AB. •••PA 工 AB.同理 PB z AB”10 分2 2••• △ PAB 是等腰三角形,• PA = PB. • A (1— 3b , 0), B (1+ -b , 0)方法 1:v CA // PB ,••• / OAC =Z DPB ,• Rt △ AOC s Rt △ BDP.23• 4b — b — 3 = 0. •- b = 1 或 b = — 4 (不合题意,舍去)b = 1.方法2:延长PA 交y 轴于点C 1,v PA = PB ,/ CAO = Z PBA =Z PAB =Z OAC 1• OC 1= OC ,• C 1 (0, — b ).设直线 PA 的解析式为:y = kx +1. "k + t = b + 1, "k = 2b + 1, 则有* 解得,’L. t =— b. L_t =— b.•直线PA 的解析式为:y = (2 b + 1)x — b.” 11分/ 2 2--0 = (2 b +1) (1 — 3b )— b.•- 4 b — b — 3 = 0.3CO = OA PD = DB1 — 3b11分3b12分Rt △ AOC 也 Rt △ AOC .•- b= 1或b=—4 (不合题意,舍去).•b= 1. ”12分。
2009年中考数学试题汇编之三角形与全等三角形试题及答案[1]
![2009年中考数学试题汇编之三角形与全等三角形试题及答案[1]](https://img.taocdn.com/s3/m/202572d233d4b14e852468ab.png)
2009年中考试题专题之16-三角形与全等三角形试题及答案一、选择题 1.(2009年江苏省)如图,给出下列四组条件: ①AB DE BC EF AC DF ===,,; ②AB DE B E BC EF =∠=∠=,,; ③B E BC EF C F ∠=∠=∠=∠,,; ④AB DE AC DF B E ==∠=∠,,.其中,能使ABC DEF △≌△的条件共有( ) A .1组 B .2组 C .3组 D .4组2.(2009年浙江省绍兴市)如图,D E ,分别为ABC △的AC ,BC 边的中点,将此三角形沿DE 折叠,使点C 落在AB 边上的点P 处.若48CDE ∠=°,则APD ∠等于( ) A .42° B .48° C .52° D .58°3. (2009年义乌)如图,在ABC 中,90C ∠=。
,EF//AB,150∠=。
,则B ∠的度数为A .50。
B. 60。
C.30。
D. 40。
【关键词】三角形内角度数【答案】D4.(2009年济宁市)如图,△ABC 中,∠A =70°,∠B =60°,点D 在BC 的延长线上,则∠ACD 等于A. 100°B. 120°C. 130°D. 150°A BD5、(2009年衡阳市)如图2所示,A 、B 、C 分别表示三个村庄,AB=1000米,BC=600米,AC=800米,在社会主义新农村建设中,为了丰富群众生活,拟建一个 文化活动中心,要求这三个村庄到活动中心的距离相等,则活动中心P 的位置应在( ) A .AB 中点 B .BC 中点 C .AC 中点 D .∠C 的平分线与AB 的交点6、(2009年海南省中考卷第5题)已知图2中的两个三角形全等,则∠α度数是( )A.72°B.60°C.58°D.50° 7、(2009 黑龙江大兴安岭)如图,为估计池塘岸边A 、B 两点的距离,小方在池塘的一侧选取一点O ,测得15=OA 米,10=OB 米,A 、B 间的距离不可能是 ( ) A .5米 B .10米 C . 15米 D .20米8、(2009年崇左)一个等腰三角形的两边长分别为2和5,则它的周长为( ) A .7 B .9 C .12 D .9或12 9、(2009年湖北十堰市)下列命题中,错误的是( ). A .三角形两边之和大于第三边 B .三角形的外角和等于360° C .三角形的一条中线能将三角形面积分成相等的两部分 D .等边三角形既是轴对称图形,又是中心对称图形10、(09湖南怀化)如图,在Rt ABC △中,90=∠B ,ED 是AC 的垂直平分线,交AC 于点D ,交BC 于点E .已知10=∠BAE ,则C ∠的度数为( )A .30 B .40 C .50 D .6011、(2009年清远)如图,AB CD ∥,EF AB ⊥于E EF ,交CD 于F ,已知160∠=°,则2∠=( )A .20°B .60°C .30°D .45°A DB12、(2009年广西钦州)如图,在等腰梯形ABCD 中,AB =DC ,AC 、BD 交于点O ,则图中全等三角形共有( ) A .2对 B .3对C .4对D .5对【形ADO13、(2009年甘肃定西)如图4,四边形ABCD 中,AB =BC ,∠ABC =∠CDA =90°,BE ⊥AD于点E ,且四边形ABCD 的面积为8,则BE =( )A .2B .3C.D.14、(2009年广西钦州)如图,AC =AD ,BC =BD ,则有( ) A .AB 垂直平分CD B .CD 垂直平分AB C .AB 与CD 互相垂直平分D .CD 平分∠ACBABCD15、(2009肇庆)如图,Rt ABC △中, 90ACB ∠=°,DE 过点C ,且DE AB ∥,若 55ACD ∠=°,则∠B 的度数是( ) A .35° B .45° C .55° D .65°CDB AEF12A B E21CDBA16、(2009年邵阳市)如图,将Rt △ABC(其中∠B =340,∠C =900)绕A 点按顺时针方向旋转到△AB 1 C 1的位置,使得点C 、A 、B 1 在同一条直线上,那么旋转角最小等于( ) A.560B.680C.1240D.180017、(2009年湘西自治州)一个角是80°,它的余角是( )A .10°B .100°C .80°D .120°18、(2009河池)如图,在Rt △ABC 中,90∠=A ,AB =AC= E 为AC 的中点,点F 在底边BC 上,且⊥FE BE ,则△CEF 的面积是( )A . 