专题3.7 江苏省无锡市(母题解读)-2018中考数学真题之名师立体解读高端精品(解析版)
2018年江苏省无锡市中考数学试卷(附参考解析)

2018年江蘇省無錫市中考數學試卷一、選擇題(本大題共10小題,每小題3分,共30分。
在每小題所給出的四個選項中,只有一項是正確的,請用2B鉛筆把答題卡上相應的選項標號塗黑) 1.(3分)下列等式正確的是()A.()2=3 B.=﹣3 C.=3 D.(﹣)2=﹣32.(3分)函數y=中引數x的取值範圍是()A.x≠﹣4 B.x≠4 C.x≤﹣4 D.x≤43.(3分)下列運算正確的是()A.a2+a3=a5 B.(a2)3=a5C.a4﹣a3=a D.a4÷a3=a4.(3分)下麵每個圖形都是由6個邊長相同的正方形拼成的圖形,其中能折疊成正方體的是()A.B.C.D.5.(3分)下列圖形中的五邊形ABCDE都是正五邊形,則這些圖形中的軸對稱圖形有()A.1個 B.2個 C.3個 D.4個6.(3分)已知點P(a,m),Q(b,n)都在反比例函數y=的圖象上,且a <0<b,則下列結論一定正確的是()A.m+n<0 B.m+n>0 C.m<n D.m>n7.(3分)某商場為了解產品A的銷售情況,在上個月的銷售記錄中,隨機抽取了5天A產品的銷售記錄,其售價x(元/件)與對應銷量y(件)的全部數據如下表:9095100105110售價x(元/件)銷量y(件)110100806050則這5天中,A產品平均每件的售價為()A.100元B.95元C.98元D.97.5元8.(3分)如圖,矩形ABCD中,G是BC的中點,過A、D、G三點的圓O與邊AB、CD分別交於點E、點F,給出下列說法:(1)AC與BD的交點是圓O的圓心;(2)AF與DE的交點是圓O的圓心;(3)BC與圓O相切,其中正確說法的個數是()A.0 B.1 C.2 D.39.(3分)如圖,已知點E是矩形ABCD的對角線AC上的一動點,正方形EFGH 的頂點G、H都在邊AD上,若AB=3,BC=4,則tan∠AFE的值()A .等於B .等於C .等於D.隨點E位置的變化而變化10.(3分)如圖是一個沿3×3正方形方格紙的對角線AB剪下的圖形,一質點P由A點出發,沿格點線每次向右或向上運動1個單位長度,則點P由A點運動到B點的不同路徑共有()A.4條 B.5條 C.6條 D.7條二、填空題(本大題共8小題,每小題2分,共16分。
专题3.7 江苏省无锡市-2018中考数学真题之名师立体解读高端精品(考试版)

绝密★启用前江苏省无锡市2018年中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.下列等式正确的是()A.()2=3 B .=﹣3 C .=3 D.(﹣)2=﹣32.函数y=中自变量x的取值范围是()A.x≠﹣4 B.x≠4 C.x≤﹣4 D.x≤43.下列运算正确的是()A.a2+a3=a5B.(a2)3=a5C.a4﹣a3=a D.a4÷a3=a4.下面每个图形都是由6个边长相同的正方形拼成的图形,其中能折叠成正方体的是()A .B .CD .5.下列图形中的五边形ABCDE都是正五边形,则这些图形中的轴对称图形有()A.1个B.2个C.3个D.4个6.已知点P(a,m),Q(b,n)都在反比例函数y=的图象上,且a<0<b,则下列结论一定正确的是()A.m+n<0 B.m+n>0 C.m<n D.m>n7.某商场为了解产品A的销售情况,在上个月的销售记录中,随机抽取了5天A产品的销售记录,其售价x(元/件)与对应销量y(件)的全部数据如下表:则这5天中,A产品平均每件的售价为()A.100元B.95元C.98元D.97.5元8.如图,矩形ABCD中,G是BC的中点,过A、D、G三点的圆O与边AB、CD分别交于点E、点F,给出下列说法:(1)AC与BD的交点是圆O的圆心;(2)AF 与DE的交点是圆O的圆心;(3)BC与圆O相切,其中正确说法的个数是()A.0 B.1 C.2 D.39.如图,已知点E是矩形ABCD的对角线AC上的一动点,正方形EFGH的顶点G、H都在边AD上,若AB=3,BC=4,则tan∠AFE的值()A.等于B.等于C.等于D.随点E位置的变化而变化10.如图是一个沿3×3正方形方格纸的对角线AB剪下的图形,一质点P由A点出发,沿格点线每次向右或向上运动1个单位长度,则点P由A点运动到B点的不同路径共有()A.4条B.5条C.6条D.7条二、填空题(本大题共8小题,每小题2分,共16分。
专题3.7 江苏省无锡市-2018中考数学真题之名师立体解读高端精品(只含真题解析)

1.A【解析】()2=3,A正确;=3,B错误;==3,C错误;(﹣)2=3,D错误;故选:A.2.B【解析】:由题意得,4﹣x≠0,解得x≠4.故选:B.4.C【解析】能折叠成正方体的是故选:C.5.D【解析】如图所示:直线l即为各图形的对称轴.,故选:D.6.D【解析】=的k=﹣2<0,图象位于二四象限,∵a<0,∴P(a,m)在第二象限,∴m>0;∵b>0,∴Q(b,n)在第四象限,∴n<0.∴n<0<m,即m>n,故D正确;7.C【解析】由表可知,这5天中,A产品平均每件的售价为=98(元/件),故选:C.9.A【解析】∵EF∥AD,∴∠AFE=∠FAG,∴△AEH∽△ACD,∴==.设EH=3x,AH=4x,∴HG=GF=3x,∴tan∠AFE=tan∠FAG===.故选:A.11.2【解析】﹣2的相反数的值等于 2.故答案是:212.3.03×105【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于303000有6位整数,所以可以确定n=6﹣1=5.303000=3.03×105,13.x=﹣【解析】方程两边都乘以x(x+1),得:(x﹣3)(x+1)=x2,解得:x=﹣,检验:x=﹣时,x(x+1)=≠0,所以分式方程的解为x=﹣15.菱形的四条边相等【解析】命题“四边相等的四边形是菱形”的逆命题是菱形的四条边相等16.15°【解析】∵OA=OB,OA=AB,∴OA=OB=AB,即△OAB是等边三角形,∴∠AOB=60°,∵OC⊥OB,∴∠COB=90°,∴∠COA=90°﹣60°=30°,∴∠ABC=15°17.15或10【解析】作AD⊥BC交BC(或BC延长线)于点D,①如图1,当AB、AC位于AD异侧时,在Rt△ABD中,∵∠B=30°,AB=10,∴AD=ABsinB=5,BD=ABcosB=5,在Rt△ACD中,∵AC=2,∴CD===,则BC=BD+CD=6,∴S△ABC=•BC•AD=×6×5=15;②如图2,当AB、AC在AD的同侧时,由①知,BD=5,CD=,则BC=BD﹣CD=4,∴S△ABC=•BC•AD=×4×5=10.综上,△ABC的面积是15或10,当P在AC边上时,H与C重合,此时OH的最小值=OC=OA=1,即a+2b的最小值是2;当P在点B时,OH的最大值是:1+=,即(a+2b)的最大值是5,∴2≤a+2b≤5.19.解:(1)(﹣2)2×|﹣3|﹣()0=4×3﹣1=12﹣1=11;(2)(x+1)2﹣(x2﹣x)=x2+2x+1﹣x2+x=3x+1.21.