2013届高三数学二轮复习课后练习(教师版):21-22

合集下载

北京市顺义区2013届高三第二次统练理科数学含解析

北京市顺义区2013届高三第二次统练理科数学含解析

北京市顺义区2013届高三第二次统练数学试卷(理工类)一、选择题.共8小题,每小题5分,共40分.在每小题所列出的四个选项中,选出符合题目要求的一项.1.已知集合{}{}034,232≥+-∈=<<-∈=x x x B x x A R R ,则=⋂B AA.(]1,3-B.()1,3-C.[)2,1D.()[)+∞⋃∞-,32,【答案】A因为{}13B x R x x =∈≤≥或,所以{}31AB x R x =∈-<≤,选A.2.复数=+-i i123 A.i 2521+ B.i 2521- C.i 2521+-D.i 2521--【答案】B32(32)(1)15151(1)(1)222i i i i i i i i ----===-++-,选B. 3.在极坐标系中,直线l 的方程为224sin =⎪⎭⎫⎝⎛+πθρ,则点⎪⎭⎫⎝⎛43,2πA 到直线l 的距离为 A.2 B.22 C.222-D.222+【答案】B由224sin =⎪⎭⎫⎝⎛+πθρ得sin cos 1ρθρθ+=,即直线方程为1x y +=。

⎪⎭⎫ ⎝⎛43,2πA 中,对应的直角坐标为3cos 2cos 43sin 2sin 4x y πρθπρθ⎧===⎪⎪⎨⎪===⎪⎩ ,即直角坐标为(2=,选B.4.执行如图所示的程序框图,输出的sA.10-B.3-C.4D.5【答案】A第一次运行,满足条件循环211,2s k =-==。

第二次运行,满足条件循环2120,3s k =⨯-==。

第三次运行,满足条件循环2033,4s k =⨯-=-=。

第四次运行,满足条件循环2(3)410,5s k =⨯--=-=。

此时不满足条件,输出10s =-,选A.5.已知数列{}n a 中,54+-=n a n ,等比数列{}n b 的公比q 满足()21≥-=-n a a q n n ,且21a b =,则=+++n b b b 21 A.n41-B.14-nC.341n -D.314-n【答案】B因为14n n q a a -=-=-,123b a ==-,所以1113(4)n n n b b q --==-⋅-,所以113(4)34n n n b --=-⋅-=⋅,即{}nb 是公比为4的等比数列,所以12n b b b +++3(14)4114n n -==--,选B. 6.设变量y x ,满足约束条件⎪⎩⎪⎨⎧-≥-≤+≥+14,42,22y x y x y x 则yx -32的取值范围是A.⎥⎦⎤⎢⎣⎡21,42 B.⎥⎦⎤⎢⎣⎡64,21 C.⎥⎦⎤⎢⎣⎡64,42 D.⎥⎦⎤⎢⎣⎡22,641 【答案】C设3z x y=-,则3y x z =-。