16B . 18C .D .19、(2009柳州)如图所示,图中三角形的个数共有( ) A .1个 B .2个 C .3 个 D .4个20、(2009年牡丹江)如图, ABC △中,CD AB ⊥于D ,一定能确定ABC △为直角三角形的条件的个数是( ) ①1A ∠=∠,②CD DBAD CD=,③290B ∠+∠=°,④345BC AC AB =∶∶∶∶,⑤ACBD AC CD =·· A .1 B .2 C .3 D .4 【21、(2009桂林百色)如图所示,在方格纸上建立的平面直角坐标系中, 将△ABO 绕点O 按顺时针方向旋转90°, 得A B O ''△ ,则点A '的坐标为( ).A .(3,1)B .(3,2)C .(2,3)D .(1,3)22、(2009年长沙)已知三角形的两边长分别为3cm 和8cm ,则此三角形的第三边的长可能是( )A .4cmB .5cmC .6cmD .13cm 23、(2009年湖南长沙)已知三角形的两边长分别为3cm 和8cm ,则此三角形的第三边的长1C ACFAEC D BA可能是( ) A .4cm B .5cm C .6cm D .13cm24、(2009陕西省太原市)如图,ACB A C B '''△≌△,BCB ∠'=30°,则ACA '∠的度数为( ) A .20° B .30° C .35°D .40°25、 (2009陕西省太原市)如果三角形的两边分别为3和5,那么连接这个三角形三边中点,所得的三角形的周长可能是( )A .4B .4.5C .5D .5.526、(2009年牡丹江)尺规作图作AOB ∠的平分线方法如下:以O 为圆心,任意长为半径画弧交OA 、OB 于C 、D ,再分别以点C 、D 为圆心,以大于12CD 长为半径画弧,两弧交于点P ,作射线OP ,由作法得OCP ODP △≌△的根据是( ) A .SAS B .ASA C .AAS D .SSS27、(2009年新疆)如图,将三角尺的直角顶点放在直尺的一边上,130250∠=∠=°,°,则3∠的度数等于( ) A .50° B .30° C .20° D .15°28、(2009年牡丹江市)尺规作图作AOB ∠的平分线方法如下:以O 为圆心,任意长为半径画弧交OA 、OB 于C 、D ,再分别以点C 、D 为圆心,以大于12CD 长为半径画弧,两弧交于点P ,作射线OP ,由作法得OCP ODP △≌△的根据是( ) A .SAS B .ASA C .AAS D .SSS123C AB B 'A '【29、(2009年包头)已知在Rt ABC △中,390sin 5C A ∠==°,,则tan B 的值为( ) A .43B .45C .54D .34【30、(2009年齐齐哈尔市)如图,为估计池塘岸边A B 、的距离,小方在池塘的一侧选取一点O ,测得15OA =米,OB =10米,A B 、间的距离不可能是( ) A .20米 B .15米 C .10米 D .5米31、(2009年台湾)图(三)、图(四)、图(五)分别表示甲、乙、丙三人由A 地到B 地的路线图。
2009年厦门双十中学对外联合招生考试数学试卷

.2009年厦门双十中学对外联合招生考试数学试卷26、(金华市) 如图1,在平面直角坐标系中,已知点(0A ,点B 在x 正半轴上,且30ABO =∠.动点P 在线段AB 上从点A 向点B时间为t 秒.在x 轴上取两点M N ,作等边PMN △. (1)求直线AB 的解析式;(2)求等边PMN △的边长(用t 的代数式表示),并求出当等边PMN △的顶点M 运动到与原点O 重合时t 的值; (3)如果取OB 的中点D ,以OD 为边在Rt AOB △内部作如图2所示的矩形ODCE ,点C 在线段AB 上.设等边PMN △和矩形ODCE 重叠部分的面积为S ,请求出当02t ≤≤秒时S 与t 的函数关系式,并求出S 的最大值.解:(1)直线AB的解析式为:y x =+ (2)方法一,90AOB ∠=,30ABO ∠=,2AB OA ∴==3AP t =,BP ∴=,PMN △是等边三角形,90MPB ∴∠=,tan PM PBM PB ∠=,)83PM t ∴=⨯=-. 方法二,如图1,过P 分别作PQ y ⊥轴于Q ,PS x ⊥轴于S ,可求得122AQ AP ==,2PS QO ==,822PM t ⎛⎫∴=÷=- ⎪ ⎪⎝⎭,(图1)(图2)(图1)当点M 与点O 重合时,60BAO ∠=, 2AO AP ∴=.∴=,2t ∴=.(3)①当01t ≤≤时,见图2. 