解:在▱ABCD中,AD=BC,∠A=∠C,∵E、F分别是边BC、AD的中点,∴AF=CE,在△ABF与△CDE中,∴△ABF≌△CDE(SAS)∴∠ABF=∠CDE22.解:(1)该汽车交易市场去年共交易二手轿车1080÷36%=3000辆,故答案为:3000;(3)在扇形统计图中,D类二手轿车交易辆数所对应扇形的圆心角为360°×=54°,故答案为:54.23.解:设男同学标记为A、B;女学生标记为1、2,可能出现的所有结果列表如下:共有 12 种可能的结果,且每种的可能性相同,其中恰好抽到由男生甲、女生丙和这位班主任一起上场参赛的结果有2种,所以恰好抽到由男生甲、女生丙和这位班主任一起上场参赛的概率为=24.解:∵四边形ABCD内接于⊙O,∠A=90°,∴∠C=180°﹣∠A=90°,∠ABC+∠ADC=180°.作AE⊥BC于E,DF⊥AE于F,则CDFE是矩形,EF=CD=10.在Rt△AEB中,∵∠AEB=90°,AB=17,cos∠ABC=,∴BE=AB•cos∠ABE=,∴AE==,∴AF=AE﹣EF=﹣10=.∵∠ABC+∠ADC=180°,∠CDF=90°,∴∠ABC+∠ADF=90°,∵cos∠ABC=,∴sin∠ADF=cos∠ABC=.在Rt△ADF中,∵∠AFD=90°,sin∠ADF=,∴AD===6.26.解:(1)如图△ABC即为所求;(2)解:这样的直线不唯一.①作线段OB的垂直平分线AC,满足条件,此时直线的解析式为y=﹣x+.②作矩形OA′BC′,直线A′C′,满足条件,此时直线A′C′的解析式为y=﹣x+4.(2)∵△BCE∽△BA2D2,∴==,∴CE=∵=﹣1∴=,∴AC=•,∴BH=AC==•,∴m2﹣n2=6•,∴m4﹣m2n2=6n4,1﹣=6•,∴=(负根已经舍弃).把n=代入5+(m﹣)2=()2解得m1=2,m2=﹣3(舍去)∴n=1∴把A(3,2)代入y=kx﹣1得k=∴y=x﹣1。
中考数学试题-2018年江苏省无锡市中考数学考试试卷专题十年分类汇编8 最新

2018-2018年江苏省无锡市中考数学试题分类解析汇编专题8:三角形锦元数学工作室 编辑一、选择题1. (江苏省无锡市2018年3分)已知D 、E 分别是△ABC 的边AB 、AC 的中点,DE =2,那么BC 的长是【 】A. 1B. 2C. 4D. 6【答案】C 。
【考点】三角形中位线定理【分析】∵D 、E 是AB 、AC 的中点,∴DE 是△ABC 的中位线。
∴DE=12BC 。
又∵DE=2,∴BC=2DE=2×2=4。
故选C 。
2. (江苏省2018年3分)如图,给出下列四组条件:①AB DE BC EF AC DF ===,,;②AB DE B E BC EF =∠=∠=,,;③B E BC EF C F ∠=∠=∠=∠,,;④AB DE AC DF B E ==∠=∠,,.其中,能使ABC DEF △≌△的条件共有【 】A .1组B .2组C .3组D .4组【答案】C 。
【考点】全等三角形的判定。
【分析】根据全等三角形的判定方法可知:①AB DE BC EF AC DF ===,,,可用“SSS”判定ABC DEF △≌△;②AB DE B E BC EF =∠=∠=,,,可用“SAS”判定ABC DEF △≌△;③B E BC EF C F ∠=∠=∠=∠,,,可用“ASA”判定ABC DEF △≌△;④AB DE AC DF B E ==∠=∠,,,是“SSA”,不能判定ABC DEF △≌△; 因此能使△ABC ≌△DEF 的条件共有3组。
故选C 。
3. ( 江苏省无锡市2018年3分)下列性质中,等腰三角形具有而直角三角形不一定具有的是【 】A .两边之和大于第三边B .有一个角的平分线垂直于这个角的对边C .有两个锐角的和等于90°D .内角和等于180° 【答案】B 。
【考点】三角形构成的条件,三角形内角和定理,等腰三角形和直角三角形的性质。
2018江苏无锡中考数学解析

2018年江苏省无锡市初中毕业、升学考试数学(满分150分,考试时间120分钟)一、选择题:本大题共10小题,每小题3分,共30分.不需写出解答过程,请把最后结果填在题后括号内. 1.(2018江苏无锡,1,3分)下列等式正确的是( )A. 2(3)3= B.2(3)3-=- C. 333= D. 2(3)3-=-【答案】A【解析】∵2(3)3=,∴A 正确;∵2(3)9=3-=,∴B 错误;∵322333=33=33=⨯⨯,∴错误C.∵22(3)(3)3-==,∴D 错误.【知识点】二次根式的化简2.(2018江苏无锡,2,3分)函数24xy x=-中自变量x 的取值范围是( ) A. x ≠-4 B. x ≠4 C. x ≤-4 D. x ≤4 【答案】B【解析】∵4-x ≠0,∴x ≠4 .【知识点】函数解析式中自变量取值范围的确定 3.(2018江苏无锡,3,3分)下列运算正确的是( )A. 235a a a +=B. 235()a a = C. 43a a a -= D. 43a a a ÷=【答案】D【解析】∵23a a +无法合并,∴A 错误; ∵23236()=a aa ⨯=,∴B 错误;∵43a a -无法合并,∴C 错误; ∵4343a a aa -÷==,∴正确.【知识点】合并同类项、幂的乘方、同底数幂的除法 4.(2018江苏无锡,4,3分)下面每个图形都是由6个边长相同的正方形拼成的图形,其中能折叠成正方体的是( )A. B. C. D.【答案】C【解析】凡是小正方形拼成以下基本图形:“五子连”、“7”字形、“田”字形、“凹”字形时,都不能折叠成正方体.所以答案选C.【知识点】正方体的表面展开图5.(2018江苏无锡,5,3分)下列图形中的五边形ABCDE都是正五边形,则这些图形中的轴对称图形有()A.1个 B. 2个 C.3个 D. 4个【答案】D【解析】图中四个五边形都是轴对称图形,所以答案选D.【知识点】轴对称图形的定义6.(2018江苏无锡,6,3分)已知点P(a,m),点Q(b,n)都在反比例函数2yx=-的图象上,且a<0<b,则下列结论一定正确的是()A. m+n<0B. m+n>0C. m<nD.m>n 【答案】D【解析】∵k=-2<0,∴反比例函数2yx=-的图象位于第二、四象限,∵a<0<b,∴点P(a,m)位于第二象限,点Q(b,n)位于第四象限,∴m>0 ,n<0,∴m>n.【知识点】反比例函数图象的性质、平面直角坐标系中点的坐标特征、有理数的大小比较7.(2018江苏无锡,7,3分)某商场为了了解产品A的销售情况,在上个月的销售记录中,随机抽取了5天A售价x(元/件)90 95 100 105 110销量y(件)110 100 80 60 50则这5天中,A产品平均每件的售价为()A. 100元B.95元C. 98元D. 97.5元【答案】C【解析】A产品平均每件的售价为:(90×110+95×100+100×80+105×60+110×50)÷(110+100+80+60+50)=(9900+9500+8000+6300+5500)÷400=39200÷400=98.【知识点】加权平均数的计算8.(2018江苏无锡,8,3分)如图,矩形ABCD中,G是BC的中点,过A、D、G三点的O与边AB、CD 分别交于点E、F.