2013真题数二答案

2013真题数二答案

2013年全国硕士研究生入学统一考试数学二试题答案一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合 题目要求的,请将所选项前的字母填在答题纸...指定位置上. 1、设cos 1sin ()x x x α-=⋅,()2x πα<,当0x →时,()x α( )(A )比x 高阶的无穷小 (B )比x 低阶的无穷小(C )与x 同阶但不等价的无穷小 (D )与x 是等价无穷小 【答案】(C )【考点】同阶无穷小 【难易度】★★【详解】解析:cos 1sin ()x x x α-=⋅Q ,21cos 12x x --: 21sin ()2x x x α∴⋅-:,即1sin ()2x x α-:∴当0x →时,()0x α→,sin ()()x x αα:1()2x x α∴-:,即()x α与x 同阶但不等价的无穷小,故选(C ).2、已知()y f x =由方程cos()ln 1xy y x -+=确定,则2lim [()1]n n f n→∞-=( )(A )2 (B )1 (C )-1 (D )-2 【答案】(A )【考点】导数的概念;隐函数的导数 【难易度】★★【详解】解析:当0x =时,1y =.002()12(2)1(2)(0)lim [()1]lim lim 2lim 2(0)12n n x x f f x f x f n n f f n x xn→∞→∞→→---'-==== 方程cos()ln 1xy y x -+=两边同时对x 求导,得1sin()()10xy y xy y y''-++⋅-= 将0x =,1y =代入计算,得 (0)(0)1y f ''== 所以,2lim [()1]2n n f n→∞-=,选(A ).3、设sin [0,)()2[,2]x f x πππ⎧=⎨⎩,0()()x F x f t dt =⎰,则( )(A )x π=为()F x 的跳跃间断点 (B )x π=为()F x 的可去间断点 (C )()F x 在x π=处连续不可导 (D )()F x 在x π=处可导【答案】(C )【考点】初等函数的连续性;导数的概念 【难易度】★★【详解】解析:202(0)sin sin sin 2F tdt tdt tdt πππππ-==+=⎰⎰⎰Q ,(0)2F π+=,(0)(0)F F ππ∴-=+,()F x 在x π=处连续.()()()lim 0xx f t dt f t dtF x ππππ--→-'==-⎰⎰Q ,0()()()lim 2xx f t dt f t dtF x ππππ++→-'==-⎰⎰,()()F F ππ-+''≠,故()F x 在x π=处不可导.选(C ).4、设函数1111(1)()1ln x e x f x x e x xαα-+⎧<<⎪-⎪=⎨⎪≥⎪⎩,若反常积分1()f x dx +∞⎰收敛,则( )(A )2α<- (B )2α> (C )20α-<< (D )02α<<【答案】(D )【考点】无穷限的反常积分 【难易度】★★★ 【详解】解析:11()()()e ef x dx f x dx f x dx +∞+∞=+⎰⎰⎰由1()f x dx +∞⎰收敛可知,1()ef x dx ⎰与()ef x dx +∞⎰均收敛.1111()(1)eef x dx dx x α-=-⎰⎰,1x =是瑕点,因为111(1)e dx x α--⎰收敛,所以112αα-<⇒< 111()(ln )ln eeef x dx dx x x x ααα+∞+∞+∞-+==-⎰⎰,要使其收敛,则0α>所以,02α<<,选D.5、设()yz f xy x=,其中函数f 可微,则x z z y x y ∂∂+=∂∂( ) (A )2()yf xy ' (B )2()yf xy '- (C )2()f xy x (D )2()f xy x- 【答案】(A )【考点】多元函数的偏导数 【难易度】★★【详解】解析:22()()z y y f xy f xy x x x ∂'=-+∂,1()()z f xy yf xy y x ∂'=+∂ 221[()()][()()]x z z x y y f xy f xy f xy yf xy y x y y x x x∂∂''∴+=-+++∂∂ 11()()()()2()f xy yf xy f xy yf xy yf xy x x'''=-+++=,故选(A ).6、设k D 是圆域{}22(,)1D x y x y =+≤位于第k 象限的部分,记()(1,2,3,4)kk D I y x dxdy k =-=⎰⎰,则( )(A )10I > (B )20I > (C )30I > (D )40I > 【答案】(B )【考点】二重积分的性质;二重积分的计算 【难易度】★★【详解】解析:根据对称性可知,130I I ==.22()0D I y x dxdy =->⎰⎰(Q 0y x ->),44()0D I y x dxdy =-<⎰⎰(Q 0y x -<) 因此,选B.7、设A 、B 、C 均为n 阶矩阵,若AB=C ,且B 可逆,则( ) (A )矩阵C 的行向量组与矩阵A 的行向量组等价 (B )矩阵C 的列向量组与矩阵A 的列向量组等价 (C )矩阵C 的行向量组与矩阵B 的行向量组等价 (D )矩阵C 的列向量组与矩阵B 的列向量组等价 【答案】(B )【考点】等价向量组 【难易度】★★【详解】解析:将矩阵A 、C 按列分块,1(,,)n A αα=L ,1(,,)n C γγ=L由于AB C =,故111111(,,)(,,)n n n n nn b b b b ααγγ⎛⎫⎪=⎪ ⎪⎝⎭L L M M L L 即1111111,,n n n n nn n b b b b γααγαα=++=++L L L 即C 的列向量组可由A 的列向量组线性表示.由于B 可逆,故1A CB -=,A 的列向量组可由C 的列向量组线性表示,故选(B ).8、矩阵1111a a b a a ⎛⎫ ⎪ ⎪ ⎪⎝⎭与20000000b ⎛⎫⎪⎪ ⎪⎝⎭相似的充分必要条件是( )(A )0,2a b == (B )0,a b =为任意常数 (C )2,0a b == (D )2,a b = 为任意常数【答案】(B )【考点】矩阵可相似对角化的充分必要条件 【难易度】★★【详解】解析:题中所给矩阵都是实对称矩阵,它们相似的充要条件是有相同的特征值.由20000000b ⎛⎫ ⎪ ⎪⎪⎝⎭的特征值为2,b ,0可知,矩阵1111a A a b a a ⎛⎫ ⎪= ⎪ ⎪⎝⎭的特征值也是2,b ,0.因此,22111122022401120a a E A ab a b a a a aa-----=---=---=-=---0a ⇒= 将0a =代入可知,矩阵10100101A b ⎛⎫ ⎪= ⎪ ⎪⎝⎭的特征值为2,b ,0.此时,两矩阵相似,与b 的取值无关,故选(B ).二、填空题:9~14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. 9、10ln(1)lim(2)x x x x→+-= . 【答案】12e【考点】两个重要极限 【难易度】★★ 【详解】解析:011ln(1)1ln(1)1ln(1)1ln(1)1(1)(1)lim (1)000ln(1)ln(1)lim(2)lim[1(1)]lim x x x x x xx x xx xxxx x x x x eex x→++++-⋅-⋅-⋅-→→→++-=+-==其中,20000111ln(1)ln(1)11lim(1)lim lim lim 22(1)2x x x x x x x x x x x x x x x →→→→-+-++⋅-====+故原式=12e10、设函数()xf x -=⎰,则()y f x =的反函数1()x f y -=在0y =处的导数y dx dy== .【考点】反函数的求导法则;积分上限的函数及其导数 【难易度】★★【详解】解析:由题意可知,(1)0f -=1()y x dy dx dx dxf x dx dy dy dy==-'==⇒=⇒==.11、设封闭曲线L 的极坐标方程方程为cos3()66r ππθθ=-≤≤,则L 所围平面图形的面积是 . 【答案】12π 【考点】定积分的几何应用—平面图形的面积 【难易度】★★ 【详解】解析: 面积622666000611cos 61sin 6()cos 3()222612S r d d d πππππθθπθθθθθθ-+====+=⎰⎰⎰12、曲线arctan ,ln x t y =⎧⎪⎨=⎪⎩1t =点处的法线方程为 .【答案】ln 204y x π+--=【考点】由参数方程所确定的函数的导数【难易度】★★★【详解】解析:由题意可知,12//1dy dy dt t dx dx dtt-===+,故11t dy dx ==曲线对应于1t =点处的法线斜率为111k -==-. 当1t =时,4x π=,ln 2y =.法线方程为ln 2()4y x π-=--,即ln 204y x π+--=.13、已知321x x y e xe =-,22x x y e xe =-,23xy xe =-是某二阶常系数非齐次线性微分方程的3个解,则该方程满足条件00x y ==,01x y ='=的解为y = . 【答案】32xx x y ee xe =--【考点】简单的二阶常系数非齐次线性微分方程 【难易度】★★【详解】解析:312x xy y e e -=-,23x y y e -=是对应齐次微分方程的解.由分析知,*2xy xe =-是非齐次微分方程的特解. 故原方程的通解为3212()xx x x y C ee C e xe =-+-,12,C C 为任意常数.由00x y ==,01x y ='=可得 11C =,20C =. 通解为32xx x y ee xe =--.14、设()ij A a =是3阶非零矩阵,A 为A 的行列式,ij A 为ij a 的代数余子式,若0(,1,2,3)ij ij a A i j +==,则A = .【答案】-1【考点】伴随矩阵 【难易度】★★★【详解】解析:**0T Tij ij ij ij a A A a A A AA AA A E +=⇒=-⇒=-⇒=-= 等式两边取行列式得230A A A -=⇒=或1A =- 当0A =时,00TAA A -=⇒=(与已知矛盾) 所以1A =-.三、解答题:15~23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤. 15、(本题满分10分)当0x →时,1cos cos2cos3x x x -⋅⋅与nax 为等价无穷小,求n 和a 的值. 【考点】等价无穷小;洛必达法则 【难易度】★★★【详解】解析:00cos6cos 4cos 2111cos cos 2cos34lim lim n n x x x x x x x x ax ax→→+++--⋅⋅= 1003cos6cos 4cos 26sin 64sin 42sin 2lim lim 44n n x x x x x x x xax anx-→→---++== 2036cos 616cos 44cos 2lim4(1)n x x x xan n x -→++=-故20n -=,即2n =时,上式极限存在. 当2n =时,由题意得001cos cos 2cos336cos616cos 44cos 236164limlim 188n x x x x x x x x ax a a→→-⋅⋅++++==== 7a ⇒= 2,7n a ∴==16、(本题满分10分)设D 是由曲线13y x =,直线x a =(0)a >及x 轴所围成的平面图形,x V ,y V 分别是D 绕x 轴,y 轴旋转一周所得旋转体的体积,若10y x V V =,求a 的值. 【考点】旋转体的体积 【难易度】★★【详解】解析:根据题意,15523330033()55a ax V x dx xa πππ===⎰ 177333066277aay V x x dx x a πππ=⋅==⎰.因10y x V V =,故7533631075a a a ππ=⨯⇒=17、(本题满分10分)设平面区域D 由直线3x y =,3y x =,8x y +=围成,求2Dx dxdy ⎰⎰【考点】利用直角坐标计算二重积分 【难易度】★★【详解】解析:根据题意 3286y x x x y y ==⎧⎧⇒⎨⎨+==⎩⎩,16328x y x y x y ⎧==⎧⎪⇒⎨⎨=⎩⎪+=⎩故2368222233xxx xDx dxdy dx x dy dx x dy -=+⎰⎰⎰⎰⎰⎰264340228132416()12833333x x x =+-=+=18、(本题满分10分)设奇函数()f x 在[1,1]-上具有二阶导数,且(1)1f =,证明: (Ⅰ)存在(0,1)ξ∈,使得()1f ξ'=; (Ⅱ)存在(1,1)η∈-,使得()()1f f ηη'''+=. 【考点】罗尔定理 【难易度】★★★【详解】解析:(Ⅰ)由于()f x 在[1,1]-上为奇函数,故(0)0f =令()()F x f x x =-,则()F x 在[0,1]上连续,在(0,1)上可导,且(1)(1)10F f =-=,(0)(0)00F f =-=.由罗尔定理,存在(0,1)ξ∈,使得()0F ξ'=,即()1f ξ'=.(Ⅱ)考虑()()1(()())(())xxxxf x f x e f x f x e e f x e ''''''''+=⇔+=⇔=[()]0x x e f x e ''⇔-=令()()xxg x e f x e '=-,由于()f x 是奇函数,所以()f x '是偶函数,由(Ⅰ)的结论可知,()()1f f ξξ''=-=,()()0g g ξξ⇒=-=.由罗尔定理可知,存在(1,1)η∈-,使得()0g η'=,即()()1f f ηη'''+=.19、(本题满分10分)求曲线331(0,0)x xy y x y -+=≥≥上的点到坐标原点的最长距离和最短距离. 【考点】拉格朗日乘数法 【难易度】★★★【详解】解析:设(,)M x y为曲线上一点,该点到坐标原点的距离为d =构造拉格朗日函数 2233(1)F x y x xy y λ=++-+-由22332(3)02(3)010x y F x x y F y y x F x xy y λλλ'⎧=+-=⎪'=+-=⎨⎪'=-+-=⎩ 得 11x y =⎧⎨=⎩点(1,1)到原点的距离为d ==,然后考虑边界点,即(1,0),(0,1),它们到原点的距离都是1.,最短距离为1. 20、(本题满分11分) 设函数1()ln f x x x=+(Ⅰ)求()f x 的最小值; (Ⅱ)设数列{}n x 满足11ln 1n n x x ++<,证明lim n n x →∞存在,并求此极限.【考点】函数的极值;单调有界准则【难易度】★★★【详解】解析:(Ⅰ)由题意,1()ln f x x x =+,0x >22111()x f x x x x-'⇒=-= 令()0f x '=,得唯一驻点1x =当01x <<时,()0f x '<;当1x >时,()0f x '>.所以1x =是()f x 的极小值点,即最小值点,最小值为(1)1f =. (Ⅱ)由(Ⅰ)知1ln 1n n x x +≥,又由已知11ln 1n n x x ++<,可知111n n x x +>,即1n n x x +> 故数列{}n x 单调递增.又由11ln 1n n x x ++<,故ln 10n n x x e <⇒<<,所以数列{}n x 有上界. 所以lim n n x →∞存在,设为A.在11ln 1n n x x ++<两边取极限得 1ln 1A A +≤ 在1ln 1n n x x +≥两边取极限得 1ln 1A A+≥ 所以1ln 11A A A+=⇒=即lim 1n n x →∞=.21、(本题满分11分) 设曲线L 的方程为211ln (1)42y x x x e =-≤≤满足 (Ⅰ)求L 的弧长;(Ⅱ)设D 是由曲线L ,直线1x =,x e =及x 轴所围平面图形,求D 的形心的横坐标. 【考点】定积分的几何应用—平面曲线的弧长;定积分的物理应用—形心 【难易度】★★★ 【详解】解析:(Ⅰ)设弧长为S ,由弧长的计算公式,得1111S ====⎰⎰⎰⎰221111111()(ln )22424eee x dx x x x +=+=+=⎰ (Ⅱ)由形心的计算公式,得22111ln 242100111ln 24210011(ln )4211(ln )42ex x D ex x D xdxdyx x x dx dx xdy x dxdy x x dx dx dy ---===-⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰ 422423311111()3(23)16164221114(7)12122e e e e e e e ---+--==---. 22、(本题满分11分)设110a A ⎛⎫=⎪⎝⎭,011B b ⎛⎫= ⎪⎝⎭,当,a b 为何值时,存在矩阵C 使得AC CA B -=,并求所有矩阵C.【考点】非齐次线性方程组有解的充分必要条件 【难易度】★★★【详解】解析:由题意可知矩阵C 为2阶矩阵,故可设1234x x C x x ⎛⎫=⎪⎝⎭.由AC CA B -=可得 12123434101011011x x x x a x x x x b b ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 整理后可得方程组2312413423011x ax ax a ax x x x x ax b-+=⎧⎪-++=⎪⎨--=⎪⎪-=⎩ ① 由于矩阵C 存在,故方程组①有解.对①的增广矩阵进行初等行变换:01001011110111101010001001011101010000101000a a a a aa a a ab b b -----⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪--- ⎪ ⎪ ⎪→→ ⎪ ⎪ ⎪---++⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭方程组有解,故10a +=,0b =,即1a =-,0b =.当1a =-,0b =时,增广矩阵变为10111011000000000000--⎛⎫⎪⎪⎪⎪⎝⎭34,x x 为自由变量,令341,0x x ==,代入相应齐次方程组,得211,1x x =-=令340,1x x ==,代入相应齐次方程组,得210,1x x ==故1(1,1,1,0)T ξ=-,2(1,0,0,1)T ξ=,令340,0x x ==,得特解(1,0,0,0)Tη= 方程组的通解为112212112(1,,,)Tx k k k k k k k ξξη=++=++-(12,k k 为任意常数)所以121121k k k C k k ++-⎛⎫=⎪⎝⎭.23、(本题满分11分)设二次型2123112233112233(,,)2()()f x x x a x a x a x b x b x b x =+++++,记123a a a α⎛⎫ ⎪= ⎪ ⎪⎝⎭,123b b b β⎛⎫ ⎪= ⎪ ⎪⎝⎭(Ⅰ)证明二次型f 对应的矩阵为2T Tααββ+;(Ⅱ)若,αβ正交且均为单位向量,证明f 在正交变换下的标准形为22122y y +【考点】二次型的矩阵表示;用正交变换化二次型为标准形;矩阵的秩 【难易度】★★★ 【详解】解析:(Ⅰ)证明:2123112233112233(,,)2()()f x x x a x a x a x b x b x b x =+++++1111123212321232123233332(,,)(,,)(,,)(,,)a x b x x x x a a a a x x x x b b b b x a x b x ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭112323(,,)(2)T T T x x x x x x Ax x ααββ⎛⎫⎪=+= ⎪ ⎪⎝⎭,其中2T T A ααββ=+所以二次型f 对应的矩阵为2TTααββ+. (Ⅱ)由于,αβ正交,故0TT αβαβ== 因,αβ均为单位向量,故1α==,即1T αα=.同理1T ββ=2(2)22T T T T T T A A ααββαααββααααββαα=+⇒=+=+=由于0α≠,故A 有特征值12λ=.(2)T T A βααββββ=+=,由于0β≠,故A 有特征值21λ=又因为()(2)(2)()()()1123T T T T T Tr A r r r r r ααββααββααββ=+≤+=+=+=<, 所以0A =,故30λ=.三阶矩阵A 的特征值为2,1,0.因此,f 在正交变换下的标准形为22122y y +.。