设PN 交EC 于点H ,重叠部分为直角梯形EONG , 作GH OB ⊥于H .60GNH ∠=,GH = 2HN ∴=, 8PM t =-, 162BM t ∴=-, 12OB =,(8)(16212)4ON t t t ∴=----=+, 422OH ON HN t t EG ∴=-=+-=+=,1(24)2S t t ∴=+++⨯=+S 随t 的增大而增大,∴当1t =时,S =最大②当12t <<时,见图3. 设PM 交EC 于点I ,交EO 于点F ,PN 交EC 于点G , 重叠部分为五边形OFIGN . 方法一,作GH OB ⊥于H,4FO =,)EF ∴==-,22EI t ∴=-,21(22FEI ONGE S S S t ∴=-=+--=-++△梯形方法二,由题意可得42MOt =-,(42)OF t=-PC =,4PI t =-, 再计算21(42)2FMO S t=-△2(8)4PMN St =-△,2)4PIG S t =-△ (图3)2221(8))(42)442PMN PIG FMO S S S S t t t ∴=--=-----△△△2=-++ 230-<,∴当32t =时,S有最大值,2S =最大. ③当2t =时,6MP MN ==,即N 与D 重合,设PM 交EC 于点I ,PD 交EC 于点G ,重叠部 分为等腰梯形IMNG ,见图4.2262S ==综上所述:当01t ≤≤时,S =+;当12t <<时,2S =-++当2t =时,S =1732>S ∴的最大值是2.(图4)。
2009福建福州数学中考试题(含答案)

二○○九年福州市课改实验区初中毕业会考、高级中等学校招生考试数学试卷(全卷共4页,三大题,共22小题;满分150分;考试时间120分钟)友情提示:所有答案都必须填涂在答题卡上,答在本试卷上无效.毕业学校姓名考生号一、选择题(共10小题,每题4分,满分40分;每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.2009的相反数是A.-2009 B.2009 C.12009- D.120092.用科学记数法表示660 000的结果是A.66×104 B.6.6×105 C.0.66×106 D.6.6×1063.已知∠1=30°,则∠1的余角度数是A.160° B.150° C.70° D.60°4.二元一次方程组2,x yx y+=⎧⎨-=⎩的解是A.0,2.xy=⎧⎨=⎩B.2,0.xy=⎧⎨=⎩C.1,1.xy=⎧⎨=⎩D.1,1.xy=-⎧⎨=-⎩5.图1所示的几何体的主视图是6.下列运算中,正确的是A.x+x=2xB. 2x-x=1C.(x3)3=x6D. x8÷x2=x47.若分式21x-有意义,则x的取值范围是A.x≠1 B.x>1 C. x=1 D.x<18.如图2,正五边形FGHMN是由正五边形ABCDE经过位似变换得到的,若AB:FG=2:3,则下列结论正确的是A.2DE=3MN, B.3DE=2MN, C. 3∠A=2∠F D.2∠A=3∠F 9.将1、2、3三个数字随机生成的点的坐标,列成下表。
如果每个点出现的可能性相等,那y=x图象上的概率是(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)(3,1)(3,2)(3,3)A.0.3 B.0.5 C.3D.23A.B.C.D.图1DCMHGB图2BADP图3图 5 图610.如图3, 是以等边三角形ABC 一边AB 为半径的四分之一圆周, P 为 上任意一点,若AC=5,则四边形ACBP 周长的最大值是A . 15B . 20C .15+52.15+55二、填空题(共5小题,每题4分,满分20分.请将答案填入答题卡的相应位置)11.分解因式:22x x -=12.请写出一个比513. 已知22x =,则23x +的值是14. 如图4,AB 是⊙O 的直径,点C 在⊙O 上 ,OD ∥AC ,若BD=1,则BC 的长为 15.已知, A 、B 、C 、D 、E 是反比例函数16y x=(x>0)图象上五个整数点(横、纵坐标均为整数),分别以这些点向横轴或纵轴作垂线段,由垂线段所在的正方形边长为半径作四分之一圆周的两条弧,组成如图5所示的五个橄榄形(阴影部分),则这五个橄榄形的面积总和是 (用含π的代数式表示)三、解答题(满分90分.请将答案填入答题卡的相应位置)16.(每小题7分,共14分)(1)计算:22-5×51+2- (2)化简:(x -y )(x+y )+(x -y )+(x+y )17.(每小题8分,共16分) (1)解不等式:32x x >+,并在数轴上表示解集.(2)整理一批图书,如果由一个人单独做要花60小时。
厦门市2009年中考数学试题(图片试题+word答案).doc