给出下列说法:(1)AC与BD的交点是O的圆心;(2)AF与DE的交点是O的圆心;(3)BC 与O相切.其中正确说法的个数是()A.0B. 1C. 2D. 3【答案】C【思路分析】利用圆周角定理的推理确定O的圆心,进而判定(1)、(2)的正确性;连接OG,通过证明OG⊥BC 说明BC与O相切.【解题过程】∵矩形ABCD中,∴∠A=∠D=90°,∴AF与DE都是O的直径,AC与BD不是O的直径,∴AF与DE的交点是O的圆心,AC与BD的交点不是O的圆心,∴(1)错误、(2)正确.连接AF、OG,则点O为AF的中点,∵G是BC的中点,∴OG是梯形FABC的中位线,∴OG∥AB,∵AB⊥BC,∴OG⊥BC,∴BC与O相切.∴(3)正确.综上所述,正确结论有两个.【知识点】矩形的性质、圆周角定理的推论、梯形中位线的判定与性质、圆的切线的判定9.(2018江苏无锡,9,3分)如图,已知点E是矩形ABCD的对角线AC上的一动点,正方形EFGH的顶点G、H都在边AD上,若AB=3,BC=4,则tan∠AFE的值()A.等于37B.等于33C.等于34D. 随点E位置的变化而变化【答案】A【思路分析】利用平行线的性质将∠AFE转化为∠GAF,然后利用相似三角形的对应边成比例确定GF、AG的关系,进而得到tan∠AFE的值.【解题过程】∵E是矩形ABCD的对角线AC上的一动点,AB=3,BC=4,∴EHAH=tan∠EAH=tan∠ACB=ABBC=34,∴4=3AH EH.∵正方形EFGH的顶点G、H都在边AD上,∴FG=EH=HG,EF∥HG,∴∠AFE=∠GAF,∴tan ∠AFE=tan ∠GAF=FG AG =EH AH EH +=43EH EH EH +=73EHEH =37. 【知识点】矩形的性质、正方形的性质、平行线的性质、锐角三角函数值的定义10.(2018江苏无锡,10,3分)如图是一个3×3正方形方格纸的对角线AB 剪下图形,一质点P 由A 点出发,沿格点线每次向右或向上运动1个单位长度,则点P 由点A 运动到B 点的不同路径共有( ) A.4条 B. 5条 C. 6条 D.7条【答案】B【思路分析】按照点P 经过的格点确定所有符合要求的路线. 【解题过程】如图所示,运动路线有:ACDFGJB ;ACDFIJB ;ACEFGJB ;ACEFIJB ;ACEHIJB ,共5条. 【知识点】二、填空题:本大题共8小题,每小题2分,共16分.不需写出解答过程,请把最后结果填在题中横线上. 11.(2018江苏无锡,11,3分)-2的相反数的值等于 . 【答案】2【解析】-2的相反数的值等于2. 【知识点】相反数的求法 12.(2018江苏无锡,12,3分)今年“五一”节日期间,我市四个旅游景区共接待游客303000多人次,这个数据用科学记数法可记为 . 【答案】53.0310⨯ 【解析】303000=53.0310⨯. 【知识点】科学记数法13.(2018江苏无锡,13,3分) 方程31x xx x -=+的解是 . 【答案】32x =-【解析】两边同时乘以x (x+1),得()()231x x x-+=,即-2x-3=0,解得32 x=-.检验:当32x =-时,x(x+1)=33313(1)()022224-⨯-+=-⨯-=≠,∴32x=-是原方程的解.【知识点】可化为一元一次方程的分式方程解法14.(2018江苏无锡,14,3分)方程组225x yx y-=⎧⎨+=⎩的解是.【答案】31 xy=⎧⎨=⎩【解析】225x yx y-=⎧⎨+=⎩①②,②-①得3y=3,∴y=1.把y=1代入①,得x-1=2,解得x=3.∴原方程组的解是31 xy=⎧⎨=⎩.【知识点】二元一次方程组的解法15.(2018江苏无锡,15,3分)命题“四边相等的四边形是菱形”的逆命题是.【答案】菱形的四边都相等【解析】交换题设和结论即可得到原命题的逆命题.【知识点】逆命题的定义16.(2018江苏无锡,16,3分)如图,点A、B、C都在O上,OC⊥OB,点A在劣弧BC上,且OA=AB,则∠ABC= .【答案】15°【思路分析】利用圆的半径相等,OC⊥OB,OA=AB,可以证明△OBC是等腰直角三角形、△ABO是等边三角形,进而利用特殊三角形的性质求得结论.【解题过程】∵OC⊥OB,OB=OC,∴∠CBO=45°. ∵OB=OA=AB , ∴∠ABO=60°.∴∠ABC=∠ABO-∠CBO=60°-45°=15°.【知识点】圆的基本性质、等腰直角三角形的判定和性质、等边三角形的判定和性质17.(2018江苏无锡,17,3分) 已知△ABC 中,AB=10,AC=27,∠B=30°,则△ABC 的面积等于 . 【答案】153或103【思路分析】先画出△ABC 的草图,确定对应元素的位置和大小,再利用三角形的面积公式求解. 【解题过程】分两种情况求解:(1)如图1所示,作AD ⊥BC 于点D ,∵AB=10,∠B=30°, ∴AD=12AB=12×10=5,222210553BD AB AD =-=-=. 又∵AC=27, ∴2222(27)53CD AC AD =-=-=.∴BC=BD+CD=53363+=, ∴△ABC 的面积为1163515322BC AD ⋅=⨯⨯=. (2)如图1所示, 作AD ⊥BC 于点D ,∵AB=10,∠B=30°, ∴AD=12AB=12×10=5,222210553BD AB AD =--=又∵AC=7 ∴2222(27)53CD AC AD =-=-=∴BC=BD-CD=53343=∴△ABC的面积为11435103 22BC AD⋅=⨯⨯=.综上所述,△ABC的面积等于153或103.【知识点】含30°角的直角三角形的性质、勾股定理、锐角三角函数的定义、解直角三角形、三角形的面积公式、分类讨论思想18.(2018江苏无锡,18,3分)如图,已知∠XOY=60°,点A在边OX上,OA=2.过点A作AC⊥OY于点C,以AC为一边在∠XOY内作等边△ABC.点P是△ABC围成的区域(包括各边)内的一点,过点P作PD∥OY 交OX于点D,作PE∥OX交OY于点E.设OD=a,OE=b,则a+2b的取值范围是.【答案】2≤a+2b≤4【思路分析】利用连接AP,利用已知条件可以证明△ADP是等边三角形,进而得到AD=PD=b,由OD=PE=a,OA=2可知a+b=2,∴a+2b=b+2,然后根据点P是△ABC围成的区域(包括各边)内的一点,确定b的取值范围即可得到结论.【解题过程】∵PD∥OY,PE∥OX,∴四边形PEOD是平行四边形,PD⊥AC,∠PDA=∠XOY=60°,∴OD=PE=a.连接AP,则△ADP是等边三角形,∴AD=PD=a.∴OA=AD+OD=PD+PE=a+b=2,∴a+2b=b+2.∵点P是△ABC围成的区域(包括各边)内的一点,∴当点P与点A重合时,b取得最小值0;当点P与点B重合时,b取得最大值,作BM⊥AC于M,延长线交OA于N,此时,MN=12OC=1122⨯OA=11242⨯=, BM=22AB AM -=221()2AC AC -=234AC =223()4OA OC -=223(21)4-=9342=,∴b=BN=BM+MN=13222+=. ∴0≤b ≤2, ∴2≤b+2≤4, 即2≤a+2b ≤4.