2013北京市海淀区高三年级第二学期二模数学理科试题及其答案

2013北京市海淀区高三年级第二学期二模数学理科试题及其答案

2013北京市海淀区高三年级第二学期期末练习1.集合{}|(1)(2)0A x x x =-+≤,B ={}0x x <,则AB =A .(,0]-∞B .(,1]-∞C . [1,2]D .[1,)+∞2.已知数列{}n a 是公比为q 的等比数列,且134a a ⋅=,48a =,则1a q +的值为 A .3 B .2 C .3或2- D .3或3-3. 如图,在边长为a 的正方形内有不规则图形Ω. 向正方形内随机撒豆子,若 撒在图形Ω内和正方形内的豆子数分别为,m n ,则图形Ω面积的估计值为A.ma nB.na mC. 2ma nD. 2na m4.某空间几何体的三视图如右图所示,则该几何体的表面积为 A.180 B.240 C.276 D.3005.在四边形ABCD 中,“λ∃∈R ,使得,AB DC AD BC λλ==”是“四边形ABCD 为平行四边形”的A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件6.用数字1,2,3,4,5组成没有重复数字的五位数,且5不排在百位,2,4都不排在个位和万位,则这样的五位数个数为A. 32B. 36C. 42D. 487.双曲线C 的左右焦点分别为12,F F ,且2F 恰为抛物线24y x =的焦点,设双曲线C 与该抛物线的一个交点为A ,若12AF F ∆是以1AF 为底边的等腰三角形,则双曲线C 的离心率为 A. 2 B.12+ C.13+ D.23+666左视图5俯视图主视图8. 若数列{}n a 满足:存在正整数T ,对于任意正整数n 都有n T n a a +=成立,则称数列{}n a 为周期数列,周期为T . 已知数列{}n a 满足1(0)a m m =>,11, 1=1, 0 1.n n n n na a a a a +->⎧⎪⎨<≤⎪⎩,则下列结论中错误..的是 A. 若34a =,则m 可以取3个不同的值 B. 若2m =,则数列{}n a 是周期为3的数列C.T ∀∈*N 且2T ≥,存在1m >,{}n a 是周期为T 的数列D.Q m ∃∈且2m ≥,数列{}n a 是周期数列二、填空题:本大题共6小题,每小题5分,共30分.9. 在极坐标系中,极点到直线cos 2ρθ=的距离为_______.10.已知1211ln ,sin ,222a b c -===,则,,a b c 按照从大到小....排列为______. 11.直线1l 过点(2,0)-且倾斜角为30,直线2l 过点(2,0)且与直线1l 垂直,则直线1l 与直线2l 的交点坐标为____.12.在ABC ∆中,30,45,2A B a ∠=∠==,则_____;b = C _____.AB S ∆=13.正方体1111ABCD A B C D -的棱长为1,若动点P 在线段1BD 上运动,则DC AP ⋅的取值范围是______________.14.在平面直角坐标系中,动点(,)P x y 到两条坐标轴的距离之和等于它到点(1,1)的距离,记点P 的轨迹为曲线W . (I) 给出下列三个结论: ①曲线W 关于原点对称; ②曲线W 关于直线y x =对称;③曲线W 与x 轴非负半轴,y 轴非负半轴围成的封闭图形的面积小于12; 其中,所有正确结论的序号是_____; (Ⅱ)曲线W 上的点到原点距离的最小值为______.三、解答题:15. 已知函数cos2()1π2sin()4x f x x =--.(Ⅰ)求函数()f x 的定义域; (Ⅱ) 求函数()f x 的单调递增区间.16.(本小题满分13分)福彩中心发行彩票的目的是为了获取资金资助福利事业,现在福彩中心准备发行一种面值为5元的福利彩票刮刮卡,设计方案如下:(1)该福利彩票中奖率为50%;(2)每张中奖彩票的中奖奖金有5元,50元和150元三种;(3)顾客购买一张彩票获得150元奖金的概率为p ,获得50元奖金的概率为2%.(I) 假设某顾客一次性花10元购买两张彩票,求其至少有一张彩票中奖的概率; (II )为了能够筹得资金资助福利事业, 求p 的取值范围.17. (本小题满分14分)如图1,在直角梯形ABCD 中,90ABC DAB ∠=∠=,30CAB ∠=,2BC =,4AD =. 把DAC ∆沿对角线AC 折起到PAC ∆的位置,如图2所示,使得点P 在平面ABC上的正投影H 恰好落在线段AC 上,连接PB ,点,E F 分别为线段,PA AB 的中点. (I) 求证:平面//EFH 平面PBC ;(II) 求直线HE 与平面PHB 所成角的正弦值;(III)在棱PA 上是否存在一点M ,使得M 到点,,,P H A F 四点的距离相等?请说明理由.CDBA图1H E CPBAF图218. 已知函数()e x f x =,点(,0)A a 为一定点,直线()x t t a =≠分别与函数()f x 的图象和x 轴交于点M ,N ,记AMN ∆的面积为()S t . (I )当0a =时,求函数()S t 的单调区间;(II )当2a >时, 若0[0,2]t ∃∈,使得0()e S t ≥, 求实数a 的取值范围.19. (本小题满分14分)已知椭圆:M 22221(0)x y a b a b+=>>的四个顶点恰好是一边长为2,一内角为60的菱形的四个顶点.(I )求椭圆M 的方程;(II )直线l 与椭圆M 交于A ,B 两点,且线段AB 的垂直平分线经过点1(0,)2-,求A O B ∆(O 为原点)面积的最大值.。