厦门市2009年初中毕业及高中阶段各类学校招生考试数学参考答案及评分标准说明:1.解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照解答中评分标准相应评分;2.评阅试卷,要坚持每题评阅到底,不能因考生解答中出现错误而中断对本题的评阅.如果考生的解答在某一步出现错误,影响后继部分而未改变本题的内容和难度,视影响的程度决定后继部分的给分,但原则上不超过后继部分应得分数的一半;3.解答题评分时,给分或扣分均以1分为基本单位.一、选择题(本大题有7小题,每小题3分,共21分)题号1234567选项A B C C D B C二、填空题(本大题有10小题,每小题4分,共40分)8.2.9.20度.10.40分.11.长方体(四棱柱).12.2a+b.13.=2,=1.14.22厘米.15.6厘米.16.(1)-2≤a≤-23;(2)3.17.3;(32,12).三、解答题(本大题有9小题,共89分)18.(本题满分18分)(1)解:(-1)2÷12+(7-3)×34-(12)0=1×2+4×34-1……4分=2+3-1……5分=4.……6分(2)解:[(2x-y)(2x+y)+y(y-6x)]÷2x=(4x2-y2+y2-6xy)÷2x……10分=(4x2-6xy)÷2x……11分=2x-3y.……12分(3)解法1:x2-6x+1=0∵b2-4ac=(-6)2-4=32……13分∴x=-b±b2-4ac2a……14分=6±322……15分=3±22.……16分即x1=3+22,x2=3-22.……18分解法2:x2-6x+1=0(x-3)2-8=0……14分(x-3)2=8……15分x-3=±22……16分即x1=3+22,x2=3-22.……18分19.(本题满分8分)(1)解:P(点数之和是11)=236=118.……4分(2)解:最有可能出现的点数之和是7.……6分∵在所有可能出现的点数之和中,7是众数.……8分或:P(点数之和是7)=16,……7分是所有可能出现的点数之和的概率的最大值.……8分20.(本题满分8分)(1)解:y=7-2x(2≤x≤3)……1分画直角坐标系……2分画线段……4分(2)证明:∵AB=AC,∴∠B=∠C.……5分∵∠B=∠BAD,∴∠BAD=∠C.……6分又∵∠B=∠B,……7分∴△BAC∽△BDA.……8分21.(本题满分8分)(1)∵∠DCB+∠DCF=180°,……1分又∵∠B+∠DCF=180°,∴∠B=∠DCB.……2分∵四边形ABCD是梯形,∴四边形ABCD是等腰梯形.……3分(2)∵AD∥BC,∴∠DAE=∠F.……4分∵E是线段CD的中点,∴DE=CE.又∵∠DEA=∠FEC,FEDCBADA∴△ADE≌△FCE.……5分∴AD=CF.……6分∵CF∶BC=1∶3,∴AD∶BC=1∶3.∵AD=6,∴BC=18.……7分∴梯形ABCD的中位线是(18+6)÷2=12.……8分22.(本题满分8分)(1)解:设摩托车的速度是x千米/时,则抢修车的速度是1.5x千米/时.由题意得45x-451.5x=38,……2分解得x=40.……3分经检验,x=40千米/时是原方程的解且符合题意.答:摩托车的速度为40千米/时.……4分(2)解:法1:由题意得t+4560≤4545,……6分解得t≤14.∴0≤t≤14.……7分法2:当甲、乙两人同时到达时,由题意得t+4560=4545,……5分解得t=14.……6分∵乙不能比甲晚到,∴t≤14.……7分∴t最大值是14(时);或:答:乙最多只能比甲迟14(时)出发.……8分23.(本题满分9分)(1)解:不正确.……1分如图作(直角)梯形ABCD,……2分使得AD∥BC,∠C=90°.连结BD,则有BD2=BC2+CD2.……3分而四边形ABCD是直角梯形不是矩形.……4分(2)证明:如图,∵tan∠DBC=1,∴∠DBC=45°.……5分∵∠DBC=∠BDC,∴∠BDC=45°.且BC=DC.……6分法1:∵BD平分∠ABC,∴∠ABD=45°,∴∠ABD=∠BDC.DC BADC BA∴AB∥DC.∴四边形ABCD是平行四边形.……7分又∵∠ABC=45°+45°=90°,∴四边形ABCD是矩形.……8分∵BC=DC,∴四边形ABCD是正方形.……9分法2:∵BD平分∠ABC,∠BDC=45°,∴∠ABC=90°.∵∠DBC=∠BDC=45°,∴∠BCD=90°.∵AD∥BC,∴∠ADC=90°.……7分∴四边形ABCD是矩形.……8分又∵BC=DC∴四边形ABCD是正方形.……9分法3:∵BD平分∠ABC,∴∠ABD=45°.∴∠BDC=∠ABD.∵AD∥BC,∴∠ADB=∠DBC.∵BD=BD,∴△ADB≌△CBD.∴AD=BC=DC=AB.……7分∴四边形ABCD是菱形.……8分又∵∠ABC=45°+45°=90°,∴四边形ABCD是正方形.……9分24.(本题满分9分)(1)解:延长OP交AC于E,∵P是△OAC的重心,OP=2 3,∴OE=1,……1分且E是AC的中点.∵OA=OC,∴OE⊥AC.在Rt△OAE中,∵∠A=30°,OE=1,∴OA=2.……2分∴∠AOE=60°.∴∠AOC=120°.……3分∴︵AC=43π.……4分(2)证明:连结BC.∵E、O分别是线段AC、AB的中点,∴BC∥OE,且BC=2OE=2=OB=OC.∴△OBC是等边三角形.……5分法1:∴∠OBC=60°.∵∠OBD=120°,∴∠CBD=60°=∠AOE.……6分∵BD=1=OE,BC=OA,∴△OAE≌△BCD.……7分∴∠BCD=30°.∵∠OCB=60°,∴∠OCD=90°.……8分∴CD是⊙O的切线.……9分法2:过B作BF∥DC交CO于F.∵∠BOC=60°,∠ABD=120°,∴OC∥BD.……6分∴四边形BDCF是平行四边形.……7分∴CF=BD=1.∵OC=2,∴F是OC的中点.∴BF⊥OC.……8分∴CD⊥OC.∴CD是⊙O的切线.