【知识点】平行四边形的判定和性质、等边三角形的判定和性质、三线合一、勾股定理、三角形中位线的判定和性质、不等式的基本性质三、解答题(本大题共10小题,满分84分,解答应写出文字说明、证明过程或演算步骤)19.(2018江苏无锡,19,8分) 计算:(1)20(2)|3|(6)-⨯--;(2)22(1)()x x x +--.【思路分析】利用实数的运算法则、整式的运算法则进行计算.【解题过程】解:(1)20(2)|3|(6)-⨯--=431⨯-=12-1=11;(2)22(1)()x x x +--=2221x x x x ++-+=3x+1.【知识点】实数的混合运算法则、绝对值的求法、0指数幂的运算、完全平方公式、整式的加减运算20.(2018江苏无锡,20,8分)(1)分解因式:3327x x -;(2) 解不等式组:21111(21)3x x x x +-⎧⎪⎨--⎪⎩>①≤②. 【思路分析】(1)先提取公因式,再使用公式分解因式;(2)分别解两个不等式,再确定解集的公共部分.【解题过程】(1)解:3327x x -=23(9)x x -=3(3)(3)x x x +-.(2) 解:解①得x >-2, 解②得x ≤2,∴原不等式组的解集是:-2<x ≤2.【知识点】因式分解、一元一次不等式(组)的解法 21.(2018江苏无锡,21,8分)如图,平行四边形ABCD 中,E 、F 分别是边BC 、AD 的中点,求证:∠ABF=∠CDE.【思路分析】利用平行四边形的性质证明△ABF ≌△CDE ,进而得到结论 【解题过程】∵四边形ABCD 是平行四边形中, ∴∠A=∠C ,AB=CD ,AD=BC , ∵E 、F 分别是边BC 、AD 的中点, ∴AF=CE.在△ABF 和△CDE 中,AB CD A C AF CE ⎧=∠=∠=⎪⎨⎪⎩, ∴△ABF ≌△CDE (SAS ), ∴∠ABF=∠CDE.【知识点】线段中点的定义、平行四边形的性质、全等三角形的判定和性质 22.(2018江苏无锡,22,6分)某汽车交易市场为了了解二手车的交易情况,将本市场去年成交的二手轿车的全部数据,以二手轿车交易前的使用时间为标准分为A 、B 、C 、D 、E 五类,并根据这些数据由甲、乙两人分别绘制了下面的两幅统计图(图都不完整).请根据以上信息,解答下列问题:(1)该汽车交易市场去年共交易二手轿车 辆.(2)把这幅条形统计图补充完整.(画图后请标注相应的数据)(3)在扇形统计图中,D 类二手轿车交易辆数所对应的圆心角为 度.【思路分析】(1)利用B 类二手轿车交易辆数及对应的百分比可以求出该汽车交易市场去年共交易二手轿车的辆数;(2)利用C 类二手轿车交易辆数对应的百分比、及该汽车交易市场去年共交易二手轿车的辆数可以求出C 类二手轿车交易辆数;(3)利用D 类二手轿车交易辆数及该汽车交易市场去年共交易二手轿车的辆数可以求出D 类二手轿车交易辆数所占的百分比求出对应的圆心角.【解题过程】(1)∵B 类二手轿车交易辆数为1080,对应的百分比为36%, ∴该汽车交易市场去年共交易二手轿车的辆数:1080÷36%=3000. 答案:3000(2)∵该汽车交易市场去年共交易二手轿车3000辆,C 类二手轿车交易辆数对应的百分比为25%, ∴C 类二手轿车交易辆数为3000×25%=750. 答案:750(3)∵该汽车交易市场去年共交易二手轿车3000辆,D 类二手轿车交易辆数为450, ∴D 类二手轿车交易辆数对应的圆心角为:4503000×360°=54°. 【知识点】条形统计图、扇形统计图 23.(江苏无锡,23,8分)某校组织一项公益知识竞赛,比赛规定:每个班由2名男生、2名女生及1名班主任老师组成代表队.但参赛时,每班只能有3名队员上场参赛,班主任老师必须参加,另外2名队员分别在 2名男生和2名女生中各随机抽出1名.初三(1)班由甲、乙2名男生和丙、丁2名女生及1名班主任组成了代表队.求恰好抽到男生甲、女生丙和这位班主任一起上场参赛的概率.(请用“画树状图”或“列表”或“列举”等方法给出分析过程)【思路分析】画树状图分析比较简单明了.【解题过程】画树状图如下:由树状图可知:所有可能出现的抽取结果有4种,抽到男生甲、女生丙的结果有4种,∴恰好抽到男生甲、女生丙和这位班主任一起上场参赛的概率为:1 4 .【知识点】概率值的计算24.(2018江苏无锡,24,8分)如图,四边形ABCD内接于O,AB=17,CD=10,∠A=90°,cosB=35,求AD的长.【思路分析】如图所示,延长AD、BC交于点E,利用圆内接四边形的性质证明△ECD∽△EAB,进而利用相似三角形的性质可以求得AD的长.【解题过程】如图所示,延长AD、BC交于点E,∵四边形ABCD内接于O,∠A=90°,∴∠EDC=∠B,∠ECD=∠A=90°,∴△ECD∽△EAB,∴CD EC AB EA.∵cos∠EDC=cosB=35,∴35CD ED =, ∵CD=10, ∴1035ED =, ∴ED=503, ∴22225040()1033EC ED CD =-=-=. ∴401035017+3AD =, ∴AD=6.【知识点】圆内接四边形的性质、相似三角形的判定和性质、锐角三角函数的定义、勾股定理、分式方程的解法25.(2018江苏无锡,25,8分)一水果店是A 酒店的唯一供货商.水果店根据该酒店以往每月的需求情况,本月初专门为他们准备了2600kg 的这种水果.已知水果店没售出1kg 该水果可获利润10元,未售出的部分每1kg 将亏损6元.以x (单位:kg ,2000≤x ≤3000)表示A 酒店本月对这种水果的需求量,y (元)表示水果店销售这批水果所获得的利润.(1)求y 关于x 的函数表达式;(2)问:当A 酒店本月对这种水果的需求量如何时,该水果店销售这批水果所获得的利润不少于22000元?【思路分析】(1)利用售出部分的利润减去未售出部分的亏损即可得到y 关于x 的函数表达式;(2)利用利润不少于22000可以列不等式求出实际问题的解.【解题过程】(1)当2000≤x ≤2600时,y=10x-6(2600-x )=16x-15600;当2600≤x ≤3000时,y=10×2600=26000.(2)由题意得16x-15600≥22000,解得x ≥2350,∴当A 酒店本月对这种水果的需求量不少于2350时,该水果店销售这批水果所获得的利润不少于22000元.【知识点】列一次函数解析式、一元一次不等式的应用26.(2018江苏无锡,26,10分)如图,平面直角坐标系中,已知点B 的坐标为(6,4).(1)请用直尺(不带刻度)和圆规作一条直线AC ,它与x 轴和y 轴的正半轴分别交于点A 和点C ,且使∠ABC=90°,△ABC 与△AOC 的面积相等.(作图不必写作法,但要保留作图痕迹)(2)问:(1)中这样的直线AC 是否唯一?若唯一,请说明理由;若不唯一,请在图中画出所有这样的直线AC ,并写出与之对应的函数表达式.(2)根据(1)中的作图方法,利用待定系数法求出函数表达式.【解题过程】(1)方法一:过点B 分别向x 轴、y 轴作垂线,垂直分别为A 、C ,过AC 画直线即可;方法二:连接OB ,作OB 的垂直平分线,分别交x 轴、y 轴于点A 、C ,过AC 画直线即可.