北京市朝阳区2013届高三第二次综合练习理科数学含解析

北京市朝阳区2013届高三第二次综合练习理科数学含解析

北京市朝阳区高三年级第二次综合练习数学学科测试(理工类)2013.5(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项. (1)已知集合{}0,1,3M =,集合{}3,N x x a a M ==∈,则MN =A.{}0B.{}0,3C. {}1,3,9D. {}0,1,3,9 【答案】D【KS5U 解析】{}3,{0,3,9}N x x a a M ==∈=,所以{0,1,3,9}MN =,选D.(2)若120()d 0x mx x +=⎰,则实数m 的值为A .13-B .23- C .1- D .2- 【答案】B【KS5U 解析】123211111()d ()03232x mx x x mx m +=+=+=⎰,解得23m =-,选B. (3)执行如图所示的程序框图.若输出的结果是16,则判断框内的条件是A. 6n >?B. 7n ≥?C. 8n >?D. 9n >? 【答案】C 【KS5U 解析】第一次循环,1,3S n ==,不满足条件,循环。

第二次循环,134,5S n =+==,不满足条件,循环。

第三次循环,459,7S n =+==,不满足条件,循环。

第四次循环,9716,9S n =+==,满足条件,输出。

所以判断框内的条件是8n >,选C.(4)若双曲线22221(0,0)x y a b a b-=>>的渐近线与抛物线22y x =+有公共点,则此双曲线的离心率的取值范围是A .[3,)+∞B .(3,)+∞C .(1,3]D .(1,3) 【答案】A【KS5U 解析】双曲线的渐近线为b y x a =±,不妨取b y x a =,代入抛物线得22bx x a=+,即220b x x a -+=,要使渐近线与抛物线22y x =+有公共点,则2()80b a∆=-≥,即228b a ≥,又22228b c a a =-≥,所以229c a ≥,所以29,3e e ≥≥。

2013年4月高三理科数学二轮复习试题(含答案)

2013年4月高三理科数学二轮复习试题(含答案)

2013年4月高三理科数学二轮复习试题(含答案)山东省济南一中2013届高三二轮复习质量检测数学试题(理工类)2013.4本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ卷第22~24题为选考题,其它题为必考题。

考生作答时,将答案答在答题卡上,在本试卷上答题无效。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答题前,考生务必先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题卡的指定位置上。

2.选择题答案使用2B铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案的标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚。

3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效。

4.保持卡面清洁,不折叠,不破损。

5.做选考题时,考生按照题目要求作答,并用2B铅笔在答题卡上把所选题目对应的题号涂黑。

第I卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知U={1,2,3,4,5,6,7,8},A={1,3,5,7},B={2,4,5},则CU(A∪B)等于A.{6,8}B.{5,7}C.{4,6,7}D.{1,3,5,6,8}2.已知为虚数单位,复数z=,则复数的虚部是A.B.C.D.3.函数y=与y=图形的交点为(a,b),则a所在区间是A.(0,1)B.(1,2)C.(2,3)D.(3,4)4.已知F1、F2是双曲线x2a2-y2b2=1(a>0,b>0)的两个焦点,以线段F1F2为边作正△MF1F2,若边MF1的中点在双曲线上,则双曲线的离心率为A.4+23B.3-1C.3+12D.3+15.阅读右边的程序框图,若输出S的值为-14,则判断框内可填写A.iC.i6.函数f(x)=A.在上递增,在上递减B.在上递增,在上递减C.在上递增,在上递减D.在上递增,在上递减7.若某空间几何体的三视图如图所示,则该几何体的体积是A.13B.23C.1D.28.已知点是边长为1的等边的中心,则等于A.B.C.D.9.从6名同学中选4人分别到A、B、C、D四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且这6人中甲、乙两人不去D 城市游览,则不同的选择方案共有A.96种B.144种C.240种D.300种10.在直角坐标系xOy中,已知△AOB三边所在直线的方程分别为x=0,y=0,2x+3y=30,则△AOB内部和边上整点(即横、纵坐标均为整数的点)的总数是A.95B.91C.88D.7511.已知抛物线上存在关于直线对称的相异两点、,则等于A.3B.4C.D.12.设函数f(x)=x-,对任意恒成立,则实数m的取值范围是A.(-1,1)B.C.D.或(第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.已知函数f(x)=ax+1x+2在区间(-2,+∞)上为增函数,则实数a 的取值范围是________________.14.已知向量则的值为.15.在三次独立重复试验中,事件A在每次试验中发生的概率相同,若事件A至少发生一次的概率为,则事件A恰好发生一次的概率为。

2013年高三理科数学二模试题(惠州有答案)

2013年高三理科数学二模试题(惠州有答案)