……9分25.(本题满分10分)(1)解:相交.……2分∵直线y=13x+56与线段OC交于点(0,56)同时……3分直线y=13x+56与线段CB交于点(12,1),……4分∴直线y=13x+56与正方形OABC相交.(2)解:当直线y=-3x+b经过点B时,即有1=-3+b,∴b=3+1.即y=-3x+1+3.……5分记直线y=-3x+1+3与x、y轴的交点分别为D、E.则D(3+33,0),E(0,1+3).……6分法1:在Rt△BAD中,tan∠BDA=BAAD=133=3,∴∠EDO=60°,∠OED=30°.过O作OF1⊥DE,垂足为F1,则OF1=d1.……7分在Rt△OF1E中,∵∠OED=30°,∴d1=3+12.……8分法2:∴DE=23(3+3).过O作OF1⊥DE,垂足为F1,则OF1=d1.……7分∴d1=3+33×(1+3)÷23(3+3)=3+12.……8分∵直线y=-3x+b与直线y=-3x+1+3平行.法1:当直线y=-3x+b与正方形OABC相交时,一定与线段OB相交,且交点不与点O、B重合.故直线y=-3x+b也一定与线段OF1相交,记交点为F,则F不与点O、F1重合,且OF=d.……9分∴当直线y=-3x+b与正方形相交时,有0<d<3+12.……10分法2:当直线y=-3x+b与直线y=x(x>0)相交时,有x=-3x+b,即x=b1+3.①当0<b<1+3时,0<x<1,0<y<1.此时直线y=-3x+b与线段OB相交,且交点不与点O、B重合.②当b>1+3时,x>1,此时直线y=-3x+b与线段OB不相交.而当b≤0时,直线y=-3x+b不经过第一象限,即与正方形OABC不相交.∴当0<b<1+3时,直线y=-3x+b与正方形OABC相交.……9分此时有0<d<3+12.……10分26.(本题满分11分)(1)解:法1=2+c,n-1=2+c.……1分=1,=-1.……2分法2:∵抛物线y=x2-x+c的对称轴是x=12,且12-(-1)=2-12,∴A、B两点关于对称轴对称.∴n=2n-1……1分∴n=1,c=-1.……2分∴有y=x2-x-1……3分=(x-12)2-54.∴二次函数y=x2-x-1的最小值是-54.……4分(2)解:∵点P(m,m)(m>0),∴PO=2m.∴22≤2m≤2+2.∴2≤m≤1+2.……5分法1:∵点P(m,m)(m>0)在二次函数y=x2-x+c的图象上,∴m=m2-m+c,即c=-m2+2m.∵开口向下,且对称轴m=1,∴当2≤m≤1+2时,有-1≤c≤0.……6分法2:∵2≤m≤1+2,∴1≤m-1≤2.∴1≤(m-1)2≤2.∵点P(m,m)(m>0)在二次函数y=x2-x+c的图象上,∴m=m2-m+c,即1-c=(m-1)2.∴1≤1-c≤2.∴-1≤c≤0.……6分∵点D、E关于原点成中心对称,法1:∴x2=-x1,y2=-y1.∴1=x12-x1+c,y1=x12+x1+c.∴2y1=-2x1,y1=-x1.设直线DE:y=kx.有-x1=kx1.由题意,存在x1≠x2.∴存在x1,使x1≠0.……7分∴k=-1.∴直线DE:y=-x.……8分法2:设直线DE:y=kx.则根据题意有kx=x2-x+c,即x2-(k+1)x+c=0.∵-1≤c≤0,∴(k+1)2-4c≥0.∴方程x2-(k+1)x+c=0有实数根.……7分∵x1+x2=0,∴k+1=0.∴k=-1.∴直线DE:y=-x.……8分若=-x,=x2-x+c+38.则有x2+c+38=0.即x2=-c-38.①当-c-38=0时,即c=-38时,方程x2=-c-38有相同的实数根,即直线y=-x与抛物线y=x2-x+c+38有唯一交点.……9分②当-c-38>0时,即c<-38时,即-1≤c<-38时,方程x2=-c-38有两个不同实数根,即直线y=-x与抛物线y=x2-x+c+38有两个不同的交点.……10分③当-c-38<0时,即c>-38时,即-38<c≤0时,方程x2=-c-38没有实数根,即直线y=-x与抛物线y=x2-x+c+38没有交点.……11分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B主视图 左视图)2009年中考厦门市数学试题一、选择题(本大题共7小题,每小题3分,共21分)1.-2是( )A .负有理数B .正有理数C .自然数D .无理数 2.下列计算正确的是( )A .3+3= 6B .3-3=0C .3²3=9D .(-3)2=-3 3.某种彩票的中奖机会是1%,下列说法正确的是( ) A .买1张这种彩票一定不会中奖 B .买100张这种彩票一定会中奖 C .买1张这种彩票可能会中奖D .买100张这种彩票一定有99张彩票不会中奖 4.下列长度的各组线段能组成一个三角形的是( ) A .4cm ,6cm ,11cm B .4cm ,5cm ,1cm C .3cm ,4cm ,5cm D .2cm ,3cm ,6cm 5.下列多边形中,能够铺满地面的是( )A .正八边形B .正七边形C .正五边形D .正四边形6.如图,AB 、BC 、CA 是⊙O 的三条弦,∠OBC =50º,则∠A =( )A .25ºB .40ºC .80ºD .100º7.