(2)方法一:由作图可知点A 的坐标为(6,0),点B 的坐标为(0,4),设AC 的解析式为y=kx+b ,则6004k b k b +=⎧⎨+=⎩,解得234k b ⎧=-⎪⎨⎪=⎩, ∴243y x =-+. 方法二:作BM ⊥x 轴于点M ,BN ⊥y 轴于点N ,则BM=4,BN=6,设A (a ,0)C (0,b ),利用轴对称的性质可得BC=OC=b ,AB=OA=a ,由△BAM ∽BCN 得==BA BM AM BC BN CN , ∴46=64a ab b -=-, ∴13313a ⎧=⎪⎪⎨设AC 的解析式为y=mx+n , 则13031302m n m n ⎧+=⎪⎪⎨⎪+=⎪⎩,解得32132m n ⎧=-⎪⎪⎨⎪=⎪⎩, ∴31322y x =-+. ui 【知识点】27.(2018江苏无锡,27,10分)如图,矩形ABCD 中,AB=m ,BC=n.将此矩形绕点B 顺时针方向旋转θ(0°<θ<90°)得到矩形111A BC D ,点1A 在边CD 上.(1)若m=2,n=1,求在旋转过程中,点D 到点1D 所经过路径的长度;(2)将矩形111A BC D 继续绕点B 顺时针方向旋转得到矩形222A BC D ,点2D 在BC 的延长线上.设2A B 与CD 交于点E ,若161A E EC =-,求n m的值.【思路分析】(1)首先确定旋转半径和旋转角,再利用弧长公式进行计算.(2)在Rt △1A BC 中,由勾股定理得2222(6)6m n EC EC -==①;由△BCE ∽△22BA D 得2n CE m =②,消去CE 即可得到mn 的方程,求解得到答案.【解题过程】(1)∵四边形ABCD 是矩形,∴∠1A CB =90°,AB ∥CD ,CD=AB=m=2,AD=BC=n=1,12A B =,∴222211213AC A B BC =-=-=1A BA =∠1BA C ,∴1111sin sin 2BC A BA BAC A B ===∠, ∴θ=∠1A BA =30°,连接BD ,由勾股定理得2222=21=5BD AB AD =++,∴点D 到点1D 所经过路径的长度为:30525=360ππ⨯(2)∵161A E EC=, ∴1(61)A E EC =, ∴11(61)6AC A E EC EC EC EC =+=+=. 在Rt △1A BC 中,由勾股定理得22226)6m n EC EC -==①由△BCE ∽△22BA D 得222BC CE BA A D =,即n CE m n=,∴2n CE m =② 由①②得22226()n m n m -=, 即42246+0n m n m -=, ∴426()+()10n n m m-=, 即22[2()1][3()1]0n n m m+-=, ∴22()1=0n m +(舍去)或23()10n m -=, ∴3n m (3. 【知识点】矩形的性质、平行线的性质、勾股定理、旋转的性质、锐角三角函数的定义、弧长公式、相似三角形的判定和性质、因式分解、一元二次方程的解法、二次根式的化简28.(2018江苏无锡,28,10分)已知:如图,一次函数y=kx-1的图象经过点A (35,m ),与y 轴交于点B.点C 在线段AB 上,且BC=2AC.过点C 作x 轴的垂线,垂足为D.若AC=CD ,(1)求这个一次函数的表达式;(2)已知一开口向下、以直线CD 为对称轴的抛物线经过点A ,它的顶点为P.若过点P 且垂直于AP 的直线与x 45【思路分析】(1)作BE ⊥CD 于点E ,过点A 作x 轴的垂线交BE 的延长线于点F ,利用△BCE ∽△BAF 求出BE 的长度,进而得到OD 、CD 的长度,然后在Rt △BCE 中使用勾股定理求出k 的值,最终确定一次函数表达式;(2)【解题过程】(1)作BE ⊥CD 于点E ,过点A 作x 轴的垂线交BE 的延长线于点F ,则△BCE ∽△BAF , ∴BE BC BF BA=, ∵BC=2AC ,BF=35, 222335AC AC AC ==+, ∴25BE = ∴25OD BE ==∵一次函数y=kx-1的图象经过点A (35m ),与y 轴交于点B ,点C 在线段AB 上,∴AC=CD=51k -,BC=2AC=2(51k -)=52k -,在Rt △BCE 中,∵222BE CE BC +=, 即222(25)(2511)52)k k +-+=-,∴23(5)4540k k --=, 即(52)(352)0k k -+= ∴255k =(2515k =-舍去), ∴这个一次函数的表达式为2515y x =-. (2)∵515y x =--过点A (35,m ), ∴2535155m =⨯-=. ∴点A 的坐标为(35,5).连接AQ ,设点P (5h ),∵Q (45,0), ∴222(3525)(5)AP h =+-,2224(525)(0)5QP h =+-, 2224(535)(50)5AQ =+-, ∵PQ ⊥AP , ∴222AP QP AQ +=,即25140h h --=,解得h=7(-2舍去).∴点P (7),A 的坐标为(,5),∵抛物线的顶点为P ,过点A ,∴设抛物线的解析式为2(7y a x =-+,则257a =+, 解得25a =-,∴22(75y x =--+,即2215y x =--. 【知识点】相似三角形的判定和性质、待定系数法求一次函数和二次函数解析式、勾股定理、两点间的坐标公式、函数值的计算、一元二次方程的解法。
专题3.7 江苏无锡(试题解读)-2018中考数学真题之名师立体解读高端精品

一、纵观全局,试卷评价
(一)准确把握对数学知识与技能的考查
从知识点上看,在命题方向上,没有太多的起伏;从内容上看,对这些知识点的考查并不放在对概念、性质的记忆上,而是对概念、性质的理解与运用上,通过现实生活来体验数学的妙趣。
(二)着重考查学生数学思想的理解及运用
数学能力是学好数学的根本,主要表现为数学的思想方法。
其中数形结合思想、方程与函数思想、分类讨论思想等几乎是历年中考试卷考查的重点,必须引起足够重视。
1)分类讨论思想:当面临的问题不宜用统一方法处理时,就得把问题按照一定的原则或标准分为若干类,然后逐类进行讨论,再把结论汇总,得出问题的答案。
例如:今年中考数学题对分类讨论思想特别重视,如第17题求△ABC的面积,分AB、AC位于AD异侧和同侧两种情况。
(三)关注数学知识解决实际问题的考查
数学来源于生活,同时也运用于生活,学数学就是为了解决生活中所碰到的问题。
(四)注重数学活动过程的考查
这几年不仅关注对学生学习结果的评价,也关注对他们数学活动过程的评价;不仅关注数学思想方法的考查,还关注他们在一般性思维方法与创新思维能力的发展等方面的评价,尤其是注重对学生探索性思维能力和创新思维能力的考查;不仅关注知识的教学,更多的是要关注对学生数学思维潜力的开发与提高。
二、明晰试题,看明细表
根式的性质:
AF=ADF=是解题的关。
【真题】2018年江苏省无锡市中考数学试卷含答案解析(word版)

2018年江苏省无锡市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分。