2013年高三理科数学二模试题(惠州有答案)骞夸笢鐪佹儬宸炲競2013悊绉戯級2013.4 85鍒嗭紝婊″垎40€椤规槸绗﹀悎棰樼洰瑕佹眰鐨勶紟1鐨勫畾涔夊煙涓洪泦鍚圡锛岄泦鍚圢锛?锛屽垯锛?锛夛紟A锛?B锛嶯C锛?D锛嶮2銆佸凡鐭ユき鍦鍊嶏紝鍒欐き鍦嗙殑绂诲績鐜囩瓑浜庯紙锛夛紟A锛?B锛?C锛?D锛?3猴級锛岄偅涔堣緭鍑虹殑锛?锛夛紟锛★紟2450 2500 锛o紟2550 锛わ紟2652 4銆佽嫢鏇茬嚎鐨勪竴鏉″垏绾?涓庣洿绾?鍨傜洿锛屽垯鍒囩嚎鐨勬柟绋嬩负锛?锛夛紟A銆?銆€B銆?C銆?D銆?5銆佹柟绋?鏈夊疄鏍圭殑姒傜巼涓猴紙锛夛紟A銆?B銆?C銆?D銆?6銆佸凡鐭?锛夛紟A銆佽嫢鈭?锛屽垯銆€B 銆佽嫢鈭?锛屽垯鈭?C銆佽嫢锛屽垯鈭?銆€D銆佽嫢锛屽垯7銆佷竴寮犳?鈥濆浘妗堬紝?銆?锛屽壀鍘婚儴鍒嗙殑闈㈢Н涓?锛?鑻?锛屽垯鐨勫浘璞℃槸锛?锛夛紟8銆佸皢鍑芥暟鐨勫浘璞″厛鍚戝乏骞崇Щ锛岀劧鍚庡皢鎵€寰楀浘璞′笂鎵€鏈夌偣鐨勬í鍧愭爣鍙樹负鍘熸潵鐨?鍊嶏紙绾靛潗鏍囦笉鍙橈級锛屽垯鎵?锛夛紟A锛?B锛?C锛?D 锛??10鍒嗭級浜屻€佸~绌洪ч??3锝?5锛屼笁棰樺叏绛旂殑锛屽彧璁$畻鍓嶄袱棰樺緱鍒嗭紟姣忓皬棰?鍒嗭紝婊″垎30鍒嗭紟9銆佸凡鐭ュ悜閲?锛?锛岃嫢锛屽垯瀹炴暟鐨勫€肩瓑浜?锛?10銆佸凡鐭?锛屽垯= 锛?11銆??锛?12銆佸嚱鏁?鐢变笅琛ㄥ畾涔夛細鑻?锛?锛?锛屽垯锛?13銆?鍧愭爣绯讳笌鍙傛暟鏂圭▼閫夊仛棰?鏇茬嚎锛?涓婄殑鐐瑰埌鏇茬嚎锛?锛?14銆?涓嶇瓑寮忛€?宸茬煡瀹炴暟婊¤冻锛屽垯鐨勬渶澶у€间负锛?15銆?鍑犱?濡傚浘锛屽钩琛屽洓杈瑰舰锛岃嫢鐨勯潰?cm , 鍒??cm 锛?涓夈€佽Вч??0鍒嗭紟瑙g瓟椤诲啓鍑烘?16?2?鐨勫墠椤瑰拰涓?, 宸茬煡锛?锛?锛堚厾锛夋眰棣栭」鍜屽叕姣?鐨勫€硷紱锛堚叀锛夎嫢锛屾眰鐨勫€硷紟17?2鍒嗭級璁惧嚱鏁?锛?锛堚厾锛夋眰鍑芥暟鐨勬渶?锛堚叀锛夊綋鏃讹紝鐨勬渶澶у€间负2锛屾眰鐨勫€硷紝骞舵眰鍑??18樻弧鍒?4у皬鐩稿悓鐨?4粦鐞冿紟锛堚厾锛夐噰鍙栨斁鍥炴娊鏍锋柟寮忥紝浠庝腑鎽稿嚭涓や釜鐞冿紝?锛堚叀锛夐噰鍙栦笉鏀惧洖鎶芥牱屾柟宸? 锛?19?4鍒嗭級濡傚浘锛屽凡鐭ュ洓妫遍敟鐨?搴曢潰鏄骞抽潰, 锛?鐐?涓?鐨勪腑鐐癸紟锛堚厾锛夋眰璇侊細骞抽潰锛?锛堚叀锛夋眰浜岄潰瑙?20?4鍒嗭級缁欏畾鍦哖: 鍙婃姏鐗?绾縎: ,杩囧渾蹇?浣滅洿绾?,姝ょ洿绾夸笌涓婅堪涓ゆ洸绾??璁颁负,濡傛灉绾?娈??姹傜洿绾?鐨勬柟绋? 21?4欢鐨勫嚱鏁?鏋勬垚鐨勯泦鍚堬細鈥溾憼鏂圭▼鏈夊疄鏁版牴锛涒憽鍑芥暟鐨?婊¤冻鈥濓紟?礌锛屽苟璇存槑鐞嗙敱锛?鍏锋湁涓嬮潰鐨勬€ц川锛氳嫢鐨勫畾涔夊煙涓篋锛屽垯瀵逛簬浠绘剰[m锛宯] D锛岄兘瀛樺湪[m锛宯]锛屼娇寰楃瓑寮?鎴愮珛鈥濓紝璇曠敤杩欎竴鎬ц川璇佹槑锛氭柟绋?鍙??鐨勫疄鏁版牴锛屾眰璇侊細瀵逛簬瀹氫箟鍩熶腑浠绘剰鐨?锛屽綋锛屼笖鏃讹紝锛?骞夸笢鐪佹儬宸炲競2013冪瓟妗?007.11 涓€銆侀€夋嫨棰橈細棰樺彿1銆佽В鏋愶細锛孨锛?锛?鍗?锛庣瓟妗堬細锛?2銆佽В锛屽張锛??锛?3銆佽В鏋愶細绋嬪簭鐨勮繍琛岀粨鏋滄槸锛庣瓟妗堬細锛?4銆佽В鏋愶細涓庣洿绾?鍨傜洿鐨勫垏绾?鐨勬枩鐜囧繀涓?锛岃€?锛屾墍浠ワ紝鍒囩偣涓?锛庡垏绾夸负锛屽嵆锛岀瓟妗堬細锛?5銆佽В鏋愶細鐢变竴鍏冧簩娆℃柟绋嬫湁瀹炴牴鐨勬潯浠?锛岃€?锛岀敱鍑犱綍姒傜巼寰楁锛庣瓟妗堬細锛?6銆佽В鏋愶細濡傛灉涓ゆ??姝g‘锛?锛屾墍浠?锛?7銆佽В鏋愶?锛岀瓟妗堬細锛?8銆佽В鏋愶細鐨勫浘璞″厛鍚戝乏骞崇Щ锛屾í鍧愭爣鍙樹负鍘熸潵鐨?鍊?锛庣瓟妗堬細锛??棰樺彿9銆佽В鏋愶細鑻?锛屽垯锛岃В寰?锛?10銆佽В?锛?11銆佽В鏋愶細12銆佽В鏋愶細浠?锛屽垯锛屼护锛屽垯锛?浠?锛屽垯锛屼护锛屽垯锛?浠?锛屽垯锛屼护锛屽垯锛?鈥︼紝鎵€浠?锛?13銆佽В鏋愶細锛?锛涘垯鍦嗗績鍧愭爣涓?锛?锛?蹇冨埌鐩寸嚎鐨勮窛绂讳负锛?14銆佽В鏋愶細鐢辨煰瑗夸笉绛夊紡锛岀瓟妗堬細锛?15銆佽В鏋愶細鏄剧劧涓?涓虹浉浼间笁瑙掑舰锛屽張锛屾墍浠??cm 锛?涓夈€佽Вч??0鍒嗭紟瑙g瓟椤诲啓鍑烘?16銆佽В: (鈪? , 鈥︹€︹€︹€︹€︹€︹€︹€︹€?2鍒?鈭?锛屸€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?4鍒?瑙e緱锛庘€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?6鍒?(鈪?鐢?,寰楋細, 鈥︹€︹€︹€︹€︹€︹€︹€︹€?8鍒?鈭?鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?10鍒?鈭?锛庘€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?12鍒?17銆佽В锛氾紙1锛?鈥?2鍒?鍒?锛?鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?鍒?涓斿綋鏃??鍗?涓?愬紑鍖洪棿涓嶆墸鍒嗭級锛庘€︹€︹€?鍒?锛?锛夊綋鏃?锛屽綋锛屽嵆鏃?锛?鎵€浠?锛?鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€?鍒?涓?酱锛?鈥︹€︹€︹€︹€︹€︹€?2鍒?18銆佽В锛?锛堚厾锛夎В娉曚竴锛氣€滄湁鏀惧洖鎽镐袱娆★紝棰滆壊涓嶅悓鈥濇寚鈥滃厛鐧藉啀榛戔€濇垨鈥滃厛榛戝啀鐧解€濓紝蹭笉鍚屸€濅负浜嬩欢锛屸€︹€︹€︹€︹€︹€︹€︹€︹€?鍒?鈭碘€绉嶅彲鑳斤紝鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€?鍒?鈭?锛?鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?鍒?瑙f硶浜岋細鈥滄湁鏀惧洖鎽稿彇?鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€?鍒?锛庘€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?鍒?鈭粹€滄湁鏀惧洖鎽镐袱娆★紝棰滆壊涓嶅悓鈥濈殑姒傜巼涓?锛?鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?鍒?锛屼緷棰樻剰寰楋細锛?锛?锛庘€︹€︹€︹€?0鍒?鈭?锛屸€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?2鍒?锛庘€︹€︹€︹€︹€︹€︹€︹€?4鍒?19銆?鈪?璇佹槑:杩炵粨锛?涓?浜や簬鐐?锛岃繛缁?.鈥︹€︹€︹€︹€︹€︹€︹€︹€?鍒?? 鈭?鏄?鐨勪腑鐐? 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?鍒?鐐?涓?鐨勪腑鐐? 鈭?. 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?鍒?骞抽潰骞抽潰, 鈭?骞抽潰. 鈥︹€︹€︹€︹€︹€?6鍒?(鈪?瑙f硶涓€: 骞抽潰, 骞抽潰,鈭?. 锛屸埓. 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?7鍒?? 鈭?. 锛?鈭?骞抽潰. 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?鍒?浣?锛屽瀭瓒充负锛岃繛鎺?锛屽垯, 鎵€浠?. 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?10鍒?,鈭?锛?. 鍦≧t鈻?涓? = 锛屸€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?12鍒?鈭?.鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?13鍒?鈭翠簩闈. 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€?14鍒?瑙f硶浜岋細濡傚浘锛屼互鐐?鐨勫瀭鐩村钩鍒嗙嚎鎵€鍦ㄧ洿绾夸负杞达紝鎵€鍦ㄧ洿绾夸负杞达紝鎵€鍦ㄧ洿绾夸负杞达紝寤?锛屸€︹€︹€︹€︹€?鍒?鍒?锛?, 锛?鈭?锛?鈥︹€︹€︹€︹€?鍒?璁惧钩闈??, 鐢?锛屽緱锛?浠?锛屽垯锛屸埓. 鈥︹€︹€︹€︹€︹€︹€?鍒?骞抽潰, 骞抽潰, 鈭?. 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?8鍒?锛屸埓. ?鈭?. 锛屸埓骞抽潰.鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?9鍒?鈭??, 锛庘€︹€︹€︹€︹€︹€︹€?10鍒?鈭?锛?鈭?锛?鈥︹€︹€︹€︹€︹€︹€︹€?12鍒?鈭?锛庘€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?13鍒?. 鈥︹€︹€︹€︹€︹€︹€︹€︹€?14鍒?20銆佽В:鍦?鐨勬柟绋嬩负,鍒欏叾鐩村緞闀?,鍦嗗績涓?,璁?鐨勬柟绋嬩负,鍗?,浠e叆鎶涚墿绾挎柟绋嬪緱: ,璁?锛?鏈?, 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?鍒?鍒?. 鈥︹€︹€︹€︹€︹€︹€︹€?鍒?鏁?鈥?鍒?, 鈥︹€︹€︹€?7鍒?. 鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?8鍒?? , 鈥︹€︹€︹€︹€?10鍒?鎵€浠?锛屽嵆, 锛屸€︹€︹€︹€︹€?12鍒?鍗筹細鏂圭▼涓?鎴?. 鈥︹€︹€︹€︹€︹€︹€?4鍒?21銆佽В锛?锛?锛夊洜涓?锛?鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€?鍒?鎵€浠?锛屾弧瓒虫潯浠?. 鈥︹€︹€︹€︹€︹€︹€?鍒?鍙堝洜涓哄綋鏃讹紝锛屾墍浠ユ柟绋?鏈夊疄鏁版牴锛?鎵€浠ュ嚱鏁?冪礌锛?鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€?鍒?锛?锛夊亣璁炬柟绋?瀛樺湪涓や釜瀹炴暟鏍?锛夛紝鍒?锛屸€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?鍒?涓嶅Θ璁?浣垮緱绛夊紡鎴愮珛锛?鈥︹€︹€︹€︹€︹€︹€︹€︹€?鍒?鍥犱负锛屾墍浠?锛屼笌宸茬煡鐭涚浘锛?鎵€浠ユ柟绋?︹€︹€︹€︹€︹€?0鍒?锛?锛屽洜涓?鎵€浠?锛屾墍浠?锛?鍙堝洜涓?锛屾墍浠ュ嚱鏁?涓哄噺鍑芥暟锛?鈥︹€︹€︹€︹€︹€︹€︹€?1鍒?鎵€浠?锛?鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€?2鍒?鎵€浠?锛屽嵆锛?鈥︹€︹€︹€?3鍒?鎵€浠?锛?鈥?4鍒?。