药品研究所开发一种抗菌素新药,经过多年的动物实验之后,首次用于临床人体试验,测得成人服药后血液中药物浓度y (微克/毫升)与服药后时间x (时)之间的函数关系如图所示,则当1≤x ≤6时,y 的取值范围是( )A . 8 3≤y ≤ 64 11B . 6411≤y ≤8C . 83≤y ≤8 D .8≤y ≤16二、填空题(本大题共10小题,每小题4分,共40分)8.|-2|= .9.已知∠A =70º,则∠A 的余角是 度.10.某班7名学生的考试成绩(单位:分)如下:52,76,80,78,71,92,6811.右图是一个立体图形的三视图,则这个图形的名称叫 . 12.“a 的2倍与b 的和”用代数式表示为 .13.方程组⎩⎨⎧x -y =1x +y =3的解是 .14.若点O 为□ABCD 的对角线AC 与BD 交点,且AO +BO =11cm ,则AC +BD = cm . 15.如图,在△ABC 中,∠C =90º,∠ABC 的平分线BD 交AC 于点D .若BD =10cm ,BC =8cm ,则点D 到直线AB 的距离是 cm .16.已知ab =2.①若-3≤b ≤-1,则a 的取值范围是 ;②若b >0,且a 2+b 2=5,则a +b = .17.在平面直角坐标系中,已知点O (0,0)、A (1,n )、B (2,0),其中n >0,△OAB 是等边三角形.点P 是线段OB 的中点,将△OAB 绕点O 逆时针旋转30º,记点P 的对应点为点Q ,则n = ,点Q 的坐标是 .三、解答题(本大题共9小题,共89分)18.(本题满分18分)(1)计算:(-1)2÷ 1 2+(7-3)³ 3 4-( 12)0;(2)计算:[(2x -y )(2x +y )+y (y -6x )]÷2x ; (3)解方程:x 2-6x +1=0.A B FE DC (1)求出点数之和是11的概率;(2)你认为最有可能出现的点数之和是多少?请说明理由.20.(8分)已知:在△ABC 中,AB =AC .(1)设△ABC 的周长为7,BC =y ,AB =x (2≤x ≤3). 写出y 关于x 的函数关系式,并在直角坐标系中画出此函数的图象;(2)如图,D 是线段BC 上一点,连接AD .若∠B =∠BAD ,求证:△ABC ∽△DBA .21.(8分)如图,已知梯形ABCD ,AD ∥BC ,AF 交CD 于E ,交BC 的延长线于F .(1)若∠B +∠DCF =180º,求证:四边形ABCD 是等腰梯形;(2)若E 是线段CD 的中点,且CF ∶CB =1∶3,AD =6,求梯形ABCD 中位线的长.22.(8分)供电局的电力维修工甲、乙两人要到45千米远的A 地进行电力抢修.甲骑摩托车先行,t (t ≥0)小时后乙开抢修车载着所需材料出发.(1)若t = 38(小时),抢修车的速度是摩托车的1.5倍,且甲、乙两人同时到达,求摩托车的速度;(2)若摩托车的速度是45千米/小时,抢修车的速度是60千米/小时,且乙不能比甲晚到则t 的最大值是多少?23.(9分)已知四边形ABCD ,AD ∥BC ,连接BD .(1)小明说:“若添加条件BD 2=BC 2+CD 2,则四边形ABCD 是矩形.”你认为小明的说法是否正确?若正确,请说明理由;若不正确,请举出一个反例说明.(2)若BD 平分∠ABC ,∠DBC =∠BDC ,tan ∠DBC =1,求证:四边形ABCD 是正方形.24.(9分)如图,已知AB 是⊙O 的直径,点C 在⊙O 上,P 是△OAC 的重心,且OP = 23,∠A =30º.(1)求劣弧AC ⌒的长;(2)若∠ABD =120º,BD =1,求证:CD 是⊙O 的切线.25.(10分)我们知道,当一条直线与一个圆有两个公共点时,称这条直线与这个圆相交.类似地,我们定义:当一条直线与一个正方形有两个公共点时,称这条直线与这个正方形相交.如图,在平面直角坐标系中,正方形OABC 的顶点为O (0,0)、A (1,0)、B (1,1)、C (0,1).(1)判断直线y = 1 3x + 56与正方形OABC 是否相交,并说明理由;(2)设d 是点O 到直线y =-3x +b 的距离,若直线y =-3x +b 与正方形OABC 相交,求d 的取值范围.26.(11分)已知二次函数y =x 2-x +c .(1)若点A (-1,a )、B (2,2n -1)在二次函数y =x 2-x +c 的图象上,求此二次函数的最小值;(2)若点D (x 1,y 1)、E (x 2,y 2)、P (m ,n )(m >n )在二次函数y =x 2-x +c 的图象上,且D 、E 两点关于坐标原点成中心2 3厦门市2009年初中毕业及高中阶段各类学校招生考试数学参考答案及评分标准说明:1.解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照解答中评分标准相应评分;2.评阅试卷,要坚持每题评阅到底,不能因考生解答中出现错误而中断对本题的评阅.如果考生的解答在某一步出现错误,影响后继部分而未改变本题的内容和难度,视影响的程度决定后继部分的给分,但原则上不超过后继部分应得分数的一半; 3.解答题评分时,给分或扣分均以1分为基本单位.8. 2. 9. 20度. 10. 40分. 11.长方体(四棱柱). 12. 2a +b . 13.⎩⎨⎧x =2,y =1.14. 22厘米. 15. 6厘米. 16. (1) -2≤a ≤-23 ;(2) 3 . 