在每小题所给出的四个选项中,只有一项是正确的,请用2B铅笔把答题卡上相应的选项标号涂黑) 1.(3分)下列等式正确的是()A.()2=3 B.=﹣3 C.=3 D.(﹣)2=﹣32.(3分)函数y=中自变量x的取值范围是()A.x≠﹣4 B.x≠4 C.x≤﹣4 D.x≤43.(3分)下列运算正确的是()A.a2+a3=a5 B.(a2)3=a5C.a4﹣a3=a D.a4÷a3=a4.(3分)下面每个图形都是由6个边长相同的正方形拼成的图形,其中能折叠成正方体的是()A.B.C.D.5.(3分)下列图形中的五边形ABCDE都是正五边形,则这些图形中的轴对称图形有()A.1个 B.2个 C.3个 D.4个6.(3分)已知点P(a,m),Q(b,n)都在反比例函数y=的图象上,且a <0<b,则下列结论一定正确的是()A.m+n<0 B.m+n>0 C.m<n D.m>n7.(3分)某商场为了解产品A 的销售情况,在上个月的销售记录中,随机抽取了5天A 产品的销售记录,其售价x (元/件)与对应销量y (件)的全部数据如下表:则这5天中,A 产品平均每件的售价为( )A .100元B .95元C .98元D .97.5元8.(3分)如图,矩形ABCD 中,G 是BC 的中点,过A 、D 、G 三点的圆O与边AB 、CD 分别交于点E 、点F ,给出下列说法:(1)AC 与BD 的交点是圆O 的圆心;(2)AF 与DE 的交点是圆O 的圆心;(3)BC 与圆O 相切,其中正确说法的个数是( )A .0B .1C .2D .39.(3分)如图,已知点E 是矩形ABCD 的对角线AC 上的一动点,正方形EFGH 的顶点G 、H 都在边AD 上,若AB=3,BC=4,则tan ∠AFE 的值( )A .等于B .等于C .等于D .随点E 位置的变化而变化10.(3分)如图是一个沿3×3正方形方格纸的对角线AB 剪下的图形,一质点P 由A 点出发,沿格点线每次向右或向上运动1个单位长度,则点P 由A 点运动到B 点的不同路径共有( )A.4条 B.5条 C.6条 D.7条二、填空题(本大题共8小题,每小题2分,共16分。
江苏省无锡市2018年中考数学真题试题(含解析)

江苏省无锡市2018年中考数学真题试题一、选择题(本大题共10小题,每小题3分,共30分。
在每小题所给出的四个选项中,只有一项是正确的,请用2B铅笔把答题卡上相应的选项标号涂黑)1.(3分)下列等式正确的是()A.()2=3 B.=﹣3 C.=3 D.(﹣)2=﹣32.(3分)函数y=中自变量x的取值范围是()A.x≠﹣4 B.x≠4 C.x≤﹣4 D.x≤43.(3分)下列运算正确的是()A.a2+a3=a5B.(a2)3=a5C.a4﹣a3=a D.a4÷a3=a4.(3分)下面每个图形都是由6个边长相同的正方形拼成的图形,其中能折叠成正方体的是()A.B.C.D.5.(3分)下列图形中的五边形ABCDE都是正五边形,则这些图形中的轴对称图形有()A.1个B.2个C.3个D.4个6.(3分)已知点P(a,m),Q(b,n)都在反比例函数y=的图象上,且a<0<b,则下列结论一定正确的是()A.m+n<0 B.m+n>0 C.m<n D.m>n7.(3分)某商场为了解产品A的销售情况,在上个月的销售记录中,随机抽取了5天A产品的销售记录,其售价x(元/件)与对应销量y(件)的全部数据如下表:则这5天中,A产品平均每件的售价为()A.100元B.95元C.98元D.97.5元8.(3分)如图,矩形ABCD中,G是BC的中点,过A、D、G三点的圆O与边AB、CD分别交于点E、点F,给出下列说法:(1)AC与BD的交点是圆O的圆心;(2)AF与DE的交点是圆O的圆心;(3)BC与圆O相切,其中正确说法的个数是()A.0 B.1 C.2 D.39.(3分)如图,已知点E是矩形ABCD的对角线AC上的一动点,正方形EFGH的顶点G、H 都在边AD上,若AB=3,BC=4,则tan∠AFE的值()A.等于B.等于C.等于D.随点E位置的变化而变化10.(3分)如图是一个沿3×3正方形方格纸的对角线AB剪下的图形,一质点P由A点出发,沿格点线每次向右或向上运动1个单位长度,则点P由A点运动到B点的不同路径共有()A.4条B.5条C.6条D.7条二、填空题(本大题共8小题,每小题2分,共16分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【母题来源】江苏省无锡市2018年中考数学试卷第题【母题原题】如图,四边形ABCD内接于⊙O,AB=17,CD=10,∠A=90°,cosB=,求AD的长.【分析】根据圆内接四边形的对角互补得出∠C=90°,∠ABC+∠ADC=180°.作AE⊥BC于E,DF⊥AE于F,则CDFE是矩形,EF=CD=10.解Rt△AEB,得出BE=AB•cos∠ABE=,AE==,那么AF=AE﹣EF=.再证明∠ABC+∠ADF=90°,根据互余角的互余函数相等得出sin∠ADF=cos∠ABC=.解Rt△ADF,即可求出AD==6.∴sin∠ADF=cos∠ABC=.在Rt△ADF中,∵∠AFD=90°,sin∠ADF=,∴AD===6.【命题意图】本题考查了圆内接四边形的性质,矩形的判定与性质,勾股定理,解直角三角形,求出AF=以及sin∠ADF=是解题的关键.【方法、技巧、规律】1.弄清题目中各种量的关系,解题需要用到的定理,适当添加辅助线,将问题转化,运用“分析与推理”,“从结论看需知”等综合法与分析法来沟通已知条件与结论.2.判定切线的方法:①连半径,证垂直;②作垂直,证半径.3.不规则图形面积的计算,可以通过割补、平移、旋转等方法转化为规则图形的面积.【母题1】如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连结AD.已知∠CAD=∠B.(1)求证:AD是⊙O的切线.(2)若BC=8,tanB=,求⊙O的半径.【答案】(1)AD为圆O的切线;(2)r=.(2)设圆O的半径为r,在Rt△ABC中,AC=BCtanB=4,根据勾股定理得:AB==4,∴OA=4﹣r,在Rt△ACD中,tan∠1=tanB=,∴CD=ACtan∠1=2,根据勾股定理得:AD2=AC2+CD2=16+4=20,在Rt△ADO中,OA2=OD2+AD2,即(4﹣r)2=r2+20,解得:r=.【母题2】如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,连结AC,过BD上一点E作EG∥AC交CD的延长线于点G ,连结AE 交CD 于点F ,且EG =FG ,连结CE .(1)求证:△ECF ∽△GCE ;(2)求证:EG 是⊙O 的切线;(3)延长AB 交GE 的延长线于点M ,若tan G =34,AH =EM 的值.【答案】(1)证明见解析;(2)证明见解析;(3. 【分析】(1)由AC ∥EG ,推出∠G =∠ACG ,由AB ⊥CD 推出AD AC =,推出∠CEF =∠ACD ,推出∠G =∠CEF ,由此即可证明;(2)欲证明EG 是⊙O 的切线只要证明EG ⊥OE 即可;(3)连接OC .设⊙O 的半径为r .