2013届江苏省高三数学二轮专题训练解答题(30)

2013届江苏省高三数学二轮专题训练解答题(30)

江苏省2013届高三数学二轮专题训练:解答题(30)本大题共6小题,解答时应写出文字说明、证明过程或演算步骤。

1.(本小题满分14分)设函数f (x )=a b ⋅,其中向量a =(2cos x ,1),b =(cos x ,3sin2x ),x ∈R .(1) 若f (x )=0且x ∈(-π2,0), 求tan2x ;(2) 设△ABC 的三边a ,b ,c 依次成等比数列,试求f (B )的取值范围.2.(本小题满分14分)如图,四棱锥P -ABCD 的底面为矩形,且AB =2,BC =1,E ,F 分别为AB ,PC 中点. (1)求证:EF ∥平面PAD ;(2)若平面PAC ⊥平面ABCD ,求证:平面PAC ⊥平面3.(本小题满分14分)某商店经销一种青奥会纪念品,每件产品的成本为30元,并且每卖出一件产品需向税务部门上交a 元(a 为常数,2≤a ≤5)的税收.设每件产品的日售价为x 元(35≤x ≤41),根据市场调查,日销售量与e x (e 为自然对数的底数)成反比例.已知每件产品的日售价为40元时,日销售量为10件.(1)求该商店的日利润L(x )元与每件产品的日售价x 的函数关系式;(2)当每件产品的日售价为多少元时,该商店的日利润L(x )最大,并求出L(x )的最大值.4.(本小题满分16分)已知函数c bx x ax x f -+=44ln )((x >0)在x = 1处取得极值c --3,其中a ,b ,c 为常数。

(1)试确定a ,b 的值; (2)求函数f (x )的单调增区间;(3)若对任意x >0,不等式f (x )≥-(c -1)4+(c -1)2-c +9恒成立,求c 的取值范围.(第16题)5.(本小题满分16分)在平面直角坐标系xOy 中,A (2a ,0),B(a ,0),a 为非零常数,动点P 满足PA =2PB ,记点P 的轨迹曲线为C . (1)求曲线C 的方程;(2)曲线C 上不同两点Q (x 1,y 1),R (x 2,y 2)满足→AR =λ→AQ ,点S 为R 关于x 轴的对称点.①试用λ表示x 1,x 2,并求λ的取值范围;②当λ变化时,x 轴上是否存在定点T ,使S ,T ,Q 三点共线,证明你的结论.6.(本小题满分16分)已知数列{a n }的前n 项和为S n ,且满足a 1=1,S n = ta n+1 (n ∈N +,t ∈R). (1)求数列{S n }的通项公式; 2)求数列{na n }的前n 项和为T n .1. 解:f (x )=a b ⋅=(2cos x ,1) (cos x , 3si n 2x )=2cos 2x +3si n 2x =3si n 2x +cos2x +1=2si n (2x +6π)+1(1) ∵f (x )= 0,∴si n (2x +6π)=-12,x ∈(-π2,0) ∴2x +6π∈(-5π6,π6) ∴2x +6π=-π6,∴x =-π6,tan2x=- 3 (2)∵a,b,c成等比数列, ∴b 2=ac 由余弦定理得∴cosB=ac b c a 2222-+=ac ac c a 222-+≥ac ac ac 22-=21∴0<B ≤3π∴6π<2B +6π≤65π∴21≤si n (2B +6π)≤1,∴2≤f (B )≤3 2.证明:(1)方法一:取线段PD 的中点M ,连结FM ,AM因为F 为PC 的中点,所以FM ∥CD ,且FM =12CD . 因为四边形ABCD 为矩形,E 为AB 的中点, 所以EA ∥CD ,且EA =12CD . 所以FM ∥EA ,且FM =EA . 所以四边形AEFM 为平行四边形.所以EF ∥AM . ……………………… 5分又AM ⊂平面PAD ,EF ⊄平面PAD ,所以EF ∥平面PAD . 方法二:连结CE 并延长交DA 的延长线于N ,连结PN 因为四边形ABCD 为矩形,所以AD ∥BC , 所以∠BCE =∠ANE ,∠CBE =∠NAE .又AE =EB ,所以△CEB ≌△NEA .所以CE =NE . 又F 为PC 的中点,所以EF ∥NP .………… 5分又NP ⊂平面PAD ,EF ⊄平面PAD ,所以EF ∥平面PAD . …………… 2分方法三:取CD的中点Q,连结FQ,EQ.在矩形ABCD中,E为AB的中点,所以AE=DQ,且AE∥DQ.所以四边形AEQD为平行四边形,所以EQ∥AD.又AD⊂平面PAD,EQ⊄平面PAD,所以EQ∥平面PAD.………………2分因为Q,F分别为CD,CP的中点,所以FQ∥PD.又PD⊂平面PAD,FQ⊄平面PAD,所以FQ∥平面PAD.又FQ,EQ⊂平面EQF,FQ∩EQ=Q,所以平面EQF∥平面PAD.……………3分因为EF⊂平面EQF,所以EF∥平面PAD.………………………………2分(2)设AC,DE相交于G.在矩形ABCD中,因为AB=2BC,E为AB的中点.所以DAAE=CDDA=2.又∠DAE=∠CDA,所以△DAE∽△CDA,所以∠ADE=∠DCA.又∠ADE+∠CDE=∠ADC=90°,所以∠DCA+∠CDE=90°.由△DGC的内角和为180°,得∠DGC=90°.即DE⊥AC.………………………2分因为平面PAC⊥平面ABCD因为DE⊂平面ABCD,所以DE⊥平面PAC,……………………………………3分又DE⊂平面PDE,所以平面PAC⊥平面PDE.…………………………2分说明:第一问,方法1和2,下结论时:不交代平面外一条直线与平面内一条直线平行,一律扣2分;方法3,直接由线线平行→面面平行,扣3分;第二问,不用平几证明DE⊥AC,扣2分;3.4.解:(1)由题意知(1)3f c =--,因此3b c c -=--,从而3b =-. 又对()f x 求导得()34341ln 4'bx xax x ax x f +⋅+=3(4ln 4)x a x a b =++. 由题意(1)0f '=,因此40a b +=,解得12a =.(2)由(1)知3()48ln f x x x '=(0x >),令()0f x '>,解得1x >. 因此()f x 的单调递增区间为(1)+,∞.(3)由(2)知,()f x 在1x =处取得极小值(1)3f c =--,此极小值也是最小值, 要使f (x )≥-(c -1)4+(c -1)2-c+9(0x >)恒成立, 即-3-c (≥-(c -1)4+(c -1)2-c+9(0x >)恒成立, 解得c ∈(-∞,-1]∪[3,+∞).5.解 (1)设点P 坐标为(x ,y ).由PA =2PB ,得(x -2a )2+y 2=2(x -a )2+y 2,平方整理,得x 2+y 2=2a 2. 所以曲线C 的方程为x 2+y 2=2a 2.(2)①→AQ =(x 1-2a ,y 1),→AR =(x 2-2a ,y 2),因为→AQ =λ→AR ,且⎩⎨⎧x 2-2a =λ(x 1-2a ) y 2=λy 1.,即⎩⎨⎧x 2-λx 1=2a (1-λ)…① y 2=λy 1.…② 因为Q ,R 在曲线C 上,所以⎩⎨⎧x 12+y 12=2a 2,…③x 22+y 22=2a 2.…④消去y 1,y 2,得x 2+λx 1=a (1+λ),…⑤ 由①,⑤得x 1=3-λ2a ,x 2=3λ-12λa .因为-2a ≤x 1,x 2≤2a ,所以-2a ≤3-λ2a ≤2a ,-2a ≤3λ-12λa ≤2a ,且λ>0 解得3-22≤λ≤3+22. 又Q ,R 不重合,所以λ≠1.故λ的取值范围为[3-22,1)∪(1,3+22]. ②存在符合题意的点T (a ,0),证明如下: →TS =(x 2-a ,-y 2),→TQ =(x 1-a ,y 1),要证明S ,T ,Q 三点共线,只要证明→TQ ∥→TS ,即(x 2-a ) y 1-(x 1-a )(-y 2)=0 因为y 2=λy 1.又只要(x 2-a ) y 1+λ(x 1-a )y 1=0, 若y 1=0,则y 2=0,成立,若y 1≠0,只要x 2+λx 1-a (1+λ)=0,由⑤知,此式成立. 所以存在点T (a ,0),使S ,T ,Q 三点共线.探究方法:假设存在符合题意的点T (m ,0).则→TS =(x 2-m ,-y 2),→TQ =(x 1-m ,y 1),由S ,T ,Q 三点共线,得→TQ ∥→TS , 从而(x 2-m ) y 1=-y 2(x 1-m ),即(x 2-m ) y 1+λy 1(x 1-m )=0, 若y 1=0,则y 2=0,成立,若y 1≠0,则(x 2-m )+λ(x 1-m )=0,即x 2+λx 1-m (1+λ)=0,又x 2+λx 1=a (1+λ),所以(a -m )(1+λ)=0,因为A 在圆C 之外,所以λ>0,所以m =a .6.(1)∵S n = ta n+1,∴S 1= a 1 =ta 2=1,∴t ≠0. ∴S n = t (S n+1-S n ) ,∴S n+1=t+1t S n , ∴当t=-1时,S n+1=0,S 1= a 1=1,当t ≠-1时,{S n }为等比数列,S n =(t+1t )n-1,综上 S n =⎩⎪⎨⎪⎧1 n =1,(t+1t)n-1 n ≥2.(2)∵T n =a 1+ 2a 2+3a 3+……+na n . (1)∴T 1=1n ≥2时,又由(1)知a n+1=t+1t a n ,a 2=1t∴t+1t T n =t+1t a 1+ 2a 3+3a 4+……+(n-1)a n +na n +1 (2) (1)-(2)得- 1t T n =-1t +2a 2+a 3+……+a n - na n +1=-1t -a 1+a 2+(a 1+a 2+a 3+……+a n )-na n +1=-1+S n - n (S n+1-S n )=-1+S n - n t S n=t -n t S n -1=t -n t (t+1t )n-1-1∴T n =(n -t )(t+1t )n-1+t当t ≠-1时,T 1=1也适合上式,故T n =(n -t )(t+1t )n-1+t (n ∈N +). 当t=-1时,T 1=1,T n+1=-1. 解毕.也可综合为:T n =⎩⎪⎨⎪⎧1 n =1,(n -t )(t+1t )n-1+t n ≥2.另解:先求出a n 再求S n分t=-1和t ≠-1情形,再综合a n=⎩⎪⎨⎪⎧1 n =1,1t n ≥2,1t (t+1t )n-2n ≥3.再回到S n 和T n。