17. 3;(32,12).三、解答题(本大题有9小题,共89分)18. (本题满分18分)(1)解:(-1)2÷12+(7-3)³34-(12)0=1³2+4³34-1 ……4分=2+3-1 ……5分 =4. ……6分 (2)解:[(2x -y )( 2x +y )+y (y -6x )]÷2x=(4x 2-y 2+y 2-6xy )÷2x ……10分 =(4x 2-6xy )÷2x ……11分 =2x -3y . ……12分 (3)解法1:x 2-6x +1=0∵ b 2-4ac =(-6)2-4=32 ……13分∴ x =-b ±b 2-4ac 2a ……14分=6±322 ……15分=3±22. ……16分 即x 1=3+22,x 2=3-22. ……18分 解法2:x 2-6x +1=0(x -3)2-8=0 ……14分 (x -3)2 =8 ……15分 x -3=±2 2 ……16分即x 1=3+22,x 2=3-22. ……18分19.(本题满分8分) (1)解:P (点数之和是11)=236=118. ……4分 (2)解:最有可能出现的点数之和是7. ……6分20.(本题满分8分)(1)解:y =7-2x (2≤x ≤3) ……1分画直角坐标系 ……2分画线段 ……4分 (2)证明:∵ AB =AC ,∴ ∠B =∠C . ……5分∵ ∠B =∠BAD ,∴ ∠BAD =∠C . ……6分 又∵ ∠B =∠B , ……7分 ∴ △BAC ∽△BDA . ……8分 21.(本题满分8分)(1)∵ ∠DCB +∠DCF =180°, ……1分 又∵ ∠B +∠DCF =180°,∴ ∠B =∠DCB . ……2分∵ 四边形ABCD 是梯形,∴ 四边形ABCD 是等腰梯形. ……3分 (2)∵ AD ∥BC ,∴ ∠DAE =∠F . ……4分 ∵ E 是线段CD 的中点,∴ DE =CE . 又∵ ∠DEA =∠FEC ,∴ △ADE ≌△FCE . ……5分 ∴ AD =CF . ……6分 ∵ CF ∶BC =1∶3,∴ AD ∶BC =1∶3.∵ AD =6,∴ BC =18. ……7分 ∴ 梯形ABCD 的中位线是 (18+6)÷2=12. ……8分 22.(本题满分8分)(1)解:设摩托车的速度是x 千米/时,则抢修车的速度是1.5x 千米/时.由题意得 45x -451.5x =38, ……2分解得x =40. ……3分 经检验,x =40千米/时是原方程的解且符合题意.答:摩托车的速度为40千米/时. ……4分 (2)解:法1:由题意得t +4560≤4545, ……6分 解得t ≤14. ∴ 0≤t ≤14. ……7分法2:当甲、乙两人同时到达时,由题意得t +4560=4545, ……5分解得t =14. ……6分∵ 乙不能比甲晚到,∴ t ≤14. ……7分∴ t 最大值是 14(时);或:答:乙最多只能比甲迟 14(时)出发. ……8分23.(本题满分9分)(1)解: 不正确. ……1分如图作(直角)梯形ABCD , ……2分使得AD ∥BC ,∠C =90°.连结BD ,则有BD 2=BC 2+CD 2. ……3分 而四边形ABCD 是直角梯形不是矩形. ……4分 (2)证明:如图,∵ tan ∠DBC =1,∴ ∠DBC =45°. ……5分 ∵ ∠DBC =∠BDC , F E D C BA DA D CB A D CBA∴ ∠ABD =45°,∴ ∠ABD =∠BDC . ∴ AB ∥DC .∴ 四边形ABCD 是平行四边形. ……7分 又∵ ∠ABC =45°+45°=90°,∴ 四边形ABCD 是矩形. ……8分 ∵ BC =DC ,∴ 四边形ABCD 是正方形. ……9分 法2:∵ BD 平分∠ABC , ∠BDC =45°,∴∠ABC =90°. ∵ ∠DBC =∠BDC =45°,∴∠BCD =90°. ∵ AD ∥BC ,∴ ∠ADC =90°. ……7分 ∴ 四边形ABCD 是矩形. ……8分 又∵ BC =DC∴ 四边形ABCD 是正方形. ……9分 法3:∵ BD 平分∠ABC ,∴ ∠ABD =45°. ∴ ∠BDC =∠ABD . ∵ AD ∥BC ,∴ ∠ADB =∠DBC . ∵ BD =BD ,∴ △ADB ≌△CBD .∴ AD =BC =DC =AB . ……7分 ∴ 四边形ABCD 是菱形. ……8分 又∵∠ABC =45°+45°=90°,∴ 四边形ABCD 是正方形. ……9分 24.(本题满分9分)(1)解:延长OP 交AC 于E , ∵ P 是△OAC 的重心,OP =23,∴ OE =1, ……1分 且 E 是AC 的中点.∵ OA =OC ,∴ OE ⊥AC .在Rt △OAE 中,∵ ∠A =30°,OE =1,∴ OA =2. ……2分 ∴ ∠AOE =60°.∴ ∠AOC =120°. ……3分 ∴ ︵AC =43π. ……4分(2)证明:连结BC .∵ E 、O 分别是线段AC 、AB 的中点,∴ BC ∥OE ,且BC =2OE =2=OB =OC .∴ △OBC 是等边三角形. ……5分 法1:∴ ∠OBC =60°.