在Rt △OCH 中,利用勾股定理求出r ,证明△AHC ∽△MEO ,可得AH HC EM OE=,由此即可解决问题;考点:圆的综合题;压轴题.【母题3】已知AB是⊙O的直径,C是圆上一点,∠BAC的平分线交⊙O于点D,过D作DE⊥AC交AC 的延长线于点E,如图①.(1)求证:DE是⊙O的切线;(2)若AB=10,AC=6,求BD的长;(3)如图②,若F是OA中点,FG⊥OA交直线DE于点G,若FG=194,tan∠BAD=34,求⊙O的半径.【答案】(1)证明见解析;(2)(3)4.【分析】(1)欲证明DE是⊙O的切线,只要证明OD⊥DE;(2)首先证明OD⊥BC,在Rt△BDN中,利用勾股定理计算即可;(3)如图②中,设FG与AD交于点H,根据题意,设AB=5x,AD=4x,则AF=54x,想办法用x表示线段FH、GH,根据FH+GH=194,列出方程即可解决问题;(3)如图②中,设FG与AD交于点H,根据题意,设AB=5x,AD=4x,则AF=54x,FH=AF•tan∠BAD=54x•34=1516x,AH=cosAFBAD∠=5445x=2516x,HD=AD﹣AH=4x﹣2516x=3916x,由(1)可知,∠HDG+∠ODA=90°,在Rt△HF A中,∠F AH+∠FHA=90°,∵∠OAD=∠ODA,∠FHA=∠DHG,∴∠DHG=∠HDG,∴GH=GD,过点G作GM⊥HD,交HD于点M,∴MH=MD,∴HM=12HD=12×3916x=3932x,∵∠F AH+∠AHF=90°,∠MHG+∠HGM=90°,∴∠F AH=∠HGM,在Rt△HGM中,HG=cos HMHGM∠=393235x=6532x,∵FH+GH=194,∴1516x+6532x=194,解得x=85,∴此圆的半径为52×85=4.点睛:本题考查圆综合题、切线的判定、垂径定理、勾股定理、锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.考点:圆的综合题.母题二一次函数的实际问题【母题来源】江苏省无锡市2018年中考数学试卷第25题【母题原题】一水果店是A酒店某种水果的唯一供货商,水果店根据该酒店以往每月的需求情况,本月初专门为他们准备了2600kg的这种水果.已知水果店每售出1kg该水果可获利润10元,未售出的部分每1kg 将亏损6元,以x(单位:kg,2000≤x≤3000)表示A酒店本月对这种水果的需求量,y(元)表示水果店销售这批水果所获得的利润.(1)求y关于x的函数表达式;(2)问:当A酒店本月对这种水果的需求量如何时,该水果店销售这批水果所获的利润不少于22000元?【分析】(1)列函数解析式时注意在获得的利润里减去未出售的亏损部分;(2)由(1)y≥22000即可.不少于22000元.【命题意图】本题考查一次函数和一元一次不等式,求函数关系式和列不等式时,要注意理解题意.【方法、技巧、规律】由于列方程(组)、列不等式(组)解应用题手段独特,方法灵活,因而常出现在中考试卷中,事实上,列方程(组)、列不等式(组)解应用题的方法可以简单地分为:设、找、列、解、答五个步骤,可以改变问题的背景,可以是一次方程与不等式(组)的结合,也可以是分式方程与不等式的结合,还可以是方程(组)、不等式(组)以及函数的结合.【母题1】为了推进我州校园篮球运动的发展,2017年四川省中小学生男子篮球赛于2月在西昌成功举办.在此期间,某体育文化用品商店计划一次性购进篮球和排球共60个,其进价与售价间的关系如下表:(1)商店用4200元购进这批篮球和排球,求购进篮球和排球各多少个?(2)设商店所获利润为y(单位:元),购进篮球的个数为x(单位:个),请写出y与x之间的函数关系式(不要求写出x的取值范围);(3)若要使商店的进货成本在4300元的限额内,且全部销售完后所获利润不低于1400元,请你列举出商店所有进货方案,并求出最大利润是多少?【答案】(1)购进篮球40个,排球20个;(2)y=5x+1200;(3)共有四种方案,方案1:购进篮球40个,排球20个;方案2:购进篮球41个,排球19个;方案3:购进篮球42个,排球18个;方案4:购进篮球43个,排球17个.最大利润为1415元.【分析】(1)设购进篮球m个,排球n个,根据购进篮球和排球共60个且共需4200元,即可得出关于m、n的二元一次方程组,解之即可得出结论;(2)设商店所获利润为y元,购进篮球x个,则购进排球(60﹣x)个,根据总利润=单个利润×购进数量,即可得出y与x之间的函数关系式;(3)设购进篮球x个,则购进排球(60﹣x)个,根据进货成本在4300元的限额内且全部销售完后所获利润不低于1400元,即可得出关于x的一元一次不等式组,解之即可得出x的取值范围,取其整数即可得出各购进方案,再结合(2)的结论利用一次函数的性质即可解决最值问题.点睛:本题考查了二元一次方程组的应用、一次函数的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,列出二元一次方程组;(2)根据数量关系,找出y与x之间的函数关系式;(3)根据一次函数的性质解决最值问题.考点:一次函数的应用;二元一次方程组的应用;一元一次不等式组的应用;方案型;最值问题.【母题2】为满足社区居民健身的需要,市政府准备采购若干套健身器材免费提供给社区,经考察,劲松公司有A,B两种型号的健身器材可供选择.(1)劲松公司2015年每套A型健身器材的售价为2.5万元,经过连续两年降价,2017年每套售价为1.6万元,求每套A型健身器材年平均下降率n;(2)2017年市政府经过招标,决定年内采购并安装劲松公司A,B两种型号的健身器材共80套,采购专项经费总计不超过112万元,采购合同规定:每套A型健身器材售价为1.6万元,每套B型健身器材售价为1.5(1﹣n)万元.①A型健身器材最多可购买多少套?②安装完成后,若每套A型和B型健身器材一年的养护费分别是购买价的5%和15%,市政府计划支出10万元进行养护,问该计划支出能否满足一年的养护需要?【答案】(1)20%;(2)①40;②不能.【分析】(1)该每套A型健身器材年平均下降率n,则第一次降价后的单价是原价的(1﹣x),第二次降价后的单价是原价的(1﹣x)2,根据题意列方程解答即可.(2)①设A型健身器材可购买m套,则B型健身器材可购买(80﹣m)套,根据采购专项经费总计不超过112万元列出不等式并解答;②设总的养护费用是y元,则根据题意列出函数y=1.6×5%m+1.5×(1﹣20%)×15%×(80﹣m)=﹣0.1m+14.4.结合函数图象的性质进行解答即可.【解析】(1)依题意得:2.5(1﹣n)2=1.6,则(1﹣n)2=0.64,所以1﹣n=±0.8,所以n1=0.2=20%,n2=1.8(不合题意,舍去).答:每套A型健身器材年平均下降率n为20%;点睛:本题考查了一次函数的应用,一元一次不等式的应用和一元二次方程的应用.解题的关键是读懂题意,找到题中的等量关系,列出方程或不等式,解答即可得到答案.考点:一次函数的应用;一元二次方程的应用;一元一次不等式的应用;增长率问题;最值问题.【母题3】某网店销售甲、乙两种防雾霾口罩,已知甲种口罩每袋的售价比乙种口罩多5元,小丽从该网店网购2袋甲种口罩和3袋乙种口罩共花费110元.