福建省福州市2013年高考数学二轮复习专题训练七:立体几何 Word版含答案]

福建省福州市2013年高考数学二轮复习专题训练七:立体几何 Word版含答案]

福州2013年高考数学二轮复习专题训练:立体几何本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题 (本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.利用斜二测画法得到的 ①三角形的直观图一定是三角形; ②正方形的直观图一定是菱形;③等腰梯形的直观图可以是平行四边形; ④菱形的直观图一定是菱形. 以上结论正确的是( )A .①②B . ①C .③④D . ①②③④【答案】B2.如图,已知空间四边形OABC ,其对角线为OB 、AC ,M 、N 分别是对边OA 、BC 的中点,点G 在线段MN 上,且2MG GN =,现用基向量,,OA OB OC 表示向量,设OG xOA yOB zOC =++,则x 、y 、z 的值分别是( )A . x =31,y =31,z =31B . x =31,y =31,z =61C . x =31,y =61,z =31D . x =61,y =31,z =31【答案】D3.在半径为R 的球内放入大小相等的4个小球,则小球半径r 的最大值为( )A .()R 26-B .()R 12-C .R 41D .R 31【答案】A4.如图,在正方体ABCD —A 1B 1C 1D 1中E 、F 分别为棱DD 1、BB 1上的动点,且BF=D 1E ,设EF 与AB 所成角为α,EF 与BC 所成的角为β,则βα+的最小值为( )A .︒45B .︒60C .︒90D .无法确定【答案】C5.若一个螺栓的底面是正六边形,它的主视图和俯视图如图所示,则它的体积是( )A .πB .πC .πD .π【答案】C6.有下列命题:①有两个面平行,其余各面都是四边形的几何体叫棱柱;②有两个面平行, 其 余各面都是平行四边形的几何体叫棱柱; ③有两个面平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行的几何体叫棱柱;④ 用一个平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014届高三级一模化学试题可能用到的原子量:H-1 C-12单选题:7.下列说法正确的是A.油脂饱和程度越大,熔点越低B.氨基酸、二肽、蛋白质均既能跟强酸反应又能跟强碱反应C.蔗糖、麦芽糖、硬脂酸甘油酯酸性水解都能得到2种物质D.麻黄碱(CH CH3NH CH3OH)的催化氧化产物能发生银镜反应8.在溶液中加入足量Na2O2后仍能大量共存的离子组是A.K+、AlO-2、Cl-、SO42–B.NH+4、Ba2+、Cl-、NO-3C.Ca2+、Fe2+、NO-3、HCO-3D.Na+、Cl-、CO2-3、SO32–9.用N A表示阿伏加德罗常数的值。

下列叙述中正确的是A.78 g 苯含有碳碳双键的数目为3N AB.常温常压下,22.4 L二氧化碳含有的原子总数为3N AC.1 mol Fe与足量稀HNO3反应,转移3 N A个电子D.1 L 1 mol·L-1的NaClO 溶液中含有ClO-的数目为N A10.实验室中以下物质的贮存方法不正确...的是A.浓硝酸用带橡胶塞的细口、棕色试剂瓶盛放,并贮存在阴凉处B.保存硫酸亚铁溶液时,要向其中加入少量硫酸和铁粉C.少量金属钠保存在煤油中D.试剂瓶中的液溴可用水封存,防止溴挥发11.W、X、Y、Z是四种常见的短周期元素,其原子半径随原子序数变化如右下图。

已知W 的一种核素的质量数为18,中子数为10;X和Ne原子的核外电子数相差1;Y的单质是一种常见的半导体材料;Z的非金属性在同周期元素中最强。

下列说法正确的是A.对应简单离子半径:X>WB.对应气态氢化物的稳定性Y>ZC .化合物XZW 既含离子键,又含共价键D .Y 的氧化物能与Z 的氢化物和X 的最高价氧化物对应的水化物的溶液反应 12.下列解释事实的化学方程式或离子方程式,不正确的....是 A .工业上可用电解法制备Mg :MgCl 2(熔融)===== Mg + Cl 2↑B .向Ca(ClO)2溶液中通入少量CO 2:Ca 2++2ClO -+H 2O +CO 2===2HClO +CaCO 3↓C .用CaSO 4治理盐碱地:CaSO 4(s) + Na 2CO 3(aq)CaCO 3(s) + Na 2SO 4(aq)D .用FeSO 4除去酸性废水中的Cr 2O 72-:Cr 2O 72- + Fe 2+ + 14H + == 2Cr 3+ + Fe 3+ + 7H 2O双选题:22.在0.1mol/L 的Na 2CO 3的溶液中,下列关系式正确的是A .c(Na +)>c(CO 2-3)> c(OH -)> c(H +)B .c(OH -)= c(HCO 3-)+ c(H 2CO 3) C .2c(Na +)=c(CO 2-3)+ c(HCO 3-)> c(H 2CO 3)D .c(Na +)+ c(H +)= c(OH -) + c(HCO 3-) +2c(CO 2-3)23.下列实验操作、现象和解释都正确的是非选择题30.(16分)有增长碳链是有机合成中非常重要的反应。