∵ ∠OBD =120°,∴ ∠CBD =60°=∠AOE . ……6分 ∵ BD =1=OE ,BC =OA ,∴ △OAE ≌△BCD . ……7分 ∴ ∠BCD =30°. ∵ ∠OCB =60°,∴ ∠OCD =90°. ……8分 ∴ CD 是⊙O 的切线. ……9分 法2:过B 作BF ∥DC 交CO 于F . ∵ ∠BOC =60°,∠ABD =120°,∴ OC ∥BD . ……6分 ∴ 四边形BDCF 是平行四边形. ……7分 ∴ CF =BD =1.A∴ CD ⊥OC .∴ CD 是⊙O 的切线. ……9分 25.(本题满分10分)(1)解:相交. ……2分 ∵ 直线y =13x +56与线段OC 交于点(0,56)同时 ……3分直线y =13x +56与线段CB 交于点(12,1), ……4分∴ 直线y =13x +56与正方形OABC 相交.(2)解:当直线y =-3x +b 经过点B 时, 即有 1=-3+b ,∴ b =3+1.即 y =-3x +1+3. ……5分 记直线y =-3x +1+3与x 、y 轴的交点分别为D 、E . 则D (3+33,0),E (0,1+3). ……6分法1:在Rt △BAD 中,tan ∠BDA =BA AD =133=3,∴ ∠EDO =60°, ∠OED =30°.过O 作OF 1⊥DE ,垂足为F 1,则OF 1=d 1. ……7分 在Rt △OF 1E 中,∵ ∠OED =30°, ∴ d 1=3+12. ……8分 法2:∴ DE =23(3+3).过O 作OF 1⊥DE ,垂足为F 1,则OF 1=d 1. ……7分 ∴ d 1=3+33³(1+3)÷23(3+3)=3+12. ……8分 ∵ 直线y =-3x +b 与直线y =-3x +1+3平行.法1:当直线y =-3x +b 与正方形OABC 相交时,一定与线段OB 相交,且交点不与 点O 、 B 重合.故直线y =-3x +b 也一定与线段OF 1相交,记交点为F ,则 F 不与点O 、 F 1重合,且OF =d . ……9分 ∴ 当直线y =-3x +b 与正方形相交时, 有 0<d <3+12. ……10分 法2:当直线y =-3x +b 与直线y =x (x >0)相交时,有 x =-3x +b ,即x =b1+3.① 当0<b <1+3时,0<x <1, 0<y <1.此时直线y =-3x +b 与线段OB 相交,且交点不与点O 、 B 重合. ② 当b >1+3时,x >1,此时直线y =-3x +b 与线段OB 不相交.而当b ≤0时,直线y =-3x +b 不经过第一象限,即与正方形OABC 不相交.∴ 当0<b <1+3时,直线y =-3x +b 与正方形OABC 相交. ……9分 此时有0<d <3+12. ……10分 26.(本题满分11分)解得⎩⎨⎧n =1,c =-1.……2分法2:∵ 抛物线y =x 2-x +c 的对称轴是x =12,且 12-(-1) =2-12,∴ A 、B 两点关于对称轴对称.∴ n =2n -1 ……1分∴ n =1,c =-1. ……2分 ∴ 有 y =x 2-x -1 ……3分 =(x -12)2-54.∴ 二次函数y =x 2-x -1的最小值是-54. ……4分(2)解:∵ 点P (m ,m )(m >0),∴ PO =2m .∴ 22≤2m ≤2+2.∴ 2≤m ≤1+2. ……5分 法1: ∵ 点P (m ,m )(m >0)在二次函数y =x 2-x +c 的图象上, ∴ m =m 2-m +c ,即c =-m 2+2m . ∵ 开口向下,且对称轴m =1,∴ 当2≤m ≤1+2 时,有 -1≤c ≤0. ……6分 法2:∵ 2≤m ≤1+2, ∴ 1≤m -1≤2. ∴ 1≤(m -1)2≤2.∵ 点P (m ,m )(m >0)在二次函数y =x 2-x +c 的图象上, ∴ m =m 2-m +c ,即1-c =(m -1)2. ∴ 1≤1-c ≤2.∴ -1≤c ≤0. ……6分 ∵ 点D 、E 关于原点成中心对称, 法1: ∴ x 2=-x 1,y 2=-y 1.∴ ⎩⎨⎧y 1=x 12-x 1+c ,-y 1=x 12+x 1+c .∴ 2y 1=-2x 1, y 1=-x 1. 设直线DE :y =kx . 有 -x 1=kx 1.由题意,存在x 1≠x 2.∴ 存在x 1,使x 1≠0. ……7分 ∴ k =-1.∴ 直线DE : y =-x . ……8分 法2:设直线DE :y =kx .则根据题意有 kx =x 2-x +c ,即x 2-(k +1) x +c =0. ∵ -1≤c ≤0,∴ (k +1)2-4c ≥0.∴ 方程x 2-(k +1) x +c =0有实数根. ……7分 ∵ x 1+x 2=0, ∴ k +1=0. ∴ k =-1.∴ 直线DE : y =-x . ……8分① 当 -c -38=0时,即c =-38时,方程x 2=-c -38有相同的实数根,即直线y =-x 与抛物线y =x 2-x +c +38有唯一交点. ……9分② 当 -c -38>0时,即c <-38时,即-1≤c <-38时,方程x 2=-c -38有两个不同实数根,即直线y =-x 与抛物线y =x 2-x +c +38有两个不同的交点. ……10分③ 当 -c -38<0时,即c >-38时,即-38<c ≤0时,方程x 2=-c -38没有实数根,即直线y =-x 与抛物线y =x 2-x +c +38没有交点. ……11分。