(1)改网店甲、乙两种口罩每袋的售价各多少元?(2)根据消费者需求,网店决定用不超过10000元购进价、乙两种口罩共500袋,且甲种口罩的数量大于乙种口罩的45,已知甲种口罩每袋的进价为22.4元,乙种口罩每袋的进价为18元,请你帮助网店计算有几种进货方案?若使网店获利最大,应该购进甲、乙两种口罩各多少袋,最大获利多少元?【答案】(1)该网店甲种口罩每袋的售价为25元,乙种口罩每袋的售价为20元;(2)该网店购进甲种口罩227袋,购进乙种口罩273袋时,获利最大,最大利润为1136.2元.【分析】(1)分别根据甲种口罩每袋的售价比乙种口罩多5元,小丽从该网店网购2袋甲种口罩和3袋乙种口罩共花费110元,得出等式组成方程求出即可;(2)根据网店决定用不超过10000元购进价、乙两种口罩共500袋,甲种口罩的数量大于乙种口罩的45,得出不等式求出后,根据m的取值,得到5种方案,设网店获利w元,则有w=(25﹣22.4)m+(20﹣18)(500﹣m)=0.6m+1000,故当m=227时,w最大,求出即可.点睛:本题考查了列二元一次方程组解实际问题的运用及二元一次方程组的解法,列一元一次不等式解实际问题的运用及解法,在解答过程中寻找能够反映整个题意的等量关系是解答本题的关键.考点:一次函数的应用;二元一次方程组的应用;一元一次不等式组的应用;方案型;最值问题.母题三几何压轴问题【母题来源】江苏省无锡市2018年中考数学试卷第27题【母题原题】如图,矩形ABCD中,AB=m,BC=n,将此矩形绕点B顺时针方向旋转θ(0°<θ<90°)得到矩形A1BC1D1,点A1在边CD上.(1)若m=2,n=1,求在旋转过程中,点D到点D1所经过路径的长度;(2)将矩形A1BC1D1继续绕点B顺时针方向旋转得到矩形A2BC2D2,点D2在BC的延长线上,设边A2B与CD交于点E,若=﹣1,求的值.【分析】(1)作A1H⊥AB于H,连接BD,BD1,则四边形ADA1H是矩形.解直角三角形,求出∠ABA1,得到旋转角即可解决问题;(2)由△BCE∽△BA2D2,推出==,可得CE=由=﹣1推出=,推出AC=•,推出BH=AC==•,可得m2﹣n2=6•,可得1﹣=6•,由此解方程即可解决问题;在Rt△A1HB中,∵BA1=BA=m=2,∴BA1=2HA1,∴∠ABA1=30°,∴旋转角为30°,∵BD==,∴D到点D1所经过路径的长度==π.【命题意图】本题考查轨迹,旋转变换、解直角三角形、弧长公式等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.【方法、技巧、规律】主要涉及平行四边形、矩形、菱形、正方形等,这类问题的解决要熟知知各种图形的性质与判定,并且这类题目的解决有时还需要三角形的相关知识,因此能熟练应用各种知识是解决此类问题的关键.【母题1】已知,在△ABC中,∠A=90°,AB=AC,点D为BC的中点.(1)如图①,若点E、F分别为AB、AC上的点,且DE⊥DF,求证:BE=AF;(2)若点E、F分别为AB、CA延长线上的点,且DE⊥DF,那么BE=AF吗?请利用图②说明理由.【答案】(1)证明见解析;(2)BE=AF,证明见解析.,∴△BDE≌△ADF(ASA),∴BE=AF;【母题2】如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想图1中,线段PM与PN的数量关系是,位置关系是;(2)探究证明把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;(3)拓展延伸把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.【答案】(1)PM=PN,PM⊥PN;(2)△PMN是等腰直角三角形;(3)492.【分析】(1)利用三角形的中位线得出PM=12CE,PN=12BD,进而判断出BD=CE,即可得出结论,另为利用三角形的中位线得出平行线即可得出结论;(2)先判断出△ABD≌△ACE,得出BD=CE,同(1)的方法得出PM=12BD,PN=12BD,即可得出PM=PN,同(1)的方法即可得出结论;(3)先判断出MN最大时,△PMN的面积最大,进而求出AN,AM,即可得出MN最大=AM+AN,最后用面积公式即可得出结论.(2)△PMN是等腰直角三角形.理由如下:由旋转知,∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,同(1)的方法,利用三角形的中位线得,PN=12BD,PM=12CE,∴PM=PN,∴△PMN是等腰三角形,同(1)的方法得,PM∥CE,∴∠DPM=∠DCE,同(1)的方法得,PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=90°,∴∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN是等腰直角三角形;考点:几何变换综合题;阅读型;探究型;最值问题.【母题3】在Rt△ABC中,∠ACB=90°,AC=12.点D在直线CB上,以CA,CD为边作矩形ACDE,直线AB 与直线CE,DE的交点分别为F,G.(1)如图,点D在线段CB上,四边形ACDE是正方形.①若点G为DE中点,求FG的长.②若DG=GF,求BC的长.(2)已知BC=9,是否存在点D,使得△DFG是等腰三角形?若存在,求该三角形的腰长;若不存在,试说明理由.【答案】(1)①FG=2;②BC=12.(2)等腰三角形△DFG的腰长为4或20或或.试题解析:(1)①在正方形ACDE中,DG=GE=6,中Rt△AEG中,AG==6,∵EG∥AC,∴△ACF∽△GEF,∴=,∴==,∴FG=AG=2.②如图1中,正方形ACDE中,AE=ED,∠AEF=∠DEF=45°,∵EF=EF,∴△AEF≌△DEF,∴∠1=∠2,设∠1=∠2=x,∵AE∥BC,∴∠B=∠1=x,∵GF=GD,∴∠3=∠2=x,在△DBF中,∠3+∠FDB+∠B=180°,∴x+(x+90°)+x=180°,解得x=30°,∴∠B=30°,∴在Rt△ABC中,BC==12.如图3中,当点D中线段BC的延长线上,且直线AB,CE的交点中AE上方时,此时只有GF=DG,设AE=3x,则EG=4x,AG=5x,∴FG=DG=12+4x,∵AE∥BC,∴△AEF∽△BCF,∴=,∴=,解得x=2或﹣2(舍弃),∴腰长DG=4x+12=20.如图4中,当点D在线段BC的延长线上,且直线AB,EC的交点中BD下方时,此时只有DF=DG,过点D作DH⊥FG.设AE=3x,则EG=4x,AG=5x,DG=4x+12,∴FH=GH=DG•cos∠DGB=(4x+12)×=,∴GF=2GH=,∴AF=GF﹣AG=,∵AC∥DG,∴△ACF∽△GEF,∴=,∴=,解得x=或﹣(舍弃),∴腰长GD=4x+12=,【名师点睛】本题考查四边形综合题、正方形的性质、矩形的性质、相似三角形的判定和性质、锐角三角函数、平行线的性质、勾股定理等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.。