例如:反应①OH CH 3-CH -COOH+ Zn 苯 (Ⅰ) CH 3 Br -CH -COOC 2H 5(Ⅱ) CH -CH -COOC 2H 5 CH 3 OH CHO CH 3 O 电解用 通过以下路线可合成(Ⅱ):(1)(Ⅰ)的分子式为 ;1mol 该物质完全燃烧需要消耗_____mol O 2.。

(2)(Ⅱ)与足量的热NaOH 溶液反应的化学方程式为 。

(3)(Ⅲ)的结构简式为 ; 在生成(Ⅲ)时,还能得到另一种副产物C 6H 8O 4,该反应的化学方程式为 ,该反应的反应类型是 。

(4)对二氯苯也能与有机物(Ⅰ) (过量)发生类似反应①的系列反应,其生成有机物的结构简式为 。

31.(16分)工业合成氨与制备硝酸一般可连续生产,流程如下:(1)工业生产时,制取氢气的一个反应为:CO(g)+H 2O(g)CO 2(g)+H 2(g)。

t ℃时,往10L 密闭容器中充入2molCO 和3mol 水蒸气。

反应建立平衡后,体系中c (H 2)=0.12mol·L -1。

则该温度下此反应的平衡常数K=_____(填计算结果)。

(2)合成塔中发生反应N 2(g)+3H 2(g)2NH 3(g) △H<0。

下表为不同温度下该反应的平衡常数。

由此可推知,表中T 1____300℃(填―>‖、―<‖或―=‖)。

OH CH 3-CH -COOH OH CH 3-CH -COOH (Ⅲ) C 3H 4O 2 C 5H 8O 2 C 2H 5OH /H + (Ⅱ) HBr 一定条件下浓H 2SO 4 △ Cl Cl(3)氨气在纯氧中燃烧生成一种单质和水,科学家利用此原理,设计成―氨气-氧气‖燃料电池,则通入氨气的电极是__________(填―正极‖或―负极‖);碱性条件下,该电极发生反应的电极反应式为_______________________。

(4)用氨气氧化可以生产硝酸,但尾气中的NO x 会污染空气。

目前科学家探索利用燃料气体中的甲烷等将氮的氧化物还原为氮气和水,反应机理为:CH 4(g)+4NO 2(g)=4NO(g)+CO 2(g)+2H 2O(g) △H= -574kJ·mol-1CH 4(g)+4NO(g)=2N 2(g)+CO 2(g)+2H 2O(g) △H= -1160kJ·mol -1则甲烷直接将NO 2还原为N 2的热化学方程式 为 。

(5)某研究小组在实验室以―Ag -ZSM-5‖为 催化剂,测得将NO 转化为N 2的转化率随温度变 化情况如右图。

据图分析,若不使用CO ,温度超 过775℃,发现NO 的转化率降低,其可能的原因 为 ; 在n (NO)/n (CO)=1的条件下,应控制的最佳温度在_______左右。

32.(16分)为探索工业含铝、铁、铜合金废料的再利用,甲同学设计的实验方案如下:请回答:(1)绿矾的化学式为 。

(2)写出反应①的化学方程式 , 反应②生成沉淀的离子反应方程式 。

(3)为了检测滤液D 中含有的金属离子,可设计实验方案为(试剂自选):反应温度/KNO转 化 率 (%)▲ CO 剩余百分率○ 无CO 时NO 转化为N 2的产率□ n(NO)/n((CO)=1条件下NO 转化为N 2的转化率操作②。

(4)在滤渣B 中滴加稀硫酸时,发现反应速率比一般的铁粉反应要快,其原因是 。

(5)若考虑绿色化学工艺,在滤渣E 中加入稀硫酸和试剂Y 制胆矾晶体,试剂Y 为无色液体,则反应④的总化学方程式为 ;若不考虑绿色化学工艺,所选试剂Y 为1mol/L 的硝酸,欲使3molCu 全部溶解且溶液中含铜元素的溶质仅为CuSO 4,则需该硝酸的体积 L 。

33.(16分)实验室制取乙酸丁酯的实验装置有如 右下图所示两种装置供选用。

其有关物质的物理性质(1)制取乙酸丁酯的装置应选用_______(填―甲‖ 或―乙‖)。

不选另一种装置的理由是 。

(2)该实验生成物中除了主产物乙酸丁酯外,还可能生成的有机副产物.....有(写出结构简式): 、 。

(3)酯化反应是一个可逆反应,为提高1-丁醇的利用率,可采取的措施是。

(4)从制备乙酸丁酯所得的混合物中分离、提纯乙酸丁酯时,需要经过多步操作,下列图示的操作中,肯定需要的化学操作是________________(选填答案编号)。

(5)有机物的分离操作中,经常需要使用分液漏斗等仪器。

使用分液漏斗前必须A B C D(甲)(乙)→冷 水 →;某同学在进行分液操作时,若发现液体流不下来,其可能原因除分液漏斗活塞堵塞外,还可能 。

2014届高三级一模化学试题参考答案和评分标准选择题: 7.B 8.A 9.C 10.A 11.C 12.D 22. AD 23.BC30.(16分)说明;所有的结构简式写成键线式同样得分;化学式错误或把结构简式写成化学式0分;化学方程式没有注明反应条件或条件错误扣1分;不配平扣1分; (1)(4分)C 8H 8O 2 (2分) 9 (2分)(2)(3分)或 (3)(7分)CH 2=CH-COOH (2分)取代反应(或酯化反应) (2分)(4)(2分)CH 3OCHOHOCH 3CHOH31.(共16分,方程式每个3分,其余每空2分) (1)(2分)1 (2)(2分)<(3)(4分)负极 (2分) 2NH 3 — 6e - + 6OH - = N 2 +6H 2O (2分。

化学式1分、配平1分)CH 3 2H 5 + 2NaOH H 2O△ OHCH 3+ C 2H 5OH + NaBr CH 3Br-CH-COOC 2H 5 + 2H 2ONaOH △OHCH 3+ C 2H 5OH + HBrOHCH 3-CH-COOH 2 浓H 2SO 4 △ CH 3-CH CH-CH 3 O —C OC —O O+ 2H 2O (环状酯写成其它形式,只要正确都给分,3分)(4)(3分)CH4(g)+2NO2(g)=CO2(g)+2H2O(g)+N2(g) △H=-867kJ/mol (方程式2分,△H数值1分)(5)(5分)该反应是放热反应(1分),当在775K反应达到平衡后继续升高温度(1分),平衡向逆(左)方向移动,NO转化率降低(1分)870K(2分。

写860-875K之间任意数值均给分)32.(16分)(1)(2分) FeSO4·7H2O(2)(4分)2Al+2NaOH+2H2O2NaAlO2+3H2↑AlO2-+CO2+2H2O Al(OH)3↓+HCO3-((或2AlO2-+CO2+3H2O2Al(OH)3↓+CO32-) [未写离子方程式扣1分,不配平扣1分,离子符号错0分](3)(3分)用试管取少量滤液D(1分),向滤液中滴加KSCN(或NaSCN、或NH4SCN)] 溶液无明显现象(1分),再滴入氯水(或双氧水,或通入Cl2)若变成血红色,则溶液则中存在Fe2+(1分)。

(4)(2分)铜、铁与稀硫酸形成了原电池(或发生了电化腐蚀,或有电流产生)(5)(5分) Cu+H2O2+H2SO4CuSO4+2H2O(2分。

配平1分,化学式错0分)2(3分)[说明:反应式为3Cu+2HNO3+3H2SO43CuSO4++2NO↑+4H2O]33.(16分)(1)(6分)乙(2分)由于反应物(乙酸和1-丁醇)的沸点低于产物乙酸丁酯的沸点(1分),若采用甲装置会造成反应物的大量挥发降低了NO转化率(1分),乙装置则可以冷凝回流反应物(1分),提高了NO转化率(1分)。

(2)(4分)CH3CH2CH2CH2OCH2CH2CH2CH3(2分)CH3CH2CH=CH2(2分)(3)(2分)增加乙酸浓度(4)(2分)AC(选1个且正确1分,错一个扣1分,不出现负分)(5)(2分)检查是否漏水或堵塞(1分)分液漏斗上口玻璃塞上的凹槽未与漏斗口上的小孔对准(或漏斗内部未与外界大气相通,或玻璃塞未打